WO2023090269A1 - 電池 - Google Patents
電池 Download PDFInfo
- Publication number
- WO2023090269A1 WO2023090269A1 PCT/JP2022/042057 JP2022042057W WO2023090269A1 WO 2023090269 A1 WO2023090269 A1 WO 2023090269A1 JP 2022042057 W JP2022042057 W JP 2022042057W WO 2023090269 A1 WO2023090269 A1 WO 2023090269A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- battery
- powder
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 claims abstract description 87
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 55
- 239000013078 crystal Substances 0.000 claims abstract description 52
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 10
- 239000010941 cobalt Substances 0.000 claims abstract description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011574 phosphorus Substances 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 239000004020 conductor Substances 0.000 claims description 57
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 30
- 150000002739 metals Chemical class 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 18
- 239000002131 composite material Substances 0.000 claims description 13
- 239000011572 manganese Substances 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 239000003575 carbonaceous material Substances 0.000 claims description 8
- 239000007769 metal material Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 82
- 239000002245 particle Substances 0.000 description 62
- 150000001875 compounds Chemical class 0.000 description 61
- 239000000203 mixture Substances 0.000 description 37
- 239000012071 phase Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 22
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 21
- 229910001416 lithium ion Inorganic materials 0.000 description 19
- 229910018091 Li 2 S Inorganic materials 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 16
- 239000007773 negative electrode material Substances 0.000 description 16
- 239000007787 solid Substances 0.000 description 14
- 239000011812 mixed powder Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 239000011149 active material Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 239000004570 mortar (masonry) Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 9
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 9
- 239000002203 sulfidic glass Substances 0.000 description 9
- 239000003273 ketjen black Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 8
- 239000002134 carbon nanofiber Substances 0.000 description 7
- 239000002041 carbon nanotube Substances 0.000 description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 7
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000003701 mechanical milling Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000004064 recycling Methods 0.000 description 6
- 230000018199 S phase Effects 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 5
- -1 lithium transition metal Chemical class 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- OCVXZQOKBHXGRU-UHFFFAOYSA-N iodine(1+) Chemical compound [I+] OCVXZQOKBHXGRU-UHFFFAOYSA-N 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000003823 mortar mixing Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 1
- 229910003405 Li10GeP2S12 Inorganic materials 0.000 description 1
- 229910009142 Li2S—Li3PO4—P2S5 Inorganic materials 0.000 description 1
- 229910013936 Li3.25P0.95S4 Inorganic materials 0.000 description 1
- 229910012007 Li4P2S6 Inorganic materials 0.000 description 1
- 229910011201 Li7P3S11 Inorganic materials 0.000 description 1
- 229910016118 LiMn1.5Ni0.5O4 Inorganic materials 0.000 description 1
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- ZYXUQEDFWHDILZ-UHFFFAOYSA-N [Ni].[Mn].[Li] Chemical compound [Ni].[Mn].[Li] ZYXUQEDFWHDILZ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000006092 crystalline glass-ceramic Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910000921 lithium phosphorous sulfides (LPS) Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5805—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery with reduced usage of rare metals.
- the positive electrode active material includes a lithium transition metal composite oxide containing lithium, manganese, nickel and/or cobalt, called NCM or LMNO.
- NCM or LMNO lithium transition metal composite oxide containing lithium, manganese, nickel and/or cobalt
- Patent Document 1 proposes the use of a sulfide containing titanium and niobium, which are rare metals, as a positive electrode active material.
- the present invention provides a battery having a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
- the positive electrode contains a lithium (Li) element, a sulfur (S) element and a phosphorus (P) element, and has a positive electrode active material containing a crystal phase having an aldirodite crystal structure,
- a battery in which the total amount of nickel (Ni) element and cobalt (Co) element contained in the positive electrode active material is 0.1% by mass or less.
- a battery of the present invention has a positive electrode and a negative electrode.
- the battery of the present invention also has a solid electrolyte layer disposed between the positive electrode and the negative electrode.
- One of the characteristics of the battery of the present invention is that the positive electrode constituting the battery is constructed using materials that are industrially inexpensive and easily available without using industrially rare metals as much as possible. have
- rare metal elements such as lithium (Li), nickel (Ni) elements, and cobalt (Co) elements
- lithium (Li), nickel (Ni) elements, and cobalt (Co) elements have been used as positive electrode active materials for battery positive electrodes, especially for lithium ion battery positive electrodes.
- rare metals are relatively scarce in the earth's crust, and their mining and refining costs are high. There is also the risk of being used for resource strategies between nations. Therefore, there is a strong demand for the development of batteries that do not use rare metals as battery materials. The present invention meets such demands.
- the total content of Ni element and Co element is more preferably 0.05% by mass or less, more preferably 0.01% by mass or less, and substantially zero. It is even more preferable to have This is because the effects of the present invention become more pronounced.
- substantially zero means that 0.5 g of a sample is weighed, dissolved in an acid solution to a constant volume of 25 ml, and the solution is measured by ICP emission spectrometry, and is below the measurement limit. .
- the contents of Ni element and Co element contained in the positive electrode active material can be measured by subjecting a liquid obtained by dissolving the positive electrode active material with, for example, acid to ICP emission spectrometry.
- the amount of other rare metals is also reduced, which reduces manufacturing costs. It is preferable from the viewpoint of recycling, reduction of recycling costs, and reduction of environmental load during recycling.
- Rare metals are defined by the Special Subcommittee on Comprehensive Measures for Rare Metals, Mining Council, Ministry of Economy, Trade and Industry of Japan. , 31 such as tungsten, cobalt, nickel and rare earths (17 rare earth elements are collectively counted as one kind) for which securing a stable supply is politically important due to the fact that industrial demand exists (or is expected in the future) It means "mineral species".
- lithium (Li) element beryllium (Be) element, boron (B) element, titanium (Ti) element, vanadium (V) element, chromium (Cr) element, manganese (Mn) element, cobalt (Co) element, nickel (Ni) element, gallium (Ga) element, germanium (Ge) element, selenium (Se) element, rubidium (Rb) element, strontium (Sr) element, zirconium (Zr) element, niobium (Nb) element, Molybdenum (Mo) element, palladium (Pd) element, indium (In) element, antimony (Sb) element, tellurium (Te) element, cesium (Cs) element, barium (Ba) element, hafnium (Hf) element, tantalum ( Ta) element, tungsten (W) element, rhenium (Re) element, platinum (Pt) element, thallium (Tl) element, bismuth
- Rare earth elements include scandium (Sc) elements, yttrium (Y) elements and lanthanide elements with atomic numbers from 57 to 71.
- the total content of elements other than the Li element among these rare metals is preferably, for example, 0.1% by mass or less, more preferably 0.05% by mass or less, and more preferably 0.01% by mass or less. % by mass or less is more preferred, and substantially zero is even more preferred. This is because the effects of the present invention become more pronounced. Since the definition of "substantially zero" can be the same as the content described above, the description here is omitted.
- the positive electrode active material in the battery of the present invention is free of rare metals (excluding Li elements), and contains Li elements, S elements and P elements as described above instead of rare metals (excluding Li elements). preferably configured.
- This positive electrode active material preferably has a crystal phase having an aldirodite type crystal structure. Whether or not the positive electrode active material contains a crystal phase having an aldirodite crystal structure can be determined by analyzing the positive electrode active material by an X-ray diffraction method. CuK ⁇ 1 rays, for example, can be used as the characteristic X-rays.
- the positive electrode active material containing a crystal phase having an aldirodite-type crystal structure may contain a halogen (X) element.
- a halogen (X) element for example, at least one of fluorine (F) element, chlorine (Cl) element, bromine (Br) element and iodine (I) element can be used. From the viewpoint of improving ion conductivity, it is particularly preferable to use a combination of Cl element and Br element as the halogen element.
- a positive electrode active material containing a crystal phase having an aldirodite-type crystal structure has, for example, a composition formula (I): Li a PS b X c (X is a fluorine (F) element, a chlorine (Cl) element, or a bromine (Br) element , which is at least one of iodine (I) elements.) is particularly preferable from the viewpoint of further improving the ionic conductivity.
- X is preferably one or two of Cl element and Br element.
- a which indicates the molar ratio of the Li element, is, for example, preferably 4.5 or more, more preferably 5.0 or more, and even more preferably 5.4 or more.
- the a is, for example, preferably 8 or less, more preferably 7.5 or less, and even more preferably 7.0 or less.
- b is a value indicating how small the Li 2 S component is relative to the stoichiometric composition.
- b is preferably 3.5 or more, and more preferably 4.0 or more. Preferably, it is more preferably 4.4 or more.
- b is, for example, preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
- c may be, for example, greater than 0, 0.1 or more, or 0.2 or more.
- c is, for example, preferably 2.5 or less, more preferably 2.0 or less, even more preferably 1.6 or less, and even more preferably less than 1.0. , 0.8 or less. This is because a high-capacity battery can be obtained.
- the positive electrode in the battery of the present invention preferably has a conductive material.
- the positive electrode preferably contains a composite material in which a positive electrode active material and a conductive material are combined.
- This composite material is a compound containing a Li element, an S element and a P element and containing a crystal phase having an aldirodite-type crystal structure (hereinafter, this compound is also referred to as an "aldirodite-type compound" for convenience).
- the battery is composed of a main portion and conductive portions dispersed on the surface and/or inside the main portion and containing a conductive material.
- the main portion contains an aldirodite-type compound, and may contain other materials and other components as necessary.
- the main portion may consist of a single phase composed of a crystal phase of an aldirodite type crystal structure, or may contain other phases in addition to the phase concerned.
- the main part may contain a Li 2 S phase, a Li 3 PS 4 phase, a Li 4 P 2 S 6 phase, a LiCl or LiBr phase, etc. in addition to the crystal phase of the aldirodite type crystal structure.
- the ratio of the crystal phase of the aldirodite-type crystal structure contained in the main portion may be, for example, 5% by mass or more, 10% by mass or more, or 20 % by mass or more. On the other hand, the ratio may be, for example, 50% by mass or less, 40% by mass or less, or 30% by mass or less.
- the ratio of the crystal phase of the algyrodite-type crystal structure is within the above range, the lithium ion conductivity of the positive electrode active material of the present invention can be increased, and as a result, the rate characteristics of the battery of the present invention can be improved. can be done.
- the main portion may contain a Li 2 S phase in addition to the crystal phase having an aldirodite crystal structure.
- the ratio of the Li 2 S phase contained in the main portion is, for example, preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 50% by mass, relative to the total crystal phases constituting the main portion. It is more preferable that it is above. On the other hand, the ratio may be, for example, 95% by mass or less, 90% by mass or less, or 80% by mass or less.
- the ratio of the Li 2 S phase is within the above range, the positive electrode active material of the present invention can exhibit a large capacity of Li 2 S. As a result, the battery of the present invention has a high charge-discharge capacity. can be improved.
- the proportion of the crystal phase described above can be confirmed, for example, from an X-ray diffraction pattern.
- the main part may contain impurities of less than 5% by mass, especially less than 3% by mass, to the extent that the effects of the present invention are less adversely affected.
- the main portion containing the algyrodite compound has the form of particles, and the conductive portion containing the above-described conductive material may be arranged on the surface or inside of the particles.
- the conductive material a material having electronic conductivity can be used without particular limitation.
- conductive materials include various metallic materials and conductive non-metallic materials. Either one of the metallic material and the conductive non-metallic material may be used, or both may be used in combination.
- the metal material include various noble metal elements such as silver (Ag) element.
- various transition metal elements include copper (Cu) elements, iron (Fe) elements, and tin (Sn) elements. One of these metal elements may be used alone, or two or more of them may be used in combination.
- a transition metal element is more preferable, and specifically, at least one of Cu element, Fe element and Sn element is preferable.
- a carbon material can be used as the conductive nonmetallic material. Examples include graphite, acetylene black, carbon black, carbon nanofibers, carbon nanotubes, nanographenes and fullerene nanowhiskers. These carbon materials may be used singly or in combination of two or more. Among these carbon materials, it is preferable to use carbon black from the viewpoint of improving the initial capacity and cycle characteristics of the battery. From the viewpoint of making this advantage more remarkable, it is preferable to use Ketjen black as the carbon black, among them, it is preferable to use furnace black, and it is particularly preferable to use oil furnace black.
- the conductive parts containing the various conductive materials described above play the role of electron conduction paths when lithium is desorbed from the main part, so it is preferable that they are uniformly dispersed and adhered to the surface and inside.
- the composite material obtained by combining the positive electrode active material and the conductive material in the present invention is usually particles.
- the size of the conductive material is preferably smaller than the size of the main portion.
- the value of D1/D2 is preferably 2 or more, more preferably 5 or more, and 10. It is more preferable that it is above.
- the value of D1/D2 is, for example, preferably 1000 or less, more preferably 500 or less, and still more preferably 10 or more and 100 or less.
- the particle size D1 of the main portion is, for example, preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and even more preferably 0.5 ⁇ m or more.
- D1 is, for example, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
- the particle size D2 of the conductive portion is, for example, preferably 1 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more.
- D2 is, for example, preferably 500 nm or less, more preferably 300 nm or less, and even more preferably 200 nm or less.
- the positive electrode active material is a material in which the main part and the conductive part are combined, that is, a composite material of particles containing an aldirodite-type compound that constitutes the main part and a conductive material that constitutes the conductive part.
- the conductive portion is dispersed on the surface or inside the main portion so as to be integrally and inseparably attached to the main portion.
- the composite material is preferably a material in which the positive electrode active material and the conductive material are combined by applying mechanical energy.
- Examples of the "complexed" aspect include, for example, an aspect in which the particles of the conductive material are inseparably dispersed on the surface and/or inside of the particles containing the aldirodite compound, and the particles containing the aldirodite compound that constitutes the main part.
- a mode in which particles of the conductive material forming the conductive portion are chemically reacted and bonded to each other may be mentioned.
- the phrase "the particles of the conductive material are inseparably dispersed on the surface and inside of the particles of the compound that constitutes the main part” means, for example, that the active material of the present invention is scanned with an energy dispersive X-ray spectrometer. Observing the active material with a type electron microscope (SEM-EDS), mapping the constituent elements (for example, sulfur element) of the compound that constitutes the main portion and the constituent elements of the conductive material that constitutes the conductive portion, the main It means a state in which it can be confirmed that the constituent element (for example, sulfur element) of the compound that constitutes the portion and the constituent element of the conductive material that constitutes the conductive portion are present so as to overlap.
- SEM-EDS type electron microscope
- the constituent elements e.g., sulfur element
- the constituent elements of the conductive material constituting the are found on the surface and inside the active material. It is a state in which it can be confirmed that the constituent elements of the conductive material constituting the are present so as to overlap.
- the fact that the main portion and the conductive portion are chemically reacted and combined can be confirmed by the presence or absence of a C—S bond by, for example, Raman spectroscopy or photoelectron spectroscopy.
- the battery having the active material of the present invention exhibits high capacity and high rate characteristics.
- the active material of the present invention is useful as a positive electrode active material for lithium ion batteries. That is, compared to conventionally known elemental sulfur, lithium sulfide (Li 2 S) and composite materials thereof, and sulfur-based positive electrode active materials such as metal sulfides, the electroconductivity is excellent and the desired battery performance can be obtained.
- the amount of the conductive material with respect to 100 parts by mass of the particles containing the algyrodite-type compound constituting the main part is, for example, preferably 1 part by mass or more, more preferably 2 parts by mass or more. It is more preferably at least 1 part by mass.
- the amount of the conductive material with respect to 100 parts by mass of the particles containing the aldirodite compound that constitutes the main part is, for example, preferably 50 parts by mass or less, more preferably 20 parts by mass or less, and 10 parts by mass or less. More preferably. With the presence of the main portion and the conductive portion within this range, the battery of the present invention remarkably exhibits high capacity and high rate characteristics.
- the content of lithium element in the aldirodite compound is, for example, preferably 10% by mass or more, more preferably 12% by mass or more, and even more preferably 15% by mass or more.
- the content is, for example, preferably 25% by mass or less, more preferably 23% by mass or less, and even more preferably 21% by mass or less.
- the present production method mainly consists of a first step of preparing particles containing an algyrodite-type compound that constitutes the main part, and a second step of mixing the particles of the algyrodite-type compound and a conductive material to form a composite of the two. separated. Each step will be described below.
- particles containing an algyrodite-type compound are prepared.
- An aldirodite-type compound can be produced by a known method. For example, lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, lithium chloride (LiCl) powder, and lithium bromide (LiBr) powder are mixed and fired. Particles of aldirodite-type compounds can be obtained.
- a method for mixing these powders it is preferable to use, for example, a ball mill, a bead mill, a homogenizer, or the like.
- the firing temperature in the case of firing in an atmosphere containing hydrogen sulfide gas is, for example, preferably 450° C. or higher, more preferably 550° C. or higher.
- the firing temperature is, for example, preferably 700° C. or lower, more preferably 650° C. or lower, and even more preferably 600° C. or lower.
- the firing temperature is preferably 450° C. or higher, for example.
- the firing temperature is, for example, preferably 650° C. or lower, more preferably 600° C. or lower, and even more preferably 550° C. or lower.
- the algyrodite-type compound particles that make up the main part can also be produced by amorphizing the raw material powder by a mechanical milling method, and if necessary, heat-treating the amorphous raw material powder to crystallize it.
- the processing equipment and processing conditions are not particularly limited as long as the raw material powders can be sufficiently mixed and made amorphous.
- the container filled with the raw material powder rotates and revolves at high speed, so high impact energy is generated between the balls, which are the grinding media that are placed in the container together with the raw material powder, resulting in efficient and uniform milling. It is possible to amorphize the raw material powder immediately.
- the mechanical milling method may be either dry or wet.
- the processing conditions for the mechanical milling method can be appropriately set according to the processing equipment to be used. For example, by processing for 0.1 hours or more and 100 hours or less, the raw material powder can be more efficiently and uniformly amorphized.
- Balls as grinding media are preferably made of ZrO 2 , Al 2 O 3 , Si 3 N 4 (silicon nitride) or WC (tungsten carbide), and the ball diameter is preferably about 0.2 mm or more and 10 mm or less.
- An aldirodite-type compound can be obtained by heat-treating and crystallizing the raw material powder that has been made amorphous by mechanical milling under the same firing conditions as above.
- the raw material powder subjected to the mechanical milling process is more uniformly mixed than the raw material powder obtained by ordinary pulverization and mixing, so the heat treatment temperature can be further lowered.
- the particles of the aldirodite-type compound that constitutes the main part can also be produced by a liquid phase method using an organic solvent.
- a liquid phase method using an organic solvent For example, it can be obtained by dissolving a sulfide or halide, which is a raw material for an algyrodite-type compound, in a solvent such as tetrahydrofuran or ethanol, and precipitating the algyrodite-type compound using the solvent as a reaction field.
- An aldirodite compound can also be obtained by previously synthesizing an aldirodite compound by another method, dissolving it in a solvent such as ethanol, and then reprecipitating it. According to such a liquid phase method, it is possible to produce particles of an aldirodite-type compound in a shorter time and with less energy than other methods, and it is also relatively easy to reduce the particle size. is.
- the main part composed of the particles of the aldirodite-type compound in this way, it is preferable to prepare the main part to have an appropriate particle size. Since the preferred grain size of the main portion can be the same as the content described above, the description is omitted here.
- the main part and the conductive material are mixed to form a composite. Since the conductive material to be used can be the same as that described above, the description is omitted here.
- powders are mainly stirred, mixed, kneaded, and granulated. , pulverization, dispersion, and/or surface modification.
- planetary ball mills, ball mills, jet mills, bead mills, stirring pulverizers, vibration mills, hammer mills, roller mills and atomizers can be used.
- the type of main mechanical energy that can be applied using these devices differs depending on each device. For example, when using a planetary ball mill, compressive and impact forces are applied mainly to the main part and the conductive material in the mixed state.
- the centrifugal acceleration obtained during rotation of the device is not particularly limited as long as the main portion and the conductive portion can be combined. More preferably. Further, the centrifugal acceleration is, for example, preferably 40 G or less, more preferably 30 G or less, and even more preferably 25 G or less. When the centrifugal acceleration is within the above range, the main portion and the conductive material can be more sufficiently combined.
- the conductive material is dispersed in advance in an organic solvent, and then the raw material of the particles of the algyrodite-type compound or the algyrodite-type compound itself is added to the organic solvent, so that the particles are precipitated on the surface or inside the conductive material.
- can be compounded with Compositing by such a technique makes it possible to further reduce the particle size of the composited particles.
- the positive electrode active material can be made into a positive electrode mixture by mixing it with a solid electrolyte, a conductive material, a binder, and the like. Details of the solid electrolyte will be described later.
- the active material contained in the positive electrode mixture may be the above-described positive electrode active material alone, or may be used in combination with the positive electrode active material and other active materials.
- Other active materials include known active materials containing elemental sulfur and sulfur.
- the proportion of the positive electrode active material described above in the positive electrode mixture may be, for example, 20% by mass or more, 30% by mass or more, or 40% by mass or more. On the other hand, the ratio may be, for example, 70% by mass or less, or 60% by mass or less.
- the battery of the present invention preferably has an interface where the positive electrode active material and the solid electrolyte are in contact in order to make the desired effect more pronounced.
- the positive electrode active material and the solid electrolyte are in contact means that the positive electrode active material and the solid electrolyte contained in the positive electrode are in contact, and that the positive electrode active material and the solid electrolyte layer contained in the positive electrode are in contact. Any contact with the included solid electrolyte is included.
- the solid electrolyte layer arranged between the positive electrode and the negative electrode contains a solid electrolyte.
- the solid electrolyte preferably has ionic conductivity such as lithium ion conductivity.
- Specific examples include inorganic solid electrolytes such as sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, and halide solid electrolytes, and organic polymer electrolytes such as hydride solid electrolytes and polymer electrolytes.
- the solid electrolyte is preferably a sulfide solid electrolyte from the viewpoint of making the effects of the present invention more remarkable.
- the sulfide solid electrolyte may be the same as sulfide solid electrolytes used in general solid batteries.
- the sulfide solid electrolyte may contain, for example, Li element and S element and have lithium ion conductivity.
- the sulfide solid electrolyte may be any of crystalline material, glass ceramics, and glass.
- the sulfide solid electrolyte contains Li element, S element and P element and may contain a crystal phase having an aldirodite type crystal structure.
- Examples of such sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiX ("X" represents one or more halogen elements), Li 2 S- P2S5 - P2O5 , Li2S - Li3PO4 - P2S5 , Li3PS4 , Li4P2S6 , Li10GeP2S12 , Li3.25Ge0 .
- X represents one or more halogen elements, a is 3.0 represents a number of 9.0 or less, b represents a number of 3.5 or more and 6.0 or less, and c represents a number of 0.1 or more and 3.0 or less.
- sulfide solid electrolytes described in International Publication No. 2013/099834 and International Publication No. 2015/001818 are included.
- the battery of the present invention having the above configuration is preferably a lithium-ion battery, and more preferably a lithium-sulfur battery.
- the battery of the present invention is preferably a solid battery having a solid electrolyte layer, particularly an all-solid battery.
- the battery of the present invention may be either a primary battery or a secondary battery, preferably a secondary battery, and particularly preferably a lithium secondary battery.
- the term “lithium secondary battery” broadly includes secondary batteries that charge and discharge by moving lithium ions between a positive electrode and a negative electrode.
- the granulated powder, heptane as a solvent, and ZrO 2 balls of ⁇ 2 mm are placed in a ZrO 2 container, and a planetary ball mill (manufactured by Fritsch, P-7) is used at 150 rpm for 3 hours.
- a pulverized powder having a particle size D50 of 3.5 ⁇ m was prepared under the conditions of Ketjenblack (registered trademark) EC300, which is a conductive carbon black manufactured by Lion Specialty Chemical Co., Ltd., was used as the conductive material. This conductive material had a particle size D50 of 0.04 ⁇ m.
- LiCl lithium chloride
- LiBr lithium bromide
- the powdery compound having a particle size D50 of 10 ⁇ m was obtained by sizing with a sieve having an opening of 53 ⁇ m.
- the obtained sieved powder was placed in a ZrO 2 container together with heptane as a solvent and ZrO 2 balls of ⁇ 2 mm, and milled at 100 rpm for 3 hours using a planetary ball mill (manufactured by Fritsch, P-7).
- a pulverized powder having a particle size D50 of 3.0 ⁇ m was prepared under the conditions.
- Graphite having a particle size D50 of 20 ⁇ m was used as the negative electrode active material.
- the positive electrode active material powder and the pulverized powder of the solid electrolyte described above were mixed in a mortar at a mass ratio of 60:40 to prepare a positive electrode mixture.
- the negative electrode active material powder and the pulverized powder of the solid electrolyte described above were mixed in a mortar at a mass ratio of 50:50 to prepare a negative electrode mixture.
- the production of all-solid-state battery cells was carried out in a glove box that was replaced with argon gas having a dew point temperature of -60°C. Moreover, the capacity of the produced all-solid-state battery was set to 2.0 mAh based on the positive electrode.
- Example 2 A positive electrode active material was produced by the following method. Carbon nanotubes (fiber diameter: 150 nm) (manufactured by Showa Denko, VGCF (registered trademark)-H) were used as the conductive material in place of Ketjenblack (registered trademark) used in Example 1. A positive electrode active material was obtained in the same manner as in Example 1 except for this.
- a solid electrolyte was produced using the following method. Lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, and lithium chloride (LiCl) powder were mixed so as to have a composition of Li 5.8 PS 4.8 Cl 1.2 . Using a planetary ball mill (manufactured by Fritsch, P-7), they were mixed and pulverized at 100 rpm for 10 hours to prepare a mixed powder. This mixed powder is filled in a carbon container, and heated at a temperature raising/lowering rate of 200° C./h in a tubular electric furnace while hydrogen sulfide gas (H 2 S, purity 100%) is circulated at 1 L/min. , 500° C.
- H 2 S hydrogen sulfide gas
- Example 2 the sample was pulverized in a mortar and sized with a sieve having an opening of 53 ⁇ m to obtain a powdery compound having a particle diameter D50 of 11 ⁇ m.
- the obtained powder was sized in the same manner as in Example 1 to prepare a pulverized powder having a particle size D50 of 0.8 ⁇ m.
- XRD measurement using CuK ⁇ 1 rays it was confirmed that this compound had a crystal phase with an aldirodite type crystal structure.
- Silicon having a particle size D50 of 2.5 ⁇ m was used as the negative electrode active material.
- the positive electrode mixture was prepared in the same manner as in Example 1, except that the pulverized powder of the positive electrode active material and solid electrolyte described above was used.
- the negative electrode active material powder, the pulverized powder of the solid electrolyte, and the carbon nanotubes (fiber diameter 150 nm) (VGCF (registered trademark)-H) were mixed in a mortar at a mass ratio of 53:42:5 to prepare a negative electrode mixture. bottom.
- An all-solid-state battery was manufactured in the same manner as in Example 1 using the above materials.
- a positive electrode active material was produced by the following method. Lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder , and lithium chloride (LiCl ) powder and lithium bromide (LiBr) powder, each weighed so that the total amount is 2 g, using a planetary ball mill (manufactured by Fritsch, P-7), 100 rpm for 10 hours. Mixed and pulverized to prepare a mixed powder.
- This mixed powder is filled in a carbon container, and heated at a temperature raising/lowering rate of 200° C./h in a tubular electric furnace while hydrogen sulfide gas (H 2 S, purity 100%) is circulated at 1 L/min. , 450° C. for 4 hours. Thereafter, the powdery compound having a particle size D50 of 9 ⁇ m was obtained by sizing with a sieve having an opening of 53 ⁇ m. The obtained powder, heptane as a solvent, and ZrO 2 balls of ⁇ 2 mm were placed in a ZrO 2 container, and a planetary ball mill (manufactured by Fritsch, P-7) was used at 100 rpm for 3 hours.
- H 2 S hydrogen sulfide gas
- Example 2 the carbon nanotube (fiber diameter: 150 nm) used in Example 2 (manufactured by Showa Denko, VGCF (registered trademark)-H) was used. 20 parts of the conductive material was used with respect to 100 parts of the compound. A positive electrode active material was obtained in the same manner as in Example 1 except for this. As a result of XRD measurement using CuK ⁇ 1 rays, it was confirmed that this compound had a crystal phase with an aldirodite type crystal structure.
- a negative electrode active material As a negative electrode active material, a mixture of the graphite used in Example 1 and SiO having a particle size D50 of 5 ⁇ m was used. The mass ratio of graphite and SiO was 85.5:14.5. A negative electrode mixture was prepared by mixing the negative electrode active material powder and the pulverized powder of the solid electrolyte used in Example 1 in a mass ratio of 50:50 in a mortar.
- the solid electrolyte and positive electrode mixture were prepared in the same manner as in Example 1.
- An all-solid-state battery was produced in the same manner as in Example 1 using the above materials.
- a positive electrode active material was produced by the following method. Lithium sulfide (Li 2 S) powder and phosphorus pentasulfide (P 2 S 5 ) powder were used so that the composition of Li 7 PS 6 was obtained. A ball mill (P-7, manufactured by Fritsch) was used to mix and pulverize at 500 rpm for 20 hours to prepare a mixed powder. This mixed powder is filled in a carbon container, and heated at a heating rate of 200 ° C./h in a tubular electric furnace while circulating Ar gas (purity 100%) at 1 L / min. Baked for hours.
- Li 2 S Lithium sulfide
- P 2 S 5 phosphorus pentasulfide
- the sample was pulverized in a mortar and sized with a sieve having an opening of 53 ⁇ m to obtain a powdery compound having a particle diameter D50 of 10 ⁇ m.
- the obtained powder, heptane as a solvent, and ZrO 2 balls of ⁇ 2 mm were placed in a ZrO 2 container, and a planetary ball mill (manufactured by Fritsch, P-7) was used at 100 rpm for 3 hours. to prepare a crushed powder having a particle size D50 of 3.0 ⁇ m.
- the powder was sieved through a sieve with an opening of 53 ⁇ m to obtain a powdery compound having a particle diameter D50 of 4.8 ⁇ m.
- Ketjenblack (registered trademark) EC300 used in Example 1 was used as the conductive material. 20 parts of the conductive material was used with respect to 100 parts of the compound. A positive electrode active material was obtained in the same manner as in Example 1 except for this. As a result of XRD measurement using CuK ⁇ 1 rays, it was confirmed that this compound had a crystal phase with an aldirodite type crystal structure.
- the solid electrolyte and positive electrode mixture were prepared in the same manner as in Example 1.
- an all-solid-state battery was produced as follows.
- the lower opening of a polypropylene cylindrical container (opening diameter 10.5 mm, height 18 mm) with an upper and lower opening is closed with a negative electrode (made of SUS), crushed solid electrolyte powder is placed, and a positive electrode (made of SUS) ), and then uniaxially pressed at 200 MPa to form a solid electrolyte layer.
- the positive electrode was once removed, the positive electrode mixture powder was placed on the solid electrolyte layer, and the positive electrode was closed again.
- the cylinder is turned upside down, the negative electrode is removed once, Li foil is placed on the solid electrolyte layer, and the negative electrode is closed again.
- An all-solid battery cell in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are laminated was produced by sandwiching the layers together.
- the thickness of each layer was about 40 ⁇ m for the positive electrode layer, about 600 ⁇ m for the solid electrolyte layer, and about 100 ⁇ m for the negative electrode layer.
- the production of all-solid-state battery cells was carried out in a glove box that was replaced with argon gas having a dew point temperature of -60°C.
- the capacity of the produced all-solid-state battery was set to 2.0 mAh based on the positive electrode.
- 3LiBH 4 -LiI was used as the solid electrolyte.
- This solid electrolyte was produced as follows. Lithium borohydride (LiBH 4 ) powder and lithium iodide (LiI) powder were used so as to obtain a composition of 3LiBH 4 -LiI. , P-7), 3LiBH 4 —LiI powder was produced by performing mechanical milling at 500 rpm for 10 hours. Thereafter, the sample was pulverized in a mortar and sized with a sieve having an opening of 53 ⁇ m to obtain a powdery compound having a particle diameter D50 of 12 ⁇ m.
- the obtained sieved powder was placed in a ZrO 2 container together with heptane as a solvent and ZrO 2 balls of ⁇ 2 mm, and milled at 100 rpm for 3 hours using a planetary ball mill (manufactured by Fritsch, P-7).
- a crushed powder having a particle size D50 of 6.4 ⁇ m was prepared under the conditions.
- Example 1 The same positive electrode active material as in Example 1 was used.
- the positive electrode mixture was prepared by mortar mixing the positive electrode active material powder and the pulverized solid electrolyte powder at a mass ratio of 75:25. Furthermore, the same material as in Example 4 was used as the negative electrode active material. An all-solid-state battery was fabricated in the same manner as in Example 4 using the above materials.
- Example 6 An all-solid battery was produced in the same manner as in Example 1, except that the same positive electrode active material as in Example 2 was used.
- Lithium sulfide (Li 2 S) powder and diphosphorus pentasulfide (P 2 S 5 ) powder were used so that the composition was Li 6.6 PS 5.6 Cl 0.4 , and the total amount was 2 g. , and mixed and pulverized at 500 rpm for 20 hours using a planetary ball mill (manufactured by Fritsch, P-7) to prepare a mixed powder.
- This mixed powder is filled in a carbon container, and heated in a tubular electric furnace at a heating rate of 200 ° C./h while Ar gas (purity 100%) is circulated at 1 L / min. Baked for hours.
- the sample was pulverized in a mortar and sized with a sieve having an opening of 53 ⁇ m to obtain a powdery compound having a particle diameter D50 of 9 ⁇ m.
- the obtained powder, heptane as a solvent, and ZrO 2 balls of ⁇ 2 mm were placed in a ZrO 2 container, and a planetary ball mill (manufactured by Fritsch, P-7) was used at 100 rpm for 3 hours. to prepare a crushed powder having a particle size D50 of 3.0 ⁇ m.
- the powder was sieved through a sieve with an opening of 53 ⁇ m to obtain a powdery compound having a particle diameter D50 of 4.8 ⁇ m.
- Ketjenblack (registered trademark) EC300 used in Example 1 was used as the conductive material. 20 parts of the conductive material was used with respect to 100 parts of the compound. A positive electrode active material was obtained in the same manner as in Example 1 except for this. As a result of XRD measurement using CuK ⁇ 1 rays, it was confirmed that this compound had a crystal phase with an aldirodite type crystal structure.
- Example 2 The same solid electrolyte, negative electrode active material, and negative electrode mixture as in Example 2 were used. A positive electrode mixture was prepared in the same manner as in Example 2, and an all-solid battery was produced in the same manner as in Example 2.
- the positive electrode mixture powder for the positive electrode layer includes the positive electrode active material powder, the pulverized powder of the solid electrolyte used in Example 1, and the carbon nanotube (fiber diameter 150 nm) as a conductive material (manufactured by Showa Denko, VGCF (registered trademark) -H) were mixed in a mortar at a mass ratio of 60:37:3. An all-solid battery was obtained in the same manner as in Example 1 except for this.
- the positive electrode mixture powder for the positive electrode layer is composed of the positive electrode active material powder, the pulverized powder of the solid electrolyte used in Example 1, and carbon nanotubes (manufactured by Showa Denko, VGCF (registered trademark)-H) as a conductive material. It was prepared by mortar mixing at a ratio of 60:30:10. An all-solid battery was obtained in the same manner as in Example 1 except for this.
- LMNO lithium-manganese-nickel-containing composite oxide
- Comparative Example 3 The same positive electrode active material as in Comparative Example 1 was used. The same solid electrolyte as in Example 1 was used, and the same negative electrode active material as in Example 2 was used. A positive electrode mixture was prepared in the same manner as in Comparative Example 1. An all-solid battery was obtained in the same manner as in Example 2 except for these.
- Example 2 The same solid electrolyte as in Example 2 was used. Further, the same negative electrode active material as in Example 2 was used, and a negative electrode mixture was prepared in the same manner as in Example 2. An all-solid-state battery was produced in the same manner as in Example 2, except that the above materials were used.
- the lithium ions contained in the positive electrode active material can be efficiently desorbed, so CC-CV at 0.1 C from the first cycle. It was charged by the method and discharged by the CC method at 0.1C.
- the cut-off voltage varies depending on the combination of the positive electrode active material and the negative electrode active material used in the all-solid-state battery. It was set by the combination with the active material.
- the average discharge voltage in the second cycle was defined as the initial discharge voltage
- the discharge capacity was defined as the initial discharge capacity.
- FIG. 6 shows the cycle characteristics of the all-solid-state batteries produced in Examples 1, 2 and 6 and Comparative Examples 1 and 4.
- the all-solid-state battery obtained in each example does not contain a rare metal (excluding the Li element), but contains a positive electrode active material containing a rare metal.
- the initial discharge voltage is low, but the initial discharge capacity is large, and the cycle characteristics are also good, indicating equivalent performance.
- the all-solid-state battery of Comparative Example 4 uses a sulfide positive electrode active material that does not contain rare metals (excluding the Li element). 2 has the same battery configuration except for the positive electrode active material.
- the all-solid-state battery of Comparative Example 4 has substantially the same initial discharge voltage, but has lower initial discharge capacity and cycle characteristics.
- the all-solid-state battery of Comparative Example 4 does not contain rare metals (excluding the Li element), and is the same sulfide positive electrode active material as the aldirodite-type compound. It can be seen that good characteristics have not been obtained as a solid-state battery.
- the carbon material used as the conductive material is different between Example 1 and Example 6, it can be seen that the initial capacity and cycle characteristics of the battery are further improved by using Ketjenblack as the conductive material as in Example 1. .
- the carbon materials used as the conductive material it is preferable to use carbon black from the viewpoint of enhancing the initial capacity and discharge rate characteristics of the battery. From the viewpoint of making this advantage more remarkable, it is preferable to use Ketjen black as the carbon black, among them, it is preferable to use furnace black, and it is particularly preferable to use oil furnace black.
- the positive electrode active material can be composed of raw materials whose supply is stable and whose price fluctuates less.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
したがって本発明の課題は、従来のリチウムイオン電池と同等の特性を有し且つ少なくともニッケル(Ni)元素及びコバルト(Co)元素の使用量が低減された電池を提供することにある。
前記正極が、リチウム(Li)元素、硫黄(S)元素及びリン(P)元素を含み、アルジロダイト型結晶構造を有する結晶相を含む正極活物質を有し、
前記正極活物質に含まれるニッケル(Ni)元素及びコバルト(Co)元素の合計量が0.1質量%以下である、電池を提供するものである。
前記導電性非金属材料としては、例えば炭素材料を用いることができる。その例としては、グラファイト、アセチレンブラック、カーボンブラック、カーボンナノファイバ、カーボンナノチューブ、ナノグラフェン及びフラーレンナノウイスカなどが挙げられる。これらの炭素材料は一種を単独で用いてもよく、あるいは二種以上を組み合わせて用いてもよい。これらの炭素材料のうち、カーボンブラックを用いることが、電池の初期容量及びサイクル特性を高める点から好ましい。この利点を一層顕著なものとする観点から、カーボンブラックとしてケッチェンブラックを用いることが好ましく、中でもファーネスブラックを用いることが好ましく、特にオイルファーネスブラックを用いることが好ましい。
硫化水素ガスを含有する雰囲気下で焼成する場合の焼成温度は、例えば450℃以上であることが好ましく、550℃以上であることが更に好ましい。一方、前記焼成温度は、例えば700℃以下であることが好ましく、650℃以下であることが更に好ましく、600℃以下とすることが一層好ましい。
一方、不活性雰囲気下で焼成する場合の焼成温度は、例えば450℃以上であることが好ましい。一方、前記焼成温度は、例えば650℃以下であることが好ましく、600℃以下であることが更に好ましく、550℃以下とすることが一層好ましい。
正極活物質は以下の方法で製造した。
Li5.8PS4・8Cl1.2の組成となるように、硫化リチウム(Li2S)粉末と、五硫化二リン(P2S5)粉末と、塩化リチウム(LiCl)粉末とを用い、全量で2gになるようにそれぞれを秤量してφ5mmのZrO2ボールとともにZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、500回転/分で20時間の条件で混合・粉砕し混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にて硫化水素ガス(H2S、純度100%)を1L/minで流通させながら、昇降温速度200℃/hで加熱し、500℃で4時間焼成した。その後、試料を乳鉢で解砕し、ボールミルにて粉砕後、目開き53μmの篩いで整粒して粒径D50が12μmである粉末状の化合物を得た。その後、整粒した粉末と、溶媒としてのヘプタンと、φ2mmのZrO2ボールとをZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、150回転/分で3時間の条件で粒径D50が3.5μmの解砕粉末を調製した。
導電材としてライオン・スペシャリティ・ケミカル製、導電性カーボンブラックであるケッチェンブラック(登録商標)EC300を用いた。この導電材は粒径D50が0.04μmのものであった。前記化合物100部に対して導電材を20部用い、遊星型ボールミル(フリッチュ製、P-7)を用い、500回転/分(遠心加速度19.1G)で10時間の条件で混合・複合化した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粒径D50が3.2μmである正極活物質の粒子を得た。CuKα1線を用いたXRD測定の結果、この化合物はアルジロダイト型結晶構造の結晶相を有するものであることが確認された。
以上の操作はすべて、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で実施した。
Li5.4PS4.4Cl0.8Br0.8の組成となるように、硫化リチウム(Li2S)粉末と、五硫化二リン(P2S5)粉末と、塩化リチウム(LiCl)粉末と、臭化リチウム(LiBr)粉末を用い、全量で2gになるようにそれぞれを秤量し、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で10時間の条件で混合・粉砕し混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にて硫化水素ガス(H2S、純度100%)を1L/minで流通させながら、昇降温速度200℃/hで加熱し、500℃で4時間焼成した。その後、目開き53μmの篩いで整粒して粒径D50が10μmである粉末状の化合物を得た。得られた整粒した粉末は、溶媒としてヘプタン、及びφ2mmのZrO2ボールとともにZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で3時間の条件で粒径D50が3.0μmの解砕粉末を調製した。更にその後、解砕した粉末と、溶媒としてのヘプタンと、分散剤としての酢酸ブチルと、φ0.8mmのZrO2ボールとをZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で3時間の条件で粒径D50が0.7μmの粉砕粉末を調製した。CuKα1線を用いたXRD測定の結果、この化合物はアルジロダイト型結晶構造の結晶相を有するものであることが確認された。
正極活物質は以下の方法で製造した。
導電材として、実施例1で用いたケッチェンブラック(登録商標)に代えて、カーボンナノチューブ(繊維径150nm)(昭和電工製、VGCF(登録商標)-H)を用いた。これ以外は実施例1と同様にして正極活物質を得た。
Li5.8PS4.8Cl1.2の組成となるように、硫化リチウム(Li2S)粉末と、五硫化二リン(P2S5)粉末と、塩化リチウム(LiCl)粉末とを用い、全量で2gになるようにそれぞれを秤量し、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で10時間の条件で混合・粉砕し混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にて硫化水素ガス(H2S、純度100%)を1L/minで流通させながら、昇降温速度200℃/hで加熱し、500℃で4時間焼成した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粒径D50が11μmである粉末状の化合物を得た。得られた粉末を実施例1と同様に整粒して、粒径D50が0.8μmの粉砕粉末を調製した。
CuKα1線を用いたXRD測定の結果、この化合物はアルジロダイト型結晶構造の結晶相を有するものであることが確認された。
正極活物質は以下の方法で製造した。
Li5.4PS4.4Cl0.8Br0.8の組成となるように、硫化リチウム(Li2S)粉末と、五硫化二リン(P2S5)粉末と、塩化リチウム(LiCl)粉末と、臭化リチウム(LiBr)粉末を用い、全量で2gになるようにそれぞれを秤量し、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で10時間の条件で混合・粉砕し混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にて硫化水素ガス(H2S、純度100%)を1L/minで流通させながら、昇降温速度200℃/hで加熱し、450℃で4時間焼成した。その後、目開き53μmの篩いで整粒して粒径D50が9μmである粉末状の化合物を得た。得られた粉末と、溶媒としてのヘプタンと、φ2mmのZrO2ボールとをZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で3時間の条件で粒径D50が2.5μmの解砕粉末を調製した。
導電材として、実施例2で用いたカーボンナノチューブ(繊維径150nm)(昭和電工製、VGCF(登録商標)-H)を用いた。前記化合物100部に対して導電材を20部用いた。
これ以外は実施例1と同様にして正極活物質を得た。CuKα1線を用いたXRD測定の結果、この化合物はアルジロダイト型結晶構造の結晶相を有するものであることが確認された。
正極活物質は以下の方法で製造した。
Li7PS6の組成となるように、硫化リチウム(Li2S)粉末と、五硫化二リン(P2S5)粉末とを用い、全量で2gになるようにそれぞれを秤量し、遊星型ボールミル(フリッチュ製、P-7)を用い、500回転/分で20時間の条件で混合・粉砕し混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にてArガス(純度100%)を1L/minで流通させながら、昇降温速度200℃/hで加熱し、600℃で4時間焼成した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粒径D50が10μmである粉末状の化合物を得た。得られた粉末と、溶媒としてのヘプタンと、φ2mmのZrO2ボールとをZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で3時間の条件で粒径D50が3.0μmの解砕粉末を調製した。ボールミルにて粉砕後、目開き53μmの篩いで整粒して粒径D50が4.8μmである粉末状の化合物を得た。
導電材として、実施例1で用いたケッチェンブラック(登録商標)EC300を用いた。前記化合物100部に対して導電材を20部用いた。
これ以外は実施例1と同様にして正極活物質を得た。CuKα1線を用いたXRD測定の結果、この化合物はアルジロダイト型結晶構造の結晶相を有するものであることが確認された。
固体電解質として3LiBH4-LiIを用いた。この固体電解質は次のようにして製造した。
3LiBH4-LiIの組成となるように、水素化ホウ素リチウム(LiBH4)粉末と、ヨウ化リチウム(LiI)粉末を用い、全量で2gになるようにそれぞれを秤量し、遊星型ボールミル(フリッチュ製、P-7)を用い、500回転/分で10時間の条件でメカニカルミリングを行うことで3LiBH4-LiIの粉末を製造した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粒径D50が12μmである粉末状の化合物を得た。得られた整粒した粉末は、溶媒としてヘプタン、及びφ2mmのZrO2ボールとともにZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で3時間の条件で粒径D50が6.4μmの解砕粉末を調製した。
以上の材料を用いて、実施例4と同様にして全固体電池を作製した。
実施例2と同じ正極活物質を用いたこと以外は、実施例1と同様にして全固体電池を作製した。
Li6.6PS5.6Cl0.4の組成となるように、硫化リチウム(Li2S)粉末と、五硫化二リン(P2S5)粉末とを用い、全量で2gになるようにそれぞれを秤量し、遊星型ボールミル(フリッチュ製、P-7)を用い、500回転/分で20時間の条件で混合・粉砕し混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にてArガス(純度100%)を1L/minで流通させながら、昇降温速度200℃/hで加熱し、550℃で4時間焼成した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粒径D50が9μmである粉末状の化合物を得た。得られた粉末と、溶媒としてのヘプタンと、φ2mmのZrO2ボールとをZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で3時間の条件で粒径D50が3.0μmの解砕粉末を調製した。ボールミルにて粉砕後、目開き53μmの篩いで整粒して粒径D50が4.8μmである粉末状の化合物を得た。
導電材として、実施例1で用いたケッチェンブラック(登録商標)EC300を用いた。前記化合物100部に対して導電材を20部用いた。
これ以外は実施例1と同様にして正極活物質を得た。CuKα1線を用いたXRD測定の結果、この化合物はアルジロダイト型結晶構造の結晶相を有するものであることが確認された。
実施例1で用いた正極活物質に代えて、Nb材料を被覆したLiNi0.6Co0.2Mn0.2O2(以下「NCM」ともいう。)粉末(D50=4.2μm)を用いた。また正極層用の正極合剤粉末は、正極活物質粉末、実施例1で用いた固体電解質の粉砕粉末、及び導電材としてのカーボンナノチューブ(繊維径150nm)(昭和電工製、VGCF(登録商標)-H)を質量比で60:37:3の割合で乳鉢混合することで調製した。これ以外は実施例1と同様にして全固体電池を得た。
実施例1で用いた正極活物質に代えて、Nb材料を被覆したスピネル型リチウムマンガンニッケル含有複合酸化物(LiMn1.5Ni0.5O4、以下「LMNO」ともいう。)粉末(D50=4.1μm)を用いた。また正極層用の正極合剤粉末は、正極活物質粉末、実施例1で用いた固体電解質の粉砕粉末、及び導電材としてのカーボンナノチューブ(昭和電工製、VGCF(登録商標)-H)を質量比で60:30:10の割合で乳鉢混合することで調製した。これ以外は実施例1と同様にして全固体電池を得た。
比較例1と同じ正極活物質を用いた。また固体電解質は実施例1と同じものを用い、負極活物質は実施例2と同じものを用いた。正極合剤は比較例1と同様にして調製した。これら以外は実施例2と同様にして全固体電池を得た。
Li2S:P2S5=75:25の組成となるように、硫化リチウム(Li2S)粉末と、五硫化二リン(P2S5)粉末とを用い、全量で2gになるようにそれぞれを秤量し、遊星型ボールミル(フリッチュ製、P-7)を用い、500回転/分で30時間の条件でメカニカルミリングを行うことでLi2S:P2S5=75:25の粉末を製造した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粒径D50が10μmである粉末状の化合物を得た。得られた粉末と、溶媒としてのヘプタンと、φ5mmのZrO2ボールとをZrO2製の容器に入れ、遊星型ボールミル(フリッチュ製、P-7)を用い、100回転/分で3時間の条件で粒径D50が5.8μmの解砕粉末を調製した。
導電材として、実施例1で用いたケッチェンブラック(登録商標)EC300を用いた。前記化合物100部に対して導電材を20部用いた。
これ以外は実施例2と同様にして正極活物質及び正極合剤を得た。
実施例及び比較例で得られた正極活物質に含まれるNi元素、Co元素及びMn元素の割合を測定した。また、実施例及び比較例で得られた全固体電池を、25℃若しくは120℃に保たれた環境試験機内において充放電測定装置に接続し、以下の方法で初期容量及びサイクル特性を測定した。それらの結果を以下の表1に示す。
充放電時の電流2.0mAを1Cレートとし、アルジロダイト型結晶構造を有する化合物を主部とする正極活物質を用いた全固体電池では、初回充放電(1サイクル目)では正極活物質内に含まれるリチウムイオンを効率的に脱吸蔵させる目的で、0.03CでCC-CV方式で充電し、0.03CにてCC方式で放電した。2サイクル目以降では、0.1CでCC-CV方式により充電し、0.1CでCC方式により放電した。一方、比較例1~3で用いた正極活物質を用いた全固体電池では、正極活物質内に含まれるリチウムイオンを効率的に脱吸蔵できるため、1サイクル目から0.1CでCC-CV方式により充電し、0.1CでCC方式により放電した。なお、カットオフ電圧は全固体電池で用いる正極活物質と負極活物質との組み合わせによって異なることから、表1に示すように各実施例及び比較例の全固体電池で用いた正極活物質と負極活物質との組み合わせによって設定した。ここで、2サイクル目の平均放電電圧を初期放電電圧及び放電容量を初期放電容量とした。実施例1、2及び6並びに比較例1及び4で作製した全固体電池の初期充放電曲線を図1ないし5に示す。
前記の方式で50サイクルまでの充放電を行い、2サイクル目の初期放電容量に対する50サイクル目の放電容量の比率を容量維持率として算出した。実施例1、2及び6並びに比較例1及び4で作製した全固体電池のサイクル特性を図6に示す。
比較例4の全固体電池では、レアメタル(Li元素を除く。)を非含有である硫化物の正極活物質を用いており、同じ硫化物であるアルジロダイト型化合物を正極活物質として用いた実施例2の全固体電池と正極活物質以外は電池構成が同一となっている。比較例の4の全固体電池は実施例2の全固体電池と比較して、初期放電電圧はほぼ同一であるが、初期放電容量及びサイクル特性が低い。したがって比較例4の全固体電池では、レアメタル(Li元素を除く。)が非含有であり、アルジロダイト型化合物と同じ硫化物の正極活物質であるが、アルジロダイト型化合物を含有していないため、全固体電池として良好な特性が得られていないことが分かる。
Claims (7)
- 正極と、負極と、前記正極及び前記負極の間に配置された固体電解質層とを有する電池であって、
前記正極が、リチウム(Li)元素、硫黄(S)元素及びリン(P)元素を含み、アルジロダイト型結晶構造を有する結晶相を含む正極活物質を有し、
前記正極活物質に含まれるニッケル(Ni)元素及びコバルト(Co)元素の合計量が0.1質量%以下である、電池。 - 前記正極活物質に含まれるニッケル(Ni)元素、コバルト(Co)元素及びマンガン(Mn)元素の合計量が0.1質量%以下である、請求項1に記載の電池。
- 前記正極活物質に含まれるレアメタル(ただしリチウム(Li)元素を除く)の合計量が0.1質量%以下である、請求項1又は2に記載の電池。
- 前記固体電解質層が、固体電解質を有し、
前記固体電解質が、リチウム(Li)元素、硫黄(S)元素及びリン(P)元素を含み、アルジロダイト型結晶構造を有する結晶相を含む、請求項1に記載の電池。 - 前記正極が、導電材を有し、
前記正極活物質及び前記導電材が複合材料である、請求項1に記載の電池。 - 前記導電材が炭素材料又は金属材料である、請求項5に記載の電池。
- 前記複合材料が、機械的エネルギーの付与によって前記正極活物質及び前記導電材が複合化した材料である、請求項5又は6に記載の電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/274,176 US20240088429A1 (en) | 2021-11-17 | 2022-11-11 | Battery |
KR1020237022602A KR20230107405A (ko) | 2021-11-17 | 2022-11-11 | 전지 |
JP2023516050A JP7421011B2 (ja) | 2021-11-17 | 2022-11-11 | 電池 |
CN202280009051.3A CN116711094A (zh) | 2021-11-17 | 2022-11-11 | 电池 |
EP22895551.4A EP4435896A4 (en) | 2021-11-17 | 2022-11-11 | BATTERY |
JP2024002372A JP2024027173A (ja) | 2021-11-17 | 2024-01-11 | 電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-187347 | 2021-11-17 | ||
JP2021187347 | 2021-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090269A1 true WO2023090269A1 (ja) | 2023-05-25 |
Family
ID=86396949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042057 WO2023090269A1 (ja) | 2021-11-17 | 2022-11-11 | 電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240088429A1 (ja) |
EP (1) | EP4435896A4 (ja) |
JP (2) | JP7421011B2 (ja) |
KR (1) | KR20230107405A (ja) |
CN (1) | CN116711094A (ja) |
WO (1) | WO2023090269A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099834A1 (ja) | 2011-12-28 | 2013-07-04 | 三井金属鉱業株式会社 | 硫化物系固体電解質 |
WO2015001818A1 (ja) | 2013-07-04 | 2015-01-08 | 三井金属鉱業株式会社 | 結晶性固体電解質及びその製造方法 |
US20160285097A1 (en) | 2013-03-18 | 2016-09-29 | National Institute Of Advanced Industrial Science And Technology | Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide |
WO2019009228A1 (ja) * | 2017-07-07 | 2019-01-10 | 三井金属鉱業株式会社 | リチウム二次電池の固体電解質及び当該固体電解質用硫化物系化合物 |
JP2020135949A (ja) * | 2019-02-13 | 2020-08-31 | 三井金属鉱業株式会社 | 活物質、それを用いた正極合剤及び固体電池 |
WO2021117869A1 (ja) * | 2019-12-11 | 2021-06-17 | 三井金属鉱業株式会社 | 硫化物固体電解質 |
JP2022048664A (ja) * | 2020-09-15 | 2022-03-28 | マクセル株式会社 | 全固体電池用正極および全固体電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011096630A (ja) * | 2009-10-02 | 2011-05-12 | Sanyo Electric Co Ltd | 固体リチウム二次電池及びその製造方法 |
DE102013219606A1 (de) * | 2013-09-27 | 2015-04-02 | Robert Bosch Gmbh | Elektrodenmaterial mit Lithium-Argyrodit |
EP3544108B1 (en) * | 2016-11-16 | 2023-09-27 | Idemitsu Kosan Co., Ltd | Sulfide solid electrolyte |
CN107910523A (zh) * | 2017-11-15 | 2018-04-13 | 哈尔滨工业大学 | 一种全固态锂电池复合正极及其制备方法 |
CN109638240A (zh) * | 2018-11-27 | 2019-04-16 | 华中科技大学 | 一种全固态锂硫电池及其制作方法 |
JP7283657B2 (ja) * | 2019-03-26 | 2023-05-30 | 東京電力ホールディングス株式会社 | 硫黄正極合材およびその製造方法、硫黄正極、リチウム硫黄固体電池 |
WO2020214786A1 (en) * | 2019-04-17 | 2020-10-22 | University Of Louisville Research Foundation, Inc. | Method for wet chemical synthesis of lithium argyrodites |
WO2021049665A1 (ja) * | 2019-09-13 | 2021-03-18 | 三井金属鉱業株式会社 | 電極合材並びにそれを用いた電極層及び固体電池 |
-
2022
- 2022-11-11 KR KR1020237022602A patent/KR20230107405A/ko not_active Application Discontinuation
- 2022-11-11 CN CN202280009051.3A patent/CN116711094A/zh active Pending
- 2022-11-11 WO PCT/JP2022/042057 patent/WO2023090269A1/ja active Application Filing
- 2022-11-11 JP JP2023516050A patent/JP7421011B2/ja active Active
- 2022-11-11 EP EP22895551.4A patent/EP4435896A4/en active Pending
- 2022-11-11 US US18/274,176 patent/US20240088429A1/en active Pending
-
2024
- 2024-01-11 JP JP2024002372A patent/JP2024027173A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099834A1 (ja) | 2011-12-28 | 2013-07-04 | 三井金属鉱業株式会社 | 硫化物系固体電解質 |
US20160285097A1 (en) | 2013-03-18 | 2016-09-29 | National Institute Of Advanced Industrial Science And Technology | Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide |
WO2015001818A1 (ja) | 2013-07-04 | 2015-01-08 | 三井金属鉱業株式会社 | 結晶性固体電解質及びその製造方法 |
WO2019009228A1 (ja) * | 2017-07-07 | 2019-01-10 | 三井金属鉱業株式会社 | リチウム二次電池の固体電解質及び当該固体電解質用硫化物系化合物 |
JP2020135949A (ja) * | 2019-02-13 | 2020-08-31 | 三井金属鉱業株式会社 | 活物質、それを用いた正極合剤及び固体電池 |
WO2021117869A1 (ja) * | 2019-12-11 | 2021-06-17 | 三井金属鉱業株式会社 | 硫化物固体電解質 |
JP2022048664A (ja) * | 2020-09-15 | 2022-03-28 | マクセル株式会社 | 全固体電池用正極および全固体電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4435896A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4435896A1 (en) | 2024-09-25 |
CN116711094A (zh) | 2023-09-05 |
JP7421011B2 (ja) | 2024-01-23 |
EP4435896A4 (en) | 2024-09-25 |
JP2024027173A (ja) | 2024-02-29 |
US20240088429A1 (en) | 2024-03-14 |
KR20230107405A (ko) | 2023-07-14 |
JPWO2023090269A1 (ja) | 2023-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7077793B2 (ja) | 正極合材及びその製造方法 | |
JP7344345B2 (ja) | 硫化物系無機固体電解質材料の製造方法 | |
WO2022045302A1 (ja) | 活物質及びその製造方法、電極合剤並びに電池 | |
WO2021251347A1 (ja) | 固体電解質、電極合剤及び電池 | |
US9368789B2 (en) | Nanocomposite anode materials for sodium-ion batteries | |
KR20100073295A (ko) | 아연안티모나이드-탄소 복합체의 제조 방법 및 상기 복합체를 포함하는 이차전지용 음극재료 | |
JP2019125547A (ja) | 固体電解質粉末、並びにそれを用いてなる電極合材及び全固体ナトリウムイオン二次電池 | |
US20140162125A1 (en) | Anode materials for lithium-ion batteries | |
JP7505135B2 (ja) | 複合材料及びその製造方法 | |
JP7164939B2 (ja) | 全固体型二次電池 | |
JP4379971B2 (ja) | 電気エネルギー貯蔵素子 | |
US11075375B2 (en) | Cathode mixture, all solid state battery, method for producing cathode mixture, and method for producing all solid state battery | |
JP7402711B2 (ja) | 全固体リチウムイオン二次電池用正極活物質、全固体リチウムイオン二次電池、及び全固体リチウムイオン二次電池用正極活物質の製造方法 | |
JP6117630B2 (ja) | ナトリウム二次電池用負極材料およびそれを用いたナトリウム二次電池 | |
WO2023090269A1 (ja) | 電池 | |
Ganesan et al. | Versatile Fe 2 GeS 4 for Li/Na–Fe 2 GeS 4 battery cathodes and Li/Na-ion battery anodes | |
JP6112715B2 (ja) | 多硫化チタン−炭素複合体 | |
WO2024048476A1 (ja) | 複合材料の製造方法及び複合材料 | |
WO2024166908A1 (ja) | 活物質、固体電解質、電極合剤並びに電池 | |
KR20170120981A (ko) | 금속-텔루륨 화합물 및 탄소를 포함하는 복합체의 제조 방법, 이에 의해 제조된 복합체를 포함하는 이차전지용 전극 물질, 이를 포함하는 리튬 또는 나트륨 이차전지 | |
KR102220358B1 (ko) | 인(p)계 복합체의 제조 방법 및 이를 포함하는 리튬 또는 나트륨 이온 이차전지 | |
JP7192726B2 (ja) | 負極材料及びその製造方法 | |
JP5652132B2 (ja) | 無機固体電解質及びリチウム二次電池 | |
WO2024166792A1 (ja) | 負極合剤、スラリー、負極及び電池 | |
TW202420626A (zh) | 鹵化物固體電解質、製造其之方法及包含其之二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023516050 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20237022602 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895551 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280009051.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18274176 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022895551 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022895551 Country of ref document: EP Effective date: 20240617 |