WO2023273176A1 - 光学模组和头戴显示设备 - Google Patents

光学模组和头戴显示设备 Download PDF

Info

Publication number
WO2023273176A1
WO2023273176A1 PCT/CN2021/136825 CN2021136825W WO2023273176A1 WO 2023273176 A1 WO2023273176 A1 WO 2023273176A1 CN 2021136825 W CN2021136825 W CN 2021136825W WO 2023273176 A1 WO2023273176 A1 WO 2023273176A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
display
optical module
light
quarter
Prior art date
Application number
PCT/CN2021/136825
Other languages
English (en)
French (fr)
Inventor
孙琦
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023273176A1 publication Critical patent/WO2023273176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the utility model relates to the technical field of optical display, in particular to an optical module and a head-mounted display device.
  • VR virtual reality
  • the main working principle of virtual reality products is that after the image displayed on the display is transmitted and magnified by optical lenses, the image is received by the human eye, and what the human eye observes is a magnified virtual image. After the image is enlarged, a sufficiently long optical path is required, so the total optical length of the optical system is longer, resulting in a larger volume of the head-mounted display device, which is not convenient for the user to wear.
  • the head-mounted display device is large in size, and is not convenient for users to wear, it is necessary to provide an optical module and a head-mounted display device, which aim at The overall optical length of the optical system can be reduced, the volume of the head-mounted display device can be reduced, and it is convenient for users to wear it.
  • the utility model proposes an optical module, the optical module includes:
  • a cemented lens the cemented lens is arranged in the light emitting direction of the display, the cemented lens includes a first lens and a second lens arranged in sequence along the propagation direction of the optical path, and the first lens has a first surface facing the display and a second surface facing away from the display, the second lens has a third surface facing the display and a fourth surface facing away from the display, the second surface is glued to the third surface, The second surface and the third surface are planes, and the fourth surface is convex toward a direction away from the display;
  • the light-splitting element is disposed on a side of the first lens facing the display;
  • the polarized reflective film is arranged between the quarter wave plate and the second lens
  • the optical module further includes a polarizing film, and the polarizing film is disposed on a side of the first lens away from the display.
  • the polarizing film is arranged between the polarizing reflective film and the second lens, and the first quarter-wave plate, the polarizing reflective film and the polarizing film are combined into an integral film layer .
  • the optical module further includes a second quarter-wave plate, and the second quarter-wave plate is disposed on a side of the polarized reflection film away from the display.
  • the second quarter-wave plate is disposed between the polarized reflection film and the second lens;
  • the second quarter-wave plate is disposed on the fourth surface of the second lens.
  • the first surface is convex toward the direction of the display.
  • the optical module further includes an anti-reflection film, and the anti-reflection film is provided on the fourth surface.
  • the central thickness of the first lens is T1
  • the central thickness of the second lens is T2
  • the distance between the first surface and the light-emitting surface of the display is L
  • the radius value of the first surface is R1
  • the conic coefficient of the first surface is C1
  • the radius value of the fourth surface is R4, and the conic coefficient of the fourth surface is C4, then satisfy :
  • the utility model also provides a head-mounted display device, the head-mounted display device includes a casing and an optical module as described above, the optical module is arranged in the casing, the The total optical length of the above-mentioned optical module is TTL, which satisfies: TTL ⁇ 25mm.
  • the display emits light, and the emitted light is circularly polarized light.
  • the light When light hits the cemented lens, the light first passes through the light splitting element, one part of the light is transmitted through the light splitting element, and the other part of the light is reflected.
  • the light transmitted through the light splitting element continues toward the first quarter-wave plate, the polarization state of the circularly polarized light changes, and the circularly polarized light is transformed into linearly polarized light.
  • the linearly polarized light is directed towards the polarized reflective film, at this time, the vibration direction of the linearly polarized light is different from the transmission direction of the polarized reflective film, and the light is reflected.
  • the reflected light passes through the first quarter-wave plate and the light splitting element in sequence, and when the light passes through the light splitting element again, the light is partially reflected to the cemented lens. At this time, the light is circularly polarized. After reflection, the direction of rotation of the light changes. The light passes through the first quarter-wave plate and is converted into linearly polarized light again. At this time, the polarization direction of the linearly polarized light is the same as the polarization
  • the transmission direction of the reflective film is the same, and the light passes through the glued lens group and forms an image at the position of the human eye. It can be seen that when the light passes through the cemented lens, the light is refracted and reflected. In this process, the light is continuously enlarged and transmitted.
  • the enlarged transmission of the image is realized in a limited space, which is beneficial to reduce the total optical length.
  • the overall volume reduction is further reduced by planar gluing of the second and third surfaces.
  • the fourth surface of the second lens protrudes away from the display, so that light can be converged, thereby reducing the total optical length of the entire system, which is beneficial to reducing the volume of the head-mounted display device and is convenient for users to wear.
  • this solution improves the imaging quality and makes the imaging clearer by using the full-field spot diameter less than twice the pixel size.
  • Fig. 1 is a structural schematic diagram of an embodiment of the optical module of the present invention
  • Fig. 2 is a schematic structural view of the first lens and the second lens of the optical module in Fig. 1;
  • Fig. 3 is a schematic structural view of the first quarter-wave plate, polarizing reflection film and polarizing film in another embodiment of the optical module of the present invention
  • Fig. 4 is a spot diagram of the optical module in Fig. 1;
  • Fig. 5 is a field curvature and distortion diagram of the optical module in Fig. 1;
  • FIG. 6 is a chromatic aberration diagram of the optical module in FIG. 1 .
  • label name label name 10 monitor 221 third surface 110 the light 222 fourth surface 20 cemented lens 30
  • Light splitting element 210 first lens 40 first quarter wave plate 211 first surface 50 polarized reflective film 212 second surface 60 polarizing film 220 second lens 70 human eye
  • connection and “fixation” should be understood in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integration; It may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, and it may be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, a detachable connection, or an integration; It may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, and it may be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • the display principles of head-mounted display devices also include a variety of display principles.
  • VR display it also includes AR (Augmented Reality, Augmented Reality) display.
  • AR Augmented Reality
