WO2023089931A1 - 溶着装置、及び樹脂溶着ワークの製造方法 - Google Patents

溶着装置、及び樹脂溶着ワークの製造方法 Download PDF

Info

Publication number
WO2023089931A1
WO2023089931A1 PCT/JP2022/034402 JP2022034402W WO2023089931A1 WO 2023089931 A1 WO2023089931 A1 WO 2023089931A1 JP 2022034402 W JP2022034402 W JP 2022034402W WO 2023089931 A1 WO2023089931 A1 WO 2023089931A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressing
sheet material
resin
portions
welding
Prior art date
Application number
PCT/JP2022/034402
Other languages
English (en)
French (fr)
Inventor
衣川達哉
織田恭平
大島康之
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to KR1020247012922A priority Critical patent/KR20240063152A/ko
Priority to CN202280077052.1A priority patent/CN118265601A/zh
Priority to EP22893984.9A priority patent/EP4438273A1/en
Publication of WO2023089931A1 publication Critical patent/WO2023089931A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7888Means for handling of moving sheets or webs

Definitions

  • the present invention relates to a welding device and a method for manufacturing a resin-welded workpiece.
  • Patent Document 1 discloses a welding device that heats and pressurizes a resin portion to weld it with a heat seal bar.
  • a fluororesin tape is adhered to the surface of the heat seal bar.
  • the pressing part such as the heat seal bar presses the resin part through the sheet material such as the fluororesin tape, for example, the work to be welded or the resin part comes into contact with the sheet material. At this time, the sheet material is consumed, and deterioration of the sheet material may progress. In order to suppress the decrease in yield, it is necessary to replace the sheet material whose deterioration has progressed. However, if the replacement of the sheet material is troublesome, it is necessary to stop the operation of the welding device for a long time, and there is a concern that the operation efficiency of the welding device will be lowered.
  • a welding device for solving the above-described problems is a welding device for welding a resin portion to a work, comprising: a heating portion for melting the resin portion by heating the resin portion; A pressing portion that welds the melted resin portion to the work by pressing the resin portion toward the work in the pressing direction, the pressing portion having a pressing surface that presses the sheet material, and the pressing direction. a pair of support portions spaced apart in a moving direction of the sheet material, which is a direction intersecting with the and a moving mechanism that slides the sheet member supported by the supporting portion in the moving direction.
  • the pressing part presses the melted resin part toward the work through the sheet material.
  • the resin portion is welded to the workpiece.
  • the sheet material contacts the resin portion instead of the pressing surface of the pressing portion, thereby suppressing welding of the resin portion to the pressing surface.
  • the moving mechanism slides the sheet material in the moving direction while the sheet material is supported by the support portion.
  • an area of the sheet material that is different from the area in contact with the resin portion due to the previous pressing by the pressing portion can be arranged between the pressing surface and the resin portion.
  • the sheet material is fixed to the pressing portion, it is possible to save the trouble of releasing the fixation between the sheet material and the pressing portion in order to replace the deteriorated region of the sheet material. .
  • the pressing surface is rectangular, and the moving direction of the sheet member intersects with the long side direction when the direction in which the long side of the pressing surface extends is the long side direction.
  • a method of manufacturing a resin-welded work to solve the above-mentioned problems is a method of manufacturing a resin-welded work in which a resin portion is welded to a work, wherein the resin portion arranged on the work is melted, and a sheet material is used to melt the resin portion.
  • a welding step of manufacturing the resin-welded workpiece by pressing the molten resin portion against the workpiece by a pressing portion and welding the resin portion to the workpiece; and bonding the resin portion to the workpiece in the welding step.
  • the sheet pressing region in the welding step before the moving step is defined as a sheet pressing region
  • the sheet pressing region in the welding step before the moving step is The regions different in the moving direction are slid to positions that can be pressed in the welding step after the moving step.
  • the resin portion is welded to the work by pressing the melted resin portion toward the work through the sheet material.
  • the sheet material contacts the resin part instead of the pressing part that presses the resin part via the sheet material, for example. Therefore, the sheet material suppresses welding of the resin portion to the pressing portion.
  • the operating efficiency of the welding device can be improved.
  • FIG. 4 is a plan view of the electrode unit; FIG. 4 is a side view of the electrode unit; 1 is an overall perspective view of a welding device according to a first embodiment; FIG. 1 is an enlarged front view of a welding device according to a first embodiment; FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 4; FIG. 6 is a cross-sectional view taken along line 6-6 in FIG. 4; FIG. 4 is a flow chart showing an example of a method for manufacturing an electrode unit; It is the whole welding device perspective view of a 2nd embodiment. 9 is a sectional view taken along line 9-9 in FIG. 8; FIG. FIG. 10 is a cross-sectional view taken along line 10-10 in FIG. 9; FIG. 11 is a diagram for explaining a welding device as a modified example of the second embodiment; FIG. 12 is a cross-sectional view taken along line 12-12 of FIG. 11;
  • the electrode unit 10 includes an electrode plate 11 , a first resin portion 20 and a second resin portion 30 .
  • the electrode plate 11 as a work is a bipolar electrode.
  • the electrode plate 11 includes a current collector 12 , a first active material layer 16 and a second active material layer 17 .
  • the current collector 12 is made of metal foil.
  • the current collector 12 is, for example, copper foil, aluminum foil, titanium foil, or nickel foil. From the viewpoint of ensuring mechanical strength, the current collector 12 may be a stainless steel foil. Stainless steel foil is, for example, SUS304, SUS316, SUS301, etc. specified in JIS G 4305:2015.
  • the current collector 12 may be an alloy foil of any of the metals described above, or may be formed by integrating a plurality of metal foils described above.
  • the surface of the current collector 12 may be subjected to known plating or surface treatment.
  • the thickness of the current collector 12 is, for example, 1 ⁇ m or more and 100 ⁇ m or less, more specifically, 5 ⁇ m or more and 70 ⁇ m or less.
  • the shape of the current collector 12 is a rectangular sheet.
  • the current collector 12 has four side portions 12a forming its periphery. These four side portions 12 a also constitute the peripheral edge of the electrode plate 11 . That is, the shape of the electrode plate 11 is also a rectangular sheet. It can also be said that the electrode plate 11 has four side portions 12a forming its periphery.
  • the electrode plate 11 is not limited to the form described above, and may be formed by simply stacking two metal foils.
  • Current collector 12 has a major surface 13 .
  • the main surface 13 is a surface perpendicular to the thickness direction of the current collector 12 .
  • Principal surface 13 includes a first principal surface 14 and a second principal surface 15 .
  • the second main surface 15 is located opposite to the first main surface 14 in the thickness direction of the current collector 12 .
  • the first active material layer 16 as an active material layer contains a positive electrode active material.
  • the positive electrode active material is capable of intercalating and deintercalating charge carriers such as lithium ions.
  • positive electrode active materials include, for example, composite oxides, metallic lithium, sulfur, and the like.
  • the first active material layer 16 may contain a conductive aid, a binder, and other components as necessary.
  • the first active material layer 16 is integrally adhered to the first major surface 14 .
  • the thickness of the first active material layer 16 is, for example, 2 to 150 ⁇ m. Examples of a method for adhering the first active material layer 16 to the first major surface 14 include known methods such as roll coating.
  • the first main surface 14 includes the first uncoated surface 14a.
  • the first uncoated surface 14a is a region of the first main surface 14 to which the first active material layer 16 is not adhered.
  • the first uncoated surface 14 a includes a first peripheral edge 14 b that is the peripheral edge of the first major surface 14 .
  • the second active material layer 17 as an active material layer contains a negative electrode active material.
  • the negative electrode active material is capable of intercalating and deintercalating charge carriers such as lithium ions.
  • Examples of negative electrode active materials include, for example, graphite, carbon, metal compounds, elements that can be alloyed with lithium or compounds thereof, boron-added carbon, and the like.
  • the second active material layer 17 may contain a conductive aid, a binder, and other components as necessary.
  • the thickness of the second active material layer 17 is, for example, 2 to 150 ⁇ m.
  • the second active material layer 17 is integrally adhered to the second main surface 15 .
  • the second main surface 15 includes a second uncoated surface 15a.
  • the second uncoated surface 15a is a region of the second main surface 15 to which the second active material layer 17 is not adhered.
  • the second uncoated surface 15 a includes a second peripheral edge 15 b that is the peripheral edge of the second major surface 15 .
  • the first resin portion 20 as a resin portion is formed in a frame shape.
  • the first resin portion 20 is a rectangular frame.
  • the first resin portion 20 includes four first resin side portions 21 .
  • the first resin side portion 21 is formed in a quadrangular prism shape. The ends of the first resin side portions 21 are connected to each other. Each first resin side portion 21 faces one of the other first resin side portions 21 .
  • the first resin portion 20 is welded to the first main surface 14 . Specifically, the first resin portion 20 is welded to the first uncoated surface 14a. The first resin portion 20 is welded along the first peripheral edge 14b. Therefore, the first resin side portion 21 is welded along the side portion 12 a of the electrode plate 11 . It can also be said that the first resin portion 20 is welded to the first main surface 14 so as to surround the first active material layer 16 . Part of the first resin portion 20 protrudes from the first peripheral edge 14b over the entire circumference of the first peripheral edge 14b in a direction away from the region where the first active material layer 16 is adhered.
  • the portion of the first resin portion 20 protruding from the first peripheral edge 14b and the portion of the second resin portion 30 protruding from the second peripheral edge 15b may be welded to each other.
  • the second resin portion 30 as a resin portion is formed in a frame shape.
  • the second resin portion 30 is a rectangular frame.
  • the second resin portion 30 includes four second resin side portions 31 .
  • the second resin side portion 31 is formed in a quadrangular prism shape. The ends of the second resin side portions 31 are connected to each other. Each second resin side portion 31 faces one of the other second resin side portions 31 .
  • the second resin portion 30 is welded to the second main surface 15 . Specifically, the second resin portion 30 is welded to the second uncoated surface 15a. The second resin portion 30 is welded along the second peripheral edge 15b. Therefore, the second resin side portion 31 is welded along the side portion 12 a of the electrode plate 11 . It can also be said that the second resin portion 30 is welded to the second main surface 15 so as to surround the second active material layer 17 . Part of the second resin portion 30 protrudes from the second peripheral edge 15b over the entire circumference of the second peripheral edge 15b in the direction away from the region where the second active material layer 17 is adhered.
  • the first resin portion 20 and the second resin portion 30 are made of insulating resin.
  • materials for the first resin portion 20 and the second resin portion 30 include various resin materials such as polyethylene (PE), polystyrene (PS), polypropylene (PP), ABS resin, and AS resin, and these resin materials. can be used.
  • the electric storage module B is configured by stacking the electrode units 10 configured in this manner with the resin portions 20 and 30 interposed therebetween. Among the stacked electrode units 10, the portions protruding from the peripheral edges 14b and 15b of the first resin portion 20 of one of the electrode units 10 adjacent to each other and the second resin portion 30 of the other electrode unit 10 are integrated with each other. has been made The parts protruding from the peripheral edges 14b and 15b can be integrated with each other by welding the protruding parts or by bonding with an adhesive member. As the adhesive member, for example, the resin materials exemplified for the resin portions 20 and 30 are used.
  • the power storage module B of the present embodiment is a bipolar lithium ion storage battery. The power storage module B is used, for example, as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles.
  • FIG. 4 manufactures the electrode unit 10 by pressing and welding the resin portions 20 and 30 to the electrode plate 11 as a work.
  • the welding device 40 is an electrode unit manufacturing device.
  • the direction in which the welding device 40 presses the workpiece will be referred to as the pressing direction Z.
  • Two welding devices 40 are used in the method for manufacturing the electrode unit 10 of the present embodiment. Here, one configuration of the welding device 40 will be described.
  • the welding device 40 includes a plate-shaped lower pedestal 41 , two legs 42 , a plate-shaped upper pedestal 43 , two struts 44 , and a cylinder unit 45 .
  • Each leg 42 supports the lower pedestal 41 with respect to the ground.
  • the upper pedestal 43 is separated from the lower pedestal 41 in the thickness direction of the lower pedestal 41 .
  • the thickness direction of the upper pedestal 43 is parallel to the thickness direction of the lower pedestal 41 .
  • the thickness direction of the lower pedestal 41 is parallel to the vertical direction.
  • the vertical direction is the direction in which gravity acts on an object.
  • the vertical direction may be referred to as the vertical direction.
  • both the vertical direction and the vertical direction are parallel to the pressing direction Z. As shown in FIG.
  • Each post 44 supports the upper pedestal 43 with respect to the lower pedestal 41 .
  • Each strut 44 extends in the pressing direction Z.
  • the cylinder unit 45 has a cylinder body 46 and a cylinder rod 47 .
  • the cylinder body 46 is fixed to the upper base 43 .
  • a servomotor (not shown) is housed inside the cylinder body 46 .
  • the cylinder rod 47 passes through the upper base 43 in the pressing direction Z. As shown in FIG.
  • the cylinder rod 47 is configured to protrude and retract in the pressing direction Z with respect to the cylinder body 46 .
  • the cylinder rod 47 appears and disappears with respect to the cylinder body 46 by driving a servomotor, for example.
  • the welding device 40 includes a first pressing assembly 50a, a second pressing assembly 50b, and a control circuit 90.
  • a first pressing assembly 50a Two pressing assemblies 50a, 50b are arranged between the lower pedestal 41 and the upper pedestal 43, respectively.
  • the first pressing assembly 50 a is supported on the upper base 43 by the cylinder unit 45 .
  • a first pressing assembly 50 a is connected to the cylinder rod 47 .
  • the first pressing assembly 50a is configured to be movable in the pressing direction Z by operating the cylinder unit 45, for example, by extending or retracting the cylinder rod 47.
  • the second pressing assembly 50b is supported by the lower base 41. In this embodiment, the second pressing assembly 50b is fixed to the lower pedestal 41. As shown in FIG. The first pressing assembly 50a and the second pressing assembly 50b face each other in the pressing direction Z. As shown in FIG. The pressing direction Z can also be referred to as the direction in which the two pressing assemblies 50a, 50b face each other.
  • the welding device 40 of this embodiment is a so-called servo press that moves the first pressing assembly 50a by driving a servomotor.
  • the welding device 40 is not limited to this, and may be, for example, a so-called hydraulic press using a hydraulic pump.
  • each pressing assembly 50a, 50b includes a pressing portion 51, an insulating portion 52, a buffer portion 53, a heating portion 54, and a welding suppression mechanism TF.
  • the details of each member of each pressing assembly 50a, 50b will be described below.
  • members of the pressing assemblies 50a and 50b used below are treated as members provided in the first pressing assembly 50a.
  • Each member included in the second pressing assembly 50b is the same as that included in the first pressing assembly 50a. Therefore, each member provided in the second pressing assembly 50b may be given the same member number as that of the first pressing assembly 50a, and description thereof may be omitted.
  • the pressing portion 51 is a seal bar that presses the resin portions 20 and 30 in the pressing direction Z.
  • the pressing portion 51 of the present embodiment has a quadrangular prism shape.
  • the long side direction X of the pressing portion 51 is perpendicular to the pressing direction Z.
  • the short-side direction Y of the pressing portion 51 is perpendicular to both the pressing direction Z and the long-side direction X.
  • the pressing portion 51 includes a connection surface 51a, a pressing surface 51b, two end surfaces 51c, and two guide portions 51d.
  • connection surface 51a is the surface of the two planes perpendicular to the pressing direction Z to which the tip of the cylinder rod 47 is connected.
  • the connection surface 51a of this embodiment is a rectangle perpendicular to the pressing direction Z.
  • the long side of the connection surface 51a extends in the long side direction X.
  • the short side of the connection surface 51a extends in the short side direction Y. As shown in FIG.
  • the pressing surface 51b is a surface located opposite to the connecting surface 51a in the pressing direction Z, among planes perpendicular to the pressing direction Z. As shown in FIG.
  • the pressing surface 51b of this embodiment is rectangular.
  • the long side of the pressing surface 51b extends in the long side direction X.
  • the short side of the pressing surface 51b extends in the short side direction Y.
  • the long side direction X can also be said to be the direction in which the long side of the pressing surface 51b extends.
  • the short side direction Y can also be said to be the direction in which the short side of the pressing surface 51b extends.
  • the two end surfaces 51 c are located at the ends of the pressing portion 51 in the long side direction X. As shown in FIG. The two end surfaces 51c extend in the pressing direction Z from each of the two short sides of the pressing surface 51b.
  • the guide portion 51d is a columnar member extending in the pressing direction Z. As shown in FIG.
  • the guide portion 51d of this embodiment has a cylindrical shape.
  • the guide portion 51 d is connected to the connection surface 51 a of the pressing portion 51 .
  • the guide portion 51d is inserted into the upper pedestal 43.
  • the pressing portion 51 of the first pressing assembly 50a moves in the pressing direction Z while the guide portion 51d is inserted into the upper base 43.
  • FIG. At this time, if the pressing portion 51 tries to move in a direction different from the pressing direction Z, interference between the guide portion 51d and the upper base 43 occurs. Due to the interference, movement of the pressing portion 51 in a direction different from the pressing direction Z is restricted. This prevents the direction in which the first pressing assembly 50a moves from deviating from the pressing direction Z.
  • the guide portion 51d may not be provided.
  • the second pressing assembly 50b of this embodiment does not include the guide portion 51d.
  • the insulating portion 52 is an insulating layer that maintains the insulating properties of the pressing surface 51b.
  • the insulating portion 52 covers the pressing surface 51b.
  • the insulating portion 52 of this embodiment is sheet-like.
  • the insulating portion 52 may be made of any material, such as glass fiber or ceramics. Note that the insulating portion 52 may further cover the end surface 51c in order to improve the insulating properties of the pressing portion 51 .
  • the buffer portion 53 is an elastic body that is more elastically deformable than the pressing portion 51 .
  • the buffer portion 53 covers the pressing surface 51b.
  • the buffer portion 53 covers the pressing surface 51b with the insulating portion 52 interposed therebetween.
  • the cushioning portion 53 is elastically deformed when the pressing portion 51 presses the resin portions 20 and 30 , thereby suppressing variations in pressure applied to the resin portions 20 and 30 by the pressing portion 51 .
  • the material of the buffer portion 53 is arbitrary, such as natural rubber, fluororubber, or urethane rubber. In particular, when silicon rubber is used as the material of the buffer portion 53, the insulation of the pressing portion 51 is improved. Further, when silicone rubber is used as the material of the cushioning portion 53, the cushioning portion 53 also functions as an anti-slip for the adjacent members such as the insulating portion 52 and the like.
  • the heating part 54 heats the resin parts 20 and 30 .
  • the heating portion 54 of this embodiment is provided integrally with the pressing portion 51 .
  • the heating unit 54 includes an electric heating sheet 55 and two heating electrodes 56 .
  • the electric heating sheet 55 is a sheet-like resistor.
  • the electric heating sheet 55 is formed in a square U shape.
  • the thermal expansion coefficient of the electric heating sheet 55 is higher than that of the buffer portion 53 .
  • the electric heating sheet 55 covers the pressing surface 51 b via the insulating portion 52 and the buffer portion 53 .
  • the electric heating sheet 55 covers the two end faces 51c.
  • the end surface 51c and the electric heating sheet 55 are insulated by an insulating member or the like (not shown).
  • the heating electrode 56 is an electrode for applying an electric current to the electric heating sheet 55 .
  • Each of the two heating electrodes 56 is arranged on each of the two end surfaces 51c with the electric heating sheet 55 interposed therebetween.
  • the heating electrode 56 is connected to a power supply (not shown). Power from the power supply enters the heating sheet 55 via the heating electrode 56 . As a result, the electric heating sheet 55 generates resistance heat.
  • the heating part 54 heats the resin parts 20 and 30 by using resistance heat generation of the electric heating sheet 55 .
  • the heating part 54 of the present embodiment heats the resin parts 20 , 30 while pressing the resin parts 20 , 30 to be welded by the pressing part 51 toward the electrode plate 11 .
  • the heating unit 54 of this embodiment is a so-called impulse heater.
  • the buffering unit 53 suppresses thermal expansion and thermal contraction of the electric heating sheet 55 .
  • silicone rubber is preferable as the material of the buffer portion 53 .
  • the welding suppression mechanism TF is a mechanism that suppresses the welding of the resin portions 20 and 30 to members arranged on the pressing portion 51 and the pressing surface 51b.
