WO2023092709A1 - 光学模组及头戴显示设备 - Google Patents

光学模组及头戴显示设备 Download PDF

Info

Publication number
WO2023092709A1
WO2023092709A1 PCT/CN2021/137636 CN2021137636W WO2023092709A1 WO 2023092709 A1 WO2023092709 A1 WO 2023092709A1 CN 2021137636 W CN2021137636 W CN 2021137636W WO 2023092709 A1 WO2023092709 A1 WO 2023092709A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical module
light
air gap
polarized light
Prior art date
Application number
PCT/CN2021/137636
Other languages
English (en)
French (fr)
Inventor
史柴源
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023092709A1 publication Critical patent/WO2023092709A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the present invention relates to the field of head-mounted display technology, and more specifically, to an optical module and a head-mounted display device.
  • the functions realized by the head-mounted display device need to be configured with corresponding components.
  • the size of the head-mounted display device in the prior art is too large, wasting too much space.
  • An object of the present invention is to provide a new technical solution for an optical module and a head-mounted display device.
  • an optical module includes a fourth lens, a third lens, a second lens, a polarized reflection film, and a first quarter-wave plate arranged in sequence , the first lens;
  • the side of the first lens away from the second lens is provided with a light splitting element
  • first air gap d 12 between the first lens and the second lens
  • second air gap d 23 between the second lens and the third lens
  • third air gap d 34 between the lens and the fourth lens
  • the shape of the first air gap is a drop shape with two sides and a drop drop of ⁇ 12
  • the shape of the second air gap is a parabolic shape with a drop drop of ⁇ 23
  • the third air gap The shape is M-shape and the drop drop is ⁇ 34 , then it satisfies: ⁇ 12 >0.2mm, ⁇ 23 >0.1mm, ⁇ 34 >0.1mm.
  • the range of refractive index of the first lens, the second lens, the third lens and the fourth lens is between 1.45 and 1.60.
  • the range of dispersion coefficients of the first lens, the second lens, the third lens and the fourth lens is between 20 and 75.
  • the optical module further includes a polarizing film disposed between the second lens and the polarizing reflection film.
  • the first quarter-wave plate, the polarizing reflective film and the polarizing film are film-layer structures, and the first quarter-wave plate, the polarizing reflective film and the The polarizing film is synthesized into an integral film layer.
  • the optical module also includes a display
  • the display is used to generate circularly polarized light, elliptically polarized light or linearly polarized light;
  • the optical module When the display is used to generate linearly polarized light, the optical module further includes a second quarter-wave plate arranged between the light splitting element and the display, and the second quarter-wave The sheets are used to convert the linearly polarized light emitted by the display into circularly or elliptically polarized light.
  • all surfaces of the first lens, the second lens, the third lens and the fourth lens are aspherical.
  • a head-mounted display device includes a housing and an optical module as described in any one of the first aspects, and the optical module is arranged on the case.
  • the light is directed to the light splitting element, a part of the light passes through the light splitting element, and the other part of the light is reflected, and the light passing through the light splitting element passes through the first lens and goes to the first quadrant.
  • One of the wave plates the light becomes linearly polarized light, and the linearly polarized light is directed to the polarized emission film.
  • the vibration direction of the linearly polarized light is different from the transmission direction of the polarized reflective film, and the light is reflected, and the reflected light passes through the second polarized light again.
  • the linearly polarized light becomes circularly polarized light
  • the light passes through the first lens and goes to the spectroscopic element
  • the light is reflected by the spectroscopic element and then passes through the first lens and goes to the first quarter-wave plate
  • the circularly polarized light becomes linearly polarized light
  • the linearly polarized light goes to the polarized reflective film.
  • the vibration direction of the linearly polarized light is the same as the transmission direction of the polarized reflective film.
  • the light passes through the polarized reflective film, and then passes through the second lens,
  • the third lens and the fourth lens shoot toward the imaging position where the human eye is located.
  • the surface structure of the left and right surfaces of the air gap can be indirectly controlled, which is beneficial to improve the aberration , especially the correction of chromatic aberration, so as to achieve high-resolution imaging.
  • FIG. 1 is one of the structural schematic diagrams of an optical module in an embodiment of the present disclosure.
  • FIG. 2 is a partial enlarged view of the positions of the first lens and the second lens in an embodiment of the present disclosure.
  • FIG. 3 is a diagram of thickness variation of a first gap between a first lens and a second lens in an embodiment of the present disclosure.
  • FIG. 4 is a graph showing thickness variation of the second gap between the second lens and the third lens in an embodiment of the present disclosure.
  • FIG. 5 is a diagram of thickness variation of a third gap between a third lens and a fourth lens in an embodiment of the present disclosure.
  • FIG. 6 is one of the modulation transfer function diagrams of the optical module in an embodiment of the present disclosure.
  • FIG. 7 is one of the spot diagrams of the optical module in an embodiment of the present disclosure.
  • FIG. 8 is one of the vertical axis chromatic aberration diagrams of the optical module in an embodiment of the present disclosure.
  • FIG. 9 is a second structural schematic diagram of an optical module in an embodiment of the present disclosure.
  • FIG. 10 is the second diagram of the modulation transfer function of the optical module in an embodiment of the present disclosure.
  • FIG. 11 is the second spot diagram of the optical module in an embodiment of the present disclosure.
  • FIG. 12 is the second vertical axis chromatic aberration diagram of the optical module in an embodiment of the present disclosure.
  • FIG. 13 is a third structural schematic diagram of an optical module in an embodiment of the present disclosure.
  • FIG. 14 is the third diagram of the modulation transfer function of the optical module in an embodiment of the present disclosure.
  • FIG. 15 is the third spot diagram of the optical module in an embodiment of the present disclosure.
  • FIG. 16 is the third vertical axis chromatic aberration diagram of the optical module in an embodiment of the present disclosure.
  • an optical module is provided. As shown in FIGS. 1-16 , the optical module includes a fourth lens 5, a third lens 4, a second lens 3, a A reflective film 34 , a first quarter-wave plate 33 , and a first lens 2 .
  • the side of the first lens 2 away from the second lens 3 is provided with a light splitting element. There is an air gap between two adjacent lenses among the first lens 2 , the second lens 3 , the third lens 4 and the fourth lens 5 .
  • the light is circularly polarized before entering the light splitting element.
  • the light shoots to the light splitting element, part of the light passes through the light splitting element, and the other part of the light reflects, the light passing through the light splitting element passes through the first lens 2 and shoots to the first quarter-wave plate 33, and the light of circularly polarized light becomes linear
  • the polarized light and the linearly polarized light are directed to the polarized reflective film 34 again.
  • the vibration direction of the linearly polarized light is different from the transmission direction of the polarized reflective film 34, and the light is reflected.
  • the reflected light passes through the first quarter-wave plate 33 again, and the linearly polarized light becomes circularly polarized light.
  • the light passes through the first lens 2 and shoots to the spectroscopic element.
  • the circularly polarized light becomes linearly polarized light, and the linearly polarized light is directed toward the polarized reflective film 34.
  • the vibration direction of the linearly polarized light is the same as the transmission direction of the polarized reflective film, and the light transmits
  • it passes through the second lens 3 , the third lens 4 and the fourth lens 5 to the imaging position where the human eye 6 is located.
  • the surface structure of the two surfaces on the left and right of the air gap can be indirectly controlled, and there is It is beneficial to improve the aberration, especially the correction of chromatic aberration, so as to realize high-resolution imaging, so that the optical module can have the effect of folding optical path and high-resolution imaging.
