WO2022135106A1 - 一种成像光路和头戴显示设备 - Google Patents

一种成像光路和头戴显示设备 Download PDF

Info

Publication number
WO2022135106A1
WO2022135106A1 PCT/CN2021/135123 CN2021135123W WO2022135106A1 WO 2022135106 A1 WO2022135106 A1 WO 2022135106A1 CN 2021135123 W CN2021135123 W CN 2021135123W WO 2022135106 A1 WO2022135106 A1 WO 2022135106A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical path
imaging
imaging optical
film
Prior art date
Application number
PCT/CN2021/135123
Other languages
English (en)
French (fr)
Inventor
史柴源
宋文宝
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US18/247,044 priority Critical patent/US20240027769A1/en
Priority to EP21909103.0A priority patent/EP4206786A4/en
Publication of WO2022135106A1 publication Critical patent/WO2022135106A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the present application relates to the technical field of near-eye display, and in particular, to an imaging optical path and a head-mounted display device.
  • the light of the display screen in the device is usually transmitted and amplified to the human eye through the imaging system, and in order to realize the magnification of the image, the imaging system usually needs a combination of multiple lenses.
  • Multiple lenses are of separate design. There is a gap between the lens and the lens.
  • the dust in the external environment enters the imaging system through the gap between the lens and the lens.
  • the dust is deposited on the surface of the lens, and the deposited dust will affect the light. If it passes smoothly, the imaging image of the imaging system is missing or the brightness of the imaging image is dim.
  • the imaging optical path includes:
  • a cemented lens group is arranged in the outgoing direction of the imaging light, the cemented lens group includes a first lens and a second lens, and the first lens and the second lens propagate along the imaging light The direction is set in turn;
  • the surface of the first lens facing the display screen is a first surface, and the first surface is convex toward the display screen;
  • the first surface is provided with a semi-reflective and semi-transparent film, and a glued film layer is arranged between the first lens and the second lens, and the glued film layer comprises a quarter of a film arranged in sequence along the propagation direction of the imaging light. Waveplates and polarizing reflectors.
  • the surface of the first lens facing away from the display screen is a second surface, and the quarter-wave plate is disposed on the second surface;
  • the surface of the second lens facing the first lens is the third surface
  • the adhesive film layer further includes a polarizing film
  • the polarizing film is arranged on the third surface
  • the polarizing reflection film is arranged on the polarized light
  • the film faces the side of the first lens.
  • a surface of the second lens facing away from the first lens is a fourth surface, and at least one of the second surface, the third surface and the fourth surface is provided with an antireflection coating.
  • At least one of the first surface and the fourth surface is an aspheric surface.
  • the second surface and the third surface have the same shape.
  • the surface shapes of the second surface and the third surface are planes, and the optical power of the first lens is defined as The optical power of the second lens is The thickness of the first lens is T 1 , and the thickness of the second lens is T 2 ;
  • the surface shapes of the second surface and the third surface are aspherical, and the second surface and the third surface are convex toward the display screen, which defines the optical focus of the first lens.
  • Degree is The optical power of the second lens is The thickness of the first lens is T 3 , and the thickness of the second lens is T 4 ;
  • the adhesive film layer further includes an adhesive layer, and the adhesive layer is provided between the quarter-wave plate and the polarizing reflection film.
  • the imaging optical path includes a verification component, the verification component is connected to the cemented lens group, and the effective inspection assembly is used to adjust the distance between the cemented lens group and the display screen.
  • the present application also provides a head-mounted display device, the head-mounted display device includes a housing and the imaging optical path as described above, and the imaging optical path is provided in the housing.
  • the display screen emits imaging light
  • the imaging light passes through the cemented lens group
  • the cemented lens group includes a first lens and a second lens
  • the imaging light passes through the first lens and the second lens in sequence.
  • the first surface facing the first lens is provided with a semi-reflective and semi-transparent film
  • a glued film layer is arranged between the first lens and the second lens
  • the glued film layer includes a quarter wave plate and a polarized reflection film.
  • the imaging light is directed to the quarter-wave plate, and the polarization state of the imaging light is converted from circular polarization to linear polarization under the action of the quarter-wave plate, and the imaging light in the linear polarization state is directed to the polarized reflective film.
  • the polarization transmission direction of the reflective film is different from the polarization direction of the imaging light in the linear polarization state.
  • the imaging light cannot pass through the polarized reflective film and is reflected back to the quarter-wave plate by the polarized reflective film.
  • the linearly polarized state is converted into a circularly polarized state again, and is directed to the transflective and translucent film.
  • the imaging light is reflected and transmitted again on the surface of the transflective film, and a part of the imaging light is reflected to the quarter-wave plate again, and the imaging light in the linear polarization state is generated again. After two reflections, the imaging light in the linear polarization state is The polarization angle is rotated. At this time, the polarization direction of the imaging light is the same as that of the polarized reflective film, the imaging light passes through the polarized reflective film, and the image is displayed at the position of the user's human eye.
  • the display image mainly passes through the cemented lens group, and the first lens and the second lens are cemented together, and there is no air gap, so it is difficult for dust in the external environment to enter between the first lens and the second lens. Therefore, dust is difficult to deposit on the surface of the first lens or the second lens, thereby ensuring that the imaging light can pass smoothly, reducing the influence of dust on the imaging system, avoiding the loss of imaging images, and making the imaging images brighter.
  • FIG. 1 is a schematic structural diagram of an embodiment of an imaging optical path of the present application.
  • FIG. 2 is a schematic structural diagram of the adhesive film layer in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a first lens and a second lens in FIG. 1;
  • FIG. 4 is a schematic structural diagram of another embodiment of an imaging optical path of the present application.
  • FIG. 5 is a schematic structural diagram of the first lens and the second lens in FIG. 4;
  • Fig. 6 is a dot diagram of the imaging optical path in Fig. 1;
  • Fig. 7 is the modulation transfer function curve diagram of the imaging optical path in Fig. 1;
  • FIG. 8 is a distortion diagram of the imaging optical path in FIG. 1;
  • Fig. 9 is the vertical axis chromatic aberration diagram of the imaging optical path in Fig. 1;
  • Fig. 10 is a dot diagram of the imaging optical path in Fig. 4.
  • Fig. 11 is the modulation transfer function curve diagram of the imaging optical path in Fig. 4;
  • Fig. 12 is the distortion diagram of the imaging optical path in Fig. 4.
  • FIG. 13 is a vertical-axis chromatic aberration diagram of the imaging optical path in FIG. 4 .
  • label name label name 10 display screen 222 fourth surface 110 imaging light 30
  • the terms “connected”, “fixed” and the like should be understood in a broad sense, for example, “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • the multiple lenses that realize the optical path transmission in the imaging system are of separate design. There is a gap between the lens and the lens. The dust in the external environment is deposited on the surface of the lens, which will block the smooth passage of the light, resulting in the loss of the imaging screen of the imaging system or The brightness of the imaging screen is dark.
  • the present application provides an imaging optical path, which can be applied to a head-mounted display device.
  • the display principles of the head-mounted display device include various, for example, VR (Virtual Reality, virtual reality) Display principle, AR (Augmented Reality, Augmented Reality) display principle.
  • the imaging light path includes: a display screen 10 and a cemented lens group 20 , the display screen 10 emits imaging light 110 , the cemented lens group 20 is arranged in the outgoing direction of the imaging light 110 , and the cemented lens group 20 is used to complete the magnification and transfer of the imaging image of the display screen 10 . .
  • the lenses in the cemented lens group 20 are glued together and have a small gap or no space between them, so it is difficult for external dust to enter the cemented lens group 20 .
  • the cemented lens group 20 includes a first lens 210 and a second lens 220.
  • the first lens 210 and the second lens 220 are arranged in sequence along the propagation direction of the imaging light 110; it can be seen that the first lens 210 and the second lens 220 are also cemented with each other. It is also difficult for the dust to enter between the first lens 210 and the second lens 220 .
  • the surface of the first lens 210 facing the display screen 10 is the first surface 211, and the first surface 211 protrudes toward the display screen 10; the imaging picture of the display screen 10 needs to be enlarged and transmitted, and the imaging light will diverge after being emitted from the display screen, and pass through the first surface 211.
  • the convex arrangement of a surface 211 can play the role of condensing the imaging light 110, so that the imaging light can be effectively converged to the human eye.
  • the first surface 211 is provided with a semi-reflective and semi-transparent film, and an adhesive film layer 30 is provided between the first lens 210 and the second lens 220.
  • the adhesive film layer 30 includes a quarter-wave plate 310 and a quarter-wave plate 310 and a Polarizing reflective film 330.
  • the quarter wave plate 310 is capable of converting the polarization state of the imaging light 110, eg, converting linearly polarized light to circularly polarized light or converting circularly polarized light to linearly polarized light.
  • the polarized reflective film 330 has a polarized transmission direction, and the imaging light 110 can smoothly pass through the polarized reflective film 330 when it vibrates along the polarized transmission direction.
  • the polarizing reflective film 330 and the quarter-wave plate 310 can be provided by coating, or by sticking. The sticking is easier to operate, and the coating can make the fixing more firm.
  • a protective plate 40 is also provided on the light-emitting surface of the display screen 10.
  • the protective plate 40 may be transparent glass or transparent plastic.
  • the function of the protective plate 40 is mainly to protect the display screen 10 and prevent the light-emitting surface of the display screen 10 from being damaged. damaged by external force.
  • the display screen 10 emits imaging light 110, the imaging light 110 passes through the cemented lens group 20, the cemented lens group 20 includes a first lens 210 and a second lens 220, and the imaging light 110 passes through the first lens in sequence 210 and the second lens 220.
  • the first surface 211 facing the first lens 210 is provided with a semi-reflective and semi-transparent film, and an adhesive film layer 30 is provided between the first lens 210 and the second lens 220, and the adhesive film layer 30 includes a quarter wave plate 310 and a polarizing reflection film 330.
  • the imaging light 110 is emitted from the display screen 10
  • the imaging light 110 is transmitted through the transflective film
  • a part of the imaging light 110 is reflected, and a part of the imaging light 110 is transmitted.
  • the imaging light 110 transmitted through the transflective film passes through the first lens 210 .
  • the imaging light 110 is directed to the quarter-wave plate 310, and the polarization state of the imaging light 110 is converted from circular polarization to linear polarization under the action of the quarter-wave plate 310, and the imaging light 110 in the linear polarization state is directed to the polarized reflective film 330, at this time, the polarization transmission direction of the polarized reflective film 330 is different from the polarization direction of the imaging light 110 in the linearly polarized state, the imaging light 110 cannot pass through the polarized reflective film 330, and is reflected back to a quarter wave by the polarized reflective film 330 Sheet 310.
  • the linearly polarized state is converted into a circularly polarized state again, and is directed to the transflective film.
  • the imaging light 110 is reflected and transmitted again on the surface of the transflective film, and a part of the imaging light 110 is reflected to the quarter-wave plate 310 again, and the imaging light 110 in the linear polarization state is generated again.
  • the linear polarization state The polarization angle of the imaging light 110 is rotated. At this time, the polarization direction of the imaging light 110 is the same as the polarization direction of the polarized reflection film 330.
  • the imaging light 110 passes through the polarized reflection film 330 and displays the image at the position of the user's human eye.
  • the display imaging mainly passes through the cemented lens group 20 , and the first lens 210 and the second lens 220 are cemented and arranged without an air gap, so it is difficult for dust in the external environment to enter between the first lens 210 and the second lens 220 between. Therefore, dust is difficult to deposit on the surface of the first lens 210 or the second lens 220, thereby ensuring that the imaging light 110 can pass smoothly, reducing the influence of dust on the imaging system, avoiding the loss of imaging images, and making the imaging images brighter.
  • the polarization direction of the imaging light 110 and the polarization transmission direction of the polarized reflection film 330 are the same, they are transmitted, and when they are vertical, they are reflected.
  • the surface of the first lens 210 facing away from the display screen 10 is the second surface 212
  • the quarter-wave plate 310 is disposed on the second surface 212
  • the surface of the second lens 220 facing the first lens 210 is the third surface 212 .
  • the adhesive film layer 30 further includes a polarizing film 340 , the polarizing film 340 is provided on the third surface 221 , and the polarizing reflecting film 330 is provided on the side of the polarizing film 340 facing the first lens 210 .
  • the polarizing film 340 is also called a polarizer or a polarizing film.
  • the polarizing film 340 can eliminate stray light, thereby ensuring the imaging quality of the imaging light 110.
  • the polarizing film 340 may be disposed on the third surface 221 by means of coating, or may be adhered, which is easier to operate and can make the film more firm.
  • the imaging light 110 propagates in the air or a lens, and is easily lost, resulting in a decrease in the brightness of the imaging picture.
  • the surface of the second lens 220 facing away from the first lens 210 is the fourth surface 222, and at least one of the second surface 212, the third surface 221 and the fourth surface 222 is provided with an anti-reflection coating.
  • the transmission quantity of the imaging light 110 can be increased, and the loss of the light can be reduced.
  • the second surface 212 , the third surface 221 and the fourth surface 222 can all be provided with an anti-reflection coating. It is also possible to provide an anti-reflection film only on one of the second surface 212 , the third surface 221 and the fourth surface 222 , so that the processing cost can be reduced and the amount of light passing through can be increased.
  • At least one of the first surface 211 and the fourth surface 222 is an aspheric surface. Aspheric surfaces can effectively eliminate aberrations, and both the first surface 211 and the fourth surface 222 may be aspheric surfaces, or one of them may be aspheric surfaces.
  • first surface 211 and the fourth surface 222 may also be free-form curved surfaces, and the aberration formed by the imaging light 110 can also be eliminated by the free-form curved surfaces.
  • the shapes of the second surface 212 and the third surface 221 are the same.
  • the first lens 210 and the second lens 220 are glued together, the second surface 212 and the third surface 221 are butted surfaces, and the shapes of the two surfaces are the same. Glued butt is more compact.
  • the surface shapes of the second surface 212 and the third surface 221 are planes, and the optical power of the first lens 210 is defined as The optical power of the second lens 220 is The thickness of the first lens 210 is T 1 , and the thickness of the second lens 220 is T 2 , so that: 2.0mm ⁇ T 1 ⁇ 8.0mm, 2.0mm ⁇ T 2 ⁇ 5.0mm, the optical distortion of the imaging optical path is less than 30%, the chromatic aberration is less than 70um, and the viewing angle is greater than 90°.
  • the second surface 212 and the third surface 221 are flat surfaces, they can be accurately butted together, and the fit is more closely.
  • the thickness of the first lens 210 refers to the position of the center point of the first lens 210, the distance from the first surface 211 to the second surface 212, the thickness of the second lens 220 refers to the position of the center point of the second lens 220, and the distance from the third surface 221 to the second surface 212.
  • the optical power of the first lens 210 Selected from 0 to 0.06, the optical power of the second lens 220 Selecting between -0.01 and 0 can make the optical distortion of the imaging optical path less than 30%, the chromatic aberration less than 70um, and the viewing angle angle greater than 90°.
  • z is the coordinate along the optical axis
  • Y is the radial coordinate in the unit of lens length
  • C is the curvature (1/R)
  • k is the conic coefficient (Coin Constant)
  • ai is the coefficient of each high-order term
  • 2i is the higher power of the aspheric surface.
  • the spot diagram of this embodiment wherein the spot diagram means that after the light emitted by a point passes through the image display structure, the intersection with the image plane is no longer concentrated in the image plane due to aberration. At the same point, a diffusion pattern scattered in a certain range is formed, which is used to evaluate the imaging quality of the image display structure.
  • the arrangement order of areas 1 to 10 is from left to right and from top to bottom. It can be seen that the image height corresponding to the maximum half-field of view is less than 11.892mm.
  • the modulation transfer function curve diagram of the present embodiment namely the MTF (Modulation Transfer Function) diagram
  • the MTF diagram is used to refer to the relationship between the modulation degree and the number of line pairs per millimeter in the image, and is used to evaluate the The ability to restore the details of the scene;
  • the top black solid line is a theoretically aberration-free curve, and the closer to the black solid line, the better the imaging quality.
  • the curves in Figure 7 are scattered, more curves are close to the black solid line, which meets the design specifications.
  • Distortion refers to the aberration of different parts of the object having different magnifications when the object is imaged through the image display structure. It can be seen from Figure 8 that the optical distortion at the maximum field of view is less than 30%, and the distortion is small, which meets the design requirements.
  • the vertical chromatic aberration diagram in this embodiment wherein the vertical chromatic aberration is also called magnification chromatic aberration, mainly referring to a polychromatic chief ray on the object side. When it exits, it becomes multiple rays. It can be seen that the maximum position of the field of view with the maximum dispersion is less than 70um, which can meet the needs of end users in the later stage.
  • the surface shapes of the second surface 212 and the third surface 221 are aspherical, and the second surface 212 and the third surface 221 are convex toward the display screen 10 ,
  • the optical power of the first lens 210 is defined as The optical power of the second lens 220 is The thickness of the first lens 210 is T 3 and the thickness of the second lens 220 is T 4 , so that: 2.0mm ⁇ T 3 ⁇ 5.0mm, 2.0mm ⁇ T 4 ⁇ 8.0mm, the chromatic aberration of the imaging optical path is less than 190um, and the viewing angle is greater than 100°.
  • the second surface 212 and the third surface 221 are aspherical, which can further eliminate imaging aberrations.
  • the thickness of the first lens 210 refers to the position of the center point of the first lens 210, the distance from the first surface 211 to the second surface 212, the thickness of the second lens 220 refers to the position of the center point of the second lens 220, and the distance from the third surface 221 to the second surface 212.
  • the optical power of the first lens 210 Selected from 0 to 0.1, the optical power of the second lens 220 Selecting between 0 and 0.005 can make the chromatic aberration of the imaging optical path of the imaging optical path less than 190um and the viewing angle greater than 100°.
  • z is the coordinate along the optical axis
  • Y is the radial coordinate in unit of lens length
  • C is the curvature (1/R)
  • k is the conic coefficient (Coin Constant)
  • ai is the coefficient of each high-order term
  • 2i is the higher power of the aspheric surface.
  • the spot diagram of this embodiment wherein the spot diagram means that after the light emitted from a point passes through the image display structure, the intersection with the image plane is no longer concentrated in the image plane due to aberration. At the same point, a diffusion pattern scattered in a certain range is formed, which is used to evaluate the imaging quality of the image display structure.
  • the arrangement order of areas 1 to 11 is from left to right and from top to bottom. It can be seen that the image height corresponding to the maximum half-field of view is less than 18.988mm.
  • the modulation transfer function curve diagram of the present embodiment that is, the MTF (Modulation Transfer Function) diagram
  • the MTF diagram is used to refer to the relationship between the modulation degree and the number of line pairs per millimeter in the image, and is used to evaluate the pair.
  • the ability to restore the details of the scene; the top black solid line is a theoretically aberration-free curve, and the closer to the black solid line, the better the imaging quality.
  • the curves in Figure 11 are scattered, more curves are close to the solid black line, which meets the design specifications.
  • Distortion refers to the aberration of different parts of the object having different magnifications when the object is imaged through the image display structure. It can be seen from Figure 12 that the optical distortion at the maximum field of view is less than 30%, and the distortion is small, which meets the design requirements.
  • the vertical chromatic aberration diagram in this embodiment wherein the vertical chromatic aberration is also called magnification chromatic aberration, mainly referring to a polychromatic chief ray on the object side. When it exits, it becomes multiple rays. It can be seen that the maximum position of the field of view with the maximum dispersion is less than 190um, which can meet the needs of end users in the later stage.
  • the adhesive film layer 30 further includes an adhesive layer 320 , and the adhesive layer 320 is disposed between the quarter-wave plate 310 and the polarizing reflection film 330 .
  • the adhesive layer 320 has adhesive properties, and the quarter-wave plate 310 and the polarizing reflection film 330 can be glued together through the adhesive setting of the adhesive layer 320 .
  • the imaging optical path includes a verification component, the verification component is connected to the glued lens group 20 , and the verification component is used to adjust the distance between the glued lens group 20 and the display screen 10 .
  • the effect component can drive the lens assembly 20 to move closer to or away from the display screen 10 .
  • the imaging position of the imaging light path can be changed.
  • the imaging light path can be suitable for myopia or hyperopia, for example, the imaging light path can be adjusted within the range of 0° to 800° for myopia.
  • the present application also provides a head-mounted display device.
  • the head-mounted display device includes a housing and an imaging optical path as described above, and the imaging optical path is provided in the housing.
  • the imaging optical path is set in the housing, and the housing can effectively protect the imaging optical path, prevent dust from falling into the imaging optical path, and also reduce the infiltration of moisture into the imaging optical path, preventing the imaging optical path from malfunctioning.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种成像光路和头戴显示设备,成像光路包括:显示屏幕(10)和胶合镜组(20),显示屏幕(10)发射成像光线(110);胶合镜组(20)设于成像光线(110)的出射方向,胶合镜组(20)包括第一透镜(210)和第二透镜(220),第一透镜(210)和第二透镜(220)沿成像光线(110)传播方向依次设置,第一透镜(210)面向显示屏幕(10)的表面为第一表面(211),第一表面(211)向显示屏幕(10)凸起,第一表面(211)设置半反半透膜,第一透镜(210)和第二透镜(220)之间设置胶合膜层(30),胶合膜层(30)包括沿成像光线(110)的传播方向依次设置的四分之一波片(310)和偏振反射膜(330)。这样,能够减少灰尘沉积在透镜的表面,使光线顺利通过透镜,从而避免成像画面缺失,保证成像画面的亮度较亮。

Description

一种成像光路和头戴显示设备
本申请要求于2021年12月21日提交中国专利局、申请号为202011532252.0、发明名称为“一种成像光路和头戴显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及近眼显示技术领域,尤其涉及一种成像光路和头戴显示设备。
背景技术
目前的虚拟现实设备中,通常将设备中的显示屏幕的光线经过成像系统的传递和放大后传递至人眼,而为了实现图像的放大,成像系统通常需要多个透镜组合的方式实现。
多个透镜是分离式的设计,透镜和透镜之间存在间隙,外界环境中的灰尘通过透镜和透镜之间的间隔进入到成像系统中,灰尘沉积在透镜的表面,沉积的灰尘会影响光线的顺利通过,如此导致成像系统的成像画面缺失或者是成像画面的亮度较暗。
发明内容
基于此,针对灰尘沉积在透镜的表面,影响光线的顺利通过,导致成像系统的成像画面缺失或者是成像画面的亮度较暗的问题,有必要提供一种成像光路和头戴显示设备,旨在能够减少灰尘沉积在透镜的表面,使光线顺利通过透镜,从而避免成像画面缺失,保证成像画面的亮度较亮。
为实现上述目的,本申请提出的一种成像光路,所述成像光路包括:
显示屏幕,所述显示屏幕发射成像光线;和
胶合镜组,所述胶合镜组设于所述成像光线的出射方向,所述胶合镜组包括第一透镜和第二透镜,所述第一透镜和所述第二透镜沿所述成像光线传播方向依次设置;
所述第一透镜面向所述显示屏幕的表面为第一表面,所述第一表面向所 述显示屏幕凸起;
所述第一表面设置半反半透膜,所述第一透镜和所述第二透镜之间设置胶合膜层,所述胶合膜层包括沿所述成像光线的传播方向依次设置四分之一波片和偏振反射膜。
可选地,所述第一透镜背向所述显示屏幕的表面为第二表面,所述四分之一波片设于所述第二表面;
所述第二透镜面向所述第一透镜的表面为第三表面,所述胶合膜层还包括偏光膜,所述偏光膜设于所述第三表面,所述偏振反射膜设于所述偏光膜面向所述第一透镜的一侧。
可选地,所述第二透镜背离所述第一透镜的表面为第四表面,所述第二表面、所述第三表面和所述第四表面至少其中之一设置增透膜。
可选地,所述第一表面和所述第四表面至少其中之一为非球面。
可选地,所述第二表面和所述第三表面的形状相同。
可选地,所述第二表面和所述第三表面的面型为平面,定义所述第一透镜的光焦度为
Figure PCTCN2021135123-appb-000001
所述第二透镜的光焦度为
Figure PCTCN2021135123-appb-000002
所述第一透镜的厚度为T 1,所述第二透镜的厚度为T 2
则满足:
Figure PCTCN2021135123-appb-000003
2.0mm<T 1<8.0mm,2.0mm<T 2<5.0mm,所述成像光路的光学畸变小于30%、色差小于70um、视角角度大于90°。
可选地,所述第二表面和所述第三表面的面型为非球面,所述第二表面和所述第三表面向所述显示屏幕凸起,定义所述第一透镜的光焦度为
Figure PCTCN2021135123-appb-000004
所述第二透镜的光焦度为
Figure PCTCN2021135123-appb-000005
所述第一透镜的厚度为T 3,所述第二透镜的厚度为T 4
则满足:
Figure PCTCN2021135123-appb-000006
2.0mm<T 3<5.0mm,2.0mm<T 4<8.0mm,所述成像光路的色差小于190um、视角角度大于100°。
可选地,所述胶合膜层还包括胶合层,所述胶合层设于所述四分之一波片和所述偏振反射膜之间。
可选地,所述成像光路包括效验组件,所述效验组件连接于所述胶合镜组,所述效验组件用于调整所述胶合镜组和所述显示屏幕之间的距离。
此外,为了实现上述目的,本申请还提供一种头戴显示设备,所述头戴显示设备包括外壳和如上文所述的成像光路,所述成像光路设于所述外壳。
本申请提出的技术方案中,显示屏幕发射成像光线,成像光线穿过胶合镜组,胶合镜组包括第一透镜和第二透镜,成像光线依次穿过第一透镜和第二透镜。第一透镜面向的第一表面设置半反半透膜,第一透镜和第二透镜之间设置胶合膜层,胶合膜层包括四分之一波片和偏振反射膜。其中,成像光线在由显示屏幕射出后,成像光线经过半反半透膜透射时,一部分成像光线反射,一部分成像光线透射。透射半反半透膜的成像光线穿过第一透镜。成像光线射向四分之一波片,在四分之一波片的作用下成像光线的偏振状态由圆偏振转化为线偏振,线偏振状态的成像光线射向偏振反射膜,此时,偏振反射膜的偏振透过方向和线偏振状态的成像光线的偏振方向不同,成像光线无法穿过偏振反射膜,被偏振反射膜反射回四分之一波片。成像光线穿过四分之一波片后,线偏振状态再次转化为圆偏振状态,并射向半反半透膜。成像光线在半反半透膜表面再次发生反射和透射,一部分成像光线再次被反射向四分之一波片,再次产生线偏振状态的成像光线,经过两次反射,线偏振状态的成像光线的偏振角度发生转动,此时,成像光线的偏振方向和偏振反射膜的偏振方向相同,成像光线穿过偏振反射膜,并在用户人眼位置显示成像。
由此可知,显示成像主要通过胶合镜组,第一透镜和第二透镜之间胶合设置,没有空气间隙,因此外界环境中的灰尘难以进入第一透镜和第二透镜之间之间。从而灰尘难以沉积在第一透镜或第二透镜的表面,继而保证成像光线能够顺利通过,减少灰尘对成像系统的影响,避免成像画面缺失,使成像画面的亮度较亮。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请成像光路一实施例的结构示意图;
图2为图1中胶合膜层的结构示意图;
图3为图1中第一透镜和第二透镜的结构示意图;
图4为本申请成像光路另一实施例的结构示意图;
图5为图4中第一透镜和第二透镜的结构示意图;
图6为图1中成像光路的点列图;
图7为图1中成像光路的调制传递函数曲线图;
图8为图1中成像光路的畸变图;
图9为图1中成像光路的垂轴色差图;
图10为图4中成像光路的点列图;
图11为图4中成像光路的调制传递函数曲线图;
图12为图4中成像光路的畸变图;
图13为图4中成像光路的垂轴色差图。
附图标号说明:
标号 名称 标号 名称
10 显示屏幕 222 第四表面
110 成像光线 30 胶合膜层
20 胶合镜组 310 四分之一波片
210 第一透镜 320 胶合层
211 第一表面 330 偏振反射膜
212 第二表面 340 偏光膜
220 第二透镜 40 保护板
221 第三表面    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动 前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
成像系统中实现光路传递的多个透镜是分离式的设计,透镜和透镜之间存在间隙,外界环境中的灰尘沉积在透镜的表面,会阻挡光线的顺利通过,导致成像系统的成像画面缺失或者是成像画面的亮度较暗。
为了解决上述问题,参阅图1所示,本申请提供一种成像光路,成像光路可以应用于头戴显示设备,头戴显示设备的显示原理包括多种,例如,VR(Virtual Reality,虚拟现实)显示原理,AR(Augmented Reality,增强现实)显示原理。成像光路包括:显示屏幕10和胶合镜组20,显示屏幕10发射成像 光线110,胶合镜组20设于成像光线110的出射方向,胶合镜组20用于完成显示屏幕10的成像画面的放大传递。胶合镜组20内的镜片是胶合设置在一起的,相互之间具有很小的空隙间隔,或者没有间隔,因此外界的灰尘难以进入到胶合镜组20内。胶合镜组20包括第一透镜210和第二透镜220,第一透镜210和第二透镜220沿成像光线110传播方向依次设置;可知第一透镜210和第二透镜220也是相互胶合设置的,外界的灰尘也难以进入到第一透镜210和第二透镜220之间。第一透镜210面向显示屏幕10的表面为第一表面211,第一表面211向显示屏幕10凸起;显示屏幕10的成像画面需要经过放大传递,成像光线由显示屏幕射出后会发散,通过第一表面211的凸起设置,能够起到会聚成像光线110的作用,从而使成像光线有效的会聚向人眼。第一表面211设置半反半透膜,第一透镜210和第二透镜220之间设置胶合膜层30,胶合膜层30包括沿成像光线110的传播方向依次设置四分之一波片310和偏振反射膜330。其中,成像光线110在经过半反半透膜时,一部分光线反射,另一部分光线透射。四分之一波片310能够转化成像光线110的偏振状态,例如,将线偏振光线转化为圆偏振光或者将圆偏振光转化为线偏振光。偏振反射膜330具有偏振透射方向,成像光线110在沿偏振透射方向振动时,才能顺利通过偏振反射膜330,其余方向的振动光线,在遇到偏振反射膜330时成像光线110被反射。偏振反射膜330和四分之一波片310可以采用镀膜方式设置,也可以采用贴覆的方式,贴覆的方式更加容易操作,镀膜的方式能够使固定的更加牢固。
进一步的,在显示屏幕10的出光面还设置保护板40,保护板40可以为透明玻璃,还可以是透明塑料,保护板40的作用主要在于保护显示屏幕10,避免显示屏幕10的出光面受到外力影响而破损。
本申请提出的技术方案中,显示屏幕10发射成像光线110,成像光线110穿过胶合镜组20,胶合镜组20包括第一透镜210和第二透镜220,成像光线110依次穿过第一透镜210和第二透镜220。第一透镜210面向的第一表面211设置半反半透膜,第一透镜210和第二透镜220之间设置胶合膜层30,胶合膜层30包括四分之一波片310和偏振反射膜330。其中,成像光线110在由显示屏幕10射出后,成像光线110经过半反半透膜透射时,一部分成像光线110反射,一部分成像光线110透射。透射半反半透膜的成像光线110穿过第一透镜210。成像光线110射向四分之一波片310,在四分之一波片310的作用下成像光线110 的偏振状态由圆偏振转化为线偏振,线偏振状态的成像光线110射向偏振反射膜330,此时,偏振反射膜330的偏振透过方向和线偏振状态的成像光线110的偏振方向不同,成像光线110无法穿过偏振反射膜330,被偏振反射膜330反射回四分之一波片310。成像光线110穿过四分之一波片310后,线偏振状态再次转化为圆偏振状态,并射向半反半透膜。成像光线110在半反半透膜表面再次发生反射和透射,一部分成像光线110再次被反射向四分之一波片310,再次产生线偏振状态的成像光线110,经过两次反射,线偏振状态的成像光线110的偏振角度发生转动,此时,成像光线110的偏振方向和偏振反射膜330的偏振方向相同,成像光线110穿过偏振反射膜330,并在用户人眼位置显示成像。
由此可知,显示成像主要通过胶合镜组20,第一透镜210和第二透镜220之间胶合设置,没有空气间隙,因此外界环境中的灰尘难以进入第一透镜210和第二透镜220之间之间。从而灰尘难以沉积在第一透镜210或第二透镜220的表面,继而保证成像光线110能够顺利通过,减少灰尘对成像系统的影响,避免成像画面缺失,使成像画面的亮度较亮。
在上述实施例中,成像光线110的偏振方向和偏振反射膜330的偏振透射方向相同时透射,垂直时反射。除此之外,还可能存在两者之间有夹角,夹角范围在0°~90°之间。也就是说,成像光线110的偏振方向和偏振反射膜330的偏振透射方向介于相同和垂直之间,在这种情况下,会有部分光线透射于偏振反射膜330,如此,出现杂散光。为了减少杂散光,第一透镜210背向显示屏幕10的表面为第二表面212,四分之一波片310设于第二表面212;第二透镜220面向第一透镜210的表面为第三表面221,胶合膜层30还包括偏光膜340,偏光膜340设于第三表面221,偏振反射膜330设于偏光膜340面向第一透镜210的一侧。由此可知,成像光线110在经过偏振反射膜330后射向偏光膜340,偏光膜340也称为偏光片或者偏振光片,偏光膜340能够消除杂散光,从而保证成像光线110的成像质量。其中,偏光膜340可以采用镀膜方式设置在第三表面221,也可以采用贴覆的方式,贴覆的方式更加容易操作,镀膜的方式能够使膜层更加牢固。
在上述实施例中,成像光线110经过在空气或者镜片中传播,容易损耗,导致成像画面的亮度降低。为此,第二透镜220背离第一透镜210的表面为第 四表面222,第二表面212、第三表面221和第四表面222至少其中之一设置增透膜。通过增透膜能够提高成像光线110的透过数量,减少光线的损耗。为了尽可能的提高成像光线110的透过数量,第二表面212、第三表面221和第四表面222均可以设置增透膜。还可以是只在第二表面212、第三表面221和第四表面222的其中一个表面设置增透膜,如此可以减少加工成本,还能提高光线透过数量。
在上述实施例中,成像光线110在经过多次折反射后,容易产生像差,为此,第一表面211和第四表面222至少其中之一为非球面。非球面能够有效的消除像差,可以是第一表面211和第四表面222均为非球面,也可以是其中之一为非球面。
除此之外,第一表面211和第四表面222还可以是自由曲面,通过自有曲面同样也可以消除成像光线110形成的像差。
在本申请的其中一实施例中,第二表面212和第三表面221的形状相同。第一透镜210和第二透镜220胶合设置,第二表面212和第三表面221是相互对接的表面,两表面的形状相同,在胶合对接时,能够减少两者之间的缝隙,从而能够使胶合对接的更加紧凑。
参阅图3所示,在上述实施例中,第二表面212和第三表面221的面型为平面,定义第一透镜210的光焦度为
Figure PCTCN2021135123-appb-000007
第二透镜220的光焦度为
Figure PCTCN2021135123-appb-000008
第一透镜210的厚度为T 1,第二透镜220的厚度为T 2,则满足:
Figure PCTCN2021135123-appb-000009
Figure PCTCN2021135123-appb-000010
2.0mm<T 1<8.0mm,2.0mm<T 2<5.0mm,成像光路的光学畸变小于30%、色差小于70um、视角角度大于90°。第二表面212和第三表面221为平面时,两者可以准确的对接,贴合的也更加紧密。第一透镜210的厚度是指第一透镜210中心点位置,第一表面211到第二表面212的距离,第二透镜220的厚度是指第二透镜220中心点位置,第三表面221到第四表面222的距离。第一透镜210的光焦度
Figure PCTCN2021135123-appb-000011
在0~0.06之间选择,第二透镜220的光焦度
Figure PCTCN2021135123-appb-000012
在-0.01~0之间选择能够使成像光路的光学畸变小于30%、色差小于70um、视角角度大于90°。
具体地,举例说明,表一
Figure PCTCN2021135123-appb-000013
偶次非球面系数满足如下的方程:
Figure PCTCN2021135123-appb-000014
其中,z是沿光轴方向的坐标,Y为以透镜长度单位为单位的径向坐标,C是曲率(1/R),k为圆锥系数(Coin Constant),ai是各高次项的系数,2i是非球面的高次方。
依据上图实施例,参阅图6所示,本实施例的点列图,其中点列图是指由一点发出的光线经图像显示结构后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,用于评价图像显示结构的成像质量。区域1~10的排列顺序是由左至右,由上至下。由此可知,最大半视场对应的像高小于11.892mm。
参阅图7所示,为本实施例的调制传递函数曲线图,即MTF(Modulation Transfer Function)图,MTF图用于是指调制度与图像内每毫米线对数之间的关系,用于评价对景物细部还原能力;其中最上面黑色实线是理论上没有像差的曲线,越靠近黑色实线成像质量越好。图7中曲线虽有分散,但是更多曲线靠近黑色实线,符合设计规格。
参阅图8所示,本实施例中的畸变图。畸变是指物体通过图像显示结构成像时,物体不同部分有不同的放大率的像差,畸变会导致物像的相似性变坏,但不影响像的清晰度。由图8可知,最大视场处光学畸变小于30%之间变动,畸变较小,符合设计规定。
参阅图9所示,本实施例中的垂轴色差图,其中,垂轴色差是指又称为倍率色差,主要是指物方的一根复色主光线,因折射系统存在色散,在像方出 射时变成多根光线。由此可知,最大色散的视场最大位置小于70um,可满足后期终端用户的需求。
参阅图4和图5所示,在本申请的一实施例中,第二表面212和第三表面221的面型为非球面,第二表面212和第三表面221向显示屏幕10凸起,定义第一透镜210的光焦度为
Figure PCTCN2021135123-appb-000015
第二透镜220的光焦度为
Figure PCTCN2021135123-appb-000016
第一透镜210的厚度为T 3,第二透镜220的厚度为T 4,则满足:
Figure PCTCN2021135123-appb-000017
2.0mm<T 3<5.0mm,2.0mm<T 4<8.0mm,成像光路的色差小于190um、视角角度大于100°。第二表面212和第三表面221为非球面,如此可以进一步的消除成像的像差。第一透镜210的厚度是指第一透镜210中心点位置,第一表面211到第二表面212的距离,第二透镜220的厚度是指第二透镜220中心点位置,第三表面221到第四表面222的距离。第一透镜210的光焦度
Figure PCTCN2021135123-appb-000018
在0~0.1之间选择,第二透镜220的光焦度
Figure PCTCN2021135123-appb-000019
在0~0.005之间选择能够使成像光路的成像光路的色差小于190um、视角角度大于100°。
具体地,举例说明,表二
Figure PCTCN2021135123-appb-000020
偶次非球面系数满足如下的方程:
Figure PCTCN2021135123-appb-000021
其中,z是沿光轴方向的坐标,Y为以透镜长度单位为单位的径向坐标, C是曲率(1/R),k为圆锥系数(Coin Constant),ai是各高次项的系数,2i是非球面的高次方。
依据上图实施例,参阅图10所示,本实施例的点列图,其中点列图是指由一点发出的光线经图像显示结构后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,用于评价图像显示结构的成像质量。区域1~11的排列顺序是由左至右,由上至下。由此可知,最大半视场对应的像高小于18.988mm。
参阅图11所示,为本实施例的调制传递函数曲线图,即MTF(Modulation Transfer Function)图,MTF图用于是指调制度与图像内每毫米线对数之间的关系,用于评价对景物细部还原能力;其中最上面黑色实线是理论上没有像差的曲线,越靠近黑色实线成像质量越好。图11中曲线虽有分散,但是更多曲线靠近黑色实线,符合设计规格。
参阅图12所示,本实施例中的畸变图。畸变是指物体通过图像显示结构成像时,物体不同部分有不同的放大率的像差,畸变会导致物像的相似性变坏,但不影响像的清晰度。由图12可知,最大视场处光学畸变小于30%之间变动,畸变较小,符合设计规定。
参阅图13所示,本实施例中的垂轴色差图,其中,垂轴色差是指又称为倍率色差,主要是指物方的一根复色主光线,因折射系统存在色散,在像方出射时变成多根光线。由此可知,最大色散的视场最大位置小于190um,可满足后期终端用户的需求。
在上述实施例中,胶合膜层30还包括胶合层320,胶合层320设于四分之一波片310和偏振反射膜330之间。胶合层320具有粘性,通过胶合层320的粘贴设置可以将四分之一波片310和偏振反射膜330胶合在一起。
在上述实施例中,成像光路包括效验组件,效验组件连接于胶合镜组20,效验组件用于调整胶合镜组20和显示屏幕10之间的距离。效验组件可以带动胶合镜组20移动,靠近或者远离显示屏幕10。通过调整胶合镜组20和显示屏幕10之间的距离,能够改变成像光路成像位置。如此可以使成像光路适用于近视或者远视,例如,成像光路可以在0°~800°近视范围内进行调节。
本申请还提供一种头戴显示设备,头戴显示设备包括外壳和如上文的成像光路,成像光路设于外壳。成像光路设置在外壳内,外壳能够有效的保护 成像光路,避免减少灰尘落入到成像光路,还能够减少水分渗入到成像光路内,避免成像光路失灵。
本申请中头戴显示设备的具体实施方式可以参照上文成像光路的各实施例,在此不在赘述。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种成像光路,其特征在于,所述成像光路包括:
    显示屏幕,所述显示屏幕发射成像光线;和
    胶合镜组,所述胶合镜组设于所述成像光线的出射方向,所述胶合镜组包括第一透镜和第二透镜,所述第一透镜和所述第二透镜沿所述成像光线传播方向依次设置;
    所述第一透镜面向所述显示屏幕的表面为第一表面,所述第一表面向所述显示屏幕凸起;
    所述第一表面设置半反半透膜,所述第一透镜和所述第二透镜之间设置胶合膜层,所述胶合膜层包括沿所述成像光线的传播方向依次设置四分之一波片和偏振反射膜。
  2. 如权利要求1所述的成像光路,其特征在于,所述第一透镜背向所述显示屏幕的表面为第二表面,所述四分之一波片设于所述第二表面;
    所述第二透镜面向所述第一透镜的表面为第三表面,所述胶合膜层还包括偏光膜,所述偏光膜设于所述第三表面,所述偏振反射膜设于所述偏光膜面向所述第一透镜的一侧。
  3. 如权利要求2所述的成像光路,其特征在于,所述第二透镜背离所述第一透镜的表面为第四表面,所述第二表面、所述第三表面和所述第四表面至少其中之一设置增透膜。
  4. 如权利要求3所述的成像光路,其特征在于,所述第一表面和所述第四表面至少其中之一为非球面。
  5. 如权利要求2所述的成像光路,其特征在于,所述第二表面和所述第三表面的形状相同。
  6. 如权利要求5所述的成像光路,其特征在于,所述第二表面和所述第三表面的面型为平面,定义所述第一透镜的光焦度为φ1,所述第二透镜的光 焦度为φ2,所述第一透镜的厚度为T1,所述第二透镜的厚度为T2;
    则满足:0<φ1<0.06,-0.01<φ2<0,2.0mm<T1<8.0mm,2.0mm<T2<5.0mm,所述成像光路的光学畸变小于30%、色差小于70um、视角角度大于90°。
  7. 如权利要求5所述的成像光路,其特征在于,所述第二表面和所述第三表面的面型为非球面,所述第二表面和所述第三表面向所述显示屏幕凸起,定义所述第一透镜的光焦度为φ3,所述第二透镜的光焦度为φ4,所述第一透镜的厚度为T3,所述第二透镜的厚度为T4;
    则满足:0<φ3<0.1,0<φ4<0.005,2.0mm<T3<5.0mm,2.0mm<T4<8.0mm,所述成像光路的色差小于190um、视角角度大于100°。
  8. 权利要求1至7中任一项所述的成像光路,其特征在于,所述胶合膜层还包括胶合层,所述胶合层设于所述四分之一波片和所述偏振反射膜之间。
  9. 如权利要求1至7中任一项所述的成像光路,其特征在于,所述成像光路包括效验组件,所述效验组件连接于所述胶合镜组,所述效验组件用于调整所述胶合镜组和所述显示屏幕之间的距离。
  10. 一种头戴显示设备,其特征在于,所述头戴显示设备包括外壳和如权利要求1至9中任一项所述的成像光路,所述成像光路设于所述外壳。
PCT/CN2021/135123 2020-12-21 2021-12-02 一种成像光路和头戴显示设备 WO2022135106A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/247,044 US20240027769A1 (en) 2020-12-21 2021-12-02 Imaging light path and head mounted display
EP21909103.0A EP4206786A4 (en) 2020-12-21 2021-12-02 IMAGING LIGHT PATH AND HEAD-MOUNTED DISPLAY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011532252.0 2020-12-21
CN202011532252.0A CN112596240B (zh) 2020-12-21 2020-12-21 成像光路和头戴显示设备

Publications (1)

Publication Number Publication Date
WO2022135106A1 true WO2022135106A1 (zh) 2022-06-30

Family

ID=75200531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135123 WO2022135106A1 (zh) 2020-12-21 2021-12-02 一种成像光路和头戴显示设备

Country Status (4)

Country Link
US (1) US20240027769A1 (zh)
EP (1) EP4206786A4 (zh)
CN (1) CN112596240B (zh)
WO (1) WO2022135106A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596240B (zh) * 2020-12-21 2022-09-20 歌尔光学科技有限公司 成像光路和头戴显示设备
CN113219667B (zh) * 2021-04-30 2022-07-22 歌尔股份有限公司 光学镜组和头戴显示设备
CN214751119U (zh) * 2021-06-28 2021-11-16 歌尔光学科技有限公司 光学模组和头戴显示设备
CN113448100A (zh) * 2021-06-28 2021-09-28 歌尔股份有限公司 光学模组和头戴显示设备
CN113467091A (zh) * 2021-06-29 2021-10-01 歌尔股份有限公司 近眼显示系统和头戴显示设备
CN114236865A (zh) * 2021-11-23 2022-03-25 青岛歌尔声学科技有限公司 光学模组及头戴显示设备
CN114755830A (zh) * 2022-03-30 2022-07-15 南昌黑鲨科技有限公司 光学放大模组及具有该光学放大模组的vr显示设备
CN114706228B (zh) * 2022-06-07 2022-09-13 沂普光电(天津)有限公司 一种光学系统及vr设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707510A (zh) * 2016-12-14 2017-05-24 浙江舜通智能科技有限公司 隐形眼镜式的光学系统以及装配该光学系统的头戴显示器
CN107065180A (zh) * 2017-01-17 2017-08-18 浙江唯见科技有限公司 一种紧凑式虚拟现实近眼显示系统及头戴显示设备
CN208607440U (zh) * 2018-08-08 2019-03-15 青岛小鸟看看科技有限公司 一种短焦光学系统
CN209496201U (zh) * 2019-03-28 2019-10-15 歌尔科技有限公司 Vr光学系统及vr显示设备
CN110456509A (zh) * 2019-08-05 2019-11-15 青岛小鸟看看科技有限公司 显示光学装置以及头戴设备
US10520734B1 (en) * 2017-06-22 2019-12-31 Apple Inc. Optical system
CN110827711A (zh) * 2019-11-01 2020-02-21 青岛小鸟看看科技有限公司 一种显示装置
CN112596240A (zh) * 2020-12-21 2021-04-02 歌尔光学科技有限公司 成像光路和头戴显示设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563648B2 (en) * 2000-10-20 2003-05-13 Three-Five Systems, Inc. Compact wide field of view imaging system
GB2387920B (en) * 2002-04-24 2005-11-23 Seos Ltd An eyepiece for viewing a flat image and comprising a cemented doublet of reflecting and refracting optical components
WO2008089417A2 (en) * 2007-01-18 2008-07-24 The Arizona Board Of Regents On Behalf Of The University Of Arizona A polarized head-mounted projection display
CN110268301B (zh) * 2016-08-02 2022-04-01 苹果公司 用于头戴式显示器的光学系统
US10203489B2 (en) * 2016-08-02 2019-02-12 Apple Inc. Optical system for head-mounted display
KR20180043072A (ko) * 2016-10-19 2018-04-27 삼성전자주식회사 렌즈 유닛 및 이를 포함하는 투시형 디스플레이 장치
CN110161692A (zh) * 2018-07-16 2019-08-23 上海视涯信息科技有限公司 一种虚拟现实显示装置
CN209311805U (zh) * 2019-03-07 2019-08-27 浙江水晶光电科技股份有限公司 一种增强现实光学模组及增强现实装置
CN209858857U (zh) * 2019-06-13 2019-12-27 歌尔科技有限公司 光学系统及具有其的虚拟现实设备
CN111240022A (zh) * 2020-03-19 2020-06-05 宁波鸿蚁光电科技有限公司 一种轻薄型光学显示系统、影像镜头模组及vr设备
CN212111989U (zh) * 2020-05-27 2020-12-08 歌尔光学科技有限公司 光学系统及虚拟现实设备
CN111929906B (zh) * 2020-09-25 2021-01-22 歌尔光学科技有限公司 图像显示结构和头戴显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707510A (zh) * 2016-12-14 2017-05-24 浙江舜通智能科技有限公司 隐形眼镜式的光学系统以及装配该光学系统的头戴显示器
CN107065180A (zh) * 2017-01-17 2017-08-18 浙江唯见科技有限公司 一种紧凑式虚拟现实近眼显示系统及头戴显示设备
US10520734B1 (en) * 2017-06-22 2019-12-31 Apple Inc. Optical system
CN208607440U (zh) * 2018-08-08 2019-03-15 青岛小鸟看看科技有限公司 一种短焦光学系统
CN209496201U (zh) * 2019-03-28 2019-10-15 歌尔科技有限公司 Vr光学系统及vr显示设备
CN110456509A (zh) * 2019-08-05 2019-11-15 青岛小鸟看看科技有限公司 显示光学装置以及头戴设备
CN110827711A (zh) * 2019-11-01 2020-02-21 青岛小鸟看看科技有限公司 一种显示装置
CN112596240A (zh) * 2020-12-21 2021-04-02 歌尔光学科技有限公司 成像光路和头戴显示设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206786A4

Also Published As

Publication number Publication date
CN112596240B (zh) 2022-09-20
US20240027769A1 (en) 2024-01-25
EP4206786A1 (en) 2023-07-05
EP4206786A4 (en) 2024-03-20
CN112596240A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2022135106A1 (zh) 一种成像光路和头戴显示设备
CN112596238B (zh) 成像光路和头戴显示设备
WO2023273128A1 (zh) 光学模组和头戴显示设备
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
WO2023273176A1 (zh) 光学模组和头戴显示设备
WO2022227540A1 (zh) 光学镜组、光学系统和头戴显示设备
WO2022227538A1 (zh) 胶合镜组和头戴显示设备
CN113934007A (zh) 光学模组和头戴显示设备
CN114236828B (zh) 一种光学系统以及头戴显示设备
WO2023092705A1 (zh) 光学模组和头戴显示设备
US20240264445A1 (en) Optical module and head mount display
CN218003854U (zh) 光学模组以及头戴显示设备
CN111929907B (zh) 图像显示结构和头戴显示设备
CN212111977U (zh) 光学系统及虚拟现实设备
WO2022227541A1 (zh) 光学镜组和头戴显示设备
TW202134734A (zh) 微型頭戴顯示器之光學系統
JP7406028B1 (ja) 光学系
CN113671709A (zh) 光学系统和头戴显示设备
WO2023097762A1 (zh) 光学系统及头戴显示设备
CN114690377B (zh) 一种光学投影系统以及电子设备
TWI798853B (zh) 擴增實境顯示裝置
US10983317B2 (en) Compact, lightweight optical imaging system having free-form surface and common optical axis direction
CN115616779A (zh) 光学系统以及vr眼镜
WO2021243777A1 (zh) 光学系统及增强现实设备
CN217606187U (zh) 光学模组以及头戴显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021909103

Country of ref document: EP

Effective date: 20230327

NENP Non-entry into the national phase

Ref country code: DE