  • the members arranged on the pressing portion 51 and the pressing surface 51b are the insulating portion 52, the buffer portion 53, and the heating portion 54, for example.
  • the welding suppression mechanism TF includes a sheet material 60 and a moving mechanism 70. As shown in FIG.
  • the sheet material 60 is easier to separate from the resin parts 20 and 30 than the electrode plate 11 .
  • the peel strength of the sheet material 60 to the resin portions 20 and 30 is smaller than the peel strength of the electrode plate 11 to the resin portions 20 and 30 .
  • the peel strength of the sheet material 60 to the resin portions 20 and 30 is 0.5 times or less, preferably 0.1 times or less, more preferably 0.01 times the peel strength of the electrode plate 11 to the resin portions 20 and 30. It is below.
  • the sheet material 60 may contain a fluorine-based compound such as polytetrafluoroethylene.
  • the sheet material 60 of this embodiment is a glass cloth impregnated with a fluorine-based compound.
  • the glass cloth is made of glass fibers having a higher thermal conductivity than fluorine-based compounds. Therefore, by using glass cloth as the sheet material 60 , heat can be preferably transferred from the heating portion 54 to the resin portions 20 and 30 .
  • the sheet material 60 is not limited to glass cloth, and may be a resin sheet obtained by forming a resin made of the fluorine-based compound into a sheet shape, for example.
  • the sheet material 60 of this embodiment is formed in a belt shape extending in a predetermined longitudinal direction.
  • the longitudinal direction is perpendicular to the width direction of the sheet material 60 .
  • the width W1 of the sheet material 60 is equal to or greater than the length Wy of the short side of the pressing surface 51b. In this embodiment, the width W1 of the sheet material 60 is equal to the length Wy of the short side of the pressing surface 51b.
  • the moving mechanism 70 includes an unwinding portion 71 , an unwinding adjusting portion 72 , a pair of support portions 73 a and 73 b , a winding adjusting portion 74 and a winding portion 75 .
  • the moving mechanism 70 supports the sheet material 60 to form a sheet moving path L1 along which the sheet material 60 moves.
  • the sheet movement path L1 is a path followed by the sheet material 60 supplied from the unwinding section 71 .
  • the sheet material 60 supplied from the unwinding portion 71 follows the sheet movement path L1 in the order of the unwinding adjusting portion 72 ⁇ supporting portions 73a and 73b ⁇ winding adjusting portion 74 ⁇ winding portion 75.
  • the unwinding portion 71 is a reel rotatable around a rotation axis parallel to the direction Y of the short side.
  • a sheet material 60 is wound around the unwinding portion 71 .
  • the unwinding portion 71 supports one end of the sheet material 60 in the longitudinal direction.
  • the unwinding portion 71 is a supply source of the sheet material 60 to the sheet moving path L1.
  • the unwinding portion 71 is positioned most upstream in the sheet movement path L1.
  • the unwinding portion 71 is arranged apart from the pressing portion 51 in the pressing direction Z.
  • the unwinding portion 71 is parallel to the pressing direction Z and is spaced apart in a direction from the pressing surface 51b toward the connecting surface 51a.
  • the upper pedestal 43 is interposed between the unwinding portion 71 and the pressing portion 51 of the first pressing assembly 50a.
  • a lower pedestal 41 is interposed between the unwinding portion 71 and the pressing portion 51 of the second pressing assembly 50b.
  • the unwinding adjusting section 72 adjusts the amount of conveying of the sheet material 60 supplied from the unwinding section 71 .
  • the conveying amount of the sheet material 60 can be represented by, for example, the length of the sheet material 60 in the longitudinal direction, the volume, the movement distance, and the like.
  • the longitudinal length of the sheet material 60 is simply referred to as the length of the sheet material 60 .
  • the unwinding adjusting section 72 includes a first unwinding guide roller 72a, a second unwinding guide roller 72b, and an unwinding dancer roller 72c.
  • the 1st unwinding guide roller 72a, the 2nd unwinding guide roller 72b, and the unwinding dancer roller 72c can each rotate centering on the rotating shaft parallel to the short side direction Y.
  • Both the first unwinding guide roller 72a and the second unwinding guide roller 72b are arranged away from the unwinding portion 71 in the long side direction X. As shown in FIG. The first unwinding guide roller 72 a is positioned between the second unwinding guide roller 72 b and the unwinding section 71 .
  • the unwinding dancer roller 72c is arranged apart in the pressing direction Z from an intermediate point in the long side direction X between the first unwinding guide roller 72a and the second unwinding guide roller 72b.
  • the unwinding dancer roller 72c is positioned closer to the pressing portion 51 in the pressing direction Z than the first unwinding guide roller 72a and the second unwinding guide roller 72b.
  • the unwinding dancer roller 72c is configured to be movable at least in the pressing direction Z. As shown in FIG. In this embodiment, the unwinding dancer roller 72c is configured to be movable in the pressing direction Z. As shown in FIG.
  • the unwinding dancer roller 72c can adjust the distance in the pressing direction Z with respect to the first unwinding guide roller 72a and the second unwinding guide roller 72b.
  • the unwinding dancer roller 72c can adjust the tension of the sheet material 60 supported by supporting portions 73a and 73b, which will be described later.
  • the sheet material 60 supplied from the unwinding section 71 is conveyed in the unwinding adjustment section 72 by the first unwinding guide roller 72a, the unwinding dancer roller 72c, and the second unwinding guide roller 72b in this order.
  • the unwinding dancer roller 72c By moving the unwinding dancer roller 72c in the pressing direction Z, the length of the sheet material 60 interposed between the unwinding dancer roller 72c and the respective unwinding guide rollers 72a and 72b, and the length of the sheet material 60 conveyed from the unwinding adjusting section 72 The conveying amount of the sheet material 60 is adjusted.
  • the support portions 73a and 73b are spaced apart in the long side direction X. As shown in FIG. The support portions 73a and 73b bridge the sheet material 60 in the long side direction X. As shown in FIG. Thereby, the sheet member 60 is supported by the support portions 73a and 73b so as to be positioned between the pressing portion 51 and the resin portions 20 and 30. As shown in FIG. In other words, the support portions 73 a and 73 b support the sheet material 60 so that the sheet material 60 is positioned between the pressing portion 51 and the resin portions 20 and 30 .
  • the support portions 73a and 73b support the sheet material 60 so that the sheet material 60 is in contact with the pressing surface 51b.
  • the state in which the sheet material 60 is in contact with the pressing surface 51b is not limited to the state in which the sheet material 60 is in direct contact with the pressing surface 51b. A state in which it is indirectly in contact with the pressing surface 51b via a member such as 54 is included. Note that even when the sheet material 60 and the pressing surface 51b are in contact with each other, the sheet material 60 is not fixed to the pressing surface 51b. That is, the sheet material 60 is configured to be relatively movable with respect to the pressing surface 51b.
  • Each of the support portions 73a and 73b of this embodiment is a guide roller.
  • the support portions 73a and 73b are rotatable around a rotation axis parallel to the short-side direction Y.
  • the support portions 73a and 73b of the first pressing assembly 50a are configured to be movable in the pressing direction Z by operating the cylinder unit 45, for example, by moving the cylinder rod 47 in and out.
  • the support portions 73a and 73b are referred to as a first support portion 73a and a second support portion 73b, respectively.
  • the first support portion 73a is arranged apart in the pressing direction Z from the second unwinding guide roller 72b.
  • the first support portion 73 a is arranged apart from the pressing portion 51 in the long side direction X. As shown in FIG. At least part of the first support portion 73a faces one of the end surfaces 51c in the long side direction X. As shown in FIG.
  • the second support portion 73b is arranged apart in the long side direction X from the first support portion 73a.
  • the pressing portion 51 specifically the pressing surface 51b, is positioned between the first supporting portion 73a and the second supporting portion 73b.
  • At least part of the second support portion 73b faces one of the end faces 51c in the long side direction X.
  • the end face 51c facing the second support portion 73b is positioned opposite in the long side direction X to the end face 51c facing the first support portion 73a.
  • the sheet material 60 conveyed from the second unwinding guide roller 72b is conveyed in order of the first support portion 73a and the second support portion 73b.
  • the first support portion 73a and the second support portion 73b support the sheet member 60 on the pressing surface 51b.
  • the pressing surface 51b is covered in the pressing direction Z with the sheet member 60 supported by the first supporting portion 73a and the second supporting portion 73b.
  • the pressing surface 51b faces the resin portions 20 and 30 in the pressing direction Z via the sheet material 60 supported by the supporting portions 73a and 73b.
  • the pressing portion 51 can press the resin portions 20 and 30 via the sheet material 60 supported by the supporting portions 73a and 73b.
  • the take-up adjustment unit 74 adjusts the conveying amount of the sheet material 60 downstream from the support portions 73a and 73b on the sheet movement path L1.
  • the winding adjustment unit 74 includes a first winding guide roller 74a, a second winding guide roller 74b, and a winding dancer roller 74c.
  • the first take-up guide roller 74a, the second take-up guide roller 74b, and the take-up dancer roller 74c are each rotatable around a rotation axis parallel to the short-side direction Y. As shown in FIG.
  • Both the first winding guide roller 74 a and the second winding guide roller 74 b are arranged away from the winding section 75 in the long side direction X. As shown in FIG. The second take-up guide roller 74b is positioned between the first take-up guide roller 74a and the take-up portion 75. As shown in FIG.
  • the take-up dancer roller 74c is separated in the pressing direction Z from an intermediate point in the long side direction X between the first take-up guide roller 74a and the second take-up guide roller 74b.
  • the winding dancer roller 74c is positioned closer to the pressing portion 51 in the pressing direction Z than the first winding guide roller 74a and the second winding guide roller 74b.
  • the take-up dancer roller 74c is configured to be movable at least in the pressing direction Z. As shown in FIG. In this embodiment, the take-up dancer roller 74c is configured to be movable in the pressing direction Z. As shown in FIG.
  • the winding dancer roller 74c can adjust the distance in the pressing direction Z with respect to the first winding guide roller 74a and the second winding guide roller 74b.
  • the take-up dancer roller 74c can adjust the tension of the sheet material 60 supported by the support portions 73a and 73b.
  • the sheet material 60 from the second support portion 73b is conveyed in the winding adjustment portion 74 in order of the first winding guide roller 74a, the winding dancer roller 74c, and the second winding guide roller 74b.
  • the take-up dancer roller 74c By moving the take-up dancer roller 74c in the pressing direction Z, the length of the sheet material 60 interposed between the take-up dancer roller 74c and each of the take-up guide rollers 74a and 74b and the length of the sheet material 60 conveyed from the take-up adjusting section 74 are adjusted.
  • the conveying amount of the sheet material 60 is adjusted.
  • the winding unit 75 is a reel rotatable around a rotation axis parallel to the short-side direction Y. As shown in FIG. The winding section 75 winds up the sheet material 60 supplied from the unwinding section 71 along the sheet movement path L1. Specifically, the winding section 75 winds up the sheet material 60 supplied from the winding adjustment section 74 . The winding part 75 supports one end of the sheet material 60 in the longitudinal direction by winding the sheet material 60 . The winding section 75 is a destination of the sheet material 60 from the sheet moving path L1. The winding section 75 is positioned at the most downstream position in the sheet movement path L1.
  • the winding portion 75 is arranged away from the pressing portion 51 in the pressing direction Z.
  • the winding portion 75 is parallel to the pressing direction Z and is spaced apart in a direction from the pressing surface 51b toward the connecting surface 51a.
  • an upper pedestal 43 is interposed between the winding portion 75 and the pressing portion 51 of the first pressing assembly 50a.
  • a lower pedestal 41 is interposed between the winding portion 75 and the pressing portion 51 of the second pressing assembly 50b.
  • the winding portion 75 is separated from the unwinding portion 71 in the long side direction X. As shown in FIG.
  • ⁇ Movement direction T of sheet material 60> In the welding suppression mechanism TF configured as described above, the sheet material 60 supplied from the unwinding portion 71 passes through the unwinding adjusting portion 72, the first supporting portion 73a, the second supporting portion 73b, and the winding adjusting portion 74 in order. is conveyed to the winding section 75 via the . At this time, the moving mechanism 70 slides in the moving direction T the sheet material 60 supported by the supporting portions 73a and 73b.
  • the movement direction T is the direction in which the sheet member 60 slides while being supported by the support portions 73a and 73b. Specifically, the movement direction T is the direction from the first support portion 73a toward the second support portion 73b.
  • “Sliding” means that the sheet material 60 supported by the supporting portions 73a and 73b is moved in a direction intersecting the pressing direction Z with respect to the pressing surface 51b while being supported by the supporting portions 73a and 73b. It is to move. Sliding the sheet material 60 includes sliding the sheet material 60 against the pressing surface 51b. Further, when the support portions 73a and 73b support the sheet material 60 at a position away from the pressing surface 51b in the pressing direction Z, the sheet material 60 is moved away from the pressing surface 51b in order to slide the sheet material 60. It involves moving the sheet material 60 in the direction of movement T while it is supported.
  • the moving direction T in this embodiment is parallel to the long-side direction X.
  • the pair of support portions 73a and 73b are spaced apart in the moving direction T.
  • the movement direction T intersects the pressing direction Z.
  • the distance between the first support portion 73a and the second support portion 73b in the moving direction T is longer than the length of the pressing surface 51b in the moving direction T (the length Wx of the long side of the pressing surface 51b in this embodiment). . Therefore, the length in the movement direction T of the sheet material 60 supported by the support portions 73a and 73b is longer than the length in the movement direction T of the pressing surface 51b.
  • the length in the moving direction T of the pressing surface 51b is longer than the length in the moving direction T of the resin side portions 21 and 31 . Therefore, the length in the movement direction T of the sheet material 60 supported by the support portions 73a and 73b is longer than the length in the movement direction T of the pressing surface 51b. That is, the sheet material 60 is formed in a so-called elongated shape that is longer than the resin portions 20 and 30 in the moving direction T. As shown in FIG.
  • the pressing portion 51 of the first pressing assembly 50a and the pressing portion 51 of the second pressing assembly 50b configured in this way press through the respective sheet members 60 supported by the respective supporting portions 73a and 73b. They face each other in direction Z. a region of the sheet material 60 of the first pressing assembly 50a supported by the support portions 73a and 73b; a region of the sheet material 60 of the second pressing assembly 50b supported by the support portions 73a and 73b; are spaced apart in the pressing direction Z and face each other.
  • the electrode plate 11 on which the resin portions 20 and 30 are arranged can be arranged between them.
  • the control circuit 90 includes a processor and a memory.
  • the processor for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or a DSP (Digital Signal Processor) is used.
  • the storage unit includes RAM (Random Access Memory) and ROM (Read Only Memory).
  • the memory stores program code or instructions configured to cause the processor to perform processes. Storage or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the control circuit 90 may be configured by a hardware circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the control circuit 90 which is a processing circuit, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
  • a control circuit 90 controls the appearance and retraction of the cylinder rod 47 with respect to the cylinder body 46 .
  • the pressing portion 51 of the first pressing assembly 50a moves in the pressing direction Z in conjunction with the appearance and retraction of the cylinder rod 47. As shown in FIG. Accordingly, the distance between the pressing portion 51 of the first pressing assembly 50a and the pressing portion 51 of the second pressing assembly 50b in the pressing direction Z changes.
  • both pressing portions of the pressing assemblies 50a and 50b 51 presses the resin portions 20 and 30 toward the electrode plate 11 .
  • the control circuit 90 causes the heating section 54 to generate heat by controlling the power supplied from the power supply to the heating section 54 .
  • the control circuit 90 heats the resin portions 20 and 30 using the heating portion 54 .
  • the control circuit 90 acquires the pressure with which the pressing portion 51 presses the resin portions 20 and 30 .
  • a measurement value of a pressure sensor (not shown) may be obtained.
  • the control circuit 90 acquires the temperature of the heating unit 54 .
  • a measurement value of a temperature sensor (not shown) may be obtained.
  • the control circuit 90 controls the cylinder unit 45 and the power supply device so that the acquired pressure and temperature reach predetermined target values.
  • the control circuit 90 slides the sheet material 60 in the moving direction T by controlling the moving mechanism 70 .
  • the control circuit 90 controls the unwinding section 71 , the unwinding adjusting section 72 , the winding adjusting section 74 and the winding section 75 .
  • the control circuit 90 controls the amount of conveyance of the sheet material 60 from the unwinding portion 71 to the unwinding adjustment portion 72 by controlling the amount of rotation of the unwinding portion 71 .
  • the control circuit 90 adjusts the conveying amount of the sheet material 60 to the support portions 73a and 73b by controlling the position in the pressing direction Z of the unwinding adjustment portion 72, more specifically, the unwinding dancer roller 72c.
  • the control circuit 90 adjusts the conveying amount of the sheet material 60 to the winding section 75 by controlling the position in the pressing direction Z of the winding adjusting section 74, more specifically, the winding dancer roller 74c.
  • the control circuit 90 slides the sheet material 60 supported by the support portions 73a and 73b in the moving direction T (long side direction X in this embodiment).
  • the unwinding portion 71, the unwinding adjusting portion 72, the supporting portions 73a and 73b, the winding adjusting portion 74, and the winding portion 75 included in the moving mechanism 70 are supported by the supporting portions 73a and 73b.
  • FIG. 10 a method of manufacturing the electrode unit 10 as a resin-welding workpiece using the welding apparatus 40 will be described with reference to FIGS. 5 to 7.
  • FIG. 10 two welding devices 40 are used to manufacture the electrode unit 10 .
  • the long side directions X of the two welding devices 40 are parallel.
  • the short side directions Y of the two welding devices 40 are parallel.
  • the pressing directions Z of the two welding devices 40 are parallel.
  • the two welding devices 40 are arranged apart in the short side direction Y. As shown in FIG.
  • control circuit 90 sets the variable k to 0 in the initialization step S1.
  • Variable k is an integer of 0 or more.
  • the process proceeds to placement step S2.
  • the electrode plate 11 and the resin portions 20, 30 are placed between the first pressing assembly 50a and the second pressing assembly 50b.
  • the resin side portions 21 and 31 are arranged along the side portion 12a.
  • Arrangement of the resin portions 20 and 30 on the electrode plate 11 may be realized in advance by, for example, crimping or the like. Anything is fine.
  • the parts of the resin portions 20 and 30 are, for example, the two facing first resin side portions 21 and the two facing second resin side portions 31 .
  • the two first resin side portions 21 facing each other face the pressing portion 51 of the first pressing assembly 50a of the different welding device 40 in the pressing direction Z. As shown in FIG.
  • the two second resin side portions 31 facing each other face the pressing portion 51 of the second pressing assembly 50b in the different welding device 40 in the pressing direction Z.
  • the electrode plate 11 is placed between the first pressing assembly 50a and the second pressing assembly 50b by, for example, a robot hand (not shown).
  • ⁇ Welding step S3> Next, it progresses to welding process S3.
  • the control circuit 90 welds the resin portions 20 and 30 to the electrode plate 11 using the two welding devices 40 to manufacture the electrode unit 10 .
  • the resin sides 21 and 31 arranged between the pressing assemblies 50a and 50b are welded to the electrode plate 11 in the arrangement step S2.
  • the control circuit 90 brings the pressing portion 51 into contact with the resin portions 20 and 30 via the sheet material 60 .
  • the control circuit 90 moves the pressing portion 51 in the pressing direction Z by causing the cylinder rod 47 of the cylinder unit 45 to protrude in the pressing direction Z from the cylinder body 46 .
  • the pressing portion 51 in the pressing direction Z By moving the pressing portion 51 in the pressing direction Z, the pressing surface 51 b of the first pressing assembly 50 a and the pressing surface 51 b of the second pressing assembly 50 b come into contact with the resin side portions 21 and 31 .
  • control circuit 90 heats the resin side portions 21 and 31 pressed by the pressing portion 51 using the heating portion 54 .
  • the heating melts the resin side portions 21 and 31 .
  • the control circuit 90 uses the pressing portion 51 to press the melted resin portions 20 and 30 through the sheet material 60 .
  • the control circuit 90 causes the pressing surface 51 b to press the resin side portions 21 and 31 via the sheet material 60 by causing the cylinder rod 47 to further protrude from the cylinder body 46 in the pressing direction Z.
  • the pressing surface 51b presses the resin pressing regions R1 of the resin portions 20 and 30 through the sheet material 60.
  • the resin pressing region R1 is a region of the resin portions 20 and 30 pressed by the pressing surface 51b through the sheet material 60.
  • the resin pressing region R1 of this embodiment is rectangular.
  • the resin pressing area R1 includes an edge E1 along the long side of the resin pressing area R1.
  • the edge E1 is part of the outer edge of the resin pressing region R1.
  • the edge E1 is also an edge extending in the long side direction X of the resin side portions 21 and 31 .
  • the direction in which the edge E1 extends is parallel to the long-side direction X. Therefore, the direction in which the edge E1 extends is also the long-side direction X.
  • a sheet pressing region R2 is generated in the sheet material 60 by pressing the sheet material 60 with the pressing portion 51 .
  • the sheet pressing region R2 is a region of the sheet material 60 that is pressed by the pressing portion 51 in the welding step S3.
  • the sheet pressing area R2 overlaps the pressing surface 51b. Therefore, the sheet pressing area R2 of this embodiment is rectangular.
  • the sheet pressing area R2 includes the resin pressing area R1.
  • the sheet pressing region R2 is formed between two pressing surfaces 51b of the sheet material 60 facing each other in the pressing direction Z, that is, between the pressing surface 51b of the first pressing assembly 50a and the pressing surface 51b of the second pressing assembly 50b. It is also the area where it is located.
  • the control circuit 90 stops heating by the heating portion 54 and cools the resin side portions 21 and 31 .
  • the cooling solidifies the resin portions 20 and 30 .
  • the resin portions 20 and 30 are welded to the electrode plate 11 .
  • parts of the resin side portions 21 and 31, particularly the resin pressing region R1 are welded to the regions supported by the support portions 73a and 73b of the sheet material 60, particularly the region included in the sheet pressing region R2. there's a possibility that.
  • the control circuit 90 stops pressing the resin portions 20 and 30 by the pressing portion 51 .
  • the control circuit 90 accommodates the cylinder rod 47 in the cylinder body 46 .
  • the pressing portion 51 moves away from the resin portions 20 and 30 in the pressing direction Z, thereby stopping the pressing of the resin portions 20 and 30 .
  • the regions of the sheet material 60 supported by the support portions 73 a and 73 b are separated from the resin side portions 21 and 31 .
  • the control circuit 90 performs the same processing on the resin side portions 21 and 31 that have not been welded so that the resin side portions 21 are , 31 may be welded.
  • the control circuit 90 transfers the electrode plate 11 to which parts of the resin portions 20 and 30 are welded to two welding devices 40 prepared separately from the two welding devices 40 that performed the welding step S3.
  • the non-welded resin sides 21 and 31 may be welded by performing the treatment.
  • the electrode unit 10 is manufactured.
  • the electrode unit 10 is manufactured by welding the resin portions 20 and 30 to the electrode plate 11 .
  • the manufactured electrode unit 10 is removed from the welding device 40 by a robot hand or the like.
  • the power storage module B is manufactured by stacking the plurality of electrode units 10 manufactured in the welding step S3 in the thickness direction of the electrode plate 11 .
  • ⁇ Counting step S4> As shown in FIG. 7, after completion of the welding step S3, the process proceeds to the counting step S4. In the counting step S4, the control circuit 90 increments the value of the variable k by one.
  • the process proceeds to the movement determination step S5.
  • the control circuit 90 determines whether or not the welding step S3 has been performed a predetermined number of times.
  • the control circuit 90 determines whether or not the variable k matches the determination value N. That is, the predetermined number of times in the movement determination step S5 is the number of times represented by the determination value N.
  • the determination value N is arbitrary as long as it is an integer of 1 or more.
  • the determination value N is arbitrary as long as it is equal to or less than the number of durable times of the sheet material 60, for example.
  • the usable number of times of the sheet material 60 is the number of times the sheet material 60 can be peeled off from the resin portions 20 and 30 after the welding step S3, for example.
  • the judgment value N is, for example, within the range of 0.001 to 1 times the durability, preferably 0.005 to 0.5 times, and more preferably 0.01 to 0.1 times.
  • the determination method of the movement determination step S5 is not limited to this, and whether or not to slide the sheet material 60 can be determined based on the degree of deterioration of the sheet material 60, for example.
  • One possible cause of the deterioration of the sheet material 60 is that when the resin portions 20 and 30 are pressed, the work marks of the electrode plate 11 , such as burrs on the side portions 12 a , interfere with the sheet material 60 .
  • the burrs on the side portions 12a are produced, for example, when the electrode plate 11 is manufactured by cutting the base material of the electrode plate 11 with a die cutter or the like.
  • Such deterioration of the electrode plate 11 due to machining marks occurs in the long side direction X along which the resin side portions 21 and 31 pressed by the pressing portion 51 extend.
  • another factor of deterioration of the sheet material 60 is that part of the melted resin portions 20 and 30 remains on the sheet material 60 . Part of the melted resin portions 20 and 30 remains on the sheet material 60, so that the peel strength of the sheet material 60 with respect to the resin portions 20 and 30 increases. In other words, the sheet material 60 is easily welded to the resin portions 20 and 30 . In particular, the area of the sheet material 60 that comes into contact with the edge E1 of the resin pressing area R1 during welding is more susceptible to deterioration than other areas of the sheet material 60 .
  • the degree of deterioration of the sheet member 60 may be determined, for example, based on the ratio of the areas where the resin portions 20 and 30 are welded to the total area of the sheet member 60 supported by the support portions 73a and 73b. Just do it. Further, the degree of deterioration of the sheet material 60 may be determined based on fluffiness of glass fibers in the pressing direction Z from the sheet material 60 supported by the support portions 73a and 73b. Such determination is performed by visual observation or image recognition, for example.
  • the determination value N may be set based on the degree of deterioration of the sheet material 60 determined by these methods. Note that the determination value N may be a variable value that is set according to the degree of deterioration of the sheet material 60 .
  • ⁇ Movement step S6> On the other hand, if the determination result of the movement determination step S5 is affirmative, that is, if the variable k has reached the determination value N, the process proceeds to the movement step S6.
  • a case where the determination result of the movement determination step S5 is affirmative means a case where the welding step S3 is performed a predetermined number of times. Therefore, the moving step S6 is performed when the welding step S3 is performed once or more.
  • the moving step S6 can also be said to be a step performed after the welding step S3.
  • the control circuit 90 supplies the sheet material 60 from the unwinding section 71 toward the unwinding adjusting section 72 by controlling the unwinding section 71 .
  • the control circuit 90 controls the unwinding adjustment section 72 and the winding adjustment section 74 to adjust the sheet material 60 supported by the support sections 73a and 73b. It is slid in the moving direction T (long side direction X in this embodiment). Specifically, the control circuit 90 supplies the sheet material 60 from the unwinding section 71 and brings the unwinding dancer roller 72c close to the first unwinding guide roller 72a and the second unwinding guide roller 72b.
  • the sheet material 60 is supplied from the unwinding portion 71 and the unwinding adjustment portion 72 toward the support portions 73a and 73b. Accordingly, at least part of the sheet material 60 supported by the support portions 73 a and 73 b is supplied toward the winding adjustment portion 74 . As a result, the sheet material 60 supported by the support portions 73a and 73b slides in the movement direction T (long side direction X). Specifically, as shown in FIG. 6, the first point P1 of the sheet material 60 slides to the second point P2.
  • a first point P1 indicates a portion of the sheet material 60 that contacts the resin pressing region R1 of the resin portions 20 and 30, particularly the edge E1, in the welding step S3 before the moving step S6 is performed.
  • the first point P1 faces the resin portions 20 and 30 in the pressing direction Z. As shown in FIG. That is, the first point P1 is included in the sheet pressing area R2.
  • the second point P2 indicates the first point P1 after sliding in the moving step S6.
  • the second point P2 does not face the resin portions 20 and 30 in the pressing direction Z. As shown in FIG. That is, the second point P2 is not included in the sheet pressing area R2. Therefore, part of the area of the sheet material 60 that has come into contact with the edge E1 of the resin pressing area R1 in the previous welding step S3 does not come into contact with the resin portions 20 and 30 in the next welding step S3.
  • the moving step S6 at least part of the area of the sheet material 60 that contacts the resin portions 20 and 30 in the welding step S3 is replaced.
  • the moving distance of the sheet material 60 in the moving step S6 is, for example, the length obtained by multiplying the length of the resin side portions 21 and 31 in the moving direction T by a predetermined coefficient.
  • the coefficient is greater than 0 and less than or equal to 1.
  • the coefficient is, for example, a value obtained by dividing the judgment value N by the number of durable times.
  • the control circuit 90 moves the winding dancer roller 74c away from the first winding guide roller 74a and the second winding guide roller 74b according to the amount of movement of the unwinding dancer roller 72c.
  • the sheet material 60 supplied from the support portions 73 a and 73 b to the winding adjustment portion 74 is stored in the winding adjustment portion 74 . Therefore, the sheet material 60 can be slid while maintaining the tension of the sheet material 60 supported by the support portions 73a and 73b.
  • the control circuit 90 appropriately winds the sheet material 60 stored in the winding adjusting section 74 with the winding section 75 .
  • the moving mechanism 70 can press, in the welding step S3 after the moving step S6, a region of the sheet material 60 that is different in the moving direction T from the sheet pressing region R2 in the welding step S3 before the moving step S6. position.
  • the moving distance of the sheet material 60 may be appropriately set according to the material and shape of the resin portions 20 and 30, the material and shape of the sheet material 60, and the specific aspects of the welding step S3.
  • the pressing part 51 presses the resin parts 20 , 30 melted in the welding step S ⁇ b>3 toward the electrode plate 11 , thereby welding the resin parts 20 , 30 to the electrode plate 11 . At this time, the pressing portion 51 presses the resin portions 20 and 30 against the electrode plate 11 via the sheet material 60 .
  • the control circuit 90 controls the unwinding portion 71, the unwinding adjusting portion 72, the winding adjusting portion 74, and the winding portion 75 included in the moving mechanism 70 so that the moving direction T is changed. , the sheet material 60 is moved. As a result, at least a part of the area of the sheet material 60 that is different from the area in contact with the resin portions 20 and 30 pressed in the previous welding step S3 is positioned between the pressing portion 51 and the resin portions 20 and 30. placed.
  • the subsequent manufacturing method of the electrode unit 10 is performed again from the initialization step S1.
  • the welding device 40 welds the resin portions 20 and 30 to the electrode plate 11 as a work.
  • the welding device 40 includes a pressing portion 51 , a pair of support portions 73 a and 73 b and a moving mechanism 70 .
  • the support portions 73a and 73b are arranged apart in the moving direction T.
  • the support portions 73a and 73b support the sheet material 60 so that the sheet material 60 covers the pressing surface 51b from the pressing direction Z.
  • the moving mechanism 70 slides in the moving direction T the sheet material 60 supported by the supporting portions 73a and 73b.
  • the pressing portion 51 presses the molten resin portions 20 and 30 toward the work. Thereby, the resin portions 20 and 30 are welded to the electrode plate 11 . At this time, the pressing portion 51 presses the resin portions 20 and 30 against the electrode plate 11 via the sheet material 60 .
  • the sheet member 60 contacts the resin portions 20 and 30 instead of the pressing surface 51b, thereby suppressing welding of the resin portions 20 and 30 to the pressing surface 51b.
  • the moving mechanism 70 slides the sheet material 60 in the moving direction T while the sheet material 60 is supported by the support portions 73a and 73b.
  • an area of the sheet material 60 that is different from the area that was in contact with the resin portions 20 and 30 due to the previous pressing by the pressing portion 51 is moved between the pressing surface 51b and the resin portions 20 and 30.
  • the trouble of releasing the fixing between the sheet material 60 and the pressing portion 51 is saved. be able to. As a result, it becomes easier to replace the sheet material 60 arranged between the pressing portion 51 and the resin portions 20 and 30 in a shorter time. Therefore, the operating efficiency of the welding device 40 can be improved.
  • the manufacturing method for manufacturing the electrode unit 10 as a resin welding work includes a moving step S6.
  • the sheet material 60 is slid in the moving direction T (long side direction X) when the welding step S3 has been performed one or more times.
  • the sheet material 60 By sliding the sheet material 60 in the moving step S6, the area of the sheet material 60 different from the sheet pressing area R2 in the welding process S3 before the moving process S6, that is, the area in contact with the resin portions 20 and 30 is moved. , contact with the resin portions 20 and 30 in the welding step S3 after the moving step S6. Therefore, as in the case where the sheet material 60 is fixed to the pressing portion 51 that presses the electrode plate 11, for example, the sheet material 60 and the pressing portion 51 are required to replace the deteriorated region of the sheet material 60. It is possible to omit the trouble of releasing the fixation with. As a result, the sheet material 60 can be replaced in a shorter time. Therefore, the manufacturing efficiency of the electrode unit 10 can be improved.
  • the moving direction T of the sheet material 60 differs between the first embodiment and the second embodiment.
  • the movement direction T of the sheet material 60 supported by the support portions 73a and 73b coincides with the long side direction X.
  • the movement direction T of the sheet material 60 in the second embodiment matches the short side direction Y. As shown in FIG.
  • the width W1 of the sheet material 60 differs between the first embodiment and the second embodiment.
  • the width W1 of the sheet material 60 in the first embodiment is equal to the length Wy of the short side of the pressing surface 51b.
  • the length Wy of the short side of the pressing surface 51 b is greater than the length of the long side of the resin side portions 21 and 31 . Therefore, the width W1 of the sheet material 60 is greater than the length of the long sides of the resin side portions 21 and 31 .
  • the width W1 of the sheet material 60 in the second embodiment is equal to or greater than the length Wx of the long side of the pressing surface 51b.
  • the width W1 of the sheet material 60