  • the optical module can form a more compact structure and an imaging effect with higher resolution.
  • the structure of the lens formed by the optical module is more compact, which saves the space occupied by components. And it can make the passing picture light have a better resolution and improve the picture quality.
  • the space occupied by the optical module is smaller, which can facilitate the optimization of the volume of the equipment where the optical module is located, and can reduce the volume of the equipment.
  • the aspherical surface can correct the graphics in the light of the picture, solve the problem of distortion of the field of view, and at the same time make the optical module lighter and thinner. It can also maintain excellent impact resistance.
  • first air gap d 12 between the first lens 2 and the second lens 3
  • second air gap d between the second lens 3 and the third lens 4 23
  • third air gap d 34 between the third lens 4 and the fourth lens 5
  • the transmission of light between the first lens 2 and the second lens 3 can be ensured, and the light can be transmitted with the air in the first air gap d12 as a medium. Reduce the generation of stray light and improve the clarity of light imaging.
  • the transmission of light between the second lens 3 and the third lens 4 can be guaranteed, and the light can reduce the generation of stray light by using the air in the second air gap d 23 as a medium, Improved sharpness after light imaging.
  • the transmission of light between the third lens 4 and the fourth lens 5 can be guaranteed, and the light can reduce the generation of stray light by using the air in the third air gap d 34 as a medium , improving the clarity of light imaging.
  • the shape of the first air gap is in the shape of falling on both sides and the drop difference is ⁇ 12
  • the shape of the second air gap is in the shape of a parabola and the drop difference is ⁇ 23
  • the shape of the first air gap is the shape exhibited by the thickness of the spaced portion between the first lens 2 and the second lens 3 . It presents a shape with a gentle middle and dropped two sides, that is, the thickness of the middle part of the first air gap changes gently, and the thickness of the two sides gradually narrows from the middle to the two sides. Under the conditions of the shape of the first air gap and the drop difference, the exit and entry positions of the light when it is transmitted between the lenses are promoted, so as to ensure that the picture light can smoothly pass between the first lens 2 and the second lens 3 transmission.
  • the shape of the second air gap is a shape exhibited by the thickness of the space portion between the second lens 3 and the third lens 4 . It presents a parabolic shape, that is, the thickness of the second air gap changes uniformly from the middle part to both sides, for example, the thickness gradually narrows from the middle part to both sides. Under the conditions of the shape of the second air gap and the drop difference, the exit and entry positions of the light when transmitted between the lenses are promoted, so as to ensure that the picture light can smoothly pass between the second lens 3 and the third lens 4 transmission.
  • the shape of the third air gap is a shape exhibited by the thickness of the space portion between the third lens 4 and the fourth lens 5 . It is an M-shape, that is, the shape of the third air gap presents a change trend in which the thickness extending from the middle part to both sides gradually increases, and then gradually decreases. Under the conditions of the shape of the second air gap and the drop difference, the exit and entry positions of the light when it is transmitted between the lenses are promoted, so as to ensure that the picture light can smoothly pass between the third lens 4 and the fourth lens 5 transmission.
  • the surface structure of the left and right surfaces of the air gap can be indirectly controlled, which is beneficial to improve the aberration.
  • the correction of chromatic aberration enables high-resolution imaging.
  • the optical module further includes a display 1 .
  • the display 1 is used to generate circularly polarized light, elliptically polarized light or linearly polarized light.
  • the optical module further includes a second quarter wave plate arranged between the light splitting element and the display 1, the second quarter wave plate A wave plate is used to convert the linearly polarized light emitted by the display 1 into circularly polarized light or elliptically polarized light.
  • the display 1 is used to emit light for displaying pictures.
  • the light incident to the light splitting element as circularly polarized light or elliptically polarized light
  • the light can form a corresponding folded optical path in the optical module, and pass through the first lens 2, the second lens 3, and the third lens 4 and the fourth lens 5 at the position of the human eye 6 to meet the imaging requirements of the optical module in the present disclosure.
  • the refractive index range of the first lens 2 , the second lens 3 , the third lens 4 and the fourth lens 5 is between 1.45 and 1.60.
  • the optical path of the picture light can always be in the optical path of the optical module, ensuring that the optical module can effectively act on the imaging and display light.
  • the dispersion coefficient of the first lens, the second lens, the third lens and the fourth lens ranges from 20 to 75.
  • the chromatic aberration produced by the matched first lens 2 , second lens 3 , third lens 4 and fourth lens 5 on the transmitted light can be lower, and the imaging quality can be improved.
  • the optical module further includes a polarizing film 35 disposed between the second lens 3 and the polarizing reflection film 34 .
  • the polarizing film acts on the light passing through the polarizing reflective film 34, and suppresses the polarization effect of the film to reduce the impact on the light entering the second lens 3, the third lens 4 and the fourth lens 5 after passing through the polarizing reflective film 34 , which improves the image quality.
  • the first quarter-wave plate 33, the polarizing reflection film 34 and the polarizing film 35 are film-layer structures, and the first quarter-wave plate 33, all The polarizing reflective film 34 and the polarizing film 35 are combined into an integral film layer.
  • the integral film layer is more convenient to arrange the first quarter-wave plate 33 , the polarizing reflection film 34 and the polarizing film 35 , and can reduce space occupation.
  • the polarizing film 35 can suppress the polarizing effect of the overall film layer.
  • all surfaces of the first lens 2 , the second lens 3 , the third lens 4 and the fourth lens 5 are aspherical.
  • the aspherical surface can correct the graphics in the light of the picture, solve the problem of distortion of the field of view, and at the same time make the optical module lighter and thinner. It can also maintain excellent impact resistance.
  • the first lens 2 has a first surface 21 and a second surface 22
  • the second lens 3 has a third surface 31 and a fourth surface 32
  • the second surface 22 is opposite to the third surface 31
  • the third lens 4 has a fifth surface 41 and a sixth surface 42
  • the fourth surface 32 is opposite to the fifth surface 41
  • the fourth lens 5 has a seventh surface 51 and an eighth surface 52
  • the sixth surface 42 Set opposite to the seventh surface 51 .
  • the first surface 21 is disposed facing the light splitting element, the light passing through the light splitting element enters through the first surface 21 , and finally exits through the eighth surface 52 to form an image.
  • the light splitting element is arranged on the first surface 21, and the second surface 22 is provided with an anti-reflection film.
  • the third surface 31 is provided with a first quarter-wave plate 33, a polarizing reflection film 34 and a polarizing film 35 stacked in sequence, the polarizing film 35 is located on the side where the third surface 31 is located, and the fourth surface 32 is provided with an anti-reflection film.
  • the fifth surface 41 , the sixth surface 42 , the seventh surface 51 and the eighth surface 52 are all provided with an anti-reflection film.
  • the light directed at the light splitting element is circularly polarized light
  • a part of the light of the circularly polarized light passes through the light splitting element, and the other part of the light is reflected
  • the light passing through the light splitting element enters the first lens 2 through the first surface 21 and passes through the second Surface 22 emerges from first lens 2 .
  • the emitted light is directed to the first quarter-wave plate 33, and the light passing through the first quarter-wave plate 33 becomes linearly polarized light, and the linearly polarized light is then directed to the polarizing reflective film 34.
  • the linearly polarized light The vibration direction of the polarized reflection film 34 is different from the transmission direction of the polarized reflective film 34, the light is reflected, and the reflected light passes through the first quarter-wave plate 33 again, and the linearly polarized light becomes circularly polarized light, and the circularly polarized light passes through the second surface 22 Enter the first lens 2 and exit the first surface 21.
  • the emitted light goes to the light splitting element and is reflected, and the reflected light enters the first lens 2 again and exits the first lens 2 through the second surface 22, and then goes to the first quarter-wave plate 33 and becomes a line Polarized light and linearly polarized light are directed towards the polarized reflective film 34 , at this time, the vibration direction of the linearly polarized light is the same as the transmission direction of the polarized reflective film 34 , and the light passes through the polarized reflective film 34 . Then the light passes through the polarizing film 35 to the third surface 31 and exits the second lens 3 from the fourth surface 32. After exiting the second lens 3, it enters through the fifth surface 41 and exits the third lens 4 from the sixth surface 42. The light emitted from the third lens 4 enters through the seventh surface 51 and exits the fourth lens 5 through the eighth surface 52 .
  • the light emitted from the fourth lens 5 can form an image at the position of the human eye 6 of the head-mounted display device.
  • the central thicknesses of the first lens 2, the second lens 3, the third lens 4, and the fourth lens 5 are defined as T 1 , T 2 , T 3 , and T 4 , respectively. , then satisfy:
  • the thickness can affect the overall thickness of the optical module, and the optical module within the central thickness of this embodiment can not only meet the refraction requirements of the picture light, but also ensure the accuracy of the light path.
  • the plurality of lenses of the optical module can be formed into a structure with a smaller volume, so that the optical module has a lighter and thinner size, and the thickness of the optical module is reduced. Make the space occupied by the optical module smaller.
  • the refractive index of the first lens 2 is 1.48, and the dispersion coefficient is 70; the refractive index of the second lens 3 is 1.54, The dispersion coefficient is 55.7; the refractive index of the third lens 4 is 1.6, and the dispersion coefficient is 26.6; the refractive index of the fourth lens 5 is 1.54, and the dispersion coefficient is 55.7.
  • the picture light keeps the picture in the process of refraction and reflection in the optical module.
  • the quality of the light ensures higher resolution of the final image.
  • FIG. 6 it is a modulation transfer function diagram of the optical module in this embodiment. Under the condition of resolution ⁇ 60 lp/mm, the modulation transfer function value of the optical module is >0.45.
  • the imaging sharpness can be characterized by the contrast of black and white line pairs.
  • the optical module is below 60lp/mm, and the modulation transfer function value is >0.45.
  • the optical module has the characteristics of clear imaging.
  • FIG. 7 it is a spot diagram of the optical module in this embodiment.
  • the maximum value of the full-band image point is ⁇ 12 ⁇ m.
  • the spot diagram is to form a diffuse pattern scattered in a certain range after many rays of light emitted from one point pass through the optical module due to aberration so that the intersection with the image plane is no longer concentrated at the same point, which can characterize the imaging quality .
  • the maximum value of the full-wavelength image point corresponds to the maximum field of view, and the maximum value of the full-wavelength image point is ⁇ 12 ⁇ m.
  • the optical module has better imaging quality.
  • FIG. 8 it is a vertical axis chromatic aberration diagram of the optical module.
  • the maximum dispersion of the optical module is located at the position of 0.98 field of view, the maximum chromatic aberration value is less than 60 ⁇ m, and the maximum field of view is 90°.
  • Vertical axis chromatic aberration also known as chromatic aberration of magnification, refers to the difference between the focus positions of blue light and red light on the image plane when a polychromatic chief ray on the object side becomes multiple rays when it emerges from the image side due to the dispersion of the refraction system.
  • the maximum chromatic aberration value of the optical module is less than 60 ⁇ m, the maximum field of view is 90°, and has smaller chromatic aberration value and viewing angle.
  • the optical module in this embodiment can fold the picture light to ensure high resolution. Realize high-definition picture display effect in a compact structure.
  • the refractive index of the first lens 2 is 1.48, and the dispersion coefficient is 70; the refractive index of the second lens 3 is 1.54, and the dispersion coefficient is 55.7;
  • the refractive index of the third lens 4 is 1.6, and the dispersion coefficient is 26.6;
  • the refractive index of the fourth lens 5 is 1.54, and the dispersion coefficient is 55.7.
  • the picture light keeps the picture in the process of refraction and reflection in the optical module.
  • the quality of the light ensures higher resolution of the final image.
  • FIG. 10 it is a modulation transfer function diagram of the optical module in this embodiment. Under the condition of resolution ⁇ 60 lp/mm, the modulation transfer function value is >0.4.
  • the optical module is below 60lp/mm, and the modulation transfer function value is >0.4.
  • the optical module has the characteristics of clear imaging.
  • FIG. 11 is a spot diagram of the optical module in this embodiment.
  • the maximum value of the full-band image point is ⁇ 13 ⁇ m.
  • the maximum value of the full-band image point is ⁇ 13 ⁇ m.
  • the optical module has better imaging quality.
  • the maximum dispersion of the optical module is located at the position of the maximum field of view, the maximum chromatic aberration value is less than 70 ⁇ m, and the maximum field of view is 90°.
  • the optical module in this embodiment can fold the picture light to ensure high resolution. Realize high-definition picture display effect in a compact structure.
  • Figure 12 is the vertical axis chromatic aberration diagram of the optical module.
  • the maximum chromatic aberration value of the optical module is less than 70 ⁇ m, the maximum field of view is 90°, and has smaller chromatic aberration value and viewing angle.
  • the refractive index of the first lens 2 is 1.48, and the dispersion coefficient is 70; the refractive index of the second lens 3 is 1.54, and the dispersion coefficient is 55.7;
  • the refractive index of the third lens 4 is 1.6, and the dispersion coefficient is 26.6;
  • the refractive index of the fourth lens 5 is 1.54, and the dispersion coefficient is 55.7.
  • the picture light keeps the picture in the process of refraction and reflection in the optical module.
  • the quality of the light ensures higher resolution of the final image.
  • FIG. 14 it is a modulation transfer function diagram of the optical module in this embodiment. Under the condition of resolution ⁇ 60 lp/mm, the modulation transfer function value is >0.2.
  • the optical module is below 60lp/mm, and the modulation transfer function value is >0.2.
  • the optical module has the characteristics of clear imaging.
  • FIG. 15 it is a spot diagram of the optical module in this embodiment.
  • the maximum value of the full-band image point is less than 10 ⁇ m.
  • the maximum value of the full-band image point is less than 10 ⁇ m.
  • the optical module has better imaging quality.
  • FIG. 16 it is a vertical axis chromatic aberration diagram of the optical module.
  • the maximum dispersion of the optical module is located at the position of the maximum field of view, the maximum chromatic aberration value is less than 60 ⁇ m, and the maximum field of view is 90°.
  • the maximum chromatic aberration value of the optical module is less than 60 ⁇ m, the maximum field of view is 90°, and has smaller chromatic aberration value and viewing angle.
  • the optical module in this embodiment can fold the picture light to ensure high resolution. Realize high-definition picture display effect in a compact structure.
  • a head-mounted display device is provided, and the head-mounted display device includes the optical module as described in any one embodiment of the present disclosure.
  • the head-mounted display device has the technical effect brought by the optical module.
  • the head-mounted display device emits picture light through the display 1 . Finally, it is emitted by the fourth lens 5. After the user wears the head-mounted display device, the light emitted from the fourth lens 5 can be imaged at the position of the human eye 6 so that the human eye 6 can observe the picture.

Abstract

一种光学模组及头戴显示设备,光学模组包括依序设置的第四透镜(5)、第三透镜(4)、第二透镜(3)、偏振反射膜(34)、第一四分之一波片(33)、第一透镜(2);第一透镜(2)远离第二透镜(3)的一侧设有分光元件;第一透镜(2)、第二透镜(3)、第三透镜(4)及第四透镜(5)中相邻两个透镜之间具有空气间隙。通过相邻两个透镜间空气间隙的分布,间接控制空气间隙左右两个表面的面型结构,有利于改善像差,尤其是对色差的校正,从而实现高分辨率成像。

Description

光学模组及头戴显示设备 技术领域
本发明涉及头戴显示技术领域,更具体地,涉及一种光学模组及头戴显示设备。
背景技术
随着头戴显示设备的发展,对头戴显示设备增加的功能越来越多,现有的技术不能满足功能需求,无法达到更优的效果。
头戴显示设备实现的功能需要配置相应部件,为了满足成像需求,造成现有技术中的头戴显示设备体积过大,浪费了过多的空间。
因此,需要提供一种新的技术方案,以解决现有上述技术问题。
发明内容
本发明的一个目的是提供一种光学模组及头戴显示设备的新技术方案。
根据本发明的第一方面,提供了一种光学模组,所述光学模组包括依序设置的第四透镜、第三透镜、第二透镜、偏振反射膜、第一四分之一波片、第一透镜;
所述第一透镜远离所述第二透镜的一侧设有分光元件;
所述第一透镜、所述第二透镜、所述第三透镜及所述第四透镜中相邻两个透镜之间具有空气间隙。
可选地,所述第一透镜和所述第二透镜之间具有第一空气间隙d 12,所述第二透镜和所述第三透镜之间具有第二空气间隙d 23,所述第三透镜和所述第四透镜之间具有第三空气间隙d 34,则满足:d 12<1mm,d 23<0.5mm,d 34<0.3mm。
可选地,所述第一空气间隙的形状呈两边掉落形状且掉落落差为Δ 12,所述第二空气间隙的形状呈抛物线形状且掉落落差为Δ 23,所述第三空气间隙的形状呈M形状且掉落落差为Δ 34,则满足:Δ 12>0.2mm,Δ 23>0.1mm,Δ 34>0.1mm。
可选地,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的折射率范围在1.45~1.60之间。
可选地,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的色散系数范围在20~75之间。
可选地,所述光学模组还包括偏振膜,所述偏振膜设于所述第二透镜和所述偏振反射膜之间。
可选地,所述第一四分之一波片、所述偏振反射膜和所述偏振膜均为膜层结构,且所述第一四分之一波片、所述偏振反射膜和所述偏振膜合成一整体膜层。
可选地,所述光学模组还包括显示器;
所述显示器用于产生圆偏振光、椭圆偏振光或线偏振光;
当所述显示器用于产生线偏振光时,所述光学模组还包括设置于所述分光元件与所述显示器之间的第二四分之一波片,所述第二四分之一波片用于将所述显示器发射的线偏振光转换成圆偏振光或椭圆偏振光。
可选地,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的所有表面均为非球面。
可选地,定义所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的中心厚度分别为T 1、T 2、T 3、T 4,则满足:
3mm<T 1<8mm,3mm<T 2<5mm,3mm<T 3<5mm,3mm<T 4<5mm。
根据本发明的第二方面,提供了一种头戴显示设备,所述头戴显示设备包括壳体和如第一方面中任一项所述光学模组,所述光学模组设于所述壳体。
根据本公开的一个实施例,在本公开的方案中,光线射向分光元件,一部分光线透过分光元件,另一部分光线反射,透过分光元件的光线透过第一透镜射向第一四分之一波片,光线变为线偏振光,线偏振光再射向偏振发射膜,此时线偏振光的振动方向与偏振反射膜的透过方向不同,光线被反射,反射的光线再次经过第一四分之一波片,线偏振光变为圆偏振光,光线透过第一透镜射向分光元件,光线被分光元件反射后透过第一透镜并射向第一四分之一波片,圆偏振光变为线偏振光,线偏振光射向偏振反射膜,此时线偏振光的振动方向与偏振反射膜的透过方向相同,光线透过偏 振反射膜,接着通过第二透镜、第三透镜和第四透镜射向人眼所处的成像位置。此外,搭配第一透镜、第二透镜、第三透镜和第四透镜中相邻两个透镜之间具有的空气间隙,能够间接控制空气间隙左右两个表面的面型结构,有利于改善像差,尤其是对色差的校正,从而实现高分辨率成像。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本公开一个实施例中的光学模组的结构示意图之一。
图2是本公开一个实施例中的第一透镜与第二透镜所在位置的局部放大图。
图3是本公开一个实施例中第一透镜与第二透镜之间的第一间隙的厚度变化图。
图4是本公开一个实施例中第二透镜与第三透镜之间的第二间隙的厚度变化图。
图5是本公开一个实施例中第三透镜与第四透镜之间的第三间隙的厚度变化图。
图6是本公开一个实施例中的光学模组的调制传递函数图之一。
图7是本公开一个实施例中的光学模组的点列图之一。
图8是本公开一个实施例中的光学模组的垂轴色差图之一。
图9是本公开一个实施例中的光学模组的结构示意图之二。
图10是本公开一个实施例中的光学模组的调制传递函数图之二。
图11是本公开一个实施例中的光学模组的点列图之二。
图12是本公开一个实施例中的光学模组的垂轴色差图之二。
图13是本公开一个实施例中的光学模组的结构示意图之三。
图14是本公开一个实施例中的光学模组的调制传递函数图之三。
图15是本公开一个实施例中的光学模组的点列图之三。
图16是本公开一个实施例中的光学模组的垂轴色差图之三。
附图标记说明:
1、显示器;2、第一透镜;21、第一表面;22、第二表面;3、第二透镜;31、第三表面;323、第四表面;4、第三透镜;41、第五表面;42、第六表面;33、四分之一波片;34、偏振反射膜;35、偏振膜;5、第四透镜;51、第七表面;52、第八表面;6、人眼。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本公开的一个实施例,提供了一种光学模组,如图1-图16所示,该光学模组包括依序设置的第四透镜5、第三透镜4、第二透镜3、偏振反射膜34、第一四分之一波片33、第一透镜2。所述第一透镜2远离所述第二透镜3的一侧设有分光元件。所述第一透镜2、所述第二透镜3、所述第三透镜4及所述第四透镜5中相邻两个透镜之间具有空气间隙。
在该实施例中,光线射向分光元件前为圆偏振光。光线射向分光元件,一部分光线透过分光元件,另一部分光线反射,透过分光元件的光线透过第一透镜2射向第一四分之一波片33,圆偏振光的光线变为线偏振光,线 偏振光再射向偏振反射膜34,此时线偏振光的振动方向与偏振反射膜34的透过方向不同,光线被反射。反射的光线再次经过第一四分之一波片33,线偏振光变为圆偏振光,光线透过第一透镜2射向分光元件,光线被分光元件反射后透过第一透镜2并射向第一四分之一波片33,圆偏振光变为线偏振光,线偏振光射向偏振反射膜34,此时线偏振光的振动方向与偏振反射膜的透过方向相同,光线透过偏振反射膜34,接着通过第二透镜3、第三透镜4和第四透镜5射向人眼6所处的成像位置。此外,搭配第一透镜2、第二透镜3、第三透镜4和第四透镜5中相邻两个透镜之间具有的空气间隙,能够间接控制空气间隙左右两个表面的面型结构,有利于改善像差,尤其是对色差的校正,从而实现高分辨率成像,使该光学模组能够具有折叠光路和高分辨率成像的效果。
通过第一透镜2、第二透镜3、第三透镜4和第四透镜5组成的结构,使该光学模组能够形成更加紧凑的结构和分辨率更高的成像效果。
该光学模组组成的透镜结构更加紧凑,节省了组件占用的空间。并且能够使经过的画面光线具有更优的分辨率,提高了画面质量。
光学模组占用的空间更小,能够便于优化该光学模组所在的设备的体积,能够减小设备体积。
非球面能够修正了画面光线中的图形,解决视界歪曲问题,同时能够使该光学模组更轻、更薄。也能够保持优异的抗冲击性能。
在一个实施例中,所述第一透镜2和所述第二透镜3之间具有第一空气间隙d 12,所述第二透镜3和所述第三透镜4之间具有第二空气间隙d 23,所述第三透镜4和所述第四透镜5之间具有第三空气间隙d 34,则满足:d 12<1mm,d 23<0.5mm,d 34<0.3mm。
在该实施例中,在第一空气间隙d 12的厚度条件下,能够保障光线在第一透镜2与第二透镜3之间传输,并且光线以第一空气间隙d 12内的空气为介质能够降低杂散光的生成,提高了光线成像后的清晰度。
在第二空气间隙d 23的厚度条件下,能够保障光线在第二透镜3与第三透镜4之间传输,并且光线以第二空气间隙d 23内的空气为介质能够降低杂散光的生成,提高了光线成像后的清晰度。
在第三空气间隙d 34的厚度条件下,能够保障光线在第三透镜4与第四透镜5之间的传输,并且光线以第三空气间隙d 34内的空气为介质能够降低杂散光的生成,提高了光线成像后的清晰度。
在一个实施例中,所述第一空气间隙的形状呈两边掉落形状且掉落落差为Δ 12,所述第二空气间隙的形状呈抛物线形状且掉落落差为Δ 23,所述第三空气间隙的形状呈M形状且掉落落差为Δ 34,则满足:Δ 12>0.2mm,Δ 23>0.1mm,Δ 34>0.1mm。
在该实施例中,第一空气间隙的形状为第一透镜2与第二透镜3之间的间隔部分的厚度呈现的形状。呈现中间平缓且两边掉落的形状,即第一空气间隙的中间部分的厚度变化平缓,两边的厚度在由中间向两边的方向上逐渐变窄。在第一空气间隙的形状和掉落落差的条件下,促进了光线在透镜之间传输时的射出和射入位置,以保障画面光线能够顺利地在第一透镜2与第二透镜3之间传输。
第二空气间隙的形状为第二透镜3与第三透镜4之间的间隔部分的厚度呈现的形状。呈现抛物线的形状,即第二空气间隙的厚度由中间部分向两边均匀地变化,例如,由中间向两边的厚度逐渐变窄。在第二空气间隙的形状和掉落落差的条件下,促进了光线在透镜之间传输时的射出和射入位置,以保障画面光线能够顺利地在第二透镜3与第三透镜4之间传输。
第三空气间隙的形状为第三透镜4和第四透镜5之间的间隔部分的厚度呈现的形状。呈M形的形状,即,第三空气间隙的形状呈现由中间部分向两侧延伸的厚度逐渐变大,接着又逐渐减少的变化趋势。在第二空气间隙的形状和掉落落差的条件下,促进了光线在透镜之间传输时的射出和射入位置,以保障画面光线能够顺利地在第三透镜4与第四透镜5之间传输。
通过搭配第一透镜、第二透镜、第三透镜和第四透镜中相邻两个透镜之间具有的空气间隙,能够间接控制空气间隙左右两个表面的面型结构,有利于改善像差,尤其是对色差的校正,从而实现高分辨率成像。
在一个实施例中,所述光学模组还包括显示器1。所述显示器1用于产生圆偏振光、椭圆偏振光或线偏振光。当所述显示器1用于产生线偏振光时,所述光学模组还包括设置于所述分光元件与所述显示器1之间的第 二四分之一波片,所述第二四分之一波片用于将所述显示器1发射的线偏振光转换成圆偏振光或椭圆偏振光。
在该实施例中,显示器1用于发出呈现画面的光线。通过将射向分光元件光线设置为圆偏振光或椭圆偏振光,使光线能够在该光学模组中形成相应的折叠的光路,并透过第一透镜2、第二透镜3、第三透镜4和第四透镜5在人眼6所处的位置成像,以满足本公开中光学模组的成像需求。
在一个实施例中,所述第一透镜2、所述第二透镜3、所述第三透镜4和所述第四透镜5的折射率范围在1.45~1.60之间。
在该折射率范围内,能够使画面光线的光路始终处于该光学模组的光路中,保障该光学模组能够有效地作用到成像显示的光线。
在一个实施例中,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的色散系数范围在20~75之间。
在该色散系数范围内,能够使搭配的第一透镜2、第二透镜3和第三透镜4和第四透镜5对透过的光线作用下产生的色差更低,提高成像质量。
在一个实施例中,所述光学模组还包括偏振膜35,所述偏振膜35设于所述第二透镜3和所述偏振反射膜34之间。
偏振膜对透过偏振反射膜34的光线起到作用,抑制薄膜的偏振效应,以降低对透过偏振反射膜34后进入第二透镜3和第三透镜4和第四透镜5的光线的影响,提高了成像质量。
在一个实施例中,所述第一四分之一波片33、所述偏振反射膜34和所述偏振膜35均为膜层结构,且所述第一四分之一波片33、所述偏振反射膜34和所述偏振膜35合成一整体膜层。
在该实施例中,整体膜层更方便设置第一四分之一波片33、所述偏振反射膜34和所述偏振膜35,并且能够降低空间占用。
例如,偏振膜35能够抑制该整体膜层的偏振效应。
在一个实施例中,所述第一透镜2、所述第二透镜3、所述第三透镜4和所述第四透镜5的所有表面均为非球面。
非球面能够修正了画面光线中的图形,解决视界歪曲问题,同时能够使该光学模组更轻、更薄。也能够保持优异的抗冲击性能。
可选地,所述第一透镜2具有第一表面21和第二表面22,所述第二透镜3具有第三表面31和第四表面32,第二表面22与第三表面31相对设置,所述第三透镜4具有第五表面41和第六表面42,第四表面32与第五表面41相对设置,所述第四透镜5具有第七表面51和第八表面52,第六表面42与第七表面51相对设置。
第一表面21朝向分光元件设置,透过分光元件的光线经第一表面21进入,最终经第八表面52射出成像。
例如,分光元件设置在第一表面21上,所述第二表面22设置有抗反射膜。
所述第三表面31设置有依次层叠的第一四分之一波片33、偏振反射膜34和偏振膜35,偏振膜35位于所述第三表面31所在的一侧,所述第四表面32设置有抗反射膜。
所述第五表面41、所述第六表面42、所述第七表面51和所述第八表面52均设置有抗反射膜。
例如,射向分光元件的光线为圆偏振光,圆偏振光的一部分光线透过分光元件,另一部分光线反射,透过分光元件的光线经第一表面21射入第一透镜2并经第二表面22射出第一透镜2。射出的光线射向第一四分之一波片33,透过第一四分之一波片33的光线变为线偏振光,线偏振光再射向偏振反射膜34,此时线偏振光的振动方向与偏振反射膜34的透过方向不同,光线被反射,反射的光线再次经过第一四分之一波片33,线偏振光变为圆偏振光,圆偏振光经第二表面22进入第一透镜2并由第一表面21射出。射出的光线射向分光元件并被反射,反射后的光线再次射入第一透镜2并经第二表面22射出第一透镜2,接着射向第一四分之一波片33并变为线偏振光,线偏振光射向偏振反射膜34,此时线偏振光的振动方向与偏振反射膜34的透过方向相同,光线透过偏振反射膜34。接着光线经过偏振膜35射向第三表面31并由第四表面32射出第二透镜3,射出第二透镜3后,经第五表面41射入并由第六表面42射出第三透镜4,射出第三透镜4的光线经第七表面51射入并经第八表面52射出第四透镜5,射出第四透镜5的光线能够在头戴显示设备的人眼6所处位置成像。
在一个实施例中,定义所述第一透镜2、所述第二透镜3、所述第三透镜4和所述第四透镜5的中心厚度分别为T 1、T 2、T 3、T 4,则满足:
3mm<T 1<8mm,3mm<T 2<5mm,3mm<T 3<5mm,3mm<T 4<5mm。
在该实施例中,厚度能够影响光学模组的整体厚度,在该实施例的中心厚度内的光学模组既能够满足画面光线的折射需求,保障光线路径准确。又能够使光学模组的多个透镜组成较小体积的结构,使光学模组具有更加轻薄的尺寸,降低了光学模组的厚度。使光学模组占用的空间更小。
在一个实施例中,如图1,图2,图6-图8所示,所述第一透镜2的折射率为1.48,色散系数为70;所述第二透镜3的折射率为1.54,色散系数为55.7;所述第三透镜4的折射率为1.6,色散系数为26.6;所述第四透镜5的折射率为1.54,色散系数为55.7。
在上述关于第一透镜2、第二透镜3、第三透镜4和第四透镜5的折射率和色散系数的数据中,能够保障画面光线在该光学模组中的折射和反射过程中保持画面光线的质量,保障最终成像具有更高的分辨率。
如图6,为该实施例中的光学模组的调制传递函数图,在分辨率<60lp/mm的条件下,该光学模组的调制传递函数值>0.45。
在调制传递函数图中,能够通过黑白线对的对比度表征成像清晰度。该光学模组在60lp/mm以下,调制传递函数值>0.45。该光学模组具有成像清晰的特点。
如图7所示,为该实施例中的光学模组的点列图。在该光学模组的点列图中,全波段像点的最大值<12μm。
点列图是通过使一点发出的许多光线经该光学模组后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,能够表征成像质量。而在该光学模组的点列图中,全波段像点的最大值与最大视场相对应,全波段像点的最大值<12μm。该光学模组的具有更优的成像质量。
如图8所示,为该光学模组的垂轴色差图。该光学模组的最大色散位于0.98视场位置,最大色差值小于60μm,最大视场为90°。
垂轴色差又称倍率色差,指物方的一根复色主光线,因折射系统存在 色散,在像方出射时变成多根光线,蓝光与红光在像面上的焦点位置的差值。该光学模组的最大色差值小于60μm,最大视场为90°,具有更小的色差值和视场角度。
该实施例中的光学模组参数如表1所示。
Figure PCTCN2021137636-appb-000001
表1
该实施例中的光学模组能够使画面光线折叠,保障高分辨率。在紧凑的结构中实现高清的画面显示效果。
在一个实施例中,如图9-图12所示,所述第一透镜2的折射率为1.48,色散系数为70;所述第二透镜3的折射率为1.54,色散系数为55.7;所述第三透镜4的折射率为1.6,色散系数为26.6;所述第四透镜5的折射率为1.54,色散系数为55.7。
在上述关于第一透镜2、第二透镜3、第三透镜4和第四透镜5的折射率和色散系数的数据中,能够保障画面光线在该光学模组中的折射和反射过程中保持画面光线的质量,保障最终成像具有更高的分辨率。
如图10,为该实施例中的光学模组的调制传递函数图,在分辨率<60lp/mm的条件下,调制传递函数值>0.4。
该光学模组在60lp/mm以下,调制传递函数值>0.4。该光学模组具有成像清晰的特点。
如图11,为该实施例中的光学模组的点列图。在该光学模组的点列图中,全波段像点的最大值<13μm。
在该光学模组的点列图中,全波段像点的最大值<13μm。该光学模组的具有更优的成像质量。
该光学模组的最大色散位于最大视场位置,最大色差值小于70μm,最大视场为90°。
该实施例中的光学模组参数如表2所示。
透镜面 半径 中心厚度 材料 Conic系数 a4 a6
第八表面 Infinity 3.89E+00 K26R 0.00E+00 0.00E+00 0.00E+00
第七表面 -26.8 3.00E-01   0 2.31E-05 1.08E-08
第六表面 -28.7 3.00E+00 OKP4 2.72E-01 3.47E-05 0.00E+00
第五表面 -69.7 3.00E-01   0.00E+00 1.27E-05 0.00E+00
第四表面 -74.4 4.46E+00 K26R 0.00E+00 1.05E-05 0.00E+00
第三表面 -40.9 8.23E-01   0.00E+00 5.18E-06 0.00E+00
第二表面 -42.9 7.14E+00 H-QK3L 0.00E+00 0.00E+00 0.00E+00
第一表面 -33.1 2.5   0.00E+00 0.00E+00 0.00E+00
表2
该实施例中的光学模组能够使画面光线折叠,保障高分辨率。在紧凑的结构中实现高清的画面显示效果。
如图12,为该光学模组的垂轴色差图。该光学模组的最大色差值小于70μm,最大视场为90°,具有更小的色差值和视场角度。
在一个实施例中,如图13-图16所示,所述第一透镜2的折射率为1.48,色散系数为70;所述第二透镜3的折射率为1.54,色散系数为55.7;所述第三透镜4的折射率为1.6,色散系数为26.6;所述第四透镜5的折射率为1.54,色散系数为55.7。
在上述关于第一透镜2、第二透镜3、第三透镜4和第四透镜5的折射率和色散系数的数据中,能够保障画面光线在该光学模组中的折射和反射过程中保持画面光线的质量,保障最终成像具有更高的分辨率。
如图14,为该实施例中的光学模组的调制传递函数图,在分辨率<60lp/mm的条件下,调制传递函数值>0.2。
该光学模组在60lp/mm以下,调制传递函数值>0.2。该光学模组具有成像清晰的特点。
如图15所示,为该实施例中的光学模组的点列图。在该光学模组的点列图中,全波段像点的最大值<10μm。
而在该光学模组的点列图中,全波段像点的最大值<10μm。该光学模组的具有更优的成像质量。
如图16所示,为该光学模组的垂轴色差图。该光学模组的最大色散位于最大视场位置,最大色差值小于60μm,最大视场为90°。
该光学模组的最大色差值小于60μm,最大视场为90°,具有更小的色差值和视场角度。
该实施例中的光学模组参数如表3所示。
透镜面 半径 中心厚度 材料 Conic系数 a4 a6
第八表面 Infinity 2.6638 K26R 0.0000 0.0000 0.0000
第七表面 59.4068 0.3000   10.0000 -0.0001 0.0000
第六表面 63.6157 3.0000 OKP4 -10.0000 0.0000 0.0000
第五表面 -566.7392 0.4723   0.0000 0.0000 0.0000
第四表面 -292.8481 4.8550 K26R 0.0000 0.0000 0.0000
第三表面 -43.6756 0.5072   0.0000 0.0000 0.0000
第二表面 -46.9334 7.7520 H-QK3L 0.0000 0.0000 0.0000
第一表面 -33.7847 -7.7520   0.0000 0.0000 0.0000
表3
该实施例中的光学模组能够使画面光线折叠,保障高分辨率。在紧凑的结构中实现高清的画面显示效果。
根据本公开的一个实施例,提供了一种头戴显示设备,该头戴显示设备包括如本公开中任意一实施例所述的光学模组。
该头戴显示设备具有光学模组所带来的技术效果。
例如,所述头戴显示设备通过显示器1发出画面光线。最终由第四透镜5射出。用户佩戴该头戴显示设备后,射出第四透镜5的光线能够在人眼6所处的位置成像,以使人眼6观察到画面。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (11)

  1. 一种光学模组,其特征在于,所述光学模组包括依序设置的第四透镜、第三透镜、第二透镜、偏振反射膜、第一四分之一波片、第一透镜;
    所述第一透镜远离所述第二透镜的一侧设有分光元件;
    所述第一透镜、所述第二透镜、所述第三透镜及所述第四透镜中相邻两个透镜之间具有空气间隙。
  2. 如权利要求1所述的光学模组,其特征在于,所述第一透镜和所述第二透镜之间具有第一空气间隙d 12,所述第二透镜和所述第三透镜之间具有第二空气间隙d 23,所述第三透镜和所述第四透镜之间具有第三空气间隙d 34,则满足:d 12<1mm,d 23<0.5mm,d 34<0.3mm。
  3. 如权利要求1所述的光学模组,其特征在于,所述第一空气间隙的形状呈两边掉落形状且掉落落差为Δ 12,所述第二空气间隙的形状呈抛物线形状且掉落落差为Δ 23,所述第三空气间隙的形状呈M形状且掉落落差为Δ 34,则满足:Δ 12>0.2mm,Δ 23>0.1mm,Δ 34>0.1mm。
  4. 如权利要求1所述的光学模组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的折射率范围在1.45~1.60之间。
  5. 如权利要求1所述的光学模组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的色散系数范围在20~75之间。
  6. 如权利要求1所述的光学模组,其特征在于,所述光学模组还包括偏振膜,所述偏振膜设于所述第二透镜和所述偏振反射膜之间。
  7. 如权利要求6所述的光学模组,其特征在于,所述第一四分之一波片、所述偏振反射膜和所述偏振膜均为膜层结构,且所述第一四分之一波片、所述偏振反射膜和所述偏振膜合成一整体膜层。
  8. 如权利要求1所述的光学模组,其特征在于,所述光学模组还包括显示器;
    所述显示器用于产生圆偏振光、椭圆偏振光或线偏振光;
    当所述显示器用于产生线偏振光时,所述光学模组还包括设置于所述分光元件与所述显示器之间的第二四分之一波片,所述第二四分之一波片用于将所述显示器发射的线偏振光转换成圆偏振光或椭圆偏振光。
  9. 如权利要求1所述的光学模组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的所有表面均为非球面。
  10. 如权利要求9中任一项所述的光学模组,其特征在于,定义所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的中心厚度分别为T 1、T 2、T 3、T 4,则满足:
    3mm<T 1<8mm,3mm<T 2<5mm,3mm<T 3<5mm,3mm<T 4<5mm。
  11. 一种头戴显示设备,其特征在于,所述头戴显示设备包括壳体和如权利要求1至10中任一项所述光学模组,所述光学模组设于所述壳体。
PCT/CN2021/137636 2021-11-23 2021-12-14 光学模组及头戴显示设备 WO2023092709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111397768.3 2021-11-23
CN202111397768.3A CN114236864A (zh) 2021-11-23 2021-11-23 光学模组及头戴显示设备

Publications (1)

Publication Number Publication Date
WO2023092709A1 true WO2023092709A1 (zh) 2023-06-01

Family

ID=80750657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137636 WO2023092709A1 (zh) 2021-11-23 2021-12-14 光学模组及头戴显示设备

Country Status (2)

Country Link
CN (1) CN114236864A (zh)
WO (1) WO2023092709A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204515252U (zh) * 2015-01-23 2015-07-29 铭异科技股份有限公司 头戴式显示装置及其光学镜头
CN105807419A (zh) * 2014-12-30 2016-07-27 信泰光学(深圳)有限公司 接目镜头
US20200081253A1 (en) * 2018-09-10 2020-03-12 Apple Inc. Electronic Device With A Display Attached to a Lens Element
CN111158154A (zh) * 2020-03-02 2020-05-15 宁波鸿蚁光电科技有限公司 一种光学显示系统及可穿戴设备
TW202101064A (zh) * 2019-06-26 2021-01-01 中強光電股份有限公司 光學鏡頭及頭戴式顯示裝置
CN112630977A (zh) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965234B2 (ja) * 2006-11-30 2012-07-04 富士フイルム株式会社 ズームレンズ
JP2008164724A (ja) * 2006-12-27 2008-07-17 Sony Corp ズームレンズ及び撮像装置
JP4924141B2 (ja) * 2007-03-28 2012-04-25 コニカミノルタオプト株式会社 撮像レンズ、撮像装置及び携帯端末
CN101713501A (zh) * 2009-09-21 2010-05-26 香港应用科技研究院有限公司 投影led模组及其制作方法
CN103135206B (zh) * 2012-09-07 2016-04-20 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
CN103123414A (zh) * 2012-11-15 2013-05-29 玉晶光电(厦门)有限公司 一种可携式电子装置与其光学成像镜头
TWI494586B (zh) * 2013-09-02 2015-08-01 Ability Opto Electronics Technology Co Ltd Thin wide-angle four-piece imaging lens group
CN103499872B (zh) * 2013-09-02 2017-04-12 长春理工大学 一种用于激光光束质量测量的超消色差光学系统
US9223113B2 (en) * 2013-10-09 2015-12-29 Genius Electronic Optical Co., Ltd. Optical lens and electronic apparatus including the lens
CN104570323B (zh) * 2014-12-26 2017-02-08 歌尔科技有限公司 一种目镜镜头和头戴光学系统
CN107589529B (zh) * 2015-09-15 2019-12-24 深圳市视清科技有限公司 采用显示屏的头戴式显示装置与其光学镜头系统
CN108474946B (zh) * 2016-04-20 2020-11-13 深圳纳德光学有限公司 用于近眼显示的目镜光学系统及头戴显示装置
CN106970464B (zh) * 2017-01-11 2019-06-21 玉晶光电(厦门)有限公司 目镜光学系统
CN106970463A (zh) * 2017-01-11 2017-07-21 玉晶光电(厦门)有限公司 目镜光学系统
KR101964181B1 (ko) * 2017-09-27 2019-04-01 현대모비스 주식회사 자동차용 렌즈 광학계 및 이를 포함한 자동차용 광학 장치
CN107678141B (zh) * 2017-10-27 2023-10-17 辽宁中蓝光电科技有限公司 一种可适用于全面屏的高清手机镜头
CN114002811A (zh) * 2017-11-03 2022-02-01 玉晶光电(厦门)有限公司 光学透镜组
CN110515181B (zh) * 2019-08-16 2021-02-19 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110488462B (zh) * 2019-08-16 2021-08-20 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111240022A (zh) * 2020-03-19 2020-06-05 宁波鸿蚁光电科技有限公司 一种轻薄型光学显示系统、影像镜头模组及vr设备
CN112230369B (zh) * 2020-10-16 2023-01-10 江西欧迈斯微电子有限公司 中继镜头及电子设备
CN113204119A (zh) * 2021-04-30 2021-08-03 歌尔股份有限公司 胶合镜组和头戴显示设备
CN113419349B (zh) * 2021-06-03 2022-05-13 歌尔光学科技有限公司 光学模组和头戴显示器
CN214751119U (zh) * 2021-06-28 2021-11-16 歌尔光学科技有限公司 光学模组和头戴显示设备
CN214751118U (zh) * 2021-06-28 2021-11-16 歌尔股份有限公司 光学系统和头戴显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807419A (zh) * 2014-12-30 2016-07-27 信泰光学(深圳)有限公司 接目镜头
CN204515252U (zh) * 2015-01-23 2015-07-29 铭异科技股份有限公司 头戴式显示装置及其光学镜头
US20200081253A1 (en) * 2018-09-10 2020-03-12 Apple Inc. Electronic Device With A Display Attached to a Lens Element
TW202101064A (zh) * 2019-06-26 2021-01-01 中強光電股份有限公司 光學鏡頭及頭戴式顯示裝置
CN111158154A (zh) * 2020-03-02 2020-05-15 宁波鸿蚁光电科技有限公司 一种光学显示系统及可穿戴设备
CN112630977A (zh) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置

Also Published As

Publication number Publication date
CN114236864A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
US11868035B2 (en) Projection optical system and image display device with refractive optical system to form an image on a receiving surface
WO2022135106A1 (zh) 一种成像光路和头戴显示设备
US10684470B2 (en) Array-based floating display
CN107505712B (zh) 光学模组、光学装置及穿戴式显示装置
WO2023092705A1 (zh) 光学模组和头戴显示设备
JP2004522187A (ja) 画素化パネル用小型テレセントリック投射レンズ
CN111596511B (zh) 光学系统及投影装置
WO2022227539A1 (zh) 光学模组和头戴显示设备
WO2021036134A1 (zh) 投影镜头及投影设备
WO2020173180A1 (zh) 近眼显示装置
CN113419333B (zh) 投影镜组和投影装置
TW201835630A (zh) 光學鏡頭
CN111929907B (zh) 图像显示结构和头戴显示设备
US20120293774A1 (en) Projector lens system and image display system using same
CN109870791B (zh) 短焦图像投影装置
WO2023184752A1 (zh) 一种光学投影系统以及电子设备
CN110879471B (zh) 光学系统、投影设备以及头戴设备
WO2023092709A1 (zh) 光学模组及头戴显示设备
CN113219667A (zh) 光学镜组和头戴显示设备
CN110737069B (zh) 投影系统
CN114690377B (zh) 一种光学投影系统以及电子设备
WO2023097762A1 (zh) 光学系统及头戴显示设备
WO2023231111A1 (zh) 投影镜头以及投影装置
CN214504006U (zh) 投影镜头、投影显示系统及投影显示装置
CN115343850A (zh) 光学模组以及头戴显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965431

Country of ref document: EP

Kind code of ref document: A1