  • the images displayed by these head-mounted display devices need to be transmitted and magnified by optical lenses. , in the process of image enlargement, enough space is needed for light transmission, and the total optical length of the optical system is relatively long, resulting in a large volume of the head-mounted display device, which is inconvenient for users to wear.
  • the utility model provides an optical module
  • the optical module includes: a display 10, a cemented lens 20, a light splitting element 30, a first quarter-wave plate 40 and Polarizing reflective film 50, display 10 emits light 110 for imaging display, cemented lens 20 is arranged on the light exit direction of display 10, light splitting element 30, first quarter-wave plate 40 and polarizing reflective film 50 propagate along light 110 Direction is set in sequence.
  • the light 110 emitted by the display 10 has a circular polarization state.
  • the cemented lens 20 includes a first lens 210 and a second lens 220 arranged in sequence along the propagation direction of the optical path, the first lens 210 has a first surface 211 facing the display 10 and a second surface 212 facing away from the display 10, the second lens 220 has a third surface 221 facing the display 10 and a fourth surface 222 facing away from the display 10, the second surface 212 is glued to the third surface 221, the second surface 212 and the third surface 221 are planes, and the fourth surface 222 faces Convex in the direction away from the display 10; the first lens 210 and the second lens 220 are glued together through the plane bonding of the second surface 212 and the third surface 221, and the bonding setting can further reduce the overall volume of the lens.
  • the processing of the plane is also easier, and the cost can be reduced.
  • the docking of the first lens 210 and the second lens 220 is simpler and easier to operate, which facilitates the improvement of gluing efficiency.
  • the light-splitting element 30 is disposed on the side of the first lens 210 facing the display 10 ; the function of the light-splitting element 30 is to split light, allowing a part of the light 110 to pass through and the other part of the light 110 to reflect, such as a transflective film. It is also possible to transmit the light 110 in one state and reflect the light 110 in another state, such as the polarized reflective film 50.
  • the polarized reflective film 50 has a transmission axis. When the polarization state of the light 110 is in the same direction as the transmission axis, The light 110 is transmitted, and when the polarization state of the light 110 is not in the same direction as the transmission axis, the light 110 is absorbed or reflected.
  • the first quarter-wave plate 40 is disposed between the first lens 210 and the second lens 220; the first quarter-wave plate 40 is to convert the polarization state of the light 110, for example, convert linearly polarized light into circularly polarized light light, or convert circularly polarized light into linearly polarized light.
  • the polarizing reflection film 50 is disposed between the quarter wave plate and the second lens 220 .
  • the polarized reflective film 50 has a polarized transmission direction, which can also be understood as a transmission axis. When the polarization state of the light 110 is in the same direction as the transmission axis, the light 110 will pass through. When the polarization state of the light 110 is not in the same direction as the transmission axis , ray 110 is reflected.
  • the light splitting element 30, the first quarter-wave plate 40 and the polarizing reflective film 50 can be independent optical devices, and can also be a film structure. .
  • the spot diameter of the full field of view is less than 2 times the pixel size.
  • the smaller the spot diameter the higher the imaging quality.
  • the spot diameter can also be 15um, 20.0um, 25.0um, 30.0um, 35.0um, 40.0um, etc. Or other values smaller than 48um.
  • the size of the spot diameter varies with the pixel size, as long as the spot diameter of the full field of view is less than twice the pixel size, it is within the scope of protection of this solution.
  • the display 10 emits light 110 , and the emitted light 110 is circularly polarized light.
  • the light 110 When the light 110 is incident on the cemented lens 20 , the light 110 first passes through the light splitting element 30 , a part of the light 110 is transmitted through the light splitting element 30 , and the other part of the light 110 is reflected.
  • the light 110 transmitted through the light splitting element 30 continues toward the first quarter-wave plate 40 , the polarization state of the circularly polarized light 110 changes, and the circularly polarized light is transformed into linearly polarized light.
  • the linearly polarized light 110 is directed toward the polarizing reflective film 50 .
  • the vibration direction of the linearly polarized light is different from the transmission direction of the polarizing reflective film 50 , and the light 110 is reflected.
  • the reflected light 110 sequentially passes through the first quarter-wave plate 40 and the light splitting element 30 , and when the light 110 passes through the light splitting element 30 again, the light 110 is partially reflected to the cemented lens 20 .
  • the light 110 is circularly polarized light. After reflection, the rotation direction of the light 110 changes, and the light 110 passes through the first quarter-wave plate 40 again and is converted into linearly polarized light again.
  • the linearly polarized light The polarization direction is the same as the transmission direction of the polarizing reflective film 50 , and the light 110 passes through the doubled-up lens group and forms an image at the position of the human eye 70 . It can be seen that, when the light 110 passes through the cemented lens 20 , the light 110 is refracted and reflected, and during this process, the light 110 is continuously enlarged and transmitted. The enlarged transmission of the image is realized in a limited space, which is beneficial to reduce the total optical length. In addition, the overall volume reduction is further reduced by planar gluing of the second surface 212 and the third surface 221 .
  • the fourth surface 222 of the second lens 220 protrudes away from the direction of the display 10, so that the light 110 can be converged, thereby reducing the total optical length of the entire system, which is beneficial to reducing the volume of the head-mounted display device and is convenient for users to wear.
  • this solution improves the imaging quality and makes the imaging clearer by using the full-field spot diameter less than twice the pixel size.
  • the light 110 can reduce passing through air when passing through the cemented lens group, thereby reducing ghost images and stray light formed by passing through media with different refractive indices.
  • the first lens 210 and the second lens 220 may be made of optical glass, which can ensure the imaging quality. Furthermore, in order to reduce weight and reduce processing costs, the first lens 210 and the second lens 220 can be manufactured by optical plastic processing.
  • the first lens 210 is a COC (Cycloalkene Copolymer) cycloolefin copolymer material
  • the second lens 220 is a COP (Cyclo Olefin Polymer) cycloolefin polymer material, wherein the light 110 is refracted and reflected in the first lens 210, and the COC The material can withstand relatively high stress, and the light 110 directly transmits through the second lens 220 , so the COP material has a relatively low stress requirement.
  • the first lens 210 and the second lens 220 can also choose materials such as OKP or PMMA (methylmethacrylate).
  • the vibration direction of part of the linearly polarized light may form an included angle with the transmission direction of the polarized reflection film 50, and the included angle ranges from 0° to 90°, that is to say, partly
  • the vibration direction of the linearly polarized light is neither the same as the transmission direction of the polarizing reflection film 50 nor perpendicular to it. In this way, stray light will appear after the light 110 passes through the polarizing reflective film 50 .
  • the optical module further includes a polarizing film 60 .
  • the polarizing film 60 is disposed on the side of the first lens 210 facing away from the display 10 .
  • the polarizing film 60 has a transmission direction, and the transmission direction of the polarizing film 60 is the same as that of the polarizing reflection film 50 .
  • the polarizing film 60 filters out the passing light 110 , and the light 110 in a direction different from the transmission direction will be filtered and absorbed, so as to ensure that the light 110 passing through the optical module can maintain a consistent vibration direction and reduce the appearance of stray light.
  • the polarizing film 60 is arranged between the polarizing reflective film 50 and the second lens 220, and the first quarter wave plate 40, the polarizing reflective film 50 and the polarizing film 60 are synthesized an integral film.
  • the thickness of the film layer can be compressed and the optical adhesive layer between each film layer can be reduced.
  • the installation of three film layers can be completed through the application of one whole film layer.
  • an optical glue layer is provided on the surface of the quarter-wave plate facing the first lens 210 and the surface of the polarizing film 60 facing the second lens 220, and the fixing of the whole film layer is completed through the optical glue layer.
  • the light 110 passing through the polarized reflective film 50 is linearly polarized light, and when the human eye 70 observes the linearly polarized light, the image quality is poor.
  • the optical module further includes a second quarter-wave plate, and the second quarter-wave plate is disposed on a side of the polarizing reflection film 50 away from the display 10 .
  • the linearly polarized light is converted into circularly polarized light by the second quarter-wave plate to ensure that the light 110 received by the human eye 70 is circularly polarized, thereby improving the imaging quality.
  • the setting positions of the second quarter-wave plate include two types.
  • the first setting position is that the second quarter-wave plate is arranged between the polarized reflection film 50 and the second lens 220; thus, the second quarter-wave plate is arranged between the first lens 210 and the second lens 220 In between, the second quarter-wave plate is protected by a lens.
  • the second quarter-wave plate, the polarizing reflection film 50 and the first quarter-wave plate 40 form a three-in-one integral film layer structure. If the polarizing film 60 is provided, the two quarter-wave plates, the polarizing film 60 , the polarizing reflective film 50 and the first quarter-wave plate 40 may form a four-in-one overall film layer structure. At this time, the second quarter-wave plate is attached to the third surface 221 of the second lens 220 .
  • Another setting position is that the second quarter-wave plate is set on the fourth surface 222 of the second lens 220 . After the light 110 passes through the fourth surface 222 of the second lens 220 , it forms an image at the position of the human eye 70 , so it can be seen that the second quarter-wave plate is set facing the user.
  • the first surface 211 protrudes toward the direction of the display 10 .
  • the cemented lens 20 as a whole can form the effect of a biconvex lens. Therefore, the focusing and imaging position of the light 110 can be further shortened, and the total optical length of the entire system can be reduced.
  • the first lens 210 and the second lens 220 are plano-convex lenses.
  • the optical module in order to increase the transmittance of the light 110 , the optical module further includes an anti-reflection film, and the anti-reflection film is disposed on the fourth surface 222 .
  • the anti-reflection coating increases the number of passing light rays 110 and reduces the reflection and absorption of the light rays 110 by the lens.
  • the anti-reflection film can be installed in the way of pasting or coating, and the way of pasting is easy to operate. The way of coating can make the film layer of anti-reflection film more firm.
  • the central thickness of the first lens 210 is T1
  • the central thickness of the second lens 220 is T2
  • the distance between the first surface 211 and the light-emitting surface of the display 10 is L
  • T1 4mm ⁇ T1 ⁇ 8mm, 3mm ⁇ T2 ⁇ 5mm, 10mm ⁇ L ⁇ 15mm.
  • L refers to the distance between two closest points between the first surface 211 and the light-emitting surface of the display 10 . If T1 is less than 4mm, the first lens 210 is too thin, and if T1 is greater than 8mm, the first lens 210 is too thick, which will increase the overall volume of the optical module. In addition, if the first lens 210 is too thin or too thick, the imaging quality will be reduced.
  • T2 is less than 3mm
  • T2 is greater than 5mm
  • the second lens 220 is too thick
  • too thick will increase the overall volume of the optical module
  • the second lens 220 is too thin or too thick. Will result in reduced image quality.
  • L is less than 10mm, the distance between the first lens 210 and the display 10 is too close, and it is difficult for the light 110 to obtain a sufficient optical path, and the imaging quality will be reduced.
  • L is greater than 15mm, the distance between the first lens 210 and the display 10 is too far, which will increase the overall volume of the optical module.
  • the radius value of the first surface 211 is R1
  • the conic coefficient of the first surface 211 is C1
  • the radius value of the fourth surface 222 is R4
  • the conical coefficient of the fourth surface 222 is C4, then Satisfy:
  • the above parameters can be flexibly selected within the corresponding range to ensure the imaging quality. If the selection of parameters exceeds the corresponding range, it will easily lead to the degradation of imaging quality.
  • the imaging spot is smaller than 48um.
  • the curvature of field is less than 1.2mm, and the distortion at the position of the maximum field of view is less than 33.5%.
  • the maximum dispersion value is less than 229.7um. According to the above parameters, the optical module meets the design requirements and ensures that users can obtain high-definition imaging.
  • the utility model also provides a head-mounted display device.
  • the head-mounted display device includes a casing and an optical module as described above.
  • the optical module is arranged on the casing.
  • the focal length of the optical module can be 23.2 mm, the focal length of the first lens 210 is 154.2 mm, and the focal length of the second lens 220 is 319.1 mm.
  • the size of the light-emitting surface of the display 10 is 2.1 inches, and the size of each pixel is 24 microns.
  • the imaging field angle is 100°-105°, for example, 100°, within this angle range, the user can observe clear imaging.
  • the design result of one embodiment refers to Table 1 and Table 2, respectively lists the optical surface number (Surface) numbered sequentially from the human eye (aperture STOP) to the display screen, the curvature (C) of each optical surface on the optical axis ), the distance (T) between each surface on the optical axis from the human eye (diaphragm) to the display screen and the next optical surface.
  • the even-order aspheric coefficients ⁇ 2, ⁇ 3, ⁇ 4 where the aspheric coefficients can satisfy the following equation.
  • z is the coordinate along the optical axis
  • Y is the radial coordinate with the lens length as the unit
  • C is the curvature (1/R)
  • k is the cone coefficient (Coin Constant)
  • ⁇ i is the coefficient of each high-order term
  • 2i is the order of aspherical coefficient (the order of Aspherical Coefficient).
  • the spherical coefficient without high-order term reaches 4th order.
  • the thickness in Table 1 refers to the distance between the optical surface and the next optical surface
  • the positive value of the thickness refers to the distance from the display 10 to the human eye 70
  • the negative value of the thickness refers to the distance from the human eye 70 to the display. 10 directions of distance.
  • the material refers to the material between the optical surface and the next optical surface. Among them, the meaning of MIRROR (reflection) is not material, but means that the optical surface has a reflection effect.
  • the data represented by 4th in Table 2 is the fourth-order coefficient used to bring into the calculation formula of the corresponding surface type.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

一种光学模组和头戴显示设备。光学模组包括:显示器(10),发射用于成像显示的光线;胶合透镜(20),设于显示器(10)的出光方向,胶合透镜(20)包括沿光路的传播方向依次设置的第一透镜(210)和第二透镜(220),第一透镜(210)具有面向显示器(10)的第一表面(211)和背向显示器(10)的第二表面(212),第二透镜(220)具有面向显示器(10)的第三表面(221)和背向显示器(10)的第四表面(222),第二表面(212)与第三表面(221)胶合设置,第二表面(212)和第三表面(221)为平面,第四表面(222)朝向背离显示器(10)的方向凸起;分光元件(30),设于第一透镜(210)面向显示器(10)的一侧;第一四分之一波片(40),设于第一透镜(210)和第二透镜(220)之间;偏振反射膜(50),设于第一四分之一波片(40)和第二透镜(220)之间。该光学模组能够减少光学系统的光学总长,减小头戴显示设备的体积,便于用户穿戴。

Description

光学模组和头戴显示设备 技术领域
本实用新型涉及光学显示技术领域,尤其涉及一种光学模组和头戴显示设备。
背景技术
随着先进光学设计及加工技术、显示技术及处理器的发展和升级,虚拟现实(Virtual Reality,VR)产品的形态和种类层出不穷,其应用领域也愈加广泛。虚拟现实产品的主要工作原理是,显示器所显示的图像通过光学镜片的传递和放大后,其图像被人眼所接收,人眼观察到的是放大的虚像。图像经过放大,需要足够长的光程,因此光学系统的光学总长较长,造成头戴显示设备体积较大,不便于用户穿戴。
发明内容
基于此,针对现有头戴显示设备中的光学系统的光学总长较长,头戴显示设备体积较大,不便于用户穿戴的问题,有必要提供一种光学模组和头戴显示设备,旨在能够减少光学系统的光学总长,减小头戴显示设备的体积,便于用户穿戴。
为实现上述目的,本实用新型提出的一种光学模组,所述光学模组包括:
显示器,所述显示器发射用于成像显示的光线;
胶合透镜,所述胶合透镜设于所述显示器的出光方向,所述胶合透镜包括沿光路的传播方向依次设置第一透镜和第二透镜,所述第一透镜具有面向所述显示器的第一表面和背向所述显示器的第二表面,所述第二透镜具有面向所述显示器的第三表面和背向所述显示器的第四表面,所述第二表面与所述第三表面胶合设置,所述第二表面和所述第三表面为平面,所述第四表面朝向背离所述显示器的方向凸起;
分光元件,所述分光元件设于所述第一透镜面向所述显示器的一侧;
第一四分之一波片,所述第一四分之一波片设于所述第一透镜和所述第二透镜之间;以及
偏振反射膜,所述偏振反射膜设于所述四分之一波片和所述第二透镜之间;
定义所述显示器的像素尺寸为P,所述光学模组的全视场的光斑直径为D,则满足:D<2P。
可选地,所述光学模组还包括偏光膜,所述偏光膜设于所述第一透镜背离所述显示器的一侧。
可选地,所述偏光膜设于所述偏振反射膜和所述第二透镜之间,所述第一四分之一波片、所述偏振反射膜和所述偏光膜合成一整体膜层。
可选地,所述光学模组还包括第二四分之一波片,所述第二四分之一波片设于所述偏振反射膜远离所述显示器的一侧。
可选地,所述第二四分之一波片设于所述偏振反射膜和所述第二透镜之间;
或者,所述第二四分之一波片设于所述第二透镜的第四表面。
可选地,所述第一表面朝向所述显示器的方向凸起。
可选地,所述光学模组还包括增透膜,所述增透膜设于所述第四表面。
可选地,所述第一透镜的中心厚度为T1,所述第二透镜的中心厚度为T2,所述第一表面与所述显示器的出光面之间的距离为L,则满足:
4mm<T1<8mm,3mm<T2<5mm,10mm<L<15mm。
可选地,所述第一表面的半径值为R1,所述第一表面的圆锥系数为C1,所述第四表面的半径值为R4,所述第四表面的圆锥系数为C4,则满足:
60mm<R1<100mm,C1<10;
120mm<R4<200mm,C4<10。
此外,为了解决上述问题,本实用新型还提供一种头戴显示设备,所述头戴显示设备包括壳体和如上文所述光学模组,所述光学模组设于所述壳体,所述光学模组的光学总长为TTL,则满足:TTL<25mm。
本实用新型提出的技术方案中,显示器发射光线,发射的光线为圆偏振 光。光线在射向胶合透镜时,光线首先经过分光元件,一部光线透射分光元件,另一部分光线反射。透射分光元件的光线继续射向第一四分之一波片,圆偏振的光线的偏振状态发生改变,圆偏振光变换为线偏振光。线偏振的光线在射向偏振反射膜,此时,线偏振光的振动方向与偏振反射膜的透过方向不同,光线被反射。反射的光线依次经过第一四分之一波片和分光元件,光线再次经过分光元件时,光线被部分反射向胶合透镜。此时光线为圆偏振光,经过反射后,光线的旋转方向发生了改变,光线再次经过第一四分之一波片后再次转换为线偏振光,此时,线偏振光的偏振方向与偏振反射膜的透射方向相同,光线透过胶合镜组,在人眼位置成像。由此可知,光线通过胶合透镜时光线发生折反射,在这个过程中,光线不断的放大传递。在有限的空间内实现了图像的放大传递,利于减小光学总长。另外,通过第二表面和第三表面的平面胶合进一步使整体体积减小。进一步地,第二透镜的第四表面背离显示器的方向凸起,如此,可以会聚光线,进而减少整个系统的光学总长,利于减小头戴显示设备的体积,便于用户穿戴。并且本方案,通过全视场光斑直径小于两倍的像素尺寸,提高成像质量,使成像更加清晰。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本实用新型光学模组一实施例的结构示意图;
图2为图1中光学模组第一透镜和第二透镜的结构示意图;
图3为本实用新型光学模组另一实施例中第一四分之一波片、偏振反射膜和偏光膜的结构示意图;
图4为图1中光学模组的点列图;
图5为图1中光学模组的场曲与畸变图;
图6为图1中光学模组的色差图。
附图标号说明:
标号 名称 标号 名称
10 显示器 221 第三表面
110 光线 222 第四表面
20 胶合透镜 30 分光元件
210 第一透镜 40 第一四分之一波片
211 第一表面 50 偏振反射膜
212 第二表面 60 偏光膜
220 第二透镜 70 人眼
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
需要说明,本实用新型实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本实用新型中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介 间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
另外,本实用新型各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
头戴显示设备的显示原理也包括多种,例如,除了VR显示之外,还包括AR(Augmented Reality,增强现实)显示,这些头戴显示设备的所显示的图像需要经过光学镜片的传递和放大,在图像要经过放大的过程中,需要足够的空间进行光线的传递,光学系统的光学总长较长,造成头戴显示设备体积较大,不便于用户穿戴。
为了解决上述问题,参阅图1至图3所示,本实用新型提供一种光学模组,光学模组包括:显示器10、胶合透镜20、分光元件30、第一四分之一波片40和偏振反射膜50,显示器10发射用于成像显示的光线110,胶合透镜20设于显示器10的出光方向,分光元件30、第一四分之一波片40和偏振反射膜50沿光线110的传播方向依次设置。经过显示器10出射的光线110具有圆偏振状态。
其中,胶合透镜20包括沿光路的传播方向依次设置第一透镜210和第二透镜220,第一透镜210具有面向显示器10的第一表面211和背向显示器10的第二表面212,第二透镜220具有面向显示器10的第三表面221和背向显示器10的第四表面222,第二表面212与第三表面221胶合设置,第二表面212和第三表面221为平面,第四表面222朝向背离显示器10的方向凸起;通过第二表面212和第三表面221的平面胶合,第一透镜210和第二透镜220胶合在一起,胶合设置可以进一步减少透镜的整体体积。另外,平面的加工也更加容易,利用降低成本。同时,采用平面胶合的方式,第一透镜210和第二透镜220的对接更加简单,容易操作,便于提高胶合效率。
分光元件30设于第一透镜210面向显示器10的一侧;分光元件30的作用在于分光,让一部分光线110透射过去,另一部分光线110反射,例如半反半透膜。还可以是让一种状态的光线110透射,另一种状态的光线110反射,例如偏振反射膜50,偏振反射膜50具有透过轴,当光线110的偏振状态与透过轴同 向时,光线110透过,当光线110的偏振状态与透过轴不同向时,光线110被吸收或者被反射。
第一四分之一波片40设于第一透镜210和第二透镜220之间;第一四分之一波片40在于转换光线110的偏振状态,例如,将线偏振光转化为圆偏振光,或者将圆偏振光转化为线偏振光。偏振反射膜50设于四分之一波片和第二透镜220之间。偏振反射膜50具有偏振透过方向,也可以理解为透过轴,当光线110的偏振状态与透过轴同向时,光线110透过,当光线110的偏振状态与透过轴不同向时,光线110被反射。分光元件30、第一四分之一波片40以及偏振反射膜50可以为独立的光学器件,也可以为膜层结构,若为膜层结构时,可以粘贴设置,还可以采用镀膜的方式设置。定义显示器的像素尺寸为P,光学模组的全视场的光斑直径为D,则满足:D<2P。简单来说就是,全视场的光斑直径小于2倍的像素尺寸。光斑直径越小代表成像质量越高。例如,像素尺寸P为24um,则全视场的光斑直径D小于48um。例如,光斑直径还可以是15um,20.0um,25.0um,30.0um,35.0um,40.0um等。或者是其它小于48um的其它数值。当然,需要指出的是,光斑直径的尺寸是随着像素尺寸而变化的,只要全视场的光斑直径小于2倍的像素尺寸的范围,均在本方案的保护范围内。
本实施例提出的技术方案中,显示器10发射光线110,发射的光线110为圆偏振光。光线110在射向胶合透镜20时,光线110首先经过分光元件30,一部光线110透射分光元件30,另一部分光线110反射。透射分光元件30的光线110继续射向第一四分之一波片40,圆偏振的光线110的偏振状态发生改变,圆偏振光变换为线偏振光。线偏振的光线110在射向偏振反射膜50,此时,线偏振光的振动方向与偏振反射膜50的透过方向不同,光线110被反射。反射的光线110依次经过第一四分之一波片40和分光元件30,光线110再次经过分光元件30时,光线110被部分反射向胶合透镜20。此时光线110为圆偏振光,经过反射后,光线110的旋转方向发生了改变,光线110再次经过第一四分之一波片40后再次转换为线偏振光,此时,线偏振光的偏振方向与偏振反射膜50的透射方向相同,光线110透过胶合镜组,在人眼70位置成像。由此可知,光线110通过胶合透镜20时光线110发生折反射,在这个过程中,光线110不断的放大传递。在有限的空间内实现了图像的放大传递,利于减小光学总长。另外,通过第二表面212和第三表面221的平面胶合进一步使整体体积减小。进一步 地,第二透镜220的第四表面222背离显示器10的方向凸起,如此,可以会聚光线110,进而减少整个系统的光学总长,利于减小头戴显示设备的体积,便于用户穿戴。并且本方案,通过全视场光斑直径小于两倍的像素尺寸,提高成像质量,使成像更加清晰。
另外需要说明的是,通过第一透镜210和第二透镜220的胶合设置,光线110在经过胶合镜组时能够减少经过空气,进而减少由于经过不同折射率介质形成的鬼影和杂散光。
进一步地,第一透镜210和第二透镜220可以采用光学玻璃,光学玻璃能够保证成像质量。再者,为了减轻重量,减少加工成本,第一透镜210和第二透镜220可以采用光学塑料加工制作。例如,第一透镜210为COC(Cycloalkene Copolymer)环烯烃类共聚物材料,第二透镜220为COP(Cyclo Olefin Polymer)环烯烃聚合物材料,其中,光线110在第一透镜210内折反射,COC材料能够承受较高应力,光线110直接透射第二透镜220,COP材料应力要求较低。除此之外,第一透镜210和第二透镜220还可以选择OKP或者PMMA(methylmethacrylate)聚甲基丙烯酸甲酯等材料。
在上述实施例中,光线110在传播过程中,可能出现部分线偏振光的振动方向与偏振反射膜50的透射方向形成夹角,夹角范围在0°~90°之间,也就是说部分线偏振光的振动方向既不与偏振反射膜50的透射方向相同,也不垂直。如此光线110在经过偏振反射膜50后,会出现杂光,为了减少杂光,光学模组还包括偏光膜60,偏光膜60设于第一透镜210背离显示器10的一侧。偏光膜60具有透过方向,偏光膜60的透射方向与偏振反射膜50的透射方向相同。偏光膜60对经过的光线110进行滤除,与透射方向不同的光线110会被过滤吸收,从而保证经过光学模组的光线110能够保持一致的振动方向,减少杂光的出现。
在上述实施例中,为了便利光学模组的组装,偏光膜60设于偏振反射膜50和第二透镜220之间,第一四分之一波片40、偏振反射膜50和偏光膜60合成一整体膜层。通过一个整体膜层结构,能够压缩膜层厚度,减少每个膜层之间的光学胶层。同时还能够通过一个整体膜层的贴覆就可以完成三个膜层的安装。贴覆整体膜层时,在四分之一波片面向第一透镜210的表面和偏光膜60面向第二透镜220的表面设置光学胶层,通过光学胶层完成整体膜层的固定。
在本申请的另一实施例中,经过偏振反射膜50的光线110是线偏振光,而人眼70观察线偏振光时,成像效果质量较差。为此,光学模组还包括第二四分之一波片,第二四分之一波片设于偏振反射膜50远离显示器10的一侧。通过第二四分之一波片将线偏振光转化为圆偏振光,保证人眼70接收到的光线110是圆偏振的,从而提高成像质量。
进一步地,第二四分之一波片的设置位置包括两种。第一种设置位置是,第二四分之一波片设于偏振反射膜50和第二透镜220之间;如此,第二四分之一波片设置在第一透镜210和第二透镜220之间,通过透镜可以保护第二四分之一波片。第二四分之一波片、偏振反射膜50和第一四分之一波片40形成一个三合一的整体膜层结构。如果设置有偏光膜60,还可以是二四分之一波片、偏光膜60、偏振反射膜50和第一四分之一波片40形成一个四合一的整体膜层结构。此时第二四分之一波片贴合在第二透镜220的第三表面221。
另外一种设置位置是,第二四分之一波片设于第二透镜220的第四表面222。光线110经过第二透镜220的第四表面222后,在人眼70位置成像,如此,可以知道的是第二四分之一波片面向用户设置。
在本申请的一实施例中,为了进一步缩短光学总长,第一表面211朝向显示器10的方向凸起。通过第一表面211的凸起,以及第四表面222的凸起,可以使胶合透镜20整体形成一个双凸透镜的效果。由此可以进一步的缩短光线110的聚焦成像位置,减少整个系统的光学总长。需要说明的是,第一透镜210和第二透镜220均为平凸透镜。
在本申请的一实施例中,为了提高光线110的透过率,光学模组还包括增透膜,增透膜设于第四表面222。增透膜使经过的光线110数量变多,减少透镜对光线110的反射和吸收。另外,增透膜的设置可以是采用粘贴的方式,也可以采用镀膜的方式,粘贴的方式操作简便。镀膜的方式能够使增透膜的膜层更加牢固。
在本申请的一实施例中,第一透镜210的中心厚度为T1,第二透镜220的中心厚度为T2,第一表面211与显示器10的出光面之间的距离为L,则满足:
4mm<T1<8mm,3mm<T2<5mm,10mm<L<15mm。其中,L是指第一表面211与显示器10的出光面之间最接近的两点之间的距离。如果T1小于4mm,则第一透镜210太薄,如果T1大于8mm,则第一透镜210太厚,会增加光学模 组整体的体积。另外,第一透镜210太薄或者太厚都会导致成像质量降低。同样地,如果T2小于3mm,则第二透镜220太薄,如果T2大于5mm,则第二透镜220太厚,太厚会增加光学模组整体的体积,第二透镜220太薄或者太厚也会导致成像质量降低。如果L小于10mm,则第一透镜210和显示器10距离太近,光线110难以获得足够的光程,成像质量会降低。如果L大于15mm,则第一透镜210和显示器10距离太远,会增加光学模组整体的体积。
在本申请的一实施例中,第一表面211的半径值为R1,第一表面211的圆锥系数为C1,第四表面222的半径值为R4,第四表面222的圆锥系数为C4,则满足:
60mm<R1<100mm,C1<10;120mm<R4<200mm,C4<10;上述参数在相应的范围内灵活选择,从而保证成像质量。如果参数的选择超出相应的范围,容易导致成像质量降低。
参阅图4-图6所示,在第二表面212和第三表面221是平面的情况下,成像光斑小于48um。场曲小于1.2mm,最大视场位置的畸变小于33.5%。最大色散值小于229.7um,通过上述参数可知,光学模组满足设计要求,保证用户获得清晰度较高的成像。
本实用新型还提供一种头戴显示设备,头戴显示设备包括壳体和如上文光学模组,光学模组设于壳体,光学模组的光学总长为TTL,则满足:TTL<25mm。例如,TTL=24.6mm。由此可知,该光学模组的光学总长小于25mm。基于上述光学模组的设计,光学模组的焦距可以为23.2mm,第一透镜210的焦距为154.2mm,第二透镜220的焦距为319.1mm。显示器10的发光面的尺寸在2.1英寸,每个像素的尺寸为24微米。成像视场角为100°~105°,例如100°,在这角度范围内,用户能够观察到清晰的成像。
其中一个实施方式的设计结果参阅表一和表二,分别列有由人眼(光阑STOP)到显示屏依序编号的光学面号码(Surface)、在光轴上各光学面的曲率(C)、从人眼(光阑)到显示屏的光轴上各面与后一光学表面的距离(T)。以及偶次非球面系数α2、α3、α4,其中非球面系数可以满足如下的方程。
Figure PCTCN2021136825-appb-000001
其中,z是沿光轴方向的坐标,Y为以透镜长度为单位的径向坐标,C是曲率(1/R),k为圆锥系数(Coin Constant),αi是各高次项的系数,2i是非球面的高次方(the order of Aspherical Coefficient),本实施例中考虑到场曲的平缓,无高次项球面系数至4阶。
表一
Figure PCTCN2021136825-appb-000002
表二
Figure PCTCN2021136825-appb-000003
需要指出的是,表一中的厚度是指该光学面距离下一个光学面的距离,厚度的正值是指显示器10到人眼70方向的距离,厚度的负值是指人眼70到显示器10方向的距离。材质是指该光学面到下一个光学面之间都是这种材质,其中,MIRROR(反射)的含义并不是材质,而是表示该光学面具有反射效果。表二中的4th代表的数据,是用于带入相应面型计算公式的4阶系数。
以上仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的实用新型构思下,利用本实用新型说明书及附图内 容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。

Claims (10)

  1. 一种光学模组,其特征在于,所述光学模组包括:
    显示器,所述显示器发射用于成像显示的光线;
    胶合透镜,所述胶合透镜设于所述显示器的出光方向,所述胶合透镜包括沿光路的传播方向依次设置第一透镜和第二透镜,所述第一透镜具有面向所述显示器的第一表面和背向所述显示器的第二表面,所述第二透镜具有面向所述显示器的第三表面和背向所述显示器的第四表面,所述第二表面与所述第三表面胶合设置,所述第二表面和所述第三表面为平面,所述第四表面朝向背离所述显示器的方向凸起;
    分光元件,所述分光元件设于所述第一透镜面向所述显示器的一侧;
    第一四分之一波片,所述第一四分之一波片设于所述第一透镜和所述第二透镜之间;以及
    偏振反射膜,所述偏振反射膜设于所述四分之一波片和所述第二透镜之间;
    定义所述显示器的像素尺寸为P,所述光学模组的全视场的光斑直径为D,则满足:D<2P。
  2. 如权利要求1所述的光学模组,其特征在于,所述光学模组还包括偏光膜,所述偏光膜设于所述第一透镜背离所述显示器的一侧。
  3. 如权利要求2所述的光学模组,其特征在于,所述偏光膜设于所述偏振反射膜和所述第二透镜之间,所述第一四分之一波片、所述偏振反射膜和所述偏光膜合成一整体膜层。
  4. 如权利要求1所述的光学模组,其特征在于,所述光学模组还包括第二四分之一波片,所述第二四分之一波片设于所述偏振反射膜远离所述显示器的一侧。
  5. 如权利要求4所述的光学模组,其特征在于,所述第二四分之一波片 设于所述偏振反射膜和所述第二透镜之间;
    或者,所述第二四分之一波片设于所述第二透镜的第四表面。
  6. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述第一表面朝向所述显示器的方向凸起。
  7. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述光学模组还包括增透膜,所述增透膜设于所述第四表面。
  8. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述第一透镜的中心厚度为T1,所述第二透镜的中心厚度为T2,所述第一表面与所述显示器的出光面之间的距离为L,则满足:
    4mm<T1<8mm,3mm<T2<5mm,10mm<L<15mm。
  9. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述第一表面的半径值为R1,所述第一表面的圆锥系数为C1,所述第四表面的半径值为R4,所述第四表面的圆锥系数为C4,则满足:
    60mm<R1<100mm,C1<10;
    120mm<R4<200mm,C4<10。
  10. 一种头戴显示设备,其特征在于,所述头戴显示设备包括壳体和如权利要求1至9中任一项所述光学模组,所述光学模组设于所述壳体,所述光学模组的光学总长为TTL,则满足:TTL<25mm。
PCT/CN2021/136825 2021-06-28 2021-12-09 光学模组和头戴显示设备 WO2023273176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121462447.2 2021-06-28
CN202121462447.2U CN214751119U (zh) 2021-06-28 2021-06-28 光学模组和头戴显示设备

Publications (1)

Publication Number Publication Date
WO2023273176A1 true WO2023273176A1 (zh) 2023-01-05

Family

ID=78630201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136825 WO2023273176A1 (zh) 2021-06-28 2021-12-09 光学模组和头戴显示设备

Country Status (2)

Country Link
CN (1) CN214751119U (zh)
WO (1) WO2023273176A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214751119U (zh) * 2021-06-28 2021-11-16 歌尔光学科技有限公司 光学模组和头戴显示设备
CN114236864A (zh) * 2021-11-23 2022-03-25 青岛歌尔声学科技有限公司 光学模组及头戴显示设备
CN114236827A (zh) * 2021-11-30 2022-03-25 歌尔光学科技有限公司 一种光学模组以及头戴显示设备
CN114755830A (zh) * 2022-03-30 2022-07-15 南昌黑鲨科技有限公司 光学放大模组及具有该光学放大模组的vr显示设备
CN114895468A (zh) * 2022-05-19 2022-08-12 歌尔光学科技有限公司 光学模组以及头戴显示设备
WO2024020796A1 (zh) * 2022-07-26 2024-02-01 歌尔光学科技有限公司 光学模组以及头戴显示设备
CN117434731B (zh) * 2023-12-14 2024-03-15 南昌龙旗信息技术有限公司 光学模组以及vr显示设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190018255A1 (en) * 2017-07-11 2019-01-17 Google Llc Compact near-eye optical system including a refractive beam-splitting convex lens
CN209496201U (zh) * 2019-03-28 2019-10-15 歌尔科技有限公司 Vr光学系统及vr显示设备
US20200132994A1 (en) * 2018-07-16 2020-04-30 Shanghai Seeo Optronics Technology Co., Ltd. Virtual reality display device
CN212846157U (zh) * 2020-10-22 2021-03-30 青岛歌尔声学科技有限公司 成像结构和头戴显示设备
CN112596240A (zh) * 2020-12-21 2021-04-02 歌尔光学科技有限公司 成像光路和头戴显示设备
CN113448100A (zh) * 2021-06-28 2021-09-28 歌尔股份有限公司 光学模组和头戴显示设备
CN214751119U (zh) * 2021-06-28 2021-11-16 歌尔光学科技有限公司 光学模组和头戴显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190018255A1 (en) * 2017-07-11 2019-01-17 Google Llc Compact near-eye optical system including a refractive beam-splitting convex lens
US20200132994A1 (en) * 2018-07-16 2020-04-30 Shanghai Seeo Optronics Technology Co., Ltd. Virtual reality display device
CN209496201U (zh) * 2019-03-28 2019-10-15 歌尔科技有限公司 Vr光学系统及vr显示设备
CN212846157U (zh) * 2020-10-22 2021-03-30 青岛歌尔声学科技有限公司 成像结构和头戴显示设备
CN112596240A (zh) * 2020-12-21 2021-04-02 歌尔光学科技有限公司 成像光路和头戴显示设备
CN113448100A (zh) * 2021-06-28 2021-09-28 歌尔股份有限公司 光学模组和头戴显示设备
CN214751119U (zh) * 2021-06-28 2021-11-16 歌尔光学科技有限公司 光学模组和头戴显示设备

Also Published As

Publication number Publication date
CN214751119U (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023273176A1 (zh) 光学模组和头戴显示设备
WO2023273128A1 (zh) 光学模组和头戴显示设备
WO2023070808A1 (zh) 光学模组和头戴显示设备
WO2022135106A1 (zh) 一种成像光路和头戴显示设备
US7616382B2 (en) Image observation apparatus and image observation system
CN111929906B (zh) 图像显示结构和头戴显示设备
WO2022252516A1 (zh) 光学模组和头戴显示器
WO2018121010A1 (zh) 一种投影物镜及三维显示装置
WO2022227540A1 (zh) 光学镜组、光学系统和头戴显示设备
WO2022227538A1 (zh) 胶合镜组和头戴显示设备
CN113359303A (zh) 成像模组和头戴显示设备
CN114236828B (zh) 一种光学系统以及头戴显示设备
TWM596873U (zh) 微型頭戴式顯示器之光學系統
CN218003854U (zh) 光学模组以及头戴显示设备
JP2020030302A (ja) 観察光学系及びそれを有する観察装置
WO2022227541A1 (zh) 光学镜组和头戴显示设备
WO2023010728A1 (zh) 光学系统和头戴显示设备
CN113391447A (zh) 微型头戴显示器的光学系统
CN117270220B (zh) 光学成像装置以及头戴式显示设备
JP7406028B1 (ja) 光学系
CN113514957A (zh) 显示模组和头戴显示设备
CN211826725U (zh) 微型头戴显示器的光学系统
CN101646970B (zh) 眼镜式显示装置
CN116400481A (zh) 光学模组及vr设备
WO2023097762A1 (zh) 光学系统及头戴显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE