WO2022016793A1 - 光学系统及投影装置 - Google Patents

光学系统及投影装置 Download PDF

Info

Publication number
WO2022016793A1
WO2022016793A1 PCT/CN2020/136985 CN2020136985W WO2022016793A1 WO 2022016793 A1 WO2022016793 A1 WO 2022016793A1 CN 2020136985 W CN2020136985 W CN 2020136985W WO 2022016793 A1 WO2022016793 A1 WO 2022016793A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
light
turning mirror
mirror
Prior art date
Application number
PCT/CN2020/136985
Other languages
English (en)
French (fr)
Inventor
陈朋波
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2022016793A1 publication Critical patent/WO2022016793A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources

Definitions

  • the present invention relates to the field of imaging technology, and in particular, to an optical system and a projection device.
  • Wearable devices are a new development direction in the field of optoelectronic imaging.
  • augmented reality devices as augmented reality devices in wearable devices, are gradually developing in the direction of light weight and miniaturization.
  • the optical system is the main working part of the AR equipment.
  • the optical system consists of a display unit and a mirror group.
  • the light emitted by the display unit is transmitted to the human eye after being acted by the mirror group.
  • the mirror group in an AR device usually needs to be used in combination with multiple lenses. When the number of lenses is large, the volume and weight of the AR device will increase.
  • the present invention provides an optical system and a projection device, aiming at solving the problems of large volume and large weight of the optical system in the augmented reality device in the prior art.
  • the present invention proposes an optical system, the optical system sequentially includes a display unit, a first mirror group, and a turning mirror along the light transmission direction;
  • the first lens group has positive refractive power
  • the light incident surface and/or the light exit surface of the turning mirror is a curved surface structure.
  • the turning mirror is a prism structure or a flat glass structure.
  • the turning mirror is a prism structure
  • the light incident surface, the reflective surface and the light emitting surface of the turning mirror are sequentially connected along the edge
  • the light incident surface and/or the light emitting surface of the turning mirror are spherical, aspherical and Any of the freeform surfaces.
  • the steering mirror satisfies the following relationship: 5mm ⁇ f4 ⁇ 30mm;
  • the f4 is the focal length of the steering mirror.
  • the steering mirror satisfies the following relationship: 1.5 ⁇ n4 ⁇ 2, 40 ⁇ v4 ⁇ 75;
  • the n4 is the refractive index of the turning mirror
  • the v4 is the dispersion coefficient of the turning mirror.
  • the first mirror group includes a first lens, a second lens and a third lens in sequence along the light transmission direction,
  • the light incident surface of the first lens is a convex structure, and the first lens has a positive refractive power
  • the light incident surface of the second lens is a concave structure, and the second lens has a negative refractive power
  • the light incident surface of the third lens is a convex structure, and the third lens has positive refractive power.
  • the display unit is a miniature light-emitting diode or a miniature light-emitting diode.
  • the first lens group satisfies the following relationship: 2mm ⁇ f1 ⁇ 25mm, -20mm ⁇ f2 ⁇ -1mm, 2mm ⁇ f3 ⁇ 20mm;
  • the f1 is the focal length of the first lens
  • the f2 is the focal length of the second lens
  • the f3 is the focal length of the third lens.
  • the first mirror group satisfies the following relationship: 1.5 ⁇ n1 ⁇ 1.8, 1.6 ⁇ n2 ⁇ 2, 1.5 ⁇ n3 ⁇ 1.8;
  • the n1 is the refractive index of the first lens
  • the n2 is the refractive index of the second lens
  • the n3 is the refractive index of the third lens.
  • the first mirror group satisfies the following relationship: 25 ⁇ v1 ⁇ 70, 10 ⁇ v2 ⁇ 40, and 20 ⁇ v3 ⁇ 50;
  • the v1 is the dispersion coefficient of the first lens
  • the v2 is the dispersion coefficient of the second lens
  • the v3 is the dispersion coefficient of the third lens.
  • the present application provides a projection device, the projection device includes a housing and the optical system according to any one of the above embodiments, and the optical system is accommodated in the housing.
  • the optical system sequentially includes a display unit, a first mirror group, and a turning mirror along the light transmission direction; the first mirror group has a positive refractive power; the light incident surface of the turning mirror and / or the light-emitting surface is spherical or aspherical or free-form surface. After the light emitted by the display unit passes through the first mirror group, it is transmitted to the imaging surface after being reflected by the turning mirror.
  • the light passing through the first mirror group is adjusted by the turning mirror, thereby effectively reducing the number of lenses in the first mirror group and the complexity of the surface shapes of the lenses in the first mirror group , so that the volume of the optical system can be reduced, the weight of the optical system can be reduced, and the problems of large volume and high weight of the optical system in the augmented reality device in the prior art can be solved.
  • Fig. 1 is the structural representation of the optical system of the present invention
  • FIG. 2 is a modulation transfer function diagram of the first embodiment of the present invention.
  • Label name label name 10 Display unit 33 exit surface 20 first mirror group twenty one first lens 30 turning mirror twenty two second lens 31 incident light surface twenty three third lens 32 Reflective surface
  • the terms "connected”, “fixed” and the like should be understood in a broad sense, for example, “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • the present invention provides an optical system and a projection device.
