WO2022252516A1 - 光学模组和头戴显示器 - Google Patents

光学模组和头戴显示器 Download PDF

Info

Publication number
WO2022252516A1
WO2022252516A1 PCT/CN2021/133325 CN2021133325W WO2022252516A1 WO 2022252516 A1 WO2022252516 A1 WO 2022252516A1 CN 2021133325 W CN2021133325 W CN 2021133325W WO 2022252516 A1 WO2022252516 A1 WO 2022252516A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
reflective
optical module
reflective surface
Prior art date
Application number
PCT/CN2021/133325
Other languages
English (en)
French (fr)
Inventor
谢明宪
徐嘉谦
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2022252516A1 publication Critical patent/WO2022252516A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the invention relates to the technical field of optical display, in particular to an optical module and a head-mounted display.
  • HMD Head Mount Display
  • the present invention proposes an optical module, the optical module includes:
  • a display component for emitting light in a circularly polarized state
  • the first lens is arranged in the light emitting direction of the display component, the first lens has a first reflective surface, after the light enters the first lens, the light is reflected by the first reflective surface, and eject the first lens;
  • the second lens the second lens is arranged in the light emitting direction of the first lens, the second lens has a second reflective surface and a third reflective surface, light enters the second lens, and passes through the first lens The second reflective surface reflects toward the third reflective surface;
  • the first quarter-wave plate is disposed on the third reflective surface
  • a polarized reflective film is disposed on a side of the first quarter-wave plate away from the second reflective surface.
  • the optical module includes a light splitting element, and the light splitting element is arranged on the second reflective surface.
  • the light splitting element is a semi-reflective and semi-transparent film, and the semi-reflective and semi-transparent film is arranged on the second reflective surface.
  • the first lens and the second lens are glued together;
  • the first lens and the second lens are integrated;
  • first lens and the second lens are arranged separately and spaced apart from each other.
  • the light is directed toward the first reflective surface, and the incident angle of the light on the first reflective surface is greater than or equal to the critical angle of total reflection;
  • the optical module further includes a reflective film, and the reflective film is disposed on the first reflective surface.
  • the first lens further includes a first light incident surface and a first light exit surface, the first light incident surface is disposed facing the display component, and the first light exit surface is disposed facing the second lens, Both the first light incident surface and the first light exit surface are connected to the first reflective surface;
  • At least one of the first light incident surface and the first light exit surface is a spherical surface, an aspherical surface or a free-form surface.
  • the second reflective surface intersects the third reflective surface at an end away from the first lens, the second lens includes a second light incident surface, and the second light incident surface faces the a first lens, the second incident surface is connected to the second reflective surface and the third reflective surface;
  • At least one of the second light incident surface and the second reflective surface is a spherical surface, an aspherical surface or a free-form surface.
  • the optical module further includes a third lens, the third lens is disposed on the second reflective surface, the third lens includes a third light incident surface, the third light incident surface and the The third reflective surface is opposite to each other, and the third light incident surface and the third reflective surface are parallel to each other.
  • the light emitted by the display component is imaged at the position of the human eye, and the distance from the third reflective surface to the position of the human eye is defined as L, then:
  • the first reflective surface and the third reflective surface are located on the same plane.
  • the display assembly includes a display, a linear polarizer and a second quarter-wave plate, the display is used to emit light, and the linear polarizer and the second quarter-wave plate are The direction of propagation is set sequentially.
  • the optical module further includes an achromatic lens, and the achromatic lens is arranged between the first lens and the display component.
  • the second reflective surface includes a first reflective area and a second reflective area
  • the first reflective area receives light passing through the first lens and reflects it toward the third reflective surface
  • the second reflective area receives the light reflected by the polarized reflective film, and reflects the light again to the third reflective surface
  • the third lens and the second lens are at least spaced apart from the position of the first reflective area .
  • the present invention also provides a head-mounted display, the head-mounted display includes a casing and an optical module as described above, and the optical module is arranged on the casing.
  • the display component emits light in a circularly polarized state, and after the light hits the first lens, it is reflected on the first reflective surface of the first lens, and then the light enters the second lens. The light is also reflected on the second reflective surface of the second lens, and then the light travels to the third reflective surface.
  • the third reflective surface is provided with a first quarter-wave plate and a polarized reflective film, the circularly polarized light passes through the first quarter-wave plate, and the circularly polarized light is converted into linearly polarized light, and the polarized reflective film has a polarized transmission direction, at this time
  • the polarization direction of the linearly polarized light is different from the polarized transmission direction of the polarized reflective film, and the linearly polarized light is reflected by the polarized reflective film back to the first quarter-wave plate and converted into circularly polarized light.
  • the light is directed to the second reflective surface of the second lens again, and under the action of the second reflective surface, the circularly polarized light is reflected to the first quarter-wave plate again, and the rotation direction of the circularly polarized light is changed.
  • the circularly polarized light passes through the first quarter-wave plate, it is converted into linearly polarized light again.
  • the polarization direction of the linearly polarized light is in the same direction as the polarization transmission direction of the polarized reflective film, and the light passes through the polarized reflective film and is displayed at the position of the human eye. imaging.
  • the light emitted by the display component passes through the first lens and the second lens in sequence, and the light first passes through the first reflective surface, then passes through the second reflective surface, and is directed to the third reflective surface. After being irradiated to the third reflective surface, it is reflected back to the second reflective surface under the action of the first quarter-wave plate and the polarized reflective film, and the second reflective surface reflects the light again.
  • the polarization state of the light is circular Polarization
  • the light will become linearly polarized light after passing through the first quarter-wave plate again, and the vibration direction is the same as the transmission direction of the polarized reflective film, so that the light can pass through the polarized reflective surface.
  • the light is reflected at least four times, and back and forth within the second lens. It can be seen that the arrangement of the second lens avoids increasing the propagation path of light, and can reduce additional lenses.
  • the thickness of the processed optical system is thinner, which is beneficial to the miniaturization of the head-mounted display.
  • FIG. 1 is a schematic structural view of an embodiment of an optical module of the present invention
  • FIG. 2 is a schematic structural diagram of a third reflective surface in another embodiment of the optical module of the present invention.
  • label name label name 10 Display components 311 first reflective area 110 the light 312 second reflective area 120 monitor 320 third reflective surface 130 linear polarizer 330 Second incident surface 140 second quarter wave plate 40 third lens 20 first lens 410 third incident surface 210 first reflective surface 70 Achromatic lens 220 first incident surface 80 eye position 230 first light emitting surface 910 first quarter wave plate 30 second lens 920 polarized reflective film 310 second reflective surface the the
  • connection and “fixation” should be understood in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • the display principles of the head-mounted display include various, for example, VR (Virtual Reality, virtual reality) display and AR (Augmented Reality, augmented reality) display.
  • VR Virtual Reality, virtual reality
  • AR Augmented Reality, augmented reality
  • the images displayed by these head-mounted displays need to be transmitted and enlarged by optical lenses,
  • the head-mounted display has a large volume and is inconvenient for the user to wear.
  • the optical module includes: a display assembly 10, a first lens 20, a second lens 30, a first quarter-wave plate 910 and polarizing reflective film 920.
  • the first lens 20 and the second lens 30 are arranged in sequence along the propagation direction of the light 110 , and the first quarter-wave plate 910 and the polarizing reflection film 920 are arranged on the second lens 30 .
  • the material of the first lens 20 and the second lens 30 can be optical glass or optical plastic. Optical glass has better optical properties, and optical plastic is easy to process and shape.
  • the first quarter-wave plate 910 and the polarized reflection film 920 can be independent optical elements, or can be a film structure attached to the second lens 30.
  • the display component 10 is used to emit circularly polarized light 110; the circularly polarized light 110 may be left-handed polarized light or right-handed polarized light.
  • the light-emitting principle of the display component 10 includes many kinds, for example, LCOS (Liquid Crystal on Silicon, liquid crystal on silicon), or AMOLED (Active-matrix organic light-emitting diode, active-matrix organic light-emitting diode) and so on.
  • the first lens 20 is arranged in the light emitting direction of the display assembly 10.
  • the first lens 20 has a first reflective surface 210. After the light 110 enters the first lens 20, the light 110 is reflected by the first reflective surface 210 and exits the first lens 20.
  • the function of the first reflective surface 210 is to reflect the light 110. After the light 110 in the circularly polarized state is reflected by the first reflective surface 210, the direction of rotation changes, for example, left-handed polarized light becomes right-handed polarized light, or Rotated polarized light becomes left-handed polarized light.
  • the second lens 30 is arranged in the light emitting direction of the first lens 20, the second lens 30 has a second reflective surface 310 and a third reflective surface 320, the light 110 enters the second lens 30, and is reflected by the second reflective surface 310 to the
  • the three reflective surfaces 320 ; the first reflective surface 210 , the second reflective surface 310 and the third reflective surface 320 are used to reflect the light 110 to ensure that the diameter of the light 110 gradually expands, and then to ensure that the light 110 is enlarged and imaged at the position 80 of the human eye.
  • the first quarter-wave plate 910 is arranged on the third reflective surface 320; the first quarter-wave plate 910 is a polarization conversion device, and the first quarter-wave plate 910 can convert linearly polarized light into circularly polarized light , can also convert circularly polarized light into linearly polarized light.
  • the polarizing reflective film 920 is disposed on a side of the first quarter-wave plate 910 away from the second reflective surface 310 .
  • the polarized reflective film 920 has a polarized transmission direction, which can also be understood as a transmission axis.
  • the reflective film 920 reflects.
  • the display component 10 emits light 110 in a circularly polarized state. After the light 110 hits the first lens 20, it is reflected on the first reflective surface 210 of the first lens 20, and then the light 110 enters the to the second lens 30 . The light 110 is also reflected on the second reflective surface 310 of the second lens 30 , and then the light 110 is directed toward the third reflective surface 320 .
  • the circularly polarized light 110 is called circularly polarized light for short, and the linearly polarized light 110 is called linearly polarized light for short.
  • a first quarter-wave plate 910 and a polarizing reflective film 920 are provided on the third reflective surface 320.
  • the circularly polarized light 110 passes through the first quarter-wave plate 910, and the circularly polarized light is converted into linearly polarized light.
  • the polarized reflective film 920 It has a polarized transmission direction. At this time, the polarization direction of the linearly polarized light is different from that of the polarized reflective film 920.
  • the linearly polarized light is reflected by the polarized reflective film 920 back to the first quarter-wave plate 910 and converted into circularly polarized light.
  • the light 110 strikes the second reflective surface 310 of the second lens 30 again, under the action of the second reflective surface 310, the circularly polarized light is reflected to the first quarter-wave plate 910 again, and the rotation direction of the circularly polarized light changes .
  • the circularly polarized light passes through the first quarter-wave plate 910, it is converted into linearly polarized light again.
  • the polarization direction of the linearly polarized light is in the same direction as the polarized transmission direction of the polarized reflective film 920, and the light 110 passes through the polarized reflective film 920.
  • the eye position 80 shows the imaging. It can be seen from the above that the light 110 emitted by the display component 10 passes through the first lens 20 and the second lens 30 in sequence, and the light 110 first passes through the first reflective surface 210 , then passes through the second reflective surface 310 , and is directed toward the third reflective surface 320 .
  • the second reflective surface 310 After reaching the third reflective surface 320 , it is reflected back to the second reflective surface 310 under the action of the first quarter-wave plate 910 and the polarizing reflective film 920 , and the second reflective surface 310 reflects the light 110 again.
  • the polarization state of the light is circularly polarized, and the light will become linearly polarized light after passing through the first quarter-wave plate 910 again, and the vibration direction is the same as the transmission direction of the polarizing reflection film 920, so that the light can be through polarized reflective surfaces.
  • the light 110 has undergone at least four reflections, and is turned back and forth in the second lens 30 . It can be seen that the arrangement of the second lens 30 avoids increasing the propagation path of the light 110 , and can reduce additional lenses.
  • the thickness of the processed optical system is thinner, which is beneficial to the miniaturization of the head-mounted display.
  • the first quarter-wave plate 910 and the polarized reflection film 920 are located on the side facing the human eye 80 , that is, the third reflection surface 320 .
  • the light 110 forms an image at the human eye position 80 , and passes through the third reflective surface 320 , the first quarter-wave plate 910 and the polarizing reflective film 920 in sequence when leaving the second lens 30 .
  • the optical module in order to improve the reflection effect of the second reflective surface 310 , includes a light splitting element, and the light splitting element is disposed on the second reflective surface 310 .
  • the function of the light splitting element is to reflect the light 110 reflected by the polarized reflective film 920 back to the second reflective surface 310 again.
  • the first case is that the optical module is applied to a VR head-mounted display. At this time, no external light is required to enter the human eye. All the light rays 110 toward the second reflective surface 310 are reflected.
  • the second situation is that the optical module is applied to the AR head-mounted display. At this time, external light needs to enter the human eye.
  • the light splitting element can be a semi-reflective and semi-permeable film to ensure that the external light can enter the optical module.
  • the semi-reflective and semi-permeable film is arranged on the second reflective surface 310, and the light 110 reflected from the second reflective surface 310, under the action of the semi-reflective and semi-permeable film, part of the light 110 is transmitted, and the other part of the light 110 is reflected, making full use of the reflected light. Ray 110.
  • the reflected light 110 satisfies the condition of passing through the polarizing reflective film 920 , that is, the polarization direction is the same as the transmitting direction of the polarizing reflective film 920 .
  • the transflective film also has the function of transmission. When the external light hits the transflective film, part of the light is transmitted and the other part is reflected, so that the transmitted external light can be fully utilized.
  • the transmitted light passes through the first quarter-wave plate 910 and the polarized reflection film 920 in sequence, and forms an image at the human eye position 80 .
  • the incident angle is greater than or equal to the critical angle of total reflection, and the light 110 is directed from the optically denser medium to the optically rarer medium, satisfying the total In the reflection condition, the light 110 is reflected toward the third reflection surface 320 .
  • the first case is that the first lens 20 and the second lens 30 are cemented together; at this time, the first lens 20 and the second lens 30 are two independent optical elements.
  • the The first lens 20 and the second lens 30 are glued together. It can also prevent impurities such as dust from falling into the optical module.
  • the second case is that the first lens 20 and the second lens 30 are integrated; in this case, the first lens 20 and the second lens 30 are an integral structure.
  • the overall structure is easy to place during installation, the operation is more convenient, and it is convenient to improve the efficiency of assembly work.
  • the third situation is that the first lens 20 and the second lens 30 are arranged separately and spaced apart from each other.
  • the first lens 20 and the second lens 30 are separately provided.
  • the light 110 passes through the first lens 20 , the light 110 is refracted, and the propagation direction of the light 110 changes.
  • the light 110 travels from the air to the second lens 30 , the light 110 is refracted again. Through two refractions, the light 110 is incident on the second reflective surface 310 , which can satisfy the condition of total reflection of light.
  • the placement positions of the first lens 20 and the second lens 30 are also more flexible.
  • other media other than air may also be provided at the position between the first lens 20 and the second lens 30 .
  • the first situation is that the light 110 shoots to the first reflective surface 210, the incident angle of the light 110 on the first reflective surface 210 is greater than or equal to the critical angle of total reflection, the outside of the first lens 20 is air, and the refraction of the first lens 20 The rate of light is greater than that of air, so the light 110 travels from the optically denser medium to the optically rarer medium on the first reflection surface 210 , satisfying the total reflection condition of light, and the light 110 is reflected to the second lens 30 .
