WO2020010703A1 - 光学系统、头戴显示设备及智能眼镜 - Google Patents

光学系统、头戴显示设备及智能眼镜 Download PDF

Info

Publication number
WO2020010703A1
WO2020010703A1 PCT/CN2018/106924 CN2018106924W WO2020010703A1 WO 2020010703 A1 WO2020010703 A1 WO 2020010703A1 CN 2018106924 W CN2018106924 W CN 2018106924W WO 2020010703 A1 WO2020010703 A1 WO 2020010703A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
display
optical system
incident surface
Prior art date
Application number
PCT/CN2018/106924
Other languages
English (en)
French (fr)
Inventor
高震宇
姜滨
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Priority to US17/250,361 priority Critical patent/US20210302746A1/en
Publication of WO2020010703A1 publication Critical patent/WO2020010703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0145Head-up displays characterised by optical features creating an intermediate image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the embodiments of the present application relate to the field of augmented reality technology, and in particular, to an optical system, a head-mounted display device, and smart glasses.
  • Optical systems are often used for clear imaging or processing of optical information in various imaging devices.
  • AR Augmented Reality
  • augmented reality Augmented Reality
  • the application of head-mounted display devices based on AR technology is becoming more and more widespread.
  • a virtual image displayed on the display needs to be magnified by an optical system and then displayed in a human eye in superposition with a real image. Since the head-mounted display device is worn on the user's head, in order to reduce the pressure on the user's head, compactness and lightness are the requirements design direction for the head-mounted display device.
  • the light emitted by the display is directly incident into the free-form prism, and then the light is refracted by the free-form prism twice and transmitted to the human eye.
  • the light emitted by the display in the optical system The light is scattered light, so the light from the display to the light path entering the human eye is in the form of a wide beam, which limits the field of view of the system.
  • Some embodiments of the present application provide an optical system including a mirror group having a power reflection surface and a free-form prism group, and the free-form prism group includes an imaging prism;
  • a power reflecting surface of the reflecting mirror group configured to reflect at least a part of incident light to a first light incident surface of the imaging prism
  • the first light incident surface is configured to transmit at least a part of the incident light to a second light incident surface of the imaging prism;
  • the second light incident surface is configured to reflect at least part of the light from the first light incident surface to a third light incident surface of the imaging prism;
  • the third light incident surface is configured to reflect at least part of the light from the second light incident surface to the light emitting surface of the imaging prism;
  • an intermediate image plane is formed on the optical path before the third light incident surface.
  • the mirror group includes a first polarization reflection prism and a second polarization reflection prism glued to the first polarization reflection prism; wherein the first polarization reflection prism includes a polarization reflection surface and a first light Power reflection surface
  • the incident light enters the first polarization reflection prism through a light incident surface of the first polarization reflection prism;
  • At least a part of the incident light is reflected by the polarization reflection surface to a first power reflection surface of the first polarization reflection prism;
  • the incident light at least partially from the first power reflection surface is reflected by the first power reflection surface and transmitted through the second polarization reflection prism and exits.
  • the mirror group includes a curved mirror having a second power reflection surface.
  • it further includes a projection lens group consisting of at least one lens
  • the incident light reflected by at least a part of the power reflecting surface of the mirror group is transmitted through the projection mirror group and exits to the first light incident surface of the imaging prism.
  • the intermediate image plane is generated on the optical path between the projection mirror group and the imaging prism.
  • the horizontal curvature of the third light incident surface is different from the vertical curvature.
  • the optical system further includes a compensation prism glued to the imaging prism;
  • the compensation prism is configured to receive ambient light and transmit at least part of the ambient light to the third light incident surface of the imaging prism;
  • the ambient light at least partially from the third light incident surface exits through the light exit surface of the imaging prism.
  • the second light incident surface and the third light incident surface are two opposite surfaces of the imaging prism
  • the compensation prism is glued to the third light incident surface.
  • a first projection of at least a part of incident light along a horizontal edge field of view from a human eye to the intermediate image plane in a horizontal direction and a second projection of at least part of incident light along a horizontal central field of view in a horizontal direction No crossover occurred.
  • Some embodiments of the present application provide a head-mounted display device, the head-mounted display device includes an optical system and a display system, wherein the optical system adopts any one of the optical systems described above;
  • the display system is configured to generate the incident light.
  • the display system includes a first display, and the first display is disposed on one side of the mirror group; or,
  • the display system includes a second display and a lighting component, and the lighting component and the second display are separated on both sides of the mirror group;
  • the light emitted by the lighting assembly passes through the mirror group and is irradiated onto the second display to light up the second display.
  • Some embodiments of the present application provide smart glasses, and the smart glasses include an optical system and a display system;
  • the optical system adopts the optical system described in the optical system
  • the display system is configured to generate the incident light
  • the display system includes a first display, and the first display is disposed on one side of the mirror group; or
  • the display system includes a second display and a lighting component, and the lighting component and the second display are separated on both sides of the mirror group;
  • the light emitted by the lighting assembly passes through the mirror group and is irradiated onto the second display to light up the second display.
  • the optical system includes a mirror group having a power reflection surface and a free-form surface prism group, and the free-form surface prism group includes an imaging prism.
  • the power reflecting surface of the reflecting mirror group is configured to reflect at least a part of incident light to a first light incident surface of the imaging prism.
  • the first light incident surface is used to transmit at least a part of the incident light to a second light incident surface of the imaging prism.
  • the second light incident surface is configured to reflect at least part of the light from the first light incident surface to a third light incident surface of the imaging prism.
  • the third light incident surface is configured to reflect at least part of the light from the second light incident surface to the light emitting surface of the imaging prism.
  • an intermediate image plane is formed on the optical path before the third light incident surface.
  • FIG. 1 is a schematic structural diagram of an optical system according to some embodiments of the present application.
  • FIG. 2 is a schematic top plan view of an optical system from a human eye to a free-form surface prism group provided by some embodiments of the present application;
  • FIG. 3 is a schematic structural diagram of an optical system according to some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of an optical system according to another embodiment of the present application.
  • FIG. 5 (a) -5 (c) are schematic structural diagrams of an embodiment of a head-mounted display device provided by some embodiments of the present application.
  • 6 (a) -6 (c) are schematic structural diagrams of an embodiment of a smart glasses provided by some embodiments of the present application.
  • the optical system provided by some embodiments of the present application can be applied to the current technical fields of virtual reality, augmented reality, medical imaging, and the like.
  • Applicable but not limited to head-mounted display devices or smart glasses where the head-mounted display devices or smart glasses may include VR (Virtual Reality) devices, AR (Augmented Reality) devices, and MR (Mixed Reality, Mixed) Reality) devices.
  • the optical system includes a mirror group having a power reflection surface and a free-form surface prism group, and the free-form surface prism group includes an imaging prism.
  • the power reflecting surface of the reflecting mirror group is configured to reflect at least a part of incident light to a first light incident surface of the imaging prism.
  • the first light incident surface is used to transmit at least a part of the incident light to a second light incident surface of the imaging prism.
  • the second light incident surface is configured to reflect at least part of the light from the first light incident surface to a third light incident surface of the imaging prism.
  • the third light incident surface is configured to reflect at least part of the light from the second light incident surface to the light emitting surface of the imaging prism.
  • an intermediate image plane is formed on the optical path before the third light incident surface.
  • FIG. 1 is a schematic structural diagram of an embodiment of an optical system provided by some embodiments of the present application.
  • the system may include a mirror group 101 having a power reflection surface and a free-form prism group 102.
  • the curved prism group includes an imaging prism 1021.
  • the optical system can be applied to, but not limited to, a head-mounted display device or smart glasses, and is particularly suitable for a head-mounted display device for VR or AR imaging.
  • the display of the head-mounted display device or smart glasses may be a backlit LCOS (Liquid Crystal On Silicon) display, an LCD (Liquid Crystal Display), a Micro-OLED (Organic Light-Emitting Diode) ) Or other miniaturized displays.
  • LCOS Liquid Crystal On Silicon
  • LCD Liquid Crystal Display
  • Micro-OLED Organic Light-Emitting Diode
  • the power reflecting surface of the reflecting mirror group 101 is configured to reflect at least a part of the incident light to the first light incident surface S1 of the imaging prism 1021.
  • the mirror group 101 folds and condenses at least part of the incident light through the power reflection surface, thereby condensing at least part of the incident light in the form of a wide beam, which greatly reduces the propagation of the beam in the system. Occupies the area of the optically effective surface. Based on this, the size of the free-form surface prism 102 in the system can be reduced when the optical system is designed; or the field of view of the system can be increased under the condition that the free-form surface prism in the system is not changed. Reduced system size and system field of view restrictions due to wide beams.
  • the reflecting mirror group 101 may include at least one reflecting mirror and at least one reflecting surface with optical power.
  • the surface shape of each light surface of the mirror group 101 may be a flat surface, a spherical surface, an aspherical surface, or a free-form surface according to actual design requirements, and is not specifically limited herein.
  • the first light incident surface S1 of the imaging prism 1021 is used to transmit at least part of the incident light to the second light incident surface S2 of the imaging prism 1021.
  • the free-form surface prism 102 is used to resolve the contradiction between the viewing angle, exit pupil distance, and small size of the optical system, so that the system can obtain a large viewing angle, shorter exit pupil distance, and smaller size and lighter weight.
  • Optical system Optical system.
  • the incident light generated by the display is directly transmitted into the free-form surface prism, and after being reflected twice in the free-form surface prism, it enters the human eye.
  • the area where the light shines on the surface of the free-form prism is the optically effective surface. Since the incident light generated by the display is in the form of a wide beam, which limits the system's field of view, it can be adjusted by adjusting the back intercept of the display and the free-form prism
  • the incident angle of the incident light rays to the free-form surface prism increases the angle of view.
  • the rear intercept of the display and the free-form surface prism is limited, resulting in the rear intercept being too small.
  • the structural design of the system will be difficult. greatly increase.
  • At least part of the incident light generated by the display can be reflected by the reflector group, so that at least part of the incident light enters the free-form surface prism group through the first light incident surface S1 of the imaging prism, thereby reducing Restrictions on the back intercept of the system.
  • the beam width of at least part of the incident light is greatly reduced, further reducing the size of the free-form prism to the system.
  • the limitation of the field angle ensures a larger field of view while ensuring a certain back intercept, thereby greatly reducing the design difficulty of the system structure.
  • the second light incident surface S2 of the imaging prism 1021 is configured to reflect at least part of the light from the first light incident surface S1 to the third light incident surface S3 of the imaging prism.
  • the third light incident surface S3 is configured to reflect at least part of the light from the second light incident surface S2 to the light emitting surface S2 of the imaging prism.
  • the second light incident surface and the light exit surface of the imaging prism 1021 in the free-form surface prism 102 are the same surface, but occupy different optically effective surfaces.
  • an intermediate image plane M1 is formed on the optical path before the third light incident surface S3. At least part of the incident light is focused via the power reflection surface, so that the intermediate image plane M1 is focused on the optical path from the power reflection surface to the third light incident surface.
  • the light emitting surface of the imaging prism 1021 transmits at least part of the light from the third light incident surface S3 to the human eye E1 for imaging.
  • At least part of the incident light is condensed through the power reflection surface to form an intermediate image surface. At least a part of the incident light is reflected from the power reflection surface to the imaging prism 1021.
  • Third light in the first light path of the first light incident surface, in the second light path transmitted from the first light incident surface to the second light incident surface, or reflected from the second light incident surface to the third light incident surface Formation anywhere in the process.
  • the optical system can make the incident light generate an intermediate image plane during the propagation of the system, and realize the secondary imaging of the system. And this optical path that can realize the secondary imaging of the system can not only increase the system's field of view angle, reduce the area of the system's optical effective surface, but also increase the system's back intercept.
  • the optical path in the optical system can also satisfy the following conditions.
  • Figure 2 shows a schematic plan view of the optical system. From the perspective of the human eye to the direction of the incident light, the imaging optical path from the human eye to the incident light in the system is sequentially at least part of the incident light from the human eye to the light exit surface S2, and the outgoing light At least part of the incident light from the surface to the third light incident surface, at least part of the incident light from the third to the second light incident surface, at least part of the incident light from the second to the first light incident surface, At least part of the incident light rays from the first light incident surface to the power reflection surface and at least part of the incident light rays incident on the imaging lens group; wherein at least part of the incident light rays incident on any point of the human eye can be divided into views along the horizontal edge
  • the two projections did not cross.
  • the optical system has the characteristics of small size, large field of view, and high imaging quality, and can be applied to compact head-mounted display devices.
  • At least part of the incident light is condensed by the power reflection surface of the mirror group 101, and then modulated by the free-form prism group 102 in the system, so that at least part of the incident light is in the system.
  • the system realizes a special secondary imaging optical path through the adjustment of various optical elements, and solves the technical problem of the system's limited field of view angle caused by the wide beam propagation in the system.
  • the restriction on the rear intercept of the system is also reduced, and the difficulty of structural design of the optical system is reduced.
  • FIG. 3 is a schematic structural diagram of still another embodiment of an optical system provided by some embodiments of the present application.
  • the system may further include A projection lens group 103 composed of one lens.
  • the mirror group 101 may include a first polarization reflection prism 1011 and a second polarization reflection prism 1012 glued to the first polarization reflection prism 1011.
  • the first polarization reflection prism 1011 includes a polarization reflection surface S4 and a first light. Power reflection surface S5.
  • Some embodiments of the present application may be applicable to the above-mentioned displays that require independent light distribution, such as LCOS displays, or displays that do not require independent light distribution, such as LCD displays, OLED displays, and the like.
  • the incident light enters the first polarization reflection prism 1011 through the light incident surface S6 of the first polarization reflection prism 1011.
  • At least part of the incident light is reflected by the polarization reflection surface S4 to the first power reflection surface S5 of the first polarization reflection prism 1011.
  • the incident light at least partially from the first power reflection surface S5 is reflected by the first power reflection surface S5 and transmitted through the second polarization reflection prism 1012 and exits.
  • the polarization reflecting surface S4 reflects the incident light in one polarization direction after polarization splitting, and transmits the incident light in the other polarization direction, so that the polarization splitting of the incident light retains only one polarization direction.
  • the incident light enters the free-form prism group 102.
  • each light surface of the mirror group 101 such as the polarization reflection surface S4, the power reflection surface S5, and the light incident surface S6, may be a flat surface, a spherical surface, an aspheric surface, or a free-form surface as required.
  • the mirror group 101 can also realize the correction of aberrations in the system and the transition of light in different fields of view, so as to realize the function of the projection mirror group 103.
  • the setting of the projection lens group 103 can be omitted in the system.
  • the optical system may further include a projection mirror group 103 composed of at least one lens.
  • the projection mirror group 103 may be disposed between the mirror group 101 and the free-form prism group 102.
  • the incident light reflected by at least a part of the power reflecting surface of the mirror group 101 is transmitted through the projection mirror group 103 and exits to the first light incident surface S1 of the imaging prism 1021. .
  • the projection lens group 103 is used to correct the phase difference in the system and the transition of light in different fields of view.
  • the surface type of each lens can be spherical, aspherical, Fresnel, or free-form, etc., and is not specifically limited here. .
  • the free-form prism group 102 may further include a compensation prism 1022 glued to the imaging prism 1021.
  • the compensation prism 1022 is configured to receive the ambient light emitted from the real scene in the three-dimensional space and transmit at least part of the ambient light to the third light incident surface S3 of the imaging prism 1021.
  • the second light incident surface S2 and the third light incident surface S3 are two opposite surfaces of the imaging prism 1021.
  • the compensation prism 1022 is glued to the third light incident surface S3 of the imaging prism 1021.
  • the light-emitting surface S2 of the imaging prism transmits at least part of the ambient light to the human eye E1 to fuse the virtual image to be displayed and the real scene for imaging.
  • the compensation prism 1022 is used for compensating the imaging prism to affect the refraction of light emitted from the real scene, reducing imaging distortion and improving imaging quality.
  • the compensation prism 1022 may include a light incident surface S8 and a light emitting surface S9.
  • the third light incident surface S3 of the imaging prism is glued to the light exit surface S9 of the compensation prism, so that the imaging prism 1021 and the compensation prism 1022 form a free-form prism group 102.
  • the ambient light emitted from the real scene in the three-dimensional space is transmitted through the light incident surface S8 of the compensation prism 1022 into the compensation prism and reaches the light exit surface S9 of the compensation prism.
  • the light exit surface S9 of the compensation prism 1022 transmits at least part of the ambient light to the third light incident surface S3 of the imaging prism 1021, and then transmits the third light incident surface S3 to the light exit surface S2 of the imaging prism 1021.
  • the light exit surface S2 of the imaging prism 1021 transmits the ambient light that generates the real scene and at least part of the incident light that generates the image to be displayed to the human eye, so that the image to be displayed and the real scene are fused and imaged in the human eye, thereby obtaining a virtual world and reality AR image combined with the world.
  • the second light incident surface S2 of the imaging prism 1021 may be a flat surface, a concave surface, or a convex surface as required; the reflection occurring on the surface may be total reflection or coating reflection.
  • the coating reflection is only applicable when the effective area occupied by the second light and the third light on the second optically effective surface S2 does not overlap.
  • the surface types of the respective light surfaces of the imaging prism 1021 and the compensation prism 1022 of the free-form surface prism 102 may be flat, spherical, aspherical, or free-form surfaces. Free curved surface with different curvatures in the horizontal and vertical directions of the third light incident surface S3
  • the system applies the principle of free-form surface prism refracting imaging, and generates the intermediate image plane M1 on the optical path between the projection mirror group 103 and the imaging prism 1021 to implement the system's secondary Imaging, while greatly increasing the system's field of view angle, can also reduce the system size and improve imaging quality.
  • FIG. 4 is a schematic structural diagram of another embodiment of an optical system provided by some embodiments of the present application.
  • the system may include a mirror group 101 and a free-form surface prism group 102 in the embodiment of FIG.
  • a projection lens group 103 composed of at least one lens.
  • the mirror group 102 includes a curved mirror having a second power reflection surface.
  • the projection mirror group 103 may be disposed between the curved mirror and the free curved prism group 102. Used to correct system aberrations and control the angle of light in different fields of view.
  • the optical system in this embodiment is suitable for a display that does not require independent light distribution, such as an LCD display or an OLED display.
  • the second power reflection surface of the curved mirror is configured to reflect at least part of the incident light, so that the at least part of the incident light is transmitted through the projection mirror group 103 and exits to the first light incident surface S1 of the imaging prism 1021.
  • the difference from the embodiment in FIG. 3 is that a curved mirror is used instead of a polarizing prism group, and the curved mirror group reflects at least part of the incident light so that the at least part of the incident light passes through the projection mirror group 103
  • the first optical path of the first light incident surface S1 of the imaging prism 1021 is transmitted, the second optical path of the first light incident surface S1 to the second light incident surface S2, and the second light incident surface S2 reflects
  • the third optical paths to the third light incident surface S3 are the same as those in the embodiment of FIG. 3, which have been described in detail above, and are not repeated here.
  • the optical system provided by the embodiments of FIG. 1, FIG. 3, and FIG. 4 of the present application, the shape, size, and size of each light surface of optical elements such as the mirror group 101, the free-form mirror group 102, and the projection mirror group 103 in the system, The reflection form and the like are not specifically limited.
  • the size, position, and shape of each optical element in the above optical system are combined to achieve an intermediate image plane in the imaging optical path from the display to the human eye.
  • the intermediate image plane can be Any position in the optical path between the projection mirror group and the imaging prism is generated, and it is not specifically limited herein.
  • the optical system provided in the embodiments of the present application can also realize that the light path from the human eye to the intermediate image plane does not cross the edge light and the horizontal light, so that the field of view of the system is improved while satisfying the system.
  • the demand for high imaging quality has achieved a large field of view and high quality augmented reality imaging.
  • the optical system provided by some embodiments of the present application has the advantages of small size, large field of view, and high imaging quality, and solves the limitation of the system size and system field of view due to the propagation of a wide beam in the prior art, while further reducing The difficulty of system structure design.
  • FIGS. 5 (a) -5 (c) are schematic structural diagrams of an embodiment of a head-mounted display device provided by some embodiments of the present application.
  • the head-mounted display device includes an optical system and a display system, wherein the optical system The optical system described in the embodiment shown in Figs. 1-4 is used.
  • the display system is configured to generate the incident light.
  • the head-mounted display device may be a VR-based head-mounted display device or an AR-based head-mounted display device, which is not specifically limited herein.
  • the display system shown may include a first display D1 that is disposed on one side of the mirror group 101.
  • the first display may be disposed on a side adjacent to the light incident surface S6 of the first polarization reflecting prism 1011, or may be disposed on a curved mirror as shown in FIG. 5 (b).
  • the second optical power reflective surface of the group is adjacent to the side.
  • the first display may be an LCD display, an OLED display, or the like, and is configured to generate incident light.
  • the display system includes a second display D2 and a lighting component Q1, and the lighting component Q1 and the second display D2 are separated from the mirror group 101. side.
  • the lighting component may be a lighting component of any shape composed of one or more LEDs, or a lighting component composed of other lighting devices that can be used for lighting, which is not specifically limited herein.
  • the light emitted from the lighting component Q1 passes through the mirror group 101 and is irradiated onto the second display D2 to light up the second display D2.
  • the second display is a reflection-based display, for example, it may be an LCOS display. Therefore, it is not possible to emit light independently, so it is necessary to independently distribute light to the second display.
  • the natural light generated can be irradiated to the second display through a lighting component that emits natural light, and the second display is lit based on the reflection principle of the second display D2. Thereby, incident light is generated.
  • the second display D2 may be disposed on a side adjacent to the light incident surface S6 of the first polarization reflection prism 1011, and the lighting component Q1 is disposed on the light incident surface S7 of the second polarization reflection prism 1012.
  • the light incident surface S6 of the first polarization reflection prism 1011 is opposite to the light incident surface S7 of the second polarization reflection prism 1012 on an adjacent side.
  • the light incident surface S7 of the second polarization reflection prism 1012 is used to transmit at least a part of the natural light generated by the lighting component Q1 to the polarization reflection surface S4 of the first polarization reflection prism 1011. At least part of the natural light from the polarization reflection surface S4 is transmitted to the second display D2 through the light incident surface S6 of the first polarization reflection prism and lights up the second display D2, so that the second display D2 generates incident light.
  • the head-mounted display device includes the structure of the above-mentioned optical system and the structure of the display system, which can further reduce the volume and weight of the head-mounted display device, and obtain a more compact and lightweight head. Wear display device.
  • FIG. 6 (a) -6 (c) are schematic structural diagrams of an embodiment of smart glasses provided by some embodiments of the present application.
  • the smart glasses include an optical system and a display system.
  • the optical system adopts the optical system described in the embodiments shown in FIG. 1 to FIG. 4.
  • the display system is configured to generate the incident light.
  • the smart glasses may be VR-based smart glasses or AR-based smart glasses, which are not specifically limited herein.
  • the display system may include a first display D3, and the first display D3 is disposed on a side of the mirror group 101.
  • the first display D3 may be disposed on a side adjacent to the light incident surface S6 of the first polarization reflection prism 1011, or as shown in FIG. 6 (b), The second optical power reflective surface of the curved mirror group is adjacent to one side.
  • the first display D3 may be an LCD display, an OLED display, or the like, and is configured to generate incident light.
  • the display system includes a second display D4 and a lighting component Q2, and the lighting component Q2 and the second display D4 are separated from the mirror group 101. On both sides.
  • the lighting component may be a lighting component of any shape composed of one or more LEDs, or a lighting component composed of other lighting devices that can be used for lighting, which is not specifically limited herein.
  • the light emitted by the lighting component Q2 passes through the mirror group 101 and is irradiated onto the second display D4 to light up the second display D4.
  • the second display is a reflection-based display, for example, it may be an LCOS display. Therefore, it is not possible to emit light independently. Therefore, it is necessary to independently distribute light to the second display.
  • the natural light generated can be irradiated to the second display through a lighting component that emits natural light, and the second display is lit based on the reflection principle of the second display D4. Thereby, incident light is generated.
  • the second display D4 may be disposed on a side adjacent to the light incident surface S6 of the first polarization reflection prism 1011, and the lighting component Q2 is disposed on the light incident surface S7 of the second polarization reflection prism 1012.
  • the light incident surface S6 of the first polarization reflection prism 1011 is opposite to the light incident surface S7 of the second polarization reflection prism 1012 on an adjacent side.
  • the light incident surface S7 of the second polarization reflection prism 1012 is used to transmit at least a part of the natural light generated by the lighting component Q2 to the polarization reflection surface S4 of the first polarization reflection prism 1011. At least part of the natural light from the polarization reflection surface S4 is transmitted to the second display D4 through the light incident surface S6 of the first polarization reflection prism and lights up the second display D4, so that the second display D4 generates incident light.
  • the smart glasses include the structure of the above-mentioned optical system and the structure of the display system, which can further reduce the volume and weight of the smart glasses, and obtain more compact and lightweight smart glasses.
  • RAM random access memory
  • ROM read-only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disks, removable disks, CD-ROMs, or in technical fields Any other form of storage medium is known.

Abstract

一种光学系统、头戴显示设备及智能眼镜。该光学系统可以包括具有光焦度反射面的反射镜组(101)以及自由曲面棱镜组(102),该自由曲面棱镜组(102)包括成像棱镜(1021)。该反射镜组(101)的光焦度反射面,用于至少将部分入射光线反射至成像棱镜(1021)的第一入光面(S1)。该第一入光面(S1),用于透射至少部分该入射光线至该成像棱镜(1021)的第二入光面(S2)。该第二入光面(S2),用于反射至少部分来自该第一入光面(S1)的光线至该成像棱镜(1021)的第三入光面(S3)。该第三入光面(S3),用于反射至少部分来自该第二入光面(S2)的光线至该成像棱镜(1021)的出光面(S2)。其中,在该第三入光面(S3)之前的光程上形成有中间像面(M1)。

Description

光学系统、头戴显示设备及智能眼镜
本申请要求于2018年7月9日提交中国专利局、申请号为201810747435.0、发明名称为“光学系统、头戴显示设备及智能眼镜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及增强现实技术领域,尤其涉及一种光学系统、一种头戴显示设备及一种智能眼镜。
背景技术
光学系统通常用于各种成像设备中清晰成像或光学信息的处理。随着AR(Augmented Reality,增强现实)技术的快速发展,基于AR技术的头戴显示设备的应用越来越广泛。而在头戴显示设备中,显示器显示的虚拟图像需要经过光学系统放大后与现实图像叠加呈现到人眼中。由于头戴显示设备佩戴在用户头部,为了减轻用户头部压力,紧凑化、轻量化是头戴显示设备成为需求设计方向。
现有的基于自由曲面棱镜的光学系统中,显示器发出的光线直接入射到自由曲面棱镜中再由自由曲面棱镜对光线经过两次折射后透射到人眼中,但由于该光学系统中的显示器发出的光线是散射光,因此由显示器到进入人眼的光路中的光线均是以宽光束的形式存在,限制了系统的视场大小。
发明内容
本申请一些实施例提供了一种光学系统,包括具有光焦度反射面的反射镜组以及自由曲面棱镜组,所述自由曲面棱镜组包括成像棱镜;
所述反射镜组的光焦度反射面,用于至少将部分入射光线反射至所述成像棱镜的第一入光面;
所述第一入光面,用于透射至少部分所述入射光线至所述成像棱镜的第二入光面;
所述第二入光面,用于反射至少部分来自所述第一入光面的光线至所述成像棱镜的第三入光面;
所述第三入光面,用于反射至少部分来自所述第二入光面的光线至所述成像棱镜的出光面;
其中,在所述第三入光面之前的光程上形成有中间像面。
一些实施例中,所述反射镜组包括第一偏振反射棱镜以及与所述第一偏振反射棱镜胶合的第二偏振反射棱镜;其中,所述第一偏振反射棱镜包括偏振反射面及第一光焦度反射面;
所述入射光线经所述第一偏振反射棱镜的入光面进入所述第一偏振反射棱镜;
至少部分所述入射光线被所述偏振反射面反射至所述第一偏振反射棱镜的第一光焦度反射面;
至少部分来自所述第一光焦度反射面的所述入射光线被所述第一光焦度反射面反射并透过所述第二偏振反射棱镜后出射。
一些实施例中,所述反射镜组包括具有第二光焦度反射面的曲面反射镜。
一些实施例中,还包括由至少一个透镜组成的投影镜组;
至少部分所述反射镜组的光焦度反射面反射的所述入射光线经所述投影镜组透射后出射至所述成像棱镜的第一入光面。
一些实施例中,所述投影镜组与所述成像棱镜之间的光程上产生所述中间像面。
一些实施例中,所述第三入光面的水平方向曲率与垂直方向曲率不同。
一些实施例中,所述光学系统还包括与所述成像棱镜胶合的补偿棱镜;
所述补偿棱镜用于接收环境光线,并将至少部分所述环境光线透射至所述成像棱镜的所述第三入光面;
至少部分来自所述第三入光面的所述环境光线通过所述成像棱镜的出光面出射。
一些实施例中,所述第二入光面与所述第三入光面为所述成像棱镜的两个相对面;
所述补偿棱镜与所述第三入光面胶合。
一些实施例中,由人眼至所述中间像面的沿水平边缘视场的至少部分入射光线在水平方向的第一投影与沿水平中央视场的至少部分入射光线在水平方向的第二投影未发生交叉。
本申请一些实施例提供了一种头戴显示设备,所述头戴显示设备包括光学系统以及显示系统,其中所述光学系统采用上述任一项所述的光学系统;
所述显示系统用于产生所述入射光线。
一些实施例中,所述显示系统包括第一显示器,所述第一显示器设置在所述反射镜组一侧;或者,
所述显示系统包括第二显示器和照明组件,所述照明组件和所述第二显示器分设于所述反射镜组两侧;
所述照明组件出射的光透过所述反射镜组后照射到所述第二显示器上以点亮所述第二显示器。
本申请一些实施例提供一种智能眼镜,所述智能眼镜包括光学系统和显示系统;其中,
所述光学系统采用上述光学系统所述的光学系统;
所述显示系统用于产生所述入射光线;
所述显示系统包括第一显示器,所述第一显示器设置在所述反射镜组一侧;或者,
所述显示系统包括第二显示器和照明组件,所述照明组件和所述第二显示器分设于所述反射镜组两侧;
所述照明组件出射的光透过所述反射镜组后照射到所述第二显示器上以点亮所述第二显示器。
本申请一些实施例提供了一种光学系统、一种头戴显示设备及一种智能眼镜。光学系统包括具有光焦度反射面的反射镜组以及自由曲面棱镜组,所述自由曲面棱镜组包括成像棱镜。所述反射镜组的光焦度反射面,用于至少将部分入射光线反射至所述成像棱镜的第一入光面。所述第一入光面,用于透射至少部分所述入射光线至所述成像棱镜的第二入光面。所述第二入光面,用于反射至少部分来自所述第一入光面的光线至所述成像棱镜的第三入光面。所述第三入光面,用于反射至少部分来自所述第二入光面的光线至所述成像棱镜的出光面。其中,在所述第三入光面之前的光程上形成有中间像面。 本申请一些实施例通过该光学系统使至少部分入射光线在入射到人眼的光路中实现了二次成像,通过中间成像使以宽光束形式存在的至少部分入射光线产生汇聚,避免系统由于宽光束对视场的限制,进一步增大系统的视场角。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1示出了本申请一些实施例提供的一种光学系统的结构示意图;
图2示出了本申请一些实施例提供的一种光学系统的由人眼到自由曲面棱镜组的俯视结构示意图;
图3示出了本申请又一些实施例提供的一种光学系统的结构示意图;
图4示出了本申请另一些实施例提供的一种光学系统的结构示意图;
图5(a)-图5(c)示出了本申请一些实施例提供的一种头戴显示设备的一个实施例的结构示意图;
图6(a)-图6(c)示出了本申请一些实施例提供的一种智能眼镜的一个实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请一些实施例提供的光学系统可应用于当前的虚拟现实、增强现实、医学成像等技术领域。适用但不限于头戴显示设备或智能眼镜中,其中,头戴显示设备或智能眼镜可以包括VR(虚拟现实,Virtual Reality)设备、AR(增强现实,Augmented Reality)设备及MR(混合现实,Mixed Reality)设备等。
本申请一些实施例提供一种光学系统、一种头戴显示设备及一种智能眼镜。光学系统包括具有光焦度反射面的反射镜组以及自由曲面棱镜组,所述 自由曲面棱镜组包括成像棱镜。所述反射镜组的光焦度反射面,用于至少将部分入射光线反射至所述成像棱镜的第一入光面。所述第一入光面,用于透射至少部分所述入射光线至所述成像棱镜的第二入光面。所述第二入光面,用于反射至少部分来自所述第一入光面的光线至所述成像棱镜的第三入光面。所述第三入光面,用于反射至少部分来自所述第二入光面的光线至所述成像棱镜的出光面。其中,在所述第三入光面之前的光程上形成有中间像面。本申请一些实施例通过该光学系统使至少部分入射光线在入射到人眼的光路中实现了二次成像,通过中间成像使以宽光束形式存在的至少部分入射光线产生汇聚,避免系统由于宽光束对视场的限制,进一步增大系统的视场角。
下面将结合附图对本申请技术方案进行详细描述。
图1为本申请一些实施例提供的一种光学系统的一个实施例的结构示意图,该系统可以包括具有光焦度反射面的反射镜组101以及自由曲面棱镜组102。所述曲面棱镜组包括成像棱镜1021。
实际应用中,该光学系统可以应用但不限于头戴显示设备或智能眼镜中,尤其适用于VR或AR成像的头戴显示设备。头戴显示设备或智能眼镜的显示器可以是背光式LCOS(Liquid Crystal On Silicon,液晶覆硅)显示器、LCD(Liquid Crystal Display,液晶显示器)、Micro-OLED(Organic Light-Emitting Diode,微型有机发光二极管)或其它小型化显示器。
反射镜组101光焦度反射面,用于至少将部分入射光线反射至所述成像棱镜1021的第一入光面S1。
一些实施例中,反射镜组101通过光焦度反射面将至少部分入射光线进行折叠和汇聚,从而将以宽光束形式存在的至少部分入射光线进行汇聚,大大减少了光束在系统内部传播过程中占有光学有效面的面积,在此基础上,进行光学系统设计时可以减少系统中自由曲面棱镜102的尺寸;或在系统中自由曲面棱镜尺寸不变的条件下,增大系统的视场范围,减小了由于宽光束对系统尺寸及系统视场的限制。
实际应用中,该反射镜组101可以包括至少一个反射镜,以及至少一个带有光焦度的反射面。该反射镜组101的各个光面的面型根据实际设计需要可以是平面、球面、非球面或自由曲面,在此不做具体限定。
所述成像棱镜1021的第一入光面S1,用于透射至少部分所述入射光线至 所述成像棱镜1021的第二入光面S2。实际应用中,自由曲面棱镜102用于解决光学系统对视场角、出瞳距离及小型轻量化之间的矛盾,以使系统获得大视场角、更短的出瞳距离、更小型轻量化的光学系统。
现有技术中,通过显示器产生的至少部分入射光线直接透射进入自由曲面棱镜,并在自由曲面棱镜中进行两次反射后进入人眼。其中,光线照射到自由曲面棱镜表面的区域即为光学有效面,由于显示器产生的入射光线为宽光束的形式限制了系统的视场,因此可通过调节显示器与自由曲面棱镜的后截距,调整入射光线入射到该自由曲面棱镜的入射角度以增大视场角。但在增大视场角的同时限制了显示器与该自由曲面棱镜的后截距,造成后截距过小,这对于需要占一定空间的显示器来说,使得系统的结构设计上的难度就会大大增加。
本申请一些实施例通过引入反射镜组,可使显示器产生的至少部分入射光线经过反射镜组反射,使得至少部分入射光线经成像棱镜的第一入光面S1进入自由曲面棱镜组,减小了对系统后截距的限制。并通过反射镜组的光焦度反射面将显示器发射的以宽光束形式存在的入射光线进行汇聚后,使得至少部分入射光线的光束宽度大大减小,进一步减小了自由曲面棱镜尺寸对系统视场角的限制,保证了一定后截距的同时能够获得更大的视场角,进而大大降低了系统结构的设计难度。
所述成像棱镜1021的第二入光面S2,用于反射至少部分来自所述第一入光面S1的光线至所述成像棱镜的第三入光面S3。
所述第三入光面S3,用于反射至少部分来自所述第二入光面S2的光线至所述成像棱镜的出光面S2。本实施例中,自由曲面棱镜102中成像棱镜1021的第二入光面与出光面为同一面,但占有不同的光学有效面。
其中,在所述第三入光面S3之前的光程上形成有中间像面M1。至少部分入射光线经由光焦度反射面进行聚焦,使得在由光焦度反射面至第三入光面的光程上聚焦形成中间像面M1。所述成像棱镜1021的出光面透射至少部分来自第三入光面S3的光线至人眼E1成像。
实际应用中,根据实际光焦度反射面的焦距的不同,至少部分入射光线经由光焦度反射面进行汇聚形成中间像面可以是在至少部分入射光线由光焦度反射面反射至成像棱镜1021的第一入光面的第一光程中、由第一入光面透 射至第二入光面的第二光程中或由第二入光面反射至第三入光面的第三光程中的任一位置形成。该光学系统可以使入射光线在系统传播过程中产生中间像面,实现了系统的二次成像。且这一可实现系统二次成像的光程不仅可以增大系统视场角,减小系统光学有效面的区域,还可以增大系统的后截距。
为了进一步降低系统结构的设计难度,该光学系统中的光程还可以满足以下条件。如图2所示为该光学系统的俯视结构示意图。该系统所述从人眼到产生入射光线的方向来看,系统中从人眼到达产生入射光线的成像光程依次为由人眼到所述出光面S2的至少部分入射光线、所述由出光面至第三入光面的至少部分入射光线、由第三入光面至第二入光面的至少部分入射光线、由第二入光面至第一入光面的至少部分入射光线、由第一入光面至光焦度反射面的至少部分入射光线及至少部分入射至成像镜组的入射光线组成;其中,所述入射人眼任一点的至少部分入射光线可分为沿水平边缘视场的成像光线L1和沿水平中央视场的成像光线L2。
在某些实施例中,由人眼至所述中间像面的沿水平边缘视场的至少部分入射光线在水平方向的第一投影与沿水平中央视场的至少部分入射光线在水平方向的第二投影未发生交叉。
即边缘光线P1与中心光线P2由人眼至中间像面光线传播的成像光路中未发生交叉,从而进一步降低由人眼E1到中间像面M1的光路部分的光焦度,提高在人眼的成像质量。使得在保证成像质量的同时,不需要再设置光焦度调制补偿模组,从而进一步降低了系统结构的设计难度。使得该光学系统有小尺寸、大视场、高成像质量的特点,可适用于紧凑型头戴显示设备中。
本申请一些实施例中提供的光学系统,通过反射镜组101的光焦度反射面对至少部分入射光进行汇聚,然后经过系统中自由曲面棱镜组102的调制,使得至少部分入射光线在系统中形成中间像面。该系统通过各光学元件的调节实现特殊的二次成像光路,解决了系统中传播宽光束造成系统视场角受限的技术问题。同时由于系统视场的增大,同样减小了对系统后截距的限制,降低了该光学系统结构设计的难度。
图3为本申请一些实施例提供的一种光学系统的又一个实施例的结构示意图,该系统除包括图1实施例中反射镜组101以及自由曲面棱镜组102之外,还可以包括由至少一个透镜组成的投影镜组103。其中,反射镜组101可以包 括第一偏振反射棱镜1011以及与第一偏振反射棱镜1011胶合的第二偏振反射棱镜1012;其中,所述第一偏振反射棱镜1011包括偏振反射面S4及第一光焦度反射面S5。
本申请一些实施例可适用于上述需要独立配光的显示器例如LCOS显示器或不需要独立配光的显示器例如LCD显示器、OLED显示器等。
所述入射光线经所述第一偏振反射棱镜1011的入光面S6进入所述第一偏振反射棱镜1011。
至少部分所述入射光线被所述偏振反射面S4反射至所述第一偏振反射棱镜1011的第一光焦度反射面S5。
至少部分来自所述第一光焦度反射面S5的所述入射光线被所述第一光焦度反射面S5反射并透过所述第二偏振反射棱镜1012后出射。
其中,偏振反射面S4将入射光线进行偏振分束后将其中某一偏振方向的入射光线进行反射,将另一个偏振方向的入射光线进行透射,从而对入射光进行偏振分束仅保留一个偏振方向的入射光线进入自由曲面棱镜组102中。
实际应用中,反射镜组101的各个光面例如偏振反射面S4、光焦度反射面S5、入光面S6等根据需要可以是平面、球面、非球面或自由曲面。同时,该反射镜组101还可以实现对系统中的像差矫正及不同视场光线的转折,实现投影镜组103的功能。此时,系统中可以省去投影镜组103的设置。
实际应用中,当反射镜组101不能实现投影镜组功能时,该光学系统还可以包括由至少一个透镜组成的投影镜组103。投影镜组103可以设置于反射镜组101及自由曲面棱镜组102之间。在某些实施例中,至少部分所述反射镜组101的光焦度反射面反射的所述入射光线经所述投影镜组103透射后出射至所述成像棱镜1021的第一入光面S1。
其中,投影镜组103用于对系统中的相差矫正及不同视场光线的转折,其各个透镜的面型可以是球面、非球面、菲涅尔面或自由曲面等,在此不做具体限定。
在某些实施例中,自由曲面棱镜组102还可以包括与所述成像棱镜1021胶合的补偿棱镜1022。
补偿棱镜1022用于接收所述三维空间真实场景发射的环境光线并将至少部分该环境光线透射至成像棱镜1021的第三入光面S3。至少部分来自所述第 三入光面S3的所述环境光线通过所述成像棱镜1021的出光面S2出射。
其中,在某些实施例中,所述第二入光面S2与所述第三入光面S3为所述成像棱镜1021的两个相对面。且所述补偿棱镜1022与所述成像棱镜1021的第三入光面S3胶合。
成像棱镜的出光面S2将至少部分环境光线透射至人眼E1,以将所述待显示虚拟图像与所述真实场景融合到一起成像。
其中,补偿棱镜1022用于补偿成像棱镜对真实场景发射的光线折射造成影响,减少成像的畸变,提高成像质量。该补偿棱镜1022可以包括入光面S8及出光面S9。其中,成像棱镜的第三入光面S3与补偿棱镜的出光面S9胶合,使得成像棱镜1021与补偿棱镜1022构成自由曲面棱镜组102。三维空间中真实场景发射的环境光线,首先经过补偿棱镜1022的入光面S8透射进入补偿棱镜到达补偿棱镜的出光面S9。补偿棱镜1022的出光面S9将至少部分该环境光线透射至成像棱镜1021的第三入光面S3,再由第三光入光面S3透射至成像棱镜1021的出光面S2。
成像棱镜1021的出光面S2分别将生成真实场景的环境光线及生成待显示图像的至少部分入射光线透射至人眼,使得待显示图像与真实场景在人眼中融合成像,从而获得将虚拟世界与现实世界结合的AR图像。
其中,成像棱镜1021的第二入光面S2根据需要可以是平面、凹面或凸面;在其上面发生的反射形式可以是全反射也可以是镀膜反射。其中镀膜反射仅适用于第二光线与第三光线在该第二光学有效面S2的所占的有效区域没有发生重叠的情况下。
在某些实施例中,自由曲面棱镜102的成像棱镜1021和补偿棱镜1022的各个光面的面型可以是平面、球面、非球面或自由曲面。第三入光面S3的水平方向和垂直方向曲率不同的自由曲面
本申请一些实施例中,该系统应用自由曲面棱镜折反射成像原理,在所述投影镜组103与所述成像棱镜1021之间的光程上产生所述中间像面M1,实现系统的二次成像,在大大提高系统的视场角的同时还可以减小系统尺寸,提高成像质量。
图4为本申请一些实施例提供的一种光学系统的另一个实施例的结构示意图,该系统除包括图1实施例中的反射镜组101以及自由曲面棱镜组102之 外,还可以包括由至少一个透镜组成的投影镜组103。其中,反射镜组102包括具有第二光焦度反射面的曲面反射镜。
其中,投影镜组103可以设置于曲面反射镜与自由曲面棱镜组102之间。用以矫正系统像差及对不同视场光线角度的控制。
本实施例中的光学系统适用于不需要独立配光的显示器,例如LCD显示器、OLED显示器等。
曲面反射镜的第二光焦度反射面用于反射至少部分入射光线,以使该至少部分入射光线经所述投影镜组103透射后出射至所述成像棱镜1021的第一入光面S1。
本实施例中,与图3实施例的区别即为将曲面反射镜代替偏振反射棱镜组,其由曲面反射镜组反射至少部分入射光线,以使该至少部分入射光线经所述投影镜组103透射后出射至所述成像棱镜1021的第一入光面S1第一光程,由第一入光面S1透射至第二入光面S2的第二光程及由第二入光面S2反射至第三入光面S3的第三光程均与图3实施例相同,前述已进行详细的说明,在此不再赘述。
同样,本实施例中的自由曲面棱镜组102及投影镜组103已在图3实施例中进行详细的说明,在此不再赘述。
本申请图1实施例、图3实施例及图4实施例提供的光学系统,对系统中反射镜组101、自由曲面镜组102及投影镜组103等光学元件各个光面的形状、尺寸、反射形式等均不作具体地限定,以上光学系统中的各个光学元件的尺寸,位置及形状经过组合,可以实现由显示器到人眼的成像光路中,产生中间像面,该中间像面可以是在投影镜组与所述成像棱镜之间的光程中的任一位置产生,在此也不做具体限定。同时,本申请实施例提供的光学系统,还可以实现由人眼到中间像面的光路中,其边缘光线与水平光线的传播没有发生交叉,使得在提升系统视场角的同时,满足了系统高成像质量的需求,从而实现了大视场、高质量的增强现实成像。
综上,本申请一些实施例提供的光学系统,具有小尺寸、大视场,高成像质量的优点,解决了现有技术中由于传播宽光束对系统尺寸及系统视场的限制,同时进一步降低了系统结构设计的难度。
图5(a)-图5(c)本申请一些实施例提供的一种头戴显示设备的一个实 施例的结构示意图,所述头戴显示设备包括光学系统以及显示系统,其中所述光学系统采用如图1-图4实施例中的所述的光学系统。
所述显示系统用于产生所述入射光线。
该头戴显示设备可以是基于VR的头戴显示设备也可以是基于AR的头戴显示设备,在此不做具体限定。
在某些实施例中,所示显示系统可以包括第一显示器D1,所述第一显示器D1设置在所述反射镜组101一侧。
如图5(a)所示该第一显示器可以是设置在所述第一偏振反射棱镜1011的入光面S6相邻的一侧;或是如图5(b)所示设置在曲面反射镜组的第二光焦度反射面相邻的一侧。
其中,该第一显示器可以是LCD显示器、OLED显示器等,用于产生入射光线。
在某些实施例中,如图5(c)所示所述显示系统包括第二显示器D2和照明组件Q1,所述照明组件Q1和所述第二显示器D2分设于所述反射镜组101两侧。
其中,该照明组件可以是由一个或多个LED构成的任意形状的照明组件,也可以是能够用于照明的其它照明装置组成的照明组件,在此不做具体限定。
所述照明组件Q1出射的光透过所述反射镜组101后照射到所述第二显示器D2上以点亮所述第二显示器D2。
由于第二显示器为基于反射模式的显示器,例如,可以是LCOS显示器。因此无法独立发光,因此需要对该第二显示器进行独立配光,可通过发射自然光的照明组件将产生的自然光照射至该第二显示器上,基于第二显示器D2的反射原理点亮该第二显示器从而产生入射光线。
所述第二显示器D2可以是设置于所述第一偏振反射棱镜1011的入光面S6相邻的一侧,所述照明组件Q1设置于所述第二偏振反射棱镜1012的入光面S7相邻的一侧,其中所述第一偏振反射棱镜1011的入光面S6与所述第二偏振反射棱镜1012的入光面S7相对设置。
所述第二偏振反射棱镜1012的入光面S7,用于将照明组件Q1产生的至少部分自然光线透射至所述第一偏振反射棱镜1011的偏振反射面S4。至少部分来自偏振反射面S4的自然光线经所述第一偏振反射棱镜的入光面S6透射至第 二显示器D2并点亮该第二显示器D2,以使该第二显示器D2产生入射光线。
本实施例保护了一种头戴显示设备,该头戴显示设备包括上述光学系统的结构及显示系统结构,可以进一步减小头戴显示设备的体积和重量,获得更加紧凑化,轻量化的头戴显示设备。
图6(a)-图6(c)为本申请一些实施例提供的一种智能眼镜的一个实施例的结构示意图,所述智能眼镜包括光学系统和显示系统。其中,所述光学系统采用如图1-图4实施例所述的光学系统。
所述显示系统用于产生所述入射光线。
该智能眼镜可以是基于VR的智能眼镜也可以是基于AR的智能眼镜,在此不做具体限定。
在某些实施例中,所述显示系统可以包括第一显示器D3,所述第一显示器D3设置在所述反射镜组101一侧。
如图6(a)所示,该第一显示器D3可以是设置在所述第一偏振反射棱镜1011的入光面S6相邻的一侧;或是如图6(b)所示,设置在曲面反射镜组的第二光焦度反射面相邻的一侧。
其中,该第一显示器D3可以是LCD显示器、OLED显示器等,用于产生入射光线。
在某些实施例中,如图6(c),所示所述显示系统包括第二显示器D4和照明组件Q2,所述照明组件Q2和所述第二显示器D4分设于所述反射镜组101两侧。
其中,该照明组件可以是由一个或多个LED构成的任意形状的照明组件,也可以是能够用于照明的其它照明装置组成的照明组件,在此不做具体限定。
所述照明组件Q2出射的光透过所述反射镜组101后照射到所述第二显示器D4上以点亮所述第二显示器D4。
由于第二显示器为基于反射模式的显示器,例如,可以是LCOS显示器。因此无法独立发光,因此需要对该第二显示器进行独立配光,可通过发射自然光的照明组件将产生的自然光照射至该第二显示器上,基于第二显示器D4的反射原理点亮该第二显示器从而产生入射光线。
所述第二显示器D4可以是设置于所述第一偏振反射棱镜1011的入光面S6相邻的一侧,所述照明组件Q2设置于所述第二偏振反射棱镜1012的入光面 S7相邻的一侧,其中所述第一偏振反射棱镜1011的入光面S6与所述第二偏振反射棱镜1012的入光面S7相对设置。
所述第二偏振反射棱镜1012的入光面S7,用于将照明组件Q2产生的至少部分自然光线透射至所述第一偏振反射棱镜1011的偏振反射面S4。至少部分来自偏振反射面S4的自然光线经所述第一偏振反射棱镜的入光面S6透射至第二显示器D4并点亮该第二显示器D4,以使该第二显示器D4产生入射光线。
本实施例保护了一种智能眼镜,该智能眼镜包括上述光学系统的结构及显示系统结构,可以进一步减小智能眼镜的体积和重量,获得更加紧凑化,轻量化的智能眼镜。
本说明书中各个实施例采用并列或者递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处可参见方法部分说明。
本领域普通技术人员还可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括 没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (12)

  1. 一种光学系统,其特征在于,包括具有光焦度反射面的反射镜组以及自由曲面棱镜组,所述自由曲面棱镜组包括成像棱镜;
    所述反射镜组的光焦度反射面,用于至少将部分入射光线反射至所述成像棱镜的第一入光面;
    所述第一入光面,用于透射至少部分所述入射光线至所述成像棱镜的第二入光面;
    所述第二入光面,用于反射至少部分来自所述第一入光面的光线至所述成像棱镜的第三入光面;
    所述第三入光面,用于反射至少部分来自所述第二入光面的光线至所述成像棱镜的出光面;
    其中,在所述第三入光面之前的光程上形成有中间像面。
  2. 根据权利要求1所述的光学系统,其特征在于,所述反射镜组包括第一偏振反射棱镜以及与所述第一偏振反射棱镜胶合的第二偏振反射棱镜;其中,所述第一偏振反射棱镜包括偏振反射面及第一光焦度反射面;
    所述入射光线经所述第一偏振反射棱镜的入光面进入所述第一偏振反射棱镜;
    至少部分所述入射光线被所述偏振反射面反射至所述第一偏振反射棱镜的第一光焦度反射面;
    至少部分来自所述第一光焦度反射面的所述入射光线被所述第一光焦度反射面反射并透过所述第二偏振反射棱镜后出射。
  3. 根据权利要求1所述的光学系统,其特征在于,所述反射镜组包括具有第二光焦度反射面的曲面反射镜。
  4. 根据权利要求1所述的光学系统,其特征在于,还包括由至少一个透镜组成的投影镜组;
    至少部分所述反射镜组的光焦度反射面反射的所述入射光线经所述投影镜组透射后出射至所述成像棱镜的第一入光面。
  5. 根据权利要求4所述的光学系统,其特征在于,所述投影镜组与所述成像棱镜之间的光程上产生所述中间像面。
  6. 根据权利要求1所述的光学系统,其特征在于,所述第三入光面的水 平方向曲率与垂直方向曲率不同。
  7. 根据权利要求1-6任一项所述的光学系统,其特征在于,所述光学系统还包括与所述成像棱镜胶合的补偿棱镜;
    所述补偿棱镜用于接收环境光线,并将至少部分所述环境光线透射至所述成像棱镜的所述第三入光面;
    至少部分来自所述第三入光面的所述环境光线通过所述成像棱镜的出光面出射。
  8. 根据权利要求7所述的光学系统,其特征在于,
    所述第二入光面与所述第三入光面为所述成像棱镜的两个相对面;
    所述补偿棱镜与所述第三入光面胶合。
  9. 根据权利要求1所述的光学系统,其特征在于,
    由人眼至所述中间像面的沿水平边缘视场的至少部分入射光线在水平方向的第一投影与沿水平中央视场的至少部分入射光线在水平方向的第二投影未发生交叉。
  10. 一种头戴显示设备,其特征在于,所述头戴显示设备包括光学系统以及显示系统,其中所述光学系统采用如权利要求1-8任一项所述的光学系统;
    所述显示系统用于产生所述入射光线。
  11. 根据权利要求10所述的头戴显示设备,其特征在于,
    所述显示系统包括第一显示器,所述第一显示器设置在所述反射镜组一侧;或者,
    所述显示系统包括第二显示器和照明组件,所述照明组件和所述第二显示器分设于所述反射镜组两侧;
    所述照明组件出射的光透过所述反射镜组后照射到所述第二显示器上以点亮所述第二显示器。
  12. 一种智能眼镜,其特征在于,所述智能眼镜包括光学系统和显示系统;其中,
    所述光学系统采用如权利要求7或8所述的光学系统;
    所述显示系统用于产生所述入射光线;
    所述显示系统包括第一显示器,所述第一显示器设置在所述反射镜组一 侧;或者,
    所述显示系统包括第二显示器和照明组件,所述照明组件和所述第二显示器分设于所述反射镜组两侧;
    所述照明组件出射的光透过所述反射镜组后照射到所述第二显示器上以点亮所述第二显示器。
PCT/CN2018/106924 2018-07-09 2018-09-21 光学系统、头戴显示设备及智能眼镜 WO2020010703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/250,361 US20210302746A1 (en) 2018-07-09 2018-09-21 Optical system, head-mounted display device and smart glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810747435.0 2018-07-09
CN201810747435.0A CN108957750A (zh) 2018-07-09 2018-07-09 光学系统、头戴显示设备及智能眼镜

Publications (1)

Publication Number Publication Date
WO2020010703A1 true WO2020010703A1 (zh) 2020-01-16

Family

ID=64482628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106924 WO2020010703A1 (zh) 2018-07-09 2018-09-21 光学系统、头戴显示设备及智能眼镜

Country Status (3)

Country Link
US (1) US20210302746A1 (zh)
CN (1) CN108957750A (zh)
WO (1) WO2020010703A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187506B (zh) * 2019-05-28 2021-12-17 京东方科技集团股份有限公司 光学显示系统和增强现实设备
CN110376738B (zh) * 2019-06-13 2020-08-04 浙江大学 一种大视场轻型自由曲面波导型目视光学成像装置及其近眼显示系统
WO2021068855A1 (zh) * 2019-10-10 2021-04-15 华为技术有限公司 一种显示设备模组及头戴式显示设备
CN111290128B (zh) * 2020-03-31 2021-10-01 京东方科技集团股份有限公司 光学系统及显示装置、智能眼镜
US11726326B1 (en) * 2020-06-11 2023-08-15 Meta Platforms Technologies, Llc Wedge light guide
CN111766754B (zh) * 2020-07-23 2021-09-17 歌尔光学科技有限公司 光学系统及投影装置
CN112255798A (zh) * 2020-11-08 2021-01-22 中国航空工业集团公司洛阳电光设备研究所 一种头戴穿透式智能眼镜光学系统
US20220397750A1 (en) * 2020-12-25 2022-12-15 Boe Technology Group Co., Ltd. Optical system and display apparatus
CN113219667B (zh) * 2021-04-30 2022-07-22 歌尔股份有限公司 光学镜组和头戴显示设备
CN113820860B (zh) * 2021-08-27 2023-06-06 歌尔光学科技有限公司 导光镜组、导光系统和头戴显示设备
CN113835227B (zh) * 2021-09-23 2023-02-24 深圳迈塔兰斯科技有限公司 补偿器及其制备方法、图像显示装置、显示设备
CN113866984B (zh) * 2021-09-27 2022-08-30 业成科技(成都)有限公司 短焦光学模组
CN113934006A (zh) * 2021-10-27 2022-01-14 歌尔光学科技有限公司 光学模组和头戴显示设备
CN114200679B (zh) * 2021-11-17 2024-03-26 小派科技(上海)有限责任公司 光学模组/系统、显示装置、头戴式显示设备和显示系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359089A (zh) * 2008-10-08 2009-02-04 北京理工大学 轻小型大视场自由曲面棱镜头盔显示器光学系统
CN101359095A (zh) * 2007-07-30 2009-02-04 比亚迪股份有限公司 一种眼镜显示器及其光学系统
CN102200626A (zh) * 2010-03-26 2011-09-28 深圳市亿思达显示科技有限公司 折反式自由曲面二元光学棱镜光学系统
US20140071400A1 (en) * 2012-09-11 2014-03-13 Augmented Vision, Inc. Compact eye imaging and eye tracking apparatus
CN106855655A (zh) * 2015-12-08 2017-06-16 铭异科技股份有限公司 非对称曲面棱镜影像显示光学系统
CN108873344A (zh) * 2018-07-09 2018-11-23 歌尔科技有限公司 光学系统及头戴显示设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228970A (ja) * 2001-02-05 2002-08-14 Mixed Reality Systems Laboratory Inc 光学系及びそれを用いた画像表示装置
CN203275779U (zh) * 2013-04-28 2013-11-06 贾怀昌 一种基于rgb面光源的lcos微型显示器光学系统
CN107367842A (zh) * 2017-08-30 2017-11-21 深圳超多维科技有限公司 一种头戴式显示设备
CN107422484B (zh) * 2017-09-19 2023-07-28 歌尔光学科技有限公司 棱镜式ar显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359095A (zh) * 2007-07-30 2009-02-04 比亚迪股份有限公司 一种眼镜显示器及其光学系统
CN101359089A (zh) * 2008-10-08 2009-02-04 北京理工大学 轻小型大视场自由曲面棱镜头盔显示器光学系统
CN102200626A (zh) * 2010-03-26 2011-09-28 深圳市亿思达显示科技有限公司 折反式自由曲面二元光学棱镜光学系统
US20140071400A1 (en) * 2012-09-11 2014-03-13 Augmented Vision, Inc. Compact eye imaging and eye tracking apparatus
CN106855655A (zh) * 2015-12-08 2017-06-16 铭异科技股份有限公司 非对称曲面棱镜影像显示光学系统
CN108873344A (zh) * 2018-07-09 2018-11-23 歌尔科技有限公司 光学系统及头戴显示设备

Also Published As

Publication number Publication date
US20210302746A1 (en) 2021-09-30
CN108957750A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020010703A1 (zh) 光学系统、头戴显示设备及智能眼镜
US11693245B2 (en) Wearable AR system, AR display device and its projection source module
JP7131145B2 (ja) ヘッドマウントディスプレイ
US10698200B2 (en) Optical system for a display with an off axis projector
US10690912B2 (en) Prismatic AR display device
US10782453B2 (en) Display devices with reflectors
US20170059869A1 (en) Optical system for head mount display
WO2020010704A1 (zh) 光学系统及头戴显示设备
CN103180773A (zh) 具有可以安置在用户头部上的保持装置的显示装置
CN111399321B (zh) 一种适用于近眼显示器的小型投影光学组件和投影光学系统
CN115421302A (zh) 光学模组及头戴显示设备
CN112415753A (zh) 一种近眼显示装置及制备方法
CN109477965B (zh) 一种轻薄共光轴方向的自由曲面的光学成像系统
CN216210238U (zh) 一种光学模组和近眼显示光学系统
CN214795415U (zh) 一种近眼显示装置
CN116027532A (zh) 一种短焦折反投影系统及近眼显示装置
CN216526537U (zh) 一种带有屈光度的近眼显示装置
KR100597451B1 (ko) 단판양안식 헤드마운트 디스플레이 광학시스템
KR20210042746A (ko) 투시형 디스플레이 장치 및 이를 포함하는 안경형 증강 현실 장치
CN115248500B (zh) 扩增实境眼镜
US11776219B2 (en) Augmented reality glasses
CN214846040U (zh) 一种近眼显示装置
CN217954844U (zh) 近眼显示装置及穿戴设备
WO2023097806A1 (zh) 光学模组和电子设备
US20210173214A1 (en) Projection apparatus and wearable display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926225

Country of ref document: EP

Kind code of ref document: A1