  • the optical system sequentially includes a display unit 10, a first mirror group 20, and a turning mirror 30 along the light transmission direction;
  • the first lens group 20 has positive refractive power
  • the light incident surface 31 and/or the light exit surface 33 of the turning mirror 30 are curved structures.
  • the light incident surface 31 and/or the light exit surface 33 of the turning mirror 30 are spherical, aspherical and free-form surfaces. a kind of.
  • the optical power is the difference between the convergence degree of the image-side beam and the object-side beam convergence degree, which is used to represent the refractive power of the optical system to the incident parallel beam.
  • the refractive power of the lens is larger, it means that the lens has a stronger ability to converge light, and when the refractive power of the lens is smaller, it means that the lens has a stronger ability to diverge light.
  • the light incident surface 31 of the lens refers to the surface when light enters the lens
  • the light exit surface 33 of the lens refers to the surface when light exits the lens
  • the aspherical structure can effectively reduce the edge aberration of the lens and improve the performance of the optical system, thereby reducing the required number of lenses and shortening the overall length of the optical system.
  • the effect of correcting aberrations by a plurality of spherical lenses is effectively achieved, which is beneficial to realizing the miniaturization of the optical system.
  • any surface in the optical system is an even-order aspheric structure, wherein the even-order aspheric surface satisfies the following relationship:
  • Y is the height of the center of the mirror surface
  • Z is the position of the aspheric structure along the optical axis at a height of Y
  • the surface vertex is used as a reference to the displacement value from the optical axis
  • C is the vertex curvature radius of the aspheric surface
  • K is the cone coefficient
  • ai represents the i-th aspheric coefficient.
  • any surface in the optical system has an odd-order aspheric structure, wherein the odd-order aspheric surface satisfies the following relationship:
  • Y is the height of the center of the mirror surface
  • Z is the position of the aspheric structure along the optical axis at a height of Y
  • the surface vertex is used as a reference to the displacement value from the optical axis
  • C is the vertex curvature radius of the aspheric surface
  • K is the cone coefficient
  • ⁇ i represents the i-th aspheric coefficient.
  • the turning mirror 30 is a prism structure or a flat glass structure.
  • the light incident surface 31 of the turning mirror 30 is a curved surface structure, and the side surface of the turning mirror 30 away from the display unit 10 is a reflective surface 32.
  • the turning mirror 30 The light incident surface 31 is a spherical or aspherical or free-form surface structure, and is attached or plated with an anti-reflection film, the reflective surface 32 of the turning mirror 30 is attached or plated with a reflective film, and the reflective film includes but Not limited to total reflection film or partial reflection film.
  • the turning mirror 30 is a prism structure, specifically, the turning mirror 30 is a triangular prism, and the two right-angle surfaces of the turning mirror 30 are the light incident surface 31 and the The light-emitting surface 33, the inclined surface of the turning mirror 30 is the reflective surface 32.
  • the turning mirror 30 is a triangular right-angle prism, and the light emitted by the display unit 10 enters the turning mirror 30 from the light incident surface 31. , and after being reflected by the reflecting surface 32 , the turning mirror 30 is emitted from the light-emitting surface 33 and then transmitted to the imaging surface.
  • the turning mirror 30 is a prism structure, and the light incident surface 31 , the reflecting surface 32 and the light output surface 33 of the turning mirror 30 are connected along the edges in sequence.
  • the light entering the turning mirror 30 and the light exiting surface 33 are set to be spherical or aspherical structures, so as to ensure that when the light passes through the turning mirror 30, the light entering the turning mirror 30 can enter the turning mirror 30. Under the action of the surface 31 and the light-emitting surface 33, the transmission path and transmission direction of the light are changed, and the aberration of the optical system is reduced.
  • the turning mirror 30 satisfies the following relationship: 5mm ⁇ f4 ⁇ 30mm;
  • the f4 is the focal length of the turning mirror 30 .
  • the steering mirror 30 satisfies the following relationship: 1.5 ⁇ n4 ⁇ 2, 40 ⁇ v4 ⁇ 75;
  • the n4 is the refractive index of the turning mirror 30
  • the v4 is the dispersion coefficient of the turning mirror 30 .
  • the refractive index is used to represent the ratio of the propagation speed in vacuum to the propagation speed of light in the medium. The higher the refractive index, the stronger the ability of incident light to refract.
  • the dispersion coefficient is inversely proportional to the refractive index of the lens. When the refractive index of the lens is larger, the dispersion coefficient of the lens is smaller and the dispersion is more obvious.
  • the dispersion coefficient is used to measure the imaging quality of the lens. Specifically, the larger the dispersion coefficient, the less obvious the dispersion, and the better the imaging quality of the lens; the smaller the dispersion coefficient, the more obvious the dispersion, and the worse the imaging quality of the lens.
  • the first lens group 20 includes a first lens 21, a second lens 22 and a third lens in sequence along the light transmission direction,
  • the light incident surface 31 of the first lens 21 is a convex structure, and the first lens 21 has a positive refractive power
  • the light incident surface 31 of the second lens 22 is a concave structure, and the second lens 22 has a negative refractive power
  • the light incident surface 31 of the third lens has a convex structure, and the third lens has positive refractive power.
  • the first mirror group 20 satisfies the following relationship: 2mm ⁇ f1 ⁇ 25mm, -20mm ⁇ f2 ⁇ -1mm, 2mm ⁇ f3 ⁇ 20mm;
  • the f1 is the focal length of the first lens 21
  • the f2 is the focal length of the second lens 22
  • the f3 is the focal length of the third lens.
  • the first mirror group 20 satisfies the following relationship: 1.5 ⁇ n1 ⁇ 1.8, 1.6 ⁇ n2 ⁇ 2, 1.5 ⁇ n3 ⁇ 1.8;
  • n1 is the refractive index of the first lens 21
  • n2 is the refractive index of the second lens 22
  • n3 is the refractive index of the third lens.
  • the first mirror group 20 satisfies the following relationship: 25 ⁇ v1 ⁇ 70, 10 ⁇ v2 ⁇ 40, and 20 ⁇ v3 ⁇ 50;
  • the v1 is the dispersion coefficient of the first lens 21
  • the v2 is the dispersion coefficient of the second lens 22
  • the v3 is the dispersion coefficient of the third lens.
  • the different optical lenses in the first mirror group 20 and the turning mirror 30 can be made of optical glass or optical plastic.
  • the refractive index of optical glass is generally greater than that of optical plastic.
  • the refractive index of the material, the display unit 10 will generate heat during operation, and optical glass has better thermal stability than optical plastic.
  • the lens in the optical system is optical plastic
  • the optical plastic It will be affected by the heat generated by the display unit 10, which will cause the optical system to have a defocusing problem.
  • the lens in the optical system is optical glass, since the optical glass has good thermal stability, so It is not easy to be affected by the heat generation of the display unit 10 , so the operation stability of the optical system can be improved.
  • optical plastic has the advantages of strong plasticity, light weight and low processing cost.
  • the refractive index of commonly used optical plastics is usually greater than or equal to 1.42 and less than or equal to 1.69.
  • the display unit is a micro light-emitting diode (Micro Light-Emitting Diode, Micro LED) or a mini light-emitting diode (Mini Light-Emitting Diode, Mini LED).
  • the light source body not limited to this, in other embodiments, the display unit may also be a light emitting diode (Light Emitting Diode, LED) or an organic light emitting diode (Organic Light Emitting Display, OLED) or a liquid crystal display (Liquid Crystal Display, LCD) or different A laser light source of a wavelength or other display device capable of emitting a light beam.
  • the optical system sequentially includes a display unit, a first lens, a second lens, a third lens and a turning mirror along the light transmission direction, and the light emitted by the display unit passes through the first lens, the After the second lens and the third lens, the turning mirror is reflected and reflected to the imaging surface, and the display unit is a miniature light-emitting diode.
  • the first lens, the second lens and the third lens simultaneously satisfy the following relationship:
  • the f1 is the focal length of the first lens
  • the f2 is the focal length of the second lens
  • the f3 is the focal length of the third lens
  • the n1 is the refractive index of the first lens
  • the n2 is the refractive index of the second lens
  • the n3 is the refractive index of the third lens
  • the v1 is the dispersion coefficient of the first lens
  • the v2 is the refractive index of the second lens Dispersion coefficient
  • the v3 is the dispersion coefficient of the third lens.
  • the turning mirror is a prism structure, and both the light incident surface and the light emitting surface of the turning mirror are curved structures.
  • the steering mirror also satisfies the following relationship:
  • the f4 is the focal length of the turning mirror
  • the n4 is the refractive index of the turning mirror
  • the v4 is the dispersion coefficient of the turning mirror.
  • optical system design data is shown in Table 1 below:
  • the parameters are as follows:
  • the refractive index of the first lens is 1.64, and the dispersion coefficient is 60.2;
  • the refractive index of the second lens is 1.64, and the dispersion coefficient is 22.4;
  • the refractive index of the third lens is 1.57, and the dispersion coefficient is 34.8;
  • the refractive index of the turning mirror is 1.53, and the dispersion coefficient is 70.4;
  • the focal length of the first lens is 6.017mm
  • the focal length of the second lens is -3.503mm
  • the focal length of the third lens is 4.337mm
  • the focal length of the turning mirror is 14.910mm.
  • the total length of the optical system is TTL ⁇ 7mm
  • the effective aperture of the optical system is ⁇ 4mm
  • the volume of the optical system is ⁇ 0.2cc.
  • FIG. 2 is a modulation transfer function diagram of the first embodiment, wherein the modulation transfer function (MTF) refers to the relationship between the modulation degree and the number of line pairs per millimeter in the image, and is used for evaluating The ability to restore the details of the scene.
  • MTF modulation transfer function
  • the MTF values of the optical system in each field of view are all above 0.4.
  • the present invention also provides a projection device, the projection device includes the projection optical system according to any one of the above embodiments, the specific structure of the projection optical system refers to the above embodiments, because the projection optical system adopts all the above embodiments Therefore, it has at least all the beneficial effects brought by the technical solutions of the above embodiments, and will not be repeated here.
  • the projection apparatus is applied to an augmented reality device for imaging human eyes in the augmented reality device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统及投影装置,该光学系统沿光线传输方向依次包括显示单元(10)、第一镜组(20)、以及转向镜(30);第一镜组(20)具有正光焦度,转向镜(30)的入光面(31)和/或出射面(33)为曲面结构。该系统和装置能够解决增强现实设备中的光学系统体积较大,重量较大的问题。

Description

光学系统及投影装置 技术领域
本发明涉及成像技术领域,尤其涉及一种光学系统及投影装置。
背景技术
可穿戴设备是光电成像领域的新型发展方向,其中增强现实设备作为可穿戴设备中的增强现实设备正在逐渐向轻量化,小型化的方向发展。
现有的AR设备中,光学系统是AR设备中的主要工作部件,其中,光学系统由显示单元与镜组组成,显示单元发出的光线经过镜组作用后传输至人眼,为了提高AR设备的成像质量,AR设备中的镜组通常需要由多个透镜组合使用,当透镜个数较多时,会导致AR设备的体积增加,重量增加。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明提供一种光学系统及投影装置,旨在解决现有技术中增强现实设备中的光学系统体积较大,重量较大的问题。
为实现上述目的,本发明提出了一种光学系统,所述光学系统沿光线传输方向依次包括显示单元、第一镜组、以及转向镜;
所述第一镜组具有正光焦度;
所述转向镜的入光面和/或出光面为曲面结构。
可选的,所述转向镜为棱镜结构或平板玻璃结构。
可选的,所述转向镜为棱镜结构,所述转向镜的入光面、反射面以及出光面依次沿边缘连接,所述转向镜的入光面和/或出光面为球面、非球面和自由曲面中的任意一种。
可选的,所述转向镜满足以下关系:5mm<f4<30mm;
其中,所述f4是所述转向镜的焦距。
可选的,所述转向镜满足以下关系:1.5<n4<2,40<v4<75;
其中,所述n4是所述转向镜的折射率,所述v4是所述转向镜的色散系数。
可选的,所述第一镜组沿光线传输方向依次包括第一透镜、第二透镜以及第三透镜,
所述第一透镜的入光面为凸面结构,所述第一透镜具有正光焦度;
所述第二透镜的入光面为凹面结构,所述第二透镜具有负光焦度;
所述第三透镜的入光面为凸面结构,所述第三透镜具有正光焦度。
可选的,所述显示单元为微型发光二极管或迷你发光二极管。
可选的,所述第一镜组满足以下关系:2mm<f1<25mm,-20mm<f2<-1mm,2mm<f3<20mm;
其中,所述f1是所述第一透镜的焦距,所述f2是所述第二透镜的焦距,所述f3是所述第三透镜的焦距。
可选的,所述第一镜组满足以下关系:1.5<n1<1.8,1.6<n2<2,1.5<n3<1.8;
其中,所述n1是所述第一透镜的折射率,所述n2是所述第二透镜的折射率,所述n3是所述第三透镜的折射率。
可选的,所述第一镜组满足以下关系:25<v1<70,10<v2<40,20<v3<50;
其中,所述v1是所述第一透镜的色散系数,所述v2是所述第二透镜的色散系数,所述v3是所述第三透镜的色散系数。
为实现上述目的,本申请提出一种投影装置,所述投影装置包括壳体与如上述任一项实施方式所述的光学系统,所述光学系统收容于所述壳体内。
本申请提出的技术方案中,所述光学系统沿光线传输方向依次包括显示单元、第一镜组、以及转向镜;所述第一镜组具有正光焦度;所述转向镜的入光面和/或出光面为球面或非球面或自由曲面。所述显示单元发出的光线经过所述第一镜组后,在所述转向镜反射后传输至成像面,通过将所述转向镜的入光面和/或出光面设置为曲面结构,因此能够通过所述转向镜对经过所述第一镜组的光线进行调整,从而能够有效的减少所述第一镜组中的透镜数量以及降低所述第一镜组中的透镜的面型的复杂程度,从而能够降低所述光学系统的体积,降低所述光学系统的重量,解决现有技术中增强现实设备中的 光学系统体积较大,重量较大的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本发明光学系统的结构示意图;
图2是本发明第一实施例的调制传递函数图。
附图标号说明:
标号 名称 标号 名称
10 显示单元 33 出射面
20 第一镜组 21 第一透镜
30 转向镜 22 第二透镜
31 入光面 23 第三透镜
32 反射面    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提供一种光学系统及投影装置。
请参照图1,所述光学系统沿光线传输方向依次包括显示单元10、第一镜组20、以及转向镜30;
所述第一镜组20具有正光焦度;
所述转向镜30的入光面31和/或出光面33为曲面结构,优选实施方式中,所述转向镜30的入光面31和/或出光面33为球面、非球面以及自由曲面中的一种。
具体的,光焦度为像方光束会聚度与物方光束会聚度之差,用于表示光学系统对入射平行光束的屈折能力。当透镜的光焦度越大时,表示透镜对光线的汇聚能力越强,当透镜的光焦度越小时,表示透镜对光线的发散能力越强。
其中,透镜的入光面31是指光线进入透镜时的表面,透镜的出光面33是指光线从透镜射出时的表面。
其中,非球面结构相比于球面结构,能够有效的减小镜片的边缘像差,提高所述光学系统的性能,从而减少镜片的需求数量,缩短所述光学系统的 总长。通过非球面结构,有效地实现多个球面透镜校正像差的效果,有利于实现所述光学系统的小型化。
其中,所述光学系统中的任一表面为偶次非球面结构,其中,所述偶次非球面满足以下关系:
Figure PCTCN2020136985-appb-000001
其中,Y为镜面中心高度,Z为非球面结构沿光轴方向在高度为Y的位置,以表面顶点作参考距光轴的位移值,C为非球面的顶点曲率半径,K为圆锥系数;ai表示第i次的非球面系数。
于另一实施例中,所述光学系统中的任一表面为奇次非球面结构,其中,所述奇次非球面满足以下关系:
Figure PCTCN2020136985-appb-000002
其中,Y为镜面中心高度,Z为非球面结构沿光轴方向在高度为Y的位置,以表面顶点作参考距光轴的位移值,C为非球面的顶点曲率半径,K为圆锥系数;βi表示第i次的非球面系数。
在可选的实施方式中,所述转向镜30为棱镜结构或平板玻璃结构,具体的,当所述转向镜30为平板玻璃结构时,为了保证光线能够在所述转向镜30的入光面31进行调整,所述转向镜30的入光面31为曲面结构,所述转向镜30远离所述显示单元10的一侧表面为反射面32,在一具体实施方式中,所述转向镜30的入光面31为球面或非球面或自由曲面结构,并且贴附或镀制有减反射膜,所述转向镜30的反射面32贴附或镀制有反射膜,所述反射膜包括但不限于全反射膜或部分反射膜。
可以理解的是,于另一实施方式中,所述转向镜30为棱镜结构,具体的,所述转向镜30为三角棱镜,所述转向镜30的两个直角面分别为入光面31与出光面33,所述转向镜30的斜面为反射面32,优选实施方式中,所述转向镜30为三角直角棱镜,所述显示单元10发出的光线从入光面31进入所述转向镜30,并在所述反射面32反射后,从所述出光面33射出所述转向镜30后传输至所述成像面。
优选实施方式中,所述转向镜30为棱镜结构,所述转向镜30的入光面31、反射面32以及出光面33依次沿边缘连接,为了方便所述转向镜30对经过第一透镜21的光线进行调整,设置所述转向镜30的入光面31与出光面33为球面结构或非球面结构,从而保证光线在经过所述转向镜30时,能够在所述转向镜30的入光面31与出光面33的作用下,改变光线的传输路径及传输方向,并降低所述光学系统的像差。
在可选的实施方式中,所述转向镜30满足以下关系:5mm<f4<30mm;
其中,所述f4是所述转向镜30的焦距。
在可选的实施方式中,所述转向镜30满足以下关系:1.5<n4<2,40<v4<75;
其中,所述n4是所述转向镜30的折射率,所述v4是所述转向镜30的色散系数。具体的,折射率用于表示在真空中的传播速度与光在该介质中的传播速度之比,折射率越高,表示入射光发生折射的能力越强。并且通常情况下,色散系数与镜片的折射率成反比,当透镜的折射率越大时,透镜的色散系数越小,色散越明显,色散系数用于衡量透镜的成像品质,色散系数通常用阿贝数进行表示,具体的,色散系数越大时,代表色散越不明显,透镜的成像质量越好,色散系数越小时代表色散越明显,透镜的成像质量越差。
在可选的实施方式中,所述第一镜组20沿光线传输方向依次包括第一透镜21、第二透镜22以及第三透镜,
所述第一透镜21的入光面31为凸面结构,所述第一透镜21具有正光焦度;
所述第二透镜22的入光面31为凹面结构,所述第二透镜22具有负光焦度;
所述第三透镜的入光面31为凸面结构,所述第三透镜具有正光焦度。
在可选的实施方式中,所述第一镜组20满足以下关系:2mm<f1<25mm,-20mm<f2<-1mm,2mm<f3<20mm;
其中,所述f1是所述第一透镜21的焦距,所述f2是所述第二透镜22的 焦距,所述f3是所述第三透镜的焦距。
在可选的实施方式中,所述第一镜组20满足以下关系:1.5<n1<1.8,1.6<n2<2,1.5<n3<1.8;
其中,所述n1是所述第一透镜21的折射率,所述n2是所述第二透镜22的折射率,所述n3是所述第三透镜的折射率。
在可选的实施方式中,所述第一镜组20满足以下关系:25<v1<70,10<v2<40,20<v3<50;
其中,所述v1是所述第一透镜21的色散系数,所述v2是所述第二透镜22的色散系数,所述v3是所述第三透镜的色散系数。
在可选的实施方式中,所述第一镜组20中的不同光学透镜与所述转向镜30均可以为光学玻璃材质或光学塑料材质,具体的,光学玻璃材料的折射率普遍大于光学塑料材料的折射率,所述显示单元10在工作过程中会产生热量,光学玻璃相对于光学塑料,具有较好的热稳定性,当所述光学系统中的透镜为光学塑料时,所述光学塑料会受到所述显示单元10产生的热量影响,从而导致所述光学系统出现跑焦问题,当所述光学系统中的透镜为光学玻璃时,由于所述光学玻璃具有较好的热稳定性,因此不容易受到所述显示单元10的发热影响,因此能够提高所述光学系统的工作稳定性。光学塑料相比于光学玻璃,光学塑料具有可塑性强,重量轻,加工成本低的优点,常用的光学塑料的折射率通常大于或等于1.42并且小于或等于1.69。
在可选的实施方式中,所述显示单元为微型发光二极管(Micro Light-Emitting Diode,Micro LED)或迷你发光二极管(Mini Light-Emitting Diode,Mini LED),可以理解的是,所述光源本体不限于此,于其他实施例中,所述显示单元还可以为发光二极管(Light Emitting Diode,LED)或有机发光二极管(Organic Light Emitting Display,OLED)或液晶显示器(Liquid Crystal Display,LCD)或不同波长的激光光源或其他能够发出光束的显示装置。
优选实施方式中,所述光学系统沿光线传输方向依次包括显示单元、第一透镜、第二透镜、第三透镜以及转向镜,所述显示单元发出的光线依次经过所述第一透镜、所述第二透镜以及所述第三透镜后,在所述转向镜发生反射,并反射至成像面,所述显示单元为微型发光二极管。具体的,所述第一透镜、所述第二透镜以及所述第三透镜同时满足以下关系:
(1)2mm<f1<25mm,-20mm<f2<-1mm,2mm<f3<20mm;
(2)1.5<n1<1.8,1.6<n2<2,1.5<n3<1.8;
(3)25<v1<70,10<v2<40,20<v3<50;
其中,所述f1是所述第一透镜的焦距,所述f2是所述第二透镜的焦距,所述f3是所述第三透镜的焦距;所述n1是所述第一透镜的折射率,所述n2是所述第二透镜的折射率,所述n3是所述第三透镜的折射率;所述v1是所述第一透镜的色散系数,所述v2是所述第二透镜的色散系数,所述v3是所述第三透镜的色散系数。
所述转向镜为棱镜结构,并且所述转向镜的入光面与出光面均为曲面结构。所述转向镜还满足以下关系:
(1)5mm<f4<30mm;
(2)1.5<n4<2;
(3)40<v4<75;
其中,所述f4是所述转向镜的焦距,所述n4是所述转向镜的折射率,所述v4是所述转向镜的色散系数。
具体的,在第一实施例中,光学系统设计数据如下表1所示:
表1
Figure PCTCN2020136985-appb-000003
Figure PCTCN2020136985-appb-000004
所述第一实施例中,各参数如下所述:
所述第一透镜的折射率为1.64,色散系数为60.2;
所述第二透镜的折射率为1.64,色散系数为22.4;
所述第三透镜的折射率为1.57,色散系数为34.8;
所述转向镜的折射率为1.53,色散系数为70.4;
所述第一透镜的焦距为6.017mm;
所述第二透镜的焦距为-3.503mm;
所述第三透镜的焦距为4.337mm;
所述转向镜的焦距为14.910mm。
在一具体实施例中,所述光学系统的总长TTL<7mm,所述光学系统的有效口径<4mm,所述光学系统的体积<0.2cc。相对于类似架构的增强现实模组在体积和重量上有大幅度的缩减。
请参照图2,图2为第一实施例的调制传递函数图,其中,调制传递函数(Modulation Transfer Function,MTF)是指调制度与图像内每毫米线对数之间的关系,用于评价对景物细部还原能力。调制传递函数的纵轴数值越高表示成像分辨率越高。在第一实施例中,所述光学系统在各个视场的MTF值均在0.4以上。
本发明还提出一种投影装置,所述投影装置包括如上述任一实施方式所述的投影光学系统,该投影光学系统的具体结构参照上述实施例,由于该投影光学系统采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。优选的,所述投影装置应用于增强现实设备,用于所述增强现实设备中为人眼成像。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构 变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (11)

  1. 一种光学系统,其特征在于,所述光学系统沿光线传输方向依次包括显示单元、第一镜组以及转向镜;
    所述第一镜组具有正光焦度;
    所述转向镜的入光面和/或出光面为曲面结构。
  2. 如权利要求1所述的光学系统,其特征在于,所述转向镜为棱镜结构或平板玻璃结构。
  3. 如权利要求1所述的光学系统,其特征在于,所述转向镜为棱镜结构,所述转向镜的入光面、反射面以及出光面依次沿边缘连接,所述转向镜的入光面和/或出光面为球面、非球面和自由曲面中的任意一种。
  4. 如权利要求1所述的光学系统,其特征在于,所述转向镜满足以下关系:5mm<f4<30mm;
    其中,所述f4是所述转向镜的焦距。
  5. 如权利要求1所述的光学系统,其特征在于,所述转向镜满足以下关系:1.5<n4<2,40<v4<75;
    其中,所述n4是所述转向镜的折射率,所述v4是所述转向镜的色散系数。
  6. 如权利要求1所述的光学系统,其特征在于,所述第一镜组沿光线传输方向依次包括第一透镜、第二透镜以及第三透镜;
    所述第一透镜的入光面为凸面结构,所述第一透镜具有正光焦度;
    所述第二透镜的入光面为凹面结构,所述第二透镜具有负光焦度;
    所述第三透镜的入光面为凸面结构,所述第三透镜具有正光焦度。
  7. 如权利要求6所述的光学系统,其特征在于,所述显示单元为微型发 光二极管或迷你发光二极管。
  8. 如权利要求6所述的光学系统,其特征在于,所述第一镜组满足以下关系:2mm<f1<25mm,-20mm<f2<-1mm,2mm<f3<20mm;
    其中,所述f1是所述第一透镜的焦距,所述f2是所述第二透镜的焦距,所述f3是所述第三透镜的焦距。
  9. 如权利要求6所述的光学系统,其特征在于,所述第一镜组满足以下关系:1.5<n1<1.8,1.6<n2<2,1.5<n3<1.8;
    其中,所述n1是所述第一透镜的折射率,所述n2是所述第二透镜的折射率,所述n3是所述第三透镜的折射率。
  10. 如权利要求6所述的光学系统,其特征在于,所述第一镜组满足以下关系:25<v1<70,10<v2<40,20<v3<50;
    其中,所述v1是所述第一透镜的色散系数,所述v2是所述第二透镜的色散系数,所述v3是所述第三透镜的色散系数。
  11. 一种投影装置,其特征在于,所述投影装置包括壳体与如权利要求1-10任一项所述的光学系统,所述光学系统收容于所述壳体内。
PCT/CN2020/136985 2020-07-23 2020-12-16 光学系统及投影装置 WO2022016793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010720270.5 2020-07-23
CN202010720270.5A CN111766754B (zh) 2020-07-23 2020-07-23 光学系统及投影装置

Publications (1)

Publication Number Publication Date
WO2022016793A1 true WO2022016793A1 (zh) 2022-01-27

Family

ID=72727506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136985 WO2022016793A1 (zh) 2020-07-23 2020-12-16 光学系统及投影装置

Country Status (2)

Country Link
CN (1) CN111766754B (zh)
WO (1) WO2022016793A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766754B (zh) * 2020-07-23 2021-09-17 歌尔光学科技有限公司 光学系统及投影装置
CN112666708B (zh) * 2020-12-24 2023-06-27 业成科技(成都)有限公司 复合式光学装置及其制造方法
CN114077143B (zh) * 2021-10-29 2024-04-30 歌尔光学科技有限公司 投影装置、投影装置的控制方法及投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311904A (ja) * 2000-04-28 2001-11-09 Canon Inc 画像表示装置および画像表示システム
DE102004020818A1 (de) * 2004-04-28 2005-11-24 Carl Zeiss Anzeigevorrichtung
US20100128346A1 (en) * 2007-03-29 2010-05-27 Carl Zeiss Ag Optical ocular system
CN105917267A (zh) * 2015-09-13 2016-08-31 深圳市柔宇科技有限公司 光学模组、光学装置及穿戴式显示装置
CN108957750A (zh) * 2018-07-09 2018-12-07 歌尔科技有限公司 光学系统、头戴显示设备及智能眼镜
CN111766754A (zh) * 2020-07-23 2020-10-13 歌尔光学科技有限公司 光学系统及投影装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429206B1 (ko) * 2001-08-08 2004-04-28 엘지전자 주식회사 씨어라운드 헤드 마운티드 디스플레이 장치
CN101153959A (zh) * 2006-09-26 2008-04-02 比亚迪股份有限公司 眼镜显示器的光学成像系统
CN105527713B (zh) * 2016-01-26 2018-05-01 深圳市谛源光科有限公司 一种用于虚拟现实设备的光学系统
CN105527712B (zh) * 2016-01-26 2018-07-03 深圳市谛源光科有限公司 一种用于虚拟现实设备的新型光学系统
CN109491049B (zh) * 2018-12-26 2023-08-29 歌尔光学科技有限公司 投影光学系统及具有其的增强现实眼镜
CN111025615B (zh) * 2019-12-28 2021-06-15 中国科学院长春光学精密机械与物理研究所 一种光学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311904A (ja) * 2000-04-28 2001-11-09 Canon Inc 画像表示装置および画像表示システム
DE102004020818A1 (de) * 2004-04-28 2005-11-24 Carl Zeiss Anzeigevorrichtung
US20100128346A1 (en) * 2007-03-29 2010-05-27 Carl Zeiss Ag Optical ocular system
CN105917267A (zh) * 2015-09-13 2016-08-31 深圳市柔宇科技有限公司 光学模组、光学装置及穿戴式显示装置
CN108957750A (zh) * 2018-07-09 2018-12-07 歌尔科技有限公司 光学系统、头戴显示设备及智能眼镜
CN111766754A (zh) * 2020-07-23 2020-10-13 歌尔光学科技有限公司 光学系统及投影装置

Also Published As

Publication number Publication date
CN111766754A (zh) 2020-10-13
CN111766754B (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2022016793A1 (zh) 光学系统及投影装置
CN111596511B (zh) 光学系统及投影装置
CN112596238A (zh) 成像光路和头戴显示设备
WO2021036134A1 (zh) 投影镜头及投影设备
WO2023184752A1 (zh) 一种光学投影系统以及电子设备
WO2017161485A1 (zh) 短距离光学放大模组、眼镜、头盔及vr系统
CN111580267B (zh) 光学系统及投影装置
TW201939095A (zh) 擴增實境裝置
CN113504654A (zh) 一种近眼显示光学系统
CN110879471B (zh) 光学系统、投影设备以及头戴设备
CN111538200A (zh) 光学系统及投影装置
CN113359277B (zh) 光学系统及投影设备
CN111258053A (zh) 一种目镜镜头及近眼显示系统
CN211627938U (zh) 一种目镜镜头及近眼显示系统
WO2021243777A1 (zh) 光学系统及增强现实设备
CN111458884A (zh) 光线传导结构和头戴显示设备
WO2023097762A1 (zh) 光学系统及头戴显示设备
CN109477965B (zh) 一种轻薄共光轴方向的自由曲面的光学成像系统
CN111258069B (zh) 光学系统及增强现实设备
CN111308709B (zh) 光学系统及增强现实设备
CN105785553B (zh) 可小型化的短焦投影镜头
CN217954824U (zh) 近眼显示光学系统及近眼显示装置
CN212391667U (zh) 光学系统及增强现实设备
CN216285973U (zh) 一种近眼显示光学系统
CN219122491U (zh) 光学透镜模组、穿戴式交互装置、交互系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946162

Country of ref document: EP

Kind code of ref document: A1