WO2019006672A1 - 一种轻薄共光轴方向的自由曲面的光学成像系统 - Google Patents

一种轻薄共光轴方向的自由曲面的光学成像系统 Download PDF

Info

Publication number
WO2019006672A1
WO2019006672A1 PCT/CN2017/091739 CN2017091739W WO2019006672A1 WO 2019006672 A1 WO2019006672 A1 WO 2019006672A1 CN 2017091739 W CN2017091739 W CN 2017091739W WO 2019006672 A1 WO2019006672 A1 WO 2019006672A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
imaging system
optical imaging
reflecting
Prior art date
Application number
PCT/CN2017/091739
Other languages
English (en)
French (fr)
Inventor
程德文
王其为
Original Assignee
苏州耐德佳天成光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州耐德佳天成光电科技有限公司 filed Critical 苏州耐德佳天成光电科技有限公司
Priority to PCT/CN2017/091739 priority Critical patent/WO2019006672A1/zh
Priority to CN201780004740.4A priority patent/CN109477965B/zh
Priority to US16/336,459 priority patent/US10983317B2/en
Publication of WO2019006672A1 publication Critical patent/WO2019006672A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0816Catadioptric systems using two curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/015Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices

Definitions

  • the present application relates to the field of optics and, in particular, to an optical imaging system having a freeform surface suitable for use in a head mounted display.
  • HMDs head mounted displays
  • the size of the optical system directly affects the size and weight of the head-mounted display, while the imaging quality of the optical system directly affects the display of the head-mounted display.
  • the head-mounted display needs to obtain a larger field of view and exit pupil diameter, so that the user can increase the viewing range in a short distance, and adapt to the observation effect under different pupil distances. Therefore, how to design an optical system with a small volume, a high image quality, and a large field of view has become a technical problem that needs to be solved in the prior art.
  • the object of the present invention is to provide an optical imaging system with a free-form surface with small distortion, high image quality and compact structure.
  • the optical imaging system also has a large field of view and a large exit pupil diameter, which does not occupy too much space in front of the wearer, and is suitable for Head-mounted display.
  • An optical imaging system comprising a lens group having a first optical axis direction, a first reflecting surface, a second reflecting surface, and a beam splitter, wherein
  • the lens group includes a front surface adjacent to an image source, the rear surface having a reflective surface through which image light from an image source is incident to the lens group, propagated to the Rear surface, after reflection by the back surface Passing through the lens group again and exiting from the front surface, and incident on the first reflecting surface;
  • a first reflecting surface disposed relative to the lens group for reflecting image light emitted from the lens group
  • a beam splitter disposed relative to the first reflective surface for transmitting and reflecting image light incident thereon from the first reflective surface at a predetermined transflective ratio
  • a second reflecting surface having a second optical axis direction disposed opposite to the beam splitter and located on the same side as the first reflecting surface for reflecting image light incident thereon from the beam splitter, and causing the The image light is incident on the beam splitter again.
  • the lens group includes a first lens and a second lens
  • the first lens includes a first lens surface and a second lens surface
  • the second lens includes a third lens surface and a fourth lens surface
  • the lens The front surface of the group is the first lens surface
  • the rear surface is the fourth lens surface
  • the fourth lens surface is plated with the full reflection film as the reflection surface or the rear side of the fourth lens surface has the reflection plate as the reflection surface.
  • the first lens and the second lens of the lens group are aspherical lenses.
  • the first lens and the second lens are connected together by gluing.
  • the second reflective surface is a free-form surface design, and has a predetermined transflective layer of light splitting toward the inner surface of the beam splitter to reflect the image light.
  • the first reflective surface is a free-form surface design or a planar mirror.
  • an angle between the first optical axis direction and the second optical axis direction does not exceed 45 degrees.
  • the optical imaging system has a pupil diameter of 4 mm to 10 mm and a pupil distance of more than 10 mm.
  • the optical imaging system is a negative refractive power
  • the lens group comprises a positive refractive index lens and a negative refractive index lens, the whole is positive power, and the second reflective surface is positive power.
  • the present invention also discloses a head mounted display device comprising the above described optical imaging system and an image source for emitting image light to the optical imaging system.
  • a third reflective surface is disposed between the image source and the lens group, and the third reflective surface is configured to reflect image light emitted by the image source into the lens group.
  • the image source and the lens group are arranged in one dimension in a certain direction.
  • the third reflective surface is arranged in two dimensions with respect to the image source and the lens group.
  • the second reflective surface and the third reflective surface are connected together by splicing.
  • the image source is selected from the group consisting of an OLED display, a back-illuminated LCD display, a micro LED display, a plasma display, and a DLP display.
  • the present invention allows the image light to pass through the lens group twice, and utilizes the optical correction capability of the lens group twice, effectively reducing the number of components of the optical system and thereby reducing the weight.
  • a reflective surface is disposed between the image source and the lens group to shorten the distance between the image source and the lens group, and the system is more compact; the second reflective surface is designed with a free-form surface, and the first lens and the second lens are aspherical lenses. This increases the flexibility of the optical design, improves the imaging quality of the free-form optical system of the present invention, and can reduce the assembly error of the optical system.
  • FIG. 1 is an optical path diagram of an optical imaging system having a free-form surface according to a first embodiment of the present invention
  • Figure 2 is a schematic view of a lens group of the optical imaging system shown in Figure 1;
  • Figure 3 is a distortion grid diagram of the optical imaging system shown in Figure 1;
  • FIG. 4 is a MTF frequency response diagram of the optical imaging system shown in FIG. 1;
  • Figure 5 is a dot-column diagram of different optical fields of the optical imaging system shown in Figure 1;
  • FIG. 6 is an optical path diagram of an optical imaging system having a free-form surface according to a second embodiment of the present invention.
  • Figure 7 is a light path diagram of an optical imaging system having a free-form surface according to a third embodiment of the present invention.
  • Figure 8 is a light path diagram of an optical imaging system having a freeform surface in accordance with a fourth embodiment of the present invention.
  • Optical imaging system 2. Image source; 3. Lens group; 4. First lens; 4A, first lens surface; 4B, second lens surface; 5. Second lens; 5A, third lens surface; a fourth lens surface 5B; 6, a first reflecting surface; 7, a second reflecting surface; 8, a beam splitter; 9, a third reflecting surface; 10, image light;
  • an optical imaging system having a freeform surface is shown that is suitable for use in a head mounted display.
  • the optical imaging system 1 includes a lens group 3 having a first optical axis direction, a first reflecting surface 6, a second reflecting surface 7, a beam splitter 8, and a third reflecting surface 9.
  • An image source 2 for emitting image light to the optical imaging system.
  • the lens group includes a front surface 4A and a rear surface 5B along the incident direction of the light beam, the front surface 4A being close to the image source 2, the rear surface 5B Having a reflecting surface, the image light from the image source 2 is incident on the lens group through the front surface 4A, propagates to the rear surface 5B, is reflected by the rear surface 5B, passes through the lens group again, and exits from the front surface 4A. And incident on the first reflecting surface 6;
  • the first reflecting surface 6 is disposed relative to the lens group 3 for reflecting the image light 10 emitted from the lens group 3;
  • a beam splitter 8 for example, a half mirror, or a spectroscope having a predetermined transflective split ratio required for light energy utilization, is disposed relative to the first reflecting surface 6 for partial reflection from the first reflecting surface 6 Image light 10;
  • a second reflecting surface 7 having a second optical axis direction is disposed with respect to the beam splitter 8 and on the same side as the first reflecting surface 6 for reflecting the image light 10 incident from the beam splitter 8 and The image light 10 is again incident on the beam splitter 8.
  • the lens group 3 includes a first lens 4 including a first lens surface 4A and a second lens surface 4B, and a second lens 5 including a third lens surface 5A And a fourth lens surface 5B.
  • the first lens surface 4A is the front surface
  • the fourth lens surface 5B is the rear surface.
  • the fourth lens surface 5B is plated with an anti-reflection film as the reflection surface or the rear surface of the fourth lens surface has a reflection plate as the reflection surface.
  • the image source 2 is configured to generate image light 10 modulated based on the image signal, and is incident on the lens group 3 at an appropriate angle, for example, obliquely incident on the lens group 3; the image light 10 emitted by the image source 2 passes through A lens surface 4A is incident on the lens group 3, propagates through the first lens 4 and the second lens 5 to the fourth lens surface 5B, is reflected by the fourth lens surface 5B, passes through the lens group 3 again, and from the first lens The surface 4A is emitted and incident on the first reflecting surface 6.
  • the image source 2 generates image light 10 modulated based on the image signal, and the image light 10 is reflected by the third reflecting surface 9 to reach the lens group 3, and the image
  • the light 10 is incident from the first lens surface 4A of the lens group 3, and propagates through the lens 4 and the lens 5 to the fourth lens surface 5B. After being reflected by the fourth lens surface 5B, it is again transmitted to the first lens surface 4A through the first lens 4 and the second lens 5, and then exits.
  • the image light 10 that has passed through the lens group 3 is incident on the first reflecting surface 6 and is reflected to reach the beam splitting mirror 8. Part of the image light 10 is reflected by the beam splitter 8 to the second reflecting surface 7, and is reflected by the second reflecting surface 7 to reach the beam splitter 8 and finally transmitted through the beam splitter 8 to the human eye for imaging.
  • a reflecting surface is provided on the fourth lens surface 5B of the second lens 5 as compared with the prior art.
  • the image light 10 passes through the lens group 3 twice, and the optical correction capability and refractive power of the lens group 3 are utilized twice. Therefore, the technical solution of the present invention improves the optical correction capability and the diopter with respect to the prior art under the same number of optical elements, and the technical solution of the present invention is relative to the present in relation to obtaining a certain optical correction capability.
  • the technology reduces the number of lenses and reduces the weight, making the system structure more compact.
  • the arrangement of the reflecting surface can be exemplarily employed in a coating process. Thereby, it is possible to provide a head-mounted display-based optical imaging system with small distortion, high image quality, and compact structure.
  • the lens group 3 adopts an aspherical design, that is, the first lens and the second lens of the lens group are aspherical lenses, thereby increasing flexibility of optical design and improving the present invention. Imaging quality of a free-form optical imaging system.
  • the first reflecting surface 6 and the second reflecting surface 7 are designed with a free curved surface, and the angle of reflection is controlled to control the angle of view to be sufficiently large, and the aberration of the optical system is reduced, thereby further improving the image quality.
  • the second reflecting surface has a predetermined transflective focusing layer toward the inner surface of the beam splitter to reflect the image light.
  • the first reflecting surface 6 and the second reflecting surface 7 are both designed with a free curved surface, but this is merely an example. In the present invention, only the second reflecting surface 7 needs to be designed with a free curved surface to achieve improvement. The angle of view, the effect of reducing the aberration and improving the optical quality, and since only a part of the reflecting surface on the opposite side of the beam splitter 8 is a free-form surface design, the optical path design is made simpler and the optical imaging system is lowered the cost of.
  • the first reflecting surface 6 may be a plane mirror.
  • the first optical axis direction and the second optical axis direction are preferably kept substantially identical, so that the sizes are slightly different.
  • the image source can be applied to the optical path of the embodiment without worrying about the variation of the image source size additionally occupying the space in the line of sight direction, and the angle of the optical axis direction can be slightly expanded to a range of not more than about 45 degrees to further Increasing the effective length of the optical system is beneficial to increase the angle of view and improve image distortion.
  • a third reflecting surface 9 is provided between the image source 2 and the lens group 3, and the third reflecting surface 9 is for emitting the image source 2
  • the image light 10 is reflected into the lens group 3. Therefore, since the third reflecting surface is employed, the positional arrangement of the optical device can be more flexible, shortening the distance between the image source 2 and the lens group 3, making the structure of the optical imaging system more compact.
  • the image source 2 and the lens group 3 are arranged in one dimension in a certain direction.
  • the image light generated by the image source can be incident on the first transmission surface of the lens group at an appropriate angle. After passing through the lens group, it is emitted to the first reflecting surface, and thus the image quality of the optical system of the present invention can be improved.
  • the third reflecting surface is arranged in two dimensions with respect to the image source and the lens group.
  • the third reflection is completely reflected by the image light generated by the image source, and the image light generated by the image source is incident on the lens group, whereby the structure of the free-form optical system of the present invention can be made more compact.
  • first lens and the second lens of the lens group are joined together by gluing, whereby the error caused by the adjustment of the free-form optical imaging system of the present invention can be reduced.
  • the second reflective surface and the third reflective surface are connected together by splicing. Thereby, the error caused by the adjustment of the free-form optical imaging system of the present invention can be reduced.
  • Embodiment 1 of the present invention the full field of view angle reaches 30°; the power ratio of the lens group 3 to the whole system ranges from 61.20% to 70.60%.
  • Table 1 in Embodiment 1 of the present invention, partial structural parameters of the optical system are exemplarily listed:
  • the pupil of the human eye has a diameter of about 2 mm under normal conditions, and is appropriately enlarged in a dark environment, and different wearing habits may cause a difference in wearing position, a need for wearing comfort when wearing and a need for accurate display, the head mounted display
  • the exit pupil of the optical imaging system is preferably placed between 4 mm and 10 mm. In the embodiment 1 of the invention, the exit pupil diameter was 7.8 mm.
  • the optical imaging system of the head mounted display of the present invention has a large exit distance At 10mm.
  • the exit pupil distance is 12.3 mm.
  • FIG. 3 a distortion grid diagram, a modulation transfer function (MTF) frequency corresponding diagram, and a different field of view of the optical imaging system with free-form surface of Embodiment 1 of the present invention are listed. Dotted map. It can be seen that the optical imaging of this embodiment has a free-form surface mirror, and the system has little distortion in the full field of view, and the modulation transfer function (MTF) at a spatial frequency of 30 line pairs/mm is higher than 0.2. The spot size distribution in different fields of view is uniform and does not exceed 0.053 mm.
  • MTF modulation transfer function
  • FIG. 6 an optical path diagram of an optical imaging system having a freeform surface in accordance with Embodiment 2 of the present invention is shown.
  • the optical imaging system 11 does not include the third mirror 9, and the image light generated by the image source 2 is directly incident on the lens group 3 without passing through the mirror.
  • the rest is the same as the optical imaging system 1 described in Embodiment 1.
  • the total angle of view of the optical system excluding the third mirror 9 can also reach 30°; the ratio of the power of the lens group 3 to the whole system ranges from 1.2 to 1.5.
  • partial structural parameters of the optical optical system are exemplarily listed:
  • the optical imaging system 12 has the same structural form as the optical imaging system 11 described in Embodiment 2, but the angle between the first optical axis direction and the second optical axis direction is increased as compared with Embodiments 1 and 2.
  • Embodiment 3 of the present invention the full angle of view of the system reaches 60° due to the change in the angle between the first optical axis direction and the second optical axis direction, correspondingly to the optical imaging system described in Embodiment 2. 11.
  • the exit pupil distance of the optical imaging system 12 is reduced; the power ratio of the lens group 3 to the whole system ranges from 2.87 to 3.35.
  • partial structural parameters of the optical optical system are exemplarily listed:
  • FIG. 8 an optical path diagram of an optical imaging system having a freeform surface in accordance with Embodiment 4 of the present invention is shown.
  • the optical imaging system 13 has the same structural form as the optical imaging system 11 described in Embodiment 2, but the angle between the first optical axis direction and the second optical axis direction is significantly increased compared to Embodiments 1 and 2, which is close to 45 degrees.
  • Embodiment 4 of the present invention the full angle of view also reaches 60°, and correspondingly, with respect to the optical imaging system 11 described in Embodiment 2, the exit pupil distance of the optical imaging system 13 is reduced; the lens group 3 and the whole
  • the power ratio of the system ranges from 42.76% to 54.64%.
  • Table 4 in Embodiment 4 of the present invention, the parameters of the components of the optical system are exemplarily listed:
  • the overall optical imaging system is a negative power
  • the image provided by the miniature image source can be projected onto the observer's line of sight at an angle of view of at least 30 degrees for the virtual image magnified by the observer.
  • the lens group 3 includes a positive refractive index lens and a negative refractive index lens, the lens group 3 is configured as a positive refractive power, and the second reflective surface 7 has a free-form surface shape having positive refractive power.
  • the present invention also discloses a head-mounted display device comprising the optical imaging system of any of Embodiments 1 to 4, which can operate in a VR mode in which only a virtual image is provided, or can be provided at the same time. Virtual image and real image in AR mode.
  • Such a head mounted display device includes an image source 2 that emits image light to the optical imaging system, and such as A tracking camera that fixes the position of the line of sight, a depth camera that determines the position of the virtual image, and other components (not shown).
  • Such an image source 2 may be selected from one of an OLED display, a back-illuminated LCD display, a micro LED display, a plasma display, and a DLP display. To achieve miniaturization, such displays typically have a diagonal length of no more than 3 inches and have high resolution to ensure that images projected through the optical system maintain a fine image quality.
  • the image source 2 may, for example, as shown in Figure 1 of the present invention, having a third reflecting surface 9 between the image source 2 and the lens group 3, the third reflecting surface 9 for The image light 10 emitted from the image source 2 is reflected into the lens group 3. Therefore, since the third reflecting surface is adopted, the position setting of the optical device can be more flexible, the space is fully utilized, and the distance between the image source 2 and the lens group 3 is shortened, so that the structure of the optical imaging system is more compact.
  • the image source 2 and the lens group 3 are arranged in one dimension in a certain direction.
  • the image light generated by the image source can be incident on the first transmission surface of the lens group at an appropriate angle, and after passing through the lens group, the light can be emitted to the first reflection surface, thereby improving the free-form surface optical of the present invention.
  • the imaging quality of the system is improved.
  • the third reflecting surface is arranged in two dimensions with respect to the image source and the lens group.
  • the third reflection is completely reflected by the image light generated by the image source, and the image light generated by the image source is incident on the lens group, whereby the structure of the free-form optical system of the present invention can be made more compact.
  • the second reflecting surface and the third reflecting surface are connected together by splicing. Thereby, the error caused by the adjustment of the free-form optical imaging system of the present invention can be reduced.
  • the optical imaging system 11 may not include the third mirror 9, and the image light generated by the image source 2 is directly incident on the lens group 3 without passing through the mirror. Specifically, refer to FIG. 6 of Embodiment 2.
  • the second reflecting surface 7 when operating in the VR mode, has a reflectance of 100% (ideally), and the image light provided by the image source 2 is used with maximum efficiency. Energy; when operating in the AR mode, the second reflecting surface 7 can not be fully reflected, but should have a predetermined transflective ratio, so that the external ambient light passes through the second reflecting surface 7, through the beam splitter 8 and The image light provided by the image source 2 is mixed to generate a mixed image of the virtual and the real. Since neither the beam splitter 8 nor the second reflecting surface 7 has the ability to refract ambient light, the transmitted ambient light is normally imaged at the user's glasses.
  • optical system of the present invention it is possible to provide a head-mounted display-based optical imaging system with small distortion, high image quality, and compact structure by using the lens group refractive power used twice and at least one free-form surface reflection surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lenses (AREA)

Abstract

一种具有自由曲面的光学成像系统(1),包括生成影像光的图像源(2),入射并反射影像光(10)的透镜组(3),第一反射面(6),第二反射面(7)与分光镜(8)彼此相对设置,使得第二反射面反射分光镜反射的影像光后,从分光镜透射而出。通过使影像光两次经过透镜组,降低了光学系统的重量,使得系统结构更加紧凑,而且能够提供畸变小、像质高、结构紧凑的光学成像系统;在图像源和透镜组之间设置反射面,使图像源与透镜组的距离缩短;第二反射面采用自由曲面设计,第一透镜(4)和第二透镜(5)为非球面透镜,增加光学设计的灵活度;并且能够减少光学系统的装配误差。

Description

一种轻薄共光轴方向的自由曲面的光学成像系统 技术领域
本申请涉及光学涉及领域,具体的,涉及一种适用于头戴式显示器的具有自由曲面的光学成像系统。
背景技术
随着显示技术的进步,虚拟现实(virtualReality,VR)和增强现实(Augmented Reality,AR)技术已日趋成熟,其中头戴式显示器(head mounted display,HMD)则是用于实现这些技术的显示器。由于头戴式显示器安装在观察者的头部,因此它必须结构紧凑、重量轻以降低观察者的负担。但为了取得较好的视觉观察效果,头戴式显示器要获得良好的成像质量和较大的视场角,光学系统成了其中的关键。为了获得良好的光学效果,需要较复杂的光学器件以提高光学成像质量和视场角,这使得与头戴式显示器的减轻重量,提高紧凑度之间存在一定的矛盾。光学系统的结构尺寸直接影响头戴式显示器的尺寸和重量,而光学系统的成像质量则直接影响着头戴式显示器的显示效果。并且头戴式显示器需要获得较大的视场和出瞳直径,使得用户在短距离内能够增加观察范围,以及适应在不同瞳距下的观察效果。因此,如何能够设计出小体积、高像质、大视场的光学系统成为现有技术亟需解决的技术问题。
发明内容
本发明的目的在于提出畸变小、像质高、结构紧凑的具有自由曲面的光学成像系统,该光学成像系统还具有大视场和大出瞳直径不占用佩戴者眼前的过多空间,适用于头戴式显示器。
为达此目的,本发明采用以下技术方案:
一种光学成像系统,该光学成像系统,包括具有第一光轴方向的透镜组,第一反射面,第二反射面,以及分光镜,其中,
所述透镜组,包括前表面和后表面,所述前表面靠近图像源,所述后表面具有反射面,来自图像源的影像光经所述前表面入射至所述透镜组,传播至所述后表面,经后表面反射后 再次经过所述透镜组并从前表面出射,并入射至第一反射面;
第一反射面,相对于所述透镜组设置,用于对从所述透镜组出射的影像光进行反射;
分光镜,相对于所述第一反射面设置,用于以预定透反分光比透射和反射从第一反射面入射至其上的影像光;
具有第二光轴方向的第二反射面,相对于所述分光镜设置,且与第一反射面位于相同的一侧,用于反射从分光镜入射至其上的影像光,并使得所述影像光再次入射至所述分光镜。
可选的,所述透镜组包括第一透镜和第二透镜,所述第一透镜包含第一透镜表面和第二透镜表面,第二透镜包含第三透镜表面和第四透镜表面,所述透镜组的前表面为第一透镜表面,后表面为第四透镜表面,第四透镜表面镀有全反膜作为所述反射面或者第四透镜表面后侧具有反射板作为所述反射面。
可选的,所述透镜组的第一透镜和第二透镜为非球面透镜。
可选的,所述第一透镜和所述第二透镜通过胶合连接在一起。
可选的,所述第二反射面为自由曲面设计,其朝向分光镜的内表面具有预定的透反比的分光层以对影像光进行反射。
可选的,所述第一反射面为自由曲面设计,或者为平面反射镜。
可选的,所述第一光轴方向和所述第二光轴方向的夹角不超过45度。
可选的,所述光学成像系统的出瞳直径为4mm至10mm,出瞳距离大于10mm。
可选的,所述光学成像系统为负光焦度,透镜组包括正折射率透镜和负折射率透镜,整体为正光焦度,第二反射面为正光焦度。
本发明还公开了一种头戴式显示装置,包括上述的光学成像系统,以及向所述光学成像系统发射影像光的图像源。
可选的,在所述图像源,和所述透镜组之间具有第三反射面,所述第三反射面用于将所述图像源发出的影像光反射至所述透镜组中。
可选的,所述图像源和所述透镜组沿一定的方向呈1维排列。
可选的,所述第三反射面相对于所述图像源以及所述透镜组呈2维排列。
可选的,所述第二反射面和第三反射面通过拼接连接在一起。
可选的,所述图像源选自OLED显示器,背部发光的LCD显示器,微型LED显示器,等离子显示器,DLP显示器之一。
综上,本发明使得影像光两次经过透镜组,两次利用了透镜组的光学校正能力,有效的降低光学系统的元件数量从而重量得到减轻。进一步的,在图像源和透镜组之间设置反射面,使图像源与透镜组的距离缩短,系统更加紧凑;第二反射面采用自由曲面设计,第一透镜和第二透镜为非球面透镜,这增加光学设计的灵活度,提高本发明的自由曲面光学系统的成像质量;并且能够减少光学系统的装配误差。
附图说明
图1是根据本发明具体实施例1的具有自由曲面的光学成像系统的光路图;
图2是根据图1所示的光学成像系统的透镜组示意图;
图3是根据图1所示的光学成像系统的畸变网格图;
图4是根据图1所示的光学成像系统的MTF频率响应图;
图5是根据图1所示的光学成像系统的不同视场下的点列图;
图6是根据本发明具体实施例2的具有自由曲面的光学成像系统的光路图;
图7是根据本发明具体实施例3的具有自由曲面的光学成像系统的光路图;
图8是根据本发明具体实施例4的具有自由曲面的光学成像系统的光路图。
图中的附图标记所分别指代:
1、光学成像系统;2、图像源;3、透镜组;4、第一透镜;4A、第一透镜表面;4B、第二透镜表面;5、第二透镜;5A、第三透镜表面;5B、第四透镜表面5B;6、第一反射面;7、第二反射面;8、分光镜;9、第三反射面;10、影像光;第一透镜表面。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明,其中,相同的标号始终表示相同部件。除非有明确的表示,本领域技术人员应当理解的,第一、第二等词汇仅理解为区分不同的部件,而不包含顺序的限定性作用,并且,在不同的实施例中,同样被称为第一部分的部件结构也可以是不相同的;各具体实施例所描述的仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例1:
如图1所示,示出了一种具有自由曲面的光学成像系统,该光学成像系统适用于头戴式显示器。该光学成像系统1,包括具有第一光轴方向的透镜组3,第一反射面6,第二反射面7,分光镜8,以及第三反射面9。图像源2,用于向所述光学成像系统发射影像光。
图2是根据图1所示的光学成像系统的透镜组示意图,沿着光束入射方向,该透镜组包括前表面4A和后表面5B,所述前表面4A靠近图像源2,所述后表面5B具有反射面,来自图像源2的影像光经所述前表面4A入射至所述透镜组,传播至所述后表面5B,经后表面5B反射后再次经过所述透镜组并从前表面4A出射,并入射至第一反射面6;
第一反射面6,相对于所述透镜组3设置,用于对从所述透镜组3出射的影像光10进行反射;
分光镜8,例如,半反半透镜,或根据光能利用需要的具有预定透反分光比的分光镜,相对于所述第一反射面6设置,用于部分反射从第一反射面6入射的影像光10;
具有第二光轴方向的第二反射面7,相对于所述分光镜8设置,且与第一反射面6位于相同的一侧,用于反射从分光镜8入射的影像光10,并使得所述影像光10再次入射至所述分光镜8。
在一种具体的结构中,该透镜组3包括第一透镜4和第二透镜5,第一透镜4包含第一透镜表面4A和第二透镜表面4B,第二透镜5包含第三透镜表面5A和第四透镜表面5B。在该透镜组中第一透镜表面4A即为前表面,第四透镜表面5B即为后表面。其中,第四透镜表面5B镀有全反膜作为所述反射面或者第四透镜表面后侧具有反射板作为所述反射面。
其中,图像源2,用于生成基于影像信号调制后的影像光10,并以适当的角度入射至透镜组3,例如倾斜入射至透镜组3;所述图像源2射出的影像光10经第一透镜表面4A入射至所述透镜组3,经过第一透镜4和第二透镜5传播至第四透镜表面5B,被第四透镜表面5B反射后再次经过所述透镜组3并从第一透镜表面4A出射,并入射至第一反射面6。
因此,从图1和图2中可以看出,在该实施例中,图像源2生成基于影像信号调制后的影像光10,影像光10经第三反射面9反射,到达透镜组3,影像光10从透镜组3的第一透镜表面4A入射,经过透镜4和透镜5传播至第四透镜表面5B。被第四透镜表面5B反射后再次经过第一透镜4和第二透镜5传播至第一透镜表面4A,然后出射。经过透镜组3的影像光10入射到第一反射面6,并被反射到达分光镜8。部分影像光10被分光镜8反射至第二反射面7,并被第二反射面7反射再次到达分光镜8,最终透过分光镜8传播至人眼成像。
与现有技术相比,在本发明的实施例1中,在第二透镜5的第四透镜表面5B上设置了反射面。影像光10两次经过透镜组3,两次利用了该透镜组3的光学校正能力和屈光力。因此,在具有相同的光学元件的数量下,本发明的技术方案相对于现有技术提高了光学校正能力和屈光度,在相对于要获得一定的光学校正能力下,本发明的技术方案相对于现有技术减少了透镜的数量,降低重量,使得系统结构更加紧凑。该反射面的设置可以示例性的采用镀膜工艺。由此,能够提供畸变小、像质高、结构紧凑的基于头戴式显示器的光学成像系统。
在本发明的实施例1中,所述透镜组3采用非球面设计,即所述透镜组的第一透镜和第二透镜为非球面透镜,因此,能够增加光学设计的灵活度,提高本发明的自由曲面光学成像系统的成像质量。
第一反射面6与第二反射面7采用自由曲面设计,控制反射角度从而控制视场角足够大,并使得光学系统的像差减小,进一步提高了成像质量。所述第二反射面朝向分光镜的内表面具有预定的透反比的分光层以对影像光进行反射。
在本实施例中,第一反射面6与第二反射面7均采用自由曲面设计,但这仅仅为示例,在本发明中仅仅需要在第二反射面7采用自由曲面设计即就能够达到提高视场角,减少像差和提高光学质量的效果,并且,由于在分光镜8的对面一侧仅有部分反射面为自由曲面设计,使得光路设计更为简单,并降低了所述光学成像系统的成本。此时第一反射面6可以为平面反射镜。
进一步的,为了节约所占用的使用者眼前视线方向的空间,在第一实施例中,所述第一光轴方向和第二光轴方向优选为保持在基本一致,以使得在尺寸略有不同的图像源都可以适用本实施例的光路而无需担心图像源尺寸的变动额外占据视线方向上的空间,这样的光轴方向夹角也可以略有扩大至大约不超过45度的范围,以进一步增加光学系统有效的长度,有利于增加视场角和改善图像的畸变。
进一步的,在本发明的实施例1中,在所述图像源2,和所述透镜组3之间具有第三反射面9,所述第三反射面9用于将所述图像源2发出的影像光10反射至所述透镜组3中。因此,由于采用了第三反射面,光学器件的位置设置能够更加的灵活,缩短了图像源2与透镜组3的之间的距离,使得光学成像系统的结构更加紧凑。
进一步的,所述图像源2和所述透镜组3沿一定的方向呈1维排列。
由此,能够使上述图像源生成的影像光以适当的角度入射到上述透镜组的第一透射面, 经过所述透镜组后,出射至第一反射面,因而能够提高本发明的光学系统的成像质量。
第三反射面,相对于所述图像源以及所述透镜组呈2维排列。
因此,第三反射面对上述图像源生成的影像光完全进行反射,使上述图像源生成的影像光均入射到上述透镜组,能够使本发明的自由曲面光学系统结构更加紧凑。
进一步的,所述透镜组的第一透镜和第二透镜通过胶合连接在一起,由此,能够减小本发明的自由曲面光学成像系统装调产生的误差。
进一步的,上述第二反射面和第三反射面通过拼接连接在一起。由此,能够减小本发明的自由曲面光学成像系统装调产生的误差。
在本发明的实施例1中,全视场角达到30°;透镜组3与全系统的光焦度比例范围为61.20%-70.60%。参见表1,在本发明的实施例1中,示例性地列出光学系统的部分结构参数:
表1-1 透镜组3参数
Figure PCTCN2017091739-appb-000001
表1-2 透镜组3非球面系数
  表面4A 表面4B 表面5A 表面5B
R -6.4343 6.0457 7.2239 44.9491
K 0 0 0 0
A 0.0002 -0.0076 -0.0052 0.0001
B -8.7340e-006 0.0007 0.0007 1.1350e-006
C 4.2383e-008 -4.8660e-005 -5.6264e-005 -4.0974e-006
D 6.4033e-008 1.6268e-006 2.2397e-006 2.8253e-007
E -2.4018e-009 -2.127e-008 -3.3498e-008 -6.4160e-009
人眼瞳孔在正常状态下直径为2mm左右,在黑暗环境下会适当放大,并且不同佩戴习惯会导致佩戴位置的差异,为佩戴时的佩戴舒适度的需求和准确显示的需要,头戴式显示器的光学成像系统的出瞳优选的置于4mm至10mm为宜。在本发明的实施例1中,出瞳直径为7.8mm。
为了保证头戴式显示器佩戴舒适,本发明的头戴式显示器的光学成像系统的出瞳距离大 于10mm。在本发明的实施例1中,出瞳距离为12.3mm。
参见图3,图4和图5,分别列出了本发明的实施例1的具有自由曲面的光学成像系统的畸变网格图,调制传递函数(MTF)频率相应图,以及在不同视场下的点阵图。从中可以看出,本实施例的光学成像,具有自由曲面反射镜,系统在全视场下具有很小的畸变,在30线对/毫米的空间频率处的调制传递函数(MTF)高于0.2,在不同视场下的光斑尺寸分布均匀且不超过0.053毫米。
实施例2:
参见图6,示出了根据本发明的实施例2的具有自由曲面的光学成像系统的光路图。
与实施例1不同,该光学成像系统11不包括第三反射镜9,图像源2产生的影像光不经过反射镜直接入射到透镜组3。
其余部分与实施例1中所述光学成像系统1相同。
在本发明的实施例2中,不包括第三反射镜9的光学系统全视场角同样可以达到30°;透镜组3与全系统的光焦度比例范围为1.2-1.5。参见表2,在本发明的实施例2中,示例性地列出光光学系统的部分结构参数:
表2-1 透镜组3参数
Figure PCTCN2017091739-appb-000002
表2-2 透镜组3非球面系数
  表面4A 表面4B 表面5A 表面5B
R -4.0916 339.0525 72.1838 21.4714
K 0 0 0 0
A -8.15823e-005 -0.0013 0.0014 0.0003
B 0.0002 0.0002 0.0001 -0.0007
C -2.1221e-005 6.0504e-008 -1.0426e-005 0.0003
D 1.4426e-006 -7.1997e-007 -5.6627e-007 -5.3491e-005
E -3.6794e-008 2.5412e-008 3.8413e-008 3.4234e-006
实施例3:
参见图7,示出了根据本发明的实施例3的具有自由曲面的光学成像系统的光路图。
该光学成像系统12的结构形式与实施例2中所述光学成像系统11相同,但第一光轴方向和第二光轴方向的夹角相比实施例1和2有所增加。
在本发明的实施例3中,由于第一光轴方向和第二光轴方向的夹角变化,系统的全视场角达到60°,相应的,相对于实施例2中所述光学成像系统11,光学成像系统12的出瞳距离减小;透镜组3与全系统的光焦度比例范围为2.87-3.35。参见表3,在本发明的实施例3中,示例性地列出光光学系统的部分结构参数:
表3-1 透镜组3参数
Figure PCTCN2017091739-appb-000003
表3-2 透镜组3非球面系数
  表面4A 表面4B 表面5A 表面5B
R -12.5470 -148.4657 -39.0178 60.0267
K 0 0 0 0
A 3.1125e-005 -2.0560e-005 1.6506e-005 -1.4903e-005
B 1.6570e-008 6.9417e-007 1.4453e-006 1.0558e-007
C 2.9746e-009 -5.6090e-009 -1.5011e-008 -3.0624e-009
实施例4:
参见图8,示出了根据本发明的实施例4的具有自由曲面的光学成像系统的光路图。
该光学成像系统13的结构形式与实施例2中所述光学成像系统11相同,但第一光轴方向和第二光轴方向的夹角相比实施例1和2显著增加,接近45度。
在本发明的实施例4中,全视场角同样达到60°,相应的,相对于实施例2中所述光学成像系统11,光学成像系统13的出瞳距离减小;透镜组3与全系统的光焦度比例范围为42.76%-54.64%。参见表4,在本发明的实施例4中,示例性地列出光学系统各元件的参数:
表4-1 透镜组3参数
Figure PCTCN2017091739-appb-000004
表4-2 透镜组3非球面系数
  表面4A 表面4B 表面5A 表面5B
R -11.0379 -110.8166 -29.5132 48.3393
K 0 0 0 0
A -8.15823e-005 -0.0013 0.0014 0.0003
B 0.0002 0.0002 0.0001 -0.0007
C -2.1221e-005 6.0504e-008 -1.0426e-005 0.0003
D 1.4426e-006 -7.1997e-007 -5.6627e-007 -5.3491e-005
E -3.6794e-008 2.5412e-008 3.8413e-008 3.4234e-006
以上通过实施例1、2、3和实施例4,对本发明进行了阐述。
根据本发明的光学系统,整体的光学成像系统为负光焦度,对于观察者呈放大的虚像,可以将微型图像源提供的图像,以至少30度的视场角投射至观察者视线方向上,其中透镜组3包括正折射率透镜和负折射率透镜,透镜组3构成为正光焦度,第二反射面7具有自由曲面的面型,具有正光焦度。
本发明还公开了一种头戴式显示装置,其包括实施例1-实施例4中任意一个所述的光学成像系统,可以工作在只提供虚拟图像的VR模式下,也可以工作在同时提供虚拟图像和真实图像的AR模式下。
这样的头戴式显示装置,包括向所述光学成像系统发射影像光的图像源2,以及诸如确 定视线位置的跟踪相机,确定虚拟图像投射位置的深度相机等等其他元件(未图示)。
这样的图像源2可以选自OLED显示器,背部发光的LCD显示器,微型LED显示器,等离子显示器,DLP显示器之一。为实现小型化,这样的显示器通常具有不超过3寸的对角线长度,并具有高清的分辨率以确保经过光学系统投射的图像保持细腻的图像质量。图像源2可以,例如本发明的图1中所示的,在所述图像源2,和所述透镜组3之间具有第三反射面9,所述第三反射面9用于将所述图像源2发出的影像光10反射至所述透镜组3中。因此,由于采用了第三反射面,光学器件的位置设置能够更加的灵活,充分利用了空间,缩短了图像源2与透镜组3的之间的距离,使得光学成像系统的结构更加紧凑。
此时,所述图像源2和所述透镜组3沿一定的方向呈1维排列。
由此,能够使上述图像源生成的影像光以适当的角度入射到上述透镜组的第一透射面,经过所述透镜组后,出射至第一反射面,因而能够提高本发明的自由曲面光学系统的成像质量。
第三反射面,相对于所述图像源以及所述透镜组呈2维排列。
因此,第三反射面对上述图像源生成的影像光完全进行反射,使上述图像源生成的影像光均入射到上述透镜组,能够使本发明的自由曲面光学系统结构更加紧凑。
上述第二反射面和第三反射面通过拼接连接在一起。由此,能够减小本发明的自由曲面光学成像系统装调产生的误差。
或者,光学成像系统11也可以不包括第三反射镜9,图像源2产生的影像光不经过反射镜直接入射到透镜组3。具体的,参见实施例2的图6所示。
对于本发明的上述头戴式显示装置,其工作在VR模式下时,第二反射面7,具有100%的反射率(理想状态下),以最大效率的利用图像源2所提供的影像光能量;其工作于AR模式下时,第二反射面7不可以全部反射的状态实现,而应该具有预定的透反比,从而使外部的环境光透过第二反射面7、经分光镜8与图像源2提供的影像光混合,生成虚实结合的混合图像。由于分光镜8和第二反射面7均不具备对环境光的折光能力,透过的环境光在使用者眼镜处正常成像。
根据本发明的光学系统,利用两次使用的透镜组折光能力和至少一个自由曲面反射面,能够提供畸变小、像质高、结构紧凑的基于头戴式显示器的光学成像系统。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明 的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定保护范围。

Claims (15)

  1. 一种光学成像系统,该光学成像系统,包括具有第一光轴方向的透镜组,第一反射面,第二反射面,以及分光镜,其中,
    所述透镜组,包括前表面和后表面,所述前表面靠近图像源,所述后表面具有反射面,来自图像源的影像光经所述前表面入射至所述透镜组,传播至所述后表面,经后表面反射后再次经过所述透镜组并从前表面出射,并入射至第一反射面;
    第一反射面,相对于所述透镜组设置,用于对从所述透镜组出射的影像光进行反射;
    分光镜,相对于所述第一反射面设置,用于以预定透反分光比透射和反射从第一反射面入射至其上的影像光;
    具有第二光轴方向的第二反射面,相对于所述分光镜设置,且与第一反射面位于相同的一侧,用于反射从分光镜入射至其上的影像光,并使得所述影像光再次入射至所述分光镜。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述透镜组包括第一透镜和第二透镜,所述第一透镜包含第一透镜表面和第二透镜表面,第二透镜包含第三透镜表面和第四透镜表面,所述透镜组的前表面为第一透镜表面,后表面为第四透镜表面,第四透镜表面镀有全反膜作为所述反射面或者第四透镜表面后侧具有反射板作为所述反射面。
  3. 根据权利要求2所述的光学成像系统,其特征在于:
    所述透镜组的第一透镜和第二透镜为非球面透镜。
  4. 根据权利要求3所述的光学成像系统,其特征在于:
    所述第一透镜和所述第二透镜通过胶合连接在一起。
  5. 根据权利要求1或2所述的光学成像系统,其特征在于:
    所述第二反射面为自由曲面设计,其朝向分光镜的内表面具有预定的透反比的分光层以对影像光进行反射。
  6. 根据权利要求4所述的光学成像系统,其特征在于:
    所述第一反射面为自由曲面设计,或者为平面反射镜。
  7. 根据权利要求4所述的光学成像系统,其特征在于:
    所述第一光轴方向和所述第二光轴方向的夹角不超过45度。
  8. 根据权利要求7所述的光学成像系统,其特征在于:
    所述光学成像系统的出瞳直径为4mm至10mm,出瞳距离大于10mm。
  9. 根据权利要求1-8中任意一项所述的光学成像系统,其特征在于:
    所述光学成像系统为负光焦度,透镜组包括正折射率透镜和负折射率透镜,整体为正光焦度,第二反射面为正光焦度。
  10. 一种头戴式显示装置,其特征在于:
    包括权利要求1-9中任意一项所述的光学成像系统,以及向所述光学成像系统发射影像光的图像源。
  11. 根据权利要求10所述的头戴式显示装置,其特征在于:
    在所述图像源,和所述透镜组之间具有第三反射面,所述第三反射面用于将所述图像源发出的影像光反射至所述透镜组中。
  12. 根据权利要求10所述的头戴式显示装置,其特征在于:
    所述图像源和所述透镜组沿一定的方向呈1维排列。
  13. 根据权利要求11所述的头戴式显示装置,其特征在于:
    所述第三反射面相对于所述图像源以及所述透镜组呈2维排列。
  14. 根据权利要求11所述的头戴式显示装置,其特征在于:
    所述第二反射面和第三反射面通过拼接连接在一起。
  15. 根据权利要求10所述的头戴式显示装置,其特征在于:所述图像源选自OLED显示器,背部发光的LCD显示器,微型LED显示器,等离子显示器,DLP显示器之一。
PCT/CN2017/091739 2017-07-04 2017-07-04 一种轻薄共光轴方向的自由曲面的光学成像系统 WO2019006672A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/091739 WO2019006672A1 (zh) 2017-07-04 2017-07-04 一种轻薄共光轴方向的自由曲面的光学成像系统
CN201780004740.4A CN109477965B (zh) 2017-07-04 2017-07-04 一种轻薄共光轴方向的自由曲面的光学成像系统
US16/336,459 US10983317B2 (en) 2017-07-04 2017-07-04 Compact, lightweight optical imaging system having free-form surface and common optical axis direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091739 WO2019006672A1 (zh) 2017-07-04 2017-07-04 一种轻薄共光轴方向的自由曲面的光学成像系统

Publications (1)

Publication Number Publication Date
WO2019006672A1 true WO2019006672A1 (zh) 2019-01-10

Family

ID=64949638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091739 WO2019006672A1 (zh) 2017-07-04 2017-07-04 一种轻薄共光轴方向的自由曲面的光学成像系统

Country Status (3)

Country Link
US (1) US10983317B2 (zh)
CN (1) CN109477965B (zh)
WO (1) WO2019006672A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207965356U (zh) * 2017-11-14 2018-10-12 塔普翊海(上海)智能科技有限公司 一种近眼可透视头显光学系统
CN113419349B (zh) * 2021-06-03 2022-05-13 歌尔光学科技有限公司 光学模组和头戴显示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822127A (en) * 1995-05-15 1998-10-13 Hughes Electronics Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity
JP2001174747A (ja) * 1999-12-20 2001-06-29 Olympus Optical Co Ltd 画像表示装置
US7352521B2 (en) * 2003-05-19 2008-04-01 Canon Kabushiki Kaisha Image display optical system and image display apparatus
US9366864B1 (en) * 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
CN106664400A (zh) * 2014-05-30 2017-05-10 奇跃公司 用于采用具有可寻址聚焦的自由形态光学系统来显示用于虚拟和增强现实的立体视觉的方法和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255250A (ja) * 2002-03-04 2003-09-10 Hitachi Ltd 光学ユニット及びそれを用いた映像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822127A (en) * 1995-05-15 1998-10-13 Hughes Electronics Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity
JP2001174747A (ja) * 1999-12-20 2001-06-29 Olympus Optical Co Ltd 画像表示装置
US7352521B2 (en) * 2003-05-19 2008-04-01 Canon Kabushiki Kaisha Image display optical system and image display apparatus
US9366864B1 (en) * 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
CN106664400A (zh) * 2014-05-30 2017-05-10 奇跃公司 用于采用具有可寻址聚焦的自由形态光学系统来显示用于虚拟和增强现实的立体视觉的方法和系统

Also Published As

Publication number Publication date
US20190227287A1 (en) 2019-07-25
US10983317B2 (en) 2021-04-20
CN109477965A (zh) 2019-03-15
CN109477965B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US10782453B2 (en) Display devices with reflectors
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
TWI619969B (zh) 場曲型虛像顯示系統
WO2020010703A1 (zh) 光学系统、头戴显示设备及智能眼镜
US9915823B1 (en) Lightguide optical combiner for head wearable display
WO2022016793A1 (zh) 光学系统及投影装置
CN111399321B (zh) 一种适用于近眼显示器的小型投影光学组件和投影光学系统
CN111965824A (zh) 一种光学镜组及使用其的近眼显示系统
CN113504654A (zh) 一种近眼显示光学系统
CN115421302A (zh) 光学模组及头戴显示设备
CN215494347U (zh) 一种投射式光学镜组及近眼显示装置
US11644673B2 (en) Near-eye optical system
WO2019006672A1 (zh) 一种轻薄共光轴方向的自由曲面的光学成像系统
CN116699854B (zh) 一种可实现显示遮挡的透视光学系统及设备
CN112782853B (zh) 头戴式显示设备
WO2021068855A1 (zh) 一种显示设备模组及头戴式显示设备
WO2021243777A1 (zh) 光学系统及增强现实设备
CN219657895U (zh) 光学透镜模组
CN216285973U (zh) 一种近眼显示光学系统
CN219122491U (zh) 光学透镜模组、穿戴式交互装置、交互系统
CN217954824U (zh) 近眼显示光学系统及近眼显示装置
CN212391667U (zh) 光学系统及增强现实设备
WO2023231105A1 (zh) 光学模组以及头戴显示设备
CN211905862U (zh) 基于菲涅尔透镜和光波导原理的增强现实光学装置
US20220276492A1 (en) Optical module and head-mounted display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916818

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17916818

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17916818

Country of ref document: EP

Kind code of ref document: A1