  • the optical module further includes a reflective film, and the reflective film is disposed on the first reflective surface 210 .
  • the reflective film can reflect the received light 110 to the second lens 30 .
  • a mirror reflection effect can be formed by a reflective film.
  • the first lens 20 further includes a first light incident surface 220 and a first light exit surface 230, the first light incident surface 220 is disposed facing the display component 10, and the first light exit surface 230 faces the second lens 30 It is provided that both the first light incident surface 220 and the first light exit surface 230 are connected to the first reflective surface 210; it can be seen that the first lens 20 has three optical surfaces. For example, a triangular cross section is possible. The arrangement of three optical surfaces can not only ensure that the first lens 20 functions, but also reduce the arrangement of optical surfaces, so that the structure of the first lens 20 is simpler, and it is also convenient to manufacture.
  • At least one of the first light incident surface 220 and the first light exit surface 230 is a spherical surface, an aspheric surface or a free-form surface
  • the first light-incidence surface 220 can be any one of a spherical surface, an aspherical surface or a free-form surface
  • the light-emitting surface 230 may also be any one of a spherical surface, an aspheric surface, or a free-form surface.
  • the spherical surface is easy to process and shape, and can effectively converge the light 110 when the spherical surface is a convex surface.
  • the spherical surface When the spherical surface is a concave surface, it can effectively disperse the light 110 and facilitate image enlargement.
  • the light 110 is prone to aberrations during the transmission process, and the aberrations can be corrected through the arrangement of the aspheric surface and the free-form surface, and the imaging quality can be improved.
  • the second reflective surface 310 and the third reflective surface 320 intersect at an end away from the first lens 20
  • the second lens 30 includes a second incident surface 330
  • the second incident surface 330 faces the first lens 20
  • a lens 20, the second light incident surface 330 is connected to the second reflective surface 310 and the third reflective surface 320; it can be seen that the second lens 30 also has three optical surfaces, and the arrangement of the three optical surfaces can ensure the first
  • the function of the second lens 30 can also reduce the arrangement of the optical surface, so that the structure of the second lens 30 is simple and convenient for processing and manufacturing.
  • the second light incident surface 330 and the second reflective surface 310 is spherical, aspheric or free-form surface
  • the second light incident surface 330 can be any one of spherical, aspheric or free-form surface.
  • the second reflective surface 310 may also be a spherical surface, an aspherical surface or a free-form surface.
  • the spherical surface is easy to process and shape, and can effectively converge the light 110 when the spherical surface is a convex surface. When the spherical surface is a concave surface, it can effectively disperse the light 110 and facilitate image enlargement.
  • the light 110 is prone to aberrations during the transmission process, and the aberrations can be corrected through the arrangement of the aspheric surface and the free-form surface, and the imaging quality can be improved.
  • first light incident surface 220 , the first light exit surface 230 , the second light incident surface 330 and the second reflection surface 310 may also be planes, which are easy to process and lower in cost.
  • the optical module when the optical module is applied in an AR head-mounted display, the optical module further includes a third lens 40, the third lens 40 is arranged on the second reflective surface 310, and the third lens 40 includes a third
  • the light incident surface 410 , the third light incident surface 410 and the third reflective surface 320 are disposed opposite to each other, and the third light incident surface 410 and the third reflective surface 320 are parallel to each other.
  • External light enters the third lens 40 through the third light incident surface 410 , and the third lens 40 can analyze and process the external light to ensure that the external light can be clearly imaged at the position 80 of the human eye.
  • the third light incident surface 410 and the third reflective surface 320 are parallel to each other to facilitate the installation of the optical module.
  • the light emitting surface of the third lens 40 has the same structure as the second reflecting surface 310 of the second lens 30 .
  • the distance between the third light incident surface 410 and the third reflective surface 320 is defined as D, which satisfies: D ⁇ 12mm.
  • the distance between the third light incident surface 410 and the third reflective surface 320 can be understood as the thickness of the optical module, and it can be seen that the thickness of the optical module is less than 12mm, which is relatively thin. In the range of 12 mm, smooth refraction and reflection of the light 110 in the second lens 30 can also be ensured. If the thickness is greater than 12mm, the thickness is too thick, which is not conducive to the miniaturization of the head-mounted display.
  • the light 110 emitted by the display component 10 forms an image at the human eye position 80 , and the distance from the third reflective surface 320 to the human eye position 80 is defined as L, which satisfies: 12mm ⁇ L ⁇ 18mm. It can be seen that the position 80 of the human eye is closer to the position of the optical module, which is also conducive to the miniaturization of the head-mounted display. If L is greater than 18mm, the volume of the head-mounted display is too large. If L is less than 12mm, the human eye is too close to the optical module, which will affect the user's viewing. Three reflective surfaces 320 .
  • the distance between the middle position of the display component 10 and the bottom end of the third lens 40 as H, it satisfies: 35.0mm ⁇ H ⁇ 45.0mm, it can be seen that the height of the optical module is small, which is also beneficial to the head-mounted display miniaturization.
  • the first reflective surface 210 and the third reflective surface 320 are located on the same plane, which facilitates the positioning of the first lens 20 and the second lens 30.
  • the position of one lens facilitates the determination of the position of another lens. For example, after the position of the first lens 20 is determined, the position of the second lens 30 can be quickly determined.
  • the display assembly 10 includes a display 120 , a linear polarizer 130 and a second quarter wave plate 140 .
  • the display 120 is used to emit light, and at this time, the polarization state of the light can be various.
  • Both the linear polarizer 130 and the second quarter-wave plate 140 are disposed between the display 120 and the first lens 20 , and the linear polarizer 130 and the second quarter-wave plate 140 are sequentially disposed along the propagation direction of the light 110 .
  • the light 110 is first uniformly converted into linearly polarized light by the linear polarizer 130, and then the light 110 is uniformly converted into a uniform rotation direction by the second quarter-wave plate 140 of circular polarization.
  • the light 110 is prone to chromatic aberration during transmission.
  • the optical module further includes an achromatic lens 70 , and the achromatic lens 70 is disposed between the first lens 20 and the display component 10 . After the light 110 passes through the lens of the achromatic lens 70 , it can ensure that the light 110 with different wavelengths is imaged on the same focal plane.
  • the achromatic lens 70 can be combined with two lenses with high and low refractive indices. A high refractive index material lens can also be used.
  • the second reflection surface 310 includes a first reflection area 311 and a second reflection area 312, the first reflection area 311 receives the light 110 passing through the first lens 20 and reflects it to The third reflective surface 320, the second reflective area 312 receives the light 110 reflected by the polarized reflective film 920, and reflects the light 110 to the third reflective surface 320 again, and the third lens 40 and the second lens 30 correspond to at least the first The reflection areas 311 are arranged at intervals.
  • the light 110 from the first lens 20 shoots to the first reflection area 311, and the second lens 30 and the third lens 40 are arranged at intervals in the first reflection area 311, and the second lens 30 and the third lens 40 are arranged at intervals in the first reflection area 311.
  • a reflection area 311 forms an air gap, and the refractive index of the second lens 30 is greater than that of air, which can also meet the total reflection of light. It is also possible to avoid consideration of the refractive index of the third lens 40 . Simplify the design process. It should be noted that for the convenience of processing and assembly, the space between the second lens 30 and the third lens 40 extends toward the second reflection area 312 . Or it can be understood that there is no contact between the second lens 30 and the third lens 40 , and the second lens 30 and the third lens 40 are fixed by other components such as a mirror frame.
  • the present invention also provides a head-mounted display.
  • the head-mounted display includes a casing and an optical module as above, and the optical module is arranged on the casing.
  • the casing can provide an installation space for supporting the optical module, and the optical module is arranged in the casing, and can also prevent water vapor or dust from the external environment from falling into the interior of the optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光学模组和头戴显示器。光学模组包括:显示组件(10)、第一透镜(20)、第二透镜(30)、第一四分之一波片(910)和偏振反射膜(920),显示组件(10)用于发射圆偏振状态的光线;第一透镜(20)设于显示组件(10)的出光方向,第一透镜(20)具有第一反射面(210),光线射入第一透镜(20)后,光线经第一反射面(210)反射,并射出第一透镜(20);第二透镜(30)设于第一透镜(20)的出光方向,第二透镜(30)具有第二反射面(310)和第三反射面(320),光线射入第二透镜(30),并经第二反射面(310)反射向第三反射面(320);第一四分之一波片(910)设于第三反射面(320);偏振反射膜(920)设于第一四分之一波片(910)背离第二反射面(310)的一侧。本发明的光学模组能够减少光学系统的厚度,有利于头戴显示器的小型化,便于用户穿戴。

Description

光学模组和头戴显示器 技术领域
本发明涉及光学显示技术领域,尤其涉及一种光学模组和头戴显示器。
背景技术
随着先进光学设计及加工技术、显示技术及处理器的发展和升级,头戴显示器(Head Mount Display,HMD)产品的形态和种类层出不穷,其应用领域也愈加广泛。头戴显示器所显示的图像需要通过光学镜片传递至人眼。图像经过放大传递,需要足够长的光程,由此造成光学系统的厚度较厚,导致头戴显示器体积较大。
发明内容
基于此,针对现有头戴显示器中的光学系统的厚度较厚,导致头戴显示器体积较大的问题,有必要提供一种光学模组和头戴显示器,旨在能够减少光学系统的厚度,减小头戴显示器的体积。
为实现上述目的,本发明提出的一种光学模组,所述光学模组包括:
显示组件,所述显示组件用于发射圆偏振状态的光线;
第一透镜,所述第一透镜设于所述显示组件的出光方向,所述第一透镜具有第一反射面,光线射入所述第一透镜后,光线经所述第一反射面反射,并射出所述第一透镜;
第二透镜,所述第二透镜设于所述第一透镜的出光方向,所述第二透镜具有第二反射面和第三反射面,光线射入所述第二透镜,并经所述第二反射面反射向第三反射面;
第一四分之一波片,所述第一四分之一波片设于所述第三反射面;以及
偏振反射膜,所述偏振反射膜设于所述第一四分之一波片背离所述第二反射面的一侧。
可选地,所述光学模组包括分光元件,所述分光元件设于所述第二反射 面。
可选地,所述分光元件为半反半透膜,所述半反半透膜设于所述第二反射面。
可选地,所述第一透镜和所述第二透镜胶合设置;
或者,所述第一透镜和所述第二透镜一体式设置;
或者,所述第一透镜和所述第二透镜分体式设置,且相互间隔。
可选地,光线射向所述第一反射面,光线在所述第一反射面的入射角大于或等于全反射临界角;
或者,所述光学模组还包括反光膜,所述反光膜设于所述第一反射面。
可选地,所述第一透镜还包括第一入光面和第一出光面,所述第一入光面面向所述显示组件设置,所述第一出光面面向所述第二透镜设置,所述第一入光面和所述第一出光面均连接于所述第一反射面;
所述第一入光面和所述第一出光面至少其中之一为球面、非球面或者自由曲面。
可选地,所述第二反射面与所述第三反射面于远离所述第一透镜的一端相交,所述第二透镜包括第二入光面,所述第二入光面朝向所述第一透镜,所述第二入光面连接于所述第二反射面和所述第三反射面;
所述第二入光面和所述第二反射面至少其中之一为球面、非球面或者自由曲面。
可选地,所述光学模组还包括第三透镜,所述第三透镜设于所述第二反射面,所述第三透镜包括第三入光面,所述第三入光面和所述第三反射面相对设置,且所述第三入光面和所述第三反射面相互平行。
可选地,定义所述第三入光面和所述第三反射面之间的距离为D,则满足:
D<12mm。
可选地,所述显示组件发射的光线于人眼位置成像,定义所述第三反射面至人眼位置的距离为L,则满足:
12mm<L<18mm。
可选地,所述第一反射面和所述第三反射面位于同一平面。
可选地,所述显示组件包括显示器、线偏振器和第二四分之一波片,所述显示器用于发射光线,所述线偏振器和所述第二四分之一波片沿光线的传 播方向依次设置。
可选地,所述光学模组还包括消色差透镜,所述消色差透镜设于所述第一透镜和所述显示组件之间。
可选地,所述第二反射面包括第一反射区和第二反射区,所述第一反射区接收经所述第一透镜的光线并反射向所述第三反射面,所述第二反射区接收经所述偏振反射膜反射的光线,并再次将光线反射向所述第三反射面,所述第三透镜与所述第二透镜之间至少于所述第一反射区位置间隔设置。
此外,为了解决上述问题,本发明还提供一种头戴显示器,所述头戴显示器包括壳体和如上文所述光学模组,所述光学模组设于所述壳体。
本发明提出的技术方案中,显示组件发射圆偏振状态的光线,光线在射向第一透镜后,在第一透镜的第一反射面发生了反射,然后光线进入到第二透镜。光线在第二透镜的第二反射面也发生了反射,之后光线射向第三反射面。第三反射面设置有第一四分之一波片和偏振反射膜,圆偏振的光线经过第一四分之一波片,圆偏光转化为线偏光,偏振反射膜具有偏振透射方向,此时线偏光的偏振方向与偏振反射膜的偏振透射方向不同,线偏光被偏振反射膜反射回第一四分之一波片,并转化为圆偏振光。光线再次射向第二透镜的第二反射面,在第二反射面的作用下,圆偏振光再次反射向第一四分之一波片,并且圆偏振光的旋转方向发生改变。圆偏振光经过第一四分之一波片后,再次转化为线偏光,此时线偏光的偏振方向与偏振反射膜的偏振透射方向同向,光线穿过偏振反射膜,在人眼位置显示成像。由上述可见,显示组件发射的光线依次经过第一透镜和第二透镜,光线首先经过第一反射面,再经过第二反射面,射向第三反射面。射向第三反射面后,在第一四分之一波片和偏振反射膜的作用下被反射回第二反射面,第二反射面再次将光线反射,此时,光线的偏振状态为圆偏振,光线再次经过第一四分之一波片后会变为线偏振光且振动方向与偏振反射膜的透过方向同向,从而可以使光线透过偏振反射面。光线至少经过了四次反射,且来回在第二透镜内折返。由此可知通过第二透镜的设置,避免增加光线传播路径,可以减少另外增加透镜。使加工制作的光学系统的厚度较薄,有利于头戴显示器的小型化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明光学模组一实施例的结构示意图;
图2为本发明光学模组另一实施例中第三反射面的结构示意图。
附图标号说明:
标号 名称 标号 名称
10 显示组件 311 第一反射区
110 光线 312 第二反射区
120 显示器 320 第三反射面
130 线偏振器 330 第二入光面
140 第二四分之一波片 40 第三透镜
20 第一透镜 410 第三入光面
210 第一反射面 70 消色差透镜
220 第一入光面 80 人眼位置
230 第一出光面 910 第一四分之一波片
30 第二透镜 920 偏振反射膜
310 第二反射面    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有 作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
头戴显示器的显示原理包括多种,例如,VR(Virtual Reality,虚拟现实)显示和AR(Augmented Reality,增强现实)显示,这些头戴显示器的所显示的图像需要经过光学镜片的传递和放大,相关技术中,头戴显示器体积较大,不便于用户穿戴。
为了解决上述问题,参阅图1和图2所示,本发明提供一种光学模组,光学模组包括:显示组件10、第一透镜20、第二透镜30、第一四分之一波片910和偏振反射膜920。第一透镜20和第二透镜30沿光线110的传播方向依次设置,第一四分之一波片910和偏振反射膜920设于第二透镜30。第一透镜20和第二透镜30的材质可以为光学玻璃,也可以是光学塑料,光学玻璃的光学特性更好,光学塑料便于加工成型。第一四分之一波片910和偏振反射膜920可以为 独立的光学元件,也可以为依附于第二透镜30的膜层结构。
显示组件10用于发射圆偏振状态的光线110;圆偏振状态的光线110可以是左旋偏振光,还可以是右旋偏振光。显示组件10的发光原理包括多种,例如,LCOS(Liquid Crystal on Silicon,硅基液晶),或者是AMOLED(Active-matrix organic light-emitting diode,有源矩阵有机发光二极体)等。
第一透镜20设于显示组件10的出光方向,第一透镜20具有第一反射面210,光线110射入第一透镜20后,光线110经第一反射面210反射,并射出第一透镜20;第一反射面210的作用在于反射光线110,圆偏振状态的光线110在经过第一反射面210的反射后,旋转方向发生改变,例如,左旋偏振光变为右旋偏振光,或者是右旋偏振光变为左旋偏振光。
第二透镜30设于第一透镜20的出光方向,第二透镜30具有第二反射面310和第三反射面320,光线110射入第二透镜30,并经第二反射面310反射向第三反射面320;第一反射面210、第二反射面310和第三反射面320的作用在于反射光线110,保证光线110的直径逐渐扩大,继而保证光线110在人眼位置80放大成像。
第一四分之一波片910设于第三反射面320;第一四分之一波片910是一种偏振转化器件,第一四分之一波片910可以将线偏光转化为圆偏光,也可以将圆偏光转化为线偏光。偏振反射膜920设于第一四分之一波片910背离第二反射面310的一侧。偏振反射膜920具有偏振透射方向,也可以理解为透过轴,光线110的偏振方向与偏振反射膜920的透过轴同向才能使光线110透过偏振反射膜920,否则光线110会被偏振反射膜920反射。
本实施例提出的技术方案中,显示组件10发射圆偏振状态的光线110,光线110在射向第一透镜20后,在第一透镜20的第一反射面210发生了反射,然后光线110进入到第二透镜30。光线110在第二透镜30的第二反射面310也发生了反射,之后光线110射向第三反射面320。圆偏振的光线110简称为圆偏光,线偏振的光线110简称为线偏光。在第三反射面320设置有第一四分之一波片910和偏振反射膜920,圆偏振的光线110经过第一四分之一波片910,圆偏光转化为线偏光,偏振反射膜920具有偏振透射方向,此时线偏光的偏振方向与偏振反射膜920的偏振透射方向不同,线偏光被偏振反射膜920反射回第一四分之一波片910,并转化为圆偏振光。光线110再次射向第二透镜30的第二反 射面310,在第二反射面310的作用下,圆偏振光再次反射向第一四分之一波片910,并且圆偏光的旋转方向发生改变。圆偏光经过第一四分之一波片910后,再次转化为线偏光,此时线偏光的偏振方向与偏振反射膜920的偏振透射方向同向,光线110穿过偏振反射膜920,在人眼位置80显示成像。由上述可见,显示组件10发射的光线110依次经过第一透镜20和第二透镜30,光线110首先经过第一反射面210,再经过第二反射面310,射向第三反射面320。射向第三反射面320后,在第一四分之一波片910和偏振反射膜920的作用下被反射回第二反射面310,第二反射面310再次将光线110反射。此时,光线的偏振状态为圆偏振,光线再次经过第一四分之一波片910后会变为线偏振光且振动方向与偏振反射膜920.的透过方向同向,从而可以使光线透过偏振反射面。光线110至少经过了四次反射,且来回在第二透镜30内折返。由此可知通过第二透镜30的设置,避免增加光线110传播路径,可以减少另外增加透镜。使加工制作的光学系统的厚度较薄,有利于头戴显示器的小型化。
需要强调的是,本实施例中,第一四分之一波片910和偏振反射膜920设置的位置是面向人眼位置80的一侧,即第三反射面320位置。光线110在人眼位置80成像,离开第二透镜30时,是依次经过第三反射面320、第一四分之一波片910和偏振反射膜920。
在本申请的其中一个实施例中,为了提高第二反射面310的反射效果,光学模组包括分光元件,分光元件设于第二反射面310。分光元件的作用在于将经过偏振反射膜920反射的光线110,再次反射回第二反射面310。在这里有两种情况需要说明。
第一种情况是,光学模组应用于VR头戴显示器中,此时不需要外界的光线射入人眼,分光元件可以包括反射膜,将反射膜设置在第二反射面310,从而保证射向第二反射面310的光线110全部反射。
第二情况是,光学模组应用于AR头戴显示器中,此时需要外界的光线射入人眼,分光元件可以为半反半透膜,保证外界的光线可以进入到光学模组内。半反半透膜设于第二反射面310,从第二反射面310的反射的光线110,在半反半透膜的作用下,一部分光线110透射,另一部分光线110反射,充分利用反射的光线110。反射的光线110满足透过偏振反射膜920的条件,即偏振方向与偏振反射膜920的透过方向相同。另外,半反半透膜还具有透过的作用, 外界的光线在射向半反半透膜时,一部分光线透射,另一部分光线反射,充分利用透射进来的外界光线。透射的光线依次经过第一四分之一波片910和偏振反射膜920,在人眼位置80成像。另外需要指出的是,光线110在由第一透镜20射入至第二反射面310时,入射角度大于或等于全反射临界角,光线110由光密介质射向光疏介质,满足光的全反射条件,光线110被反射向第三反射面320。
在本申请中,第一透镜20和第二透镜30的设置方式有三种情况。
第一种情况是,第一透镜20和第二透镜30胶合设置;此时,第一透镜20和第二透镜30是两个独立的光学元件为了减少光线110的偏折,可以通过光学胶将第一透镜20和第二透镜30胶合在一起。还可以避免灰尘等杂质落入到光学模组内。
第二种情况是,第一透镜20和第二透镜30一体式设置;此时,第一透镜20和第二透镜30是一个整体结构。整体结构在安装的时候易于放置,作业更加简便,便于提升组装作业效率。
第三种情况是,第一透镜20和第二透镜30分体式设置,且相互间隔。第一透镜20和第二透镜30分开设置。如此在第一透镜20和第二透镜30之间具有其他光学介质存在,例如空气。光线110在经过第一透镜20后,光线110发生了折射,光线110的传播方向发生了改变,光线110在由空气射向第二透镜30后,光线110再次发生了折射。通过两次折射,光线110射入在第二反射面310,可以满足光的全反射条件。通过两个透镜分开设置,第一透镜20和第二透镜30的摆放位置也更加的灵活。另外,第一透镜20和第二透镜30之间的位置还可以设置空气以外的其它介质。
在本申请的一实施例中,光线110在射向第一透镜20的第一表面时包括有两种情况。
第一种情况是,光线110射向第一反射面210,光线110在第一反射面210的入射角大于或等于全反射临界角,第一透镜20的外部是空气,第一透镜20的折射率大于空气,所以光线110在第一反射面210是由光密介质射向光疏介质,满足光的全反射条件,光线110被反射向第二透镜30。
第二种情况是,光学模组还包括反光膜,反光膜设于第一反射面210。反光膜能够将接收到的光线110反射向第二透镜30。例如,通过反光膜可以形成 一个镜面反射效果。通过反光膜的设置,光线110在第一反射面210的入射角可以灵活调整,也就是说显示组件10的位置可以更加的灵活。
在本申请的一实施例中,第一透镜20还包括第一入光面220和第一出光面230,第一入光面220面向显示组件10设置,第一出光面230面向第二透镜30设置,第一入光面220和第一出光面230均连接于第一反射面210;由此可知,第一透镜20具有三个光学面。例如可以是三角形的截面。通过三个光学面的设置既能够保证第一透镜20发挥作用,还能够减少光学表面的设置,使第一透镜20的结构更加简单,也便于加工制作。
进一步地,第一入光面220和第一出光面230至少其中之一为球面、非球面或者自由曲面,第一入光面220可以是球面、非球面或者自由曲面其中任意一种,第一出光面230也可以是球面、非球面或者自由曲面其中任意一种。球面便于加工成型,在球面为凸起面时,还能够有效的会聚光线110。在球面为凹陷面时,能够有效的分散光线110,便于图像的扩大。另外,光线110在传递过程中容易产生像差,通过非球面和自由曲面的设置能够校正像差,提高成像质量。
在本申请的一实施例中,第二反射面310与第三反射面320于远离第一透镜20的一端相交,第二透镜30包括第二入光面330,第二入光面330朝向第一透镜20,第二入光面330连接于第二反射面310和第三反射面320;由此可知,第二透镜30也具有三个光学面,通过三个光学面的设置既能够保证第二透镜30发挥作用,也能够减少光学表面的设置,使第二透镜30的结构简单,便于加工制作。
进一步地,第二入光面330和第二反射面310至少其中之一为球面、非球面或者自由曲面,第二入光面330可以是球面、非球面或者自由曲面的其中任意一种,第二反射面310也可以为球面、非球面或者自由曲面。球面便于加工成型,在球面为凸起面时,还能够有效的会聚光线110。在球面为凹陷面时,能够有效的分散光线110,便于图像的扩大。另外,光线110在传递过程中容易产生像差,通过非球面和自由曲面的设置能够校正像差,提高成像质量。
除此之外,需要指出的是,第一入光面220、第一出光面230、第二入光面330以及第二反射面310还可以是平面,平面易于加工,成本更低。
在本申请的一实施例中,光学模组应用在AR头戴显示器中时,光学模组 还包括第三透镜40,第三透镜40设于第二反射面310,第三透镜40包括第三入光面410,第三入光面410和第三反射面320相对设置,且第三入光面410和第三反射面320相互平行。外界的光线通过第三入光面410进入到第三透镜40,第三透镜40可以对外界的光线进行解析处理,保证外界光线能够清晰的在人眼位置80成像。第三入光面410和第三反射面320相互平行便于光学模组的安装。另外为了便于第二透镜30和第三透镜40对接,第三透镜40的出光面和第二透镜30的第二反射面310的结构相同。
在本申请的一实施例中,定义第三入光面410和第三反射面320之间的距离为D,则满足:D<12mm。第三入光面410和第三反射面320之间的距离可以理解为光学模组的厚度,可知光学模组的厚度小于12mm,厚度较薄。在12mm这个范围内还能够保证光线110顺利的在第二透镜30内折反射。如果厚度大于12mm,则厚度太厚,不利于头戴显示器的小型化。
在本申请的一实施例中,显示组件10发射的光线110于人眼位置80成像,定义第三反射面320至人眼位置80的距离为L,则满足:12mm<L<18mm。由此可知人眼位置80距离光学模组的位置较近,同样也利于头戴显示器小型化。如果L大于18mm,则头戴显示器体积过大,如果L小于12mm,则人眼距离光学模组太近,会影响用户观看,比如太近视角会变小,甚至用户的睫毛会触碰的第三反射面320。
进一步地,定义显示组件10的中间位置至第三透镜40的底端之间的距离为H,则满足:35.0mm<H<45.0mm,可知光学模组的高度较小,也利于头戴显示器的小型化。
在本申请的一实施例中,为了便于光学模组的安装,第一反射面210和第三反射面320位于同一平面,如此便于第一透镜20和第二透镜30的定位,在确定了其中一个透镜的位置,便于确定另外一个透镜的位置。比如,在确定了第一透镜20的位置后,就能够快速确定第二透镜30的位置。
在本申请的一实施例中,为了保证显示组件10发射的光线110在射入第一透镜20时具有统一状态的圆偏光。显示组件10包括显示器120、线偏振器130和第二四分之一波片140。显示器120用于发射光线,此时光线的偏振状态可以是多种。线偏振器130和第二四分之一波片140均设于显示器120和第一透镜20之间,线偏振器130和第二四分之一波片140沿光线110的传播方向依次设置。 通过线偏振器130和第二四分之一波片140,光线110先统一被线偏振器130转化为线偏光,再通过第二四分之一波片140将光线110统一转化为旋转方向一致的圆偏光。
在本申请的一实施例中,光线110在传递的过程中容易产生色差。为此,光学模组还包括消色差透镜70,消色差透镜70设于第一透镜20和显示组件10之间。光线110通过消色差透镜70透镜后,能够保证不同波长的光线110在同一个焦面成像。消色差透镜70可以采用高低折射率搭配的两者镜片组合在一起。也可以采用一个高折射率的材质镜片。
在本申请的一实施例中,光学模组在应用于AR头戴显示器的情况下,外界光线需要依次经过第二反射面310和第三反射面320在人眼位置80成像。为了使来自第一透镜20的光线110顺利的被反射,第二反射面310包括第一反射区311和第二反射区312,第一反射区311接收经第一透镜20的光线110并反射向第三反射面320,第二反射区312接收经偏振反射膜920反射的光线110,并再次将光线110反射向第三反射面320,第三透镜40与第二透镜30之间至少对应第一反射区311位置间隔设置。由此可知,来自第一透镜20的光线110射向第一反射区311,通过在第一反射区311第二透镜30和第三透镜40间隔设置,第二透镜30和第三透镜40在第一反射区311形成空气间隙,第二透镜30的折射率大于空气,同样能够满足光的全反射。还能够避免考虑第三透镜40的折射率。使设计过程更加简化。需要指出的是为了便于加工组装,第二透镜30和第三透镜40之间的间隔位置向第二反射区312延伸。或者理解为,第二透镜30和第三透镜40之间是没有接触的,通过其它部件例如镜框来固定第二透镜30和第三透镜40。
本发明还提供一种头戴显示器,头戴显示器包括壳体和如上文光学模组,光学模组设于壳体。壳体能够提供一个支撑光学模组的安装空间,光学模组设置在壳体内,还能够避免外部环境的水汽或者灰尘落入到光学模组的内部。
本发明的头戴显示器的实施方式可以参照上述光学模组各实施例,在此不再赘述。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是 在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (15)

  1. 一种光学模组,其特征在于,所述光学模组包括:
    显示组件,所述显示组件用于发射圆偏振状态的光线;
    第一透镜,所述第一透镜设于所述显示组件的出光方向,所述第一透镜具有第一反射面,光线射入所述第一透镜后,光线经所述第一反射面反射,并射出所述第一透镜;
    第二透镜,所述第二透镜设于所述第一透镜的出光方向,所述第二透镜具有第二反射面和第三反射面,光线射入所述第二透镜,并经所述第二反射面反射向第三反射面;
    第一四分之一波片,所述第一四分之一波片设于所述第三反射面;以及
    偏振反射膜,所述偏振反射膜设于所述第一四分之一波片背离所述第二反射面的一侧。
  2. 如权利要求1所述的光学模组,其特征在于,所述光学模组包括分光元件,所述分光元件设于所述第二反射面。
  3. 如权利要求2所述的光学模组,其特征在于,所述分光元件为半反半透膜,所述半反半透膜设于所述第二反射面。
  4. 如权利要求1所述的光学模组,其特征在于,所述第一透镜和所述第二透镜胶合设置;
    或者,所述第一透镜和所述第二透镜一体式设置;
    或者,所述第一透镜和所述第二透镜分体式设置,且相互间隔。
  5. 如权利要求1所述的光学模组,其特征在于,光线射向所述第一反射面,光线在所述第一反射面的入射角大于或等于全反射临界角;
    或者,所述光学模组还包括反光膜,所述反光膜设于所述第一反射面。
  6. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述第一透 镜还包括第一入光面和第一出光面,所述第一入光面面向所述显示组件设置,所述第一出光面面向所述第二透镜设置,所述第一入光面和所述第一出光面均连接于所述第一反射面;
    所述第一入光面和所述第一出光面至少其中之一为球面、非球面或者自由曲面。
  7. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述第二反射面与所述第三反射面于远离所述第一透镜的一端相交,所述第二透镜包括第二入光面,所述第二入光面朝向所述第一透镜,所述第二入光面连接于所述第二反射面和所述第三反射面;
    所述第二入光面和所述第二反射面至少其中之一为球面、非球面或者自由曲面。
  8. 如权利要求7所述的光学模组,其特征在于,所述光学模组还包括第三透镜,所述第三透镜设于所述第二反射面,所述第三透镜包括第三入光面,所述第三入光面和所述第三反射面相对设置,且所述第三入光面和所述第三反射面相互平行。
  9. 如权利要求8所述的光学模组,其特征在于,定义所述第三入光面和所述第三反射面之间的距离为D,则满足:D<12mm。
  10. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述显示组件发射的光线于人眼位置成像,定义所述第三反射面至人眼位置的距离为L,则满足:12mm<L<18mm。
  11. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述第一反射面和所述第三反射面位于同一平面。
  12. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述显示组件包括显示器、线偏振器和第二四分之一波片,所述显示器用于发射光线, 所述线偏振器和所述第二四分之一波片沿光线的传播方向依次设置。
  13. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述光学模组还包括消色差透镜,所述消色差透镜设于所述第一透镜和所述显示组件之间。
  14. 如权利要求1至5中任一项所述的光学模组,其特征在于,所述第二反射面包括第一反射区和第二反射区,所述第一反射区接收经所述第一透镜的光线并反射向所述第三反射面,所述第二反射区接收经所述偏振反射膜反射的光线,并再次将光线反射向所述第三反射面,所述第三透镜与所述第二透镜之间至少于所述第一反射区位置间隔设置。
  15. 一种头戴显示器,其特征在于,所述头戴显示器包括壳体和如权利要求1至14中任一项所述光学模组,所述光学模组设于所述壳体。
PCT/CN2021/133325 2021-06-03 2021-11-26 光学模组和头戴显示器 WO2022252516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110621786.9 2021-06-03
CN202110621786.9A CN113419349B (zh) 2021-06-03 2021-06-03 光学模组和头戴显示器

Publications (1)

Publication Number Publication Date
WO2022252516A1 true WO2022252516A1 (zh) 2022-12-08

Family

ID=77713826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133325 WO2022252516A1 (zh) 2021-06-03 2021-11-26 光学模组和头戴显示器

Country Status (2)

Country Link
CN (1) CN113419349B (zh)
WO (1) WO2022252516A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419349B (zh) * 2021-06-03 2022-05-13 歌尔光学科技有限公司 光学模组和头戴显示器
CN113934006A (zh) * 2021-10-27 2022-01-14 歌尔光学科技有限公司 光学模组和头戴显示设备
CN114236864A (zh) * 2021-11-23 2022-03-25 青岛歌尔声学科技有限公司 光学模组及头戴显示设备
CN114755830A (zh) * 2022-03-30 2022-07-15 南昌黑鲨科技有限公司 光学放大模组及具有该光学放大模组的vr显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045503A (zh) * 2019-03-29 2019-07-23 北京蚁视科技有限公司 一种基于全反射的紧凑型大视场角近眼显示装置
CN110300905A (zh) * 2017-02-16 2019-10-01 奇跃公司 用于具有集成的偏振器的显示设备的方法和系统
CN110941088A (zh) * 2018-09-21 2020-03-31 三星电子株式会社 透视型显示装置
CN111025658A (zh) * 2019-12-31 2020-04-17 上海视欧光电科技有限公司 一种增强现实光学模组及增强现实设备
CN111077672A (zh) * 2018-10-18 2020-04-28 三星电子株式会社 透视显示装置
CN113419349A (zh) * 2021-06-03 2021-09-21 歌尔光学科技有限公司 光学模组和头戴显示器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676472B2 (ja) * 1996-01-19 2005-07-27 オリンパス株式会社 接眼光学系
US6490095B2 (en) * 2000-03-23 2002-12-03 Canon Kabushiki Kaisha Image display apparatus
JP4072456B2 (ja) * 2003-05-08 2008-04-09 キヤノン株式会社 表示光学系、画像表示装置および画像表示システム
WO2019006672A1 (zh) * 2017-07-04 2019-01-10 苏州耐德佳天成光电科技有限公司 一种轻薄共光轴方向的自由曲面的光学成像系统
CN110320668B (zh) * 2019-07-04 2021-08-06 歌尔光学科技有限公司 光学系统及具有其的虚拟现实设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300905A (zh) * 2017-02-16 2019-10-01 奇跃公司 用于具有集成的偏振器的显示设备的方法和系统
CN110941088A (zh) * 2018-09-21 2020-03-31 三星电子株式会社 透视型显示装置
CN111077672A (zh) * 2018-10-18 2020-04-28 三星电子株式会社 透视显示装置
CN110045503A (zh) * 2019-03-29 2019-07-23 北京蚁视科技有限公司 一种基于全反射的紧凑型大视场角近眼显示装置
CN111025658A (zh) * 2019-12-31 2020-04-17 上海视欧光电科技有限公司 一种增强现实光学模组及增强现实设备
CN113419349A (zh) * 2021-06-03 2021-09-21 歌尔光学科技有限公司 光学模组和头戴显示器

Also Published As

Publication number Publication date
CN113419349B (zh) 2022-05-13
CN113419349A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2022252516A1 (zh) 光学模组和头戴显示器
WO2023273128A1 (zh) 光学模组和头戴显示设备
WO2023273175A1 (zh) 光学模组和头戴显示设备
WO2023070808A1 (zh) 光学模组和头戴显示设备
WO2023273176A1 (zh) 光学模组和头戴显示设备
US9915823B1 (en) Lightguide optical combiner for head wearable display
JP2019526075A (ja) ヘッドマウントディスプレイ用光学システム
WO2022227540A1 (zh) 光学镜组、光学系统和头戴显示设备
CN111929906B (zh) 图像显示结构和头戴显示设备
US20100290127A1 (en) Head-mounted optical apparatus using an oled display
JP2009515225A (ja) 偏光光学系
WO2022227538A1 (zh) 胶合镜组和头戴显示设备
US7688399B2 (en) Image display apparatus
WO2022227539A1 (zh) 光学模组和头戴显示设备
CN214751118U (zh) 光学系统和头戴显示设备
CN115755404A (zh) Ar显示装置和穿戴式ar设备
WO2023273949A1 (zh) 成像模组、成像模组的组装方法和头戴显示设备
JP4194218B2 (ja) 画像表示装置および画像表示システム
CN216285989U (zh) 一种用于目视的复合光学镜及近眼显示设备
TWM596873U (zh) 微型頭戴式顯示器之光學系統
CN211826725U (zh) 微型头戴显示器的光学系统
CN113467091A (zh) 近眼显示系统和头戴显示设备
CN113391447A (zh) 微型头戴显示器的光学系统
WO2022227541A1 (zh) 光学镜组和头戴显示设备
TW202134734A (zh) 微型頭戴顯示器之光學系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18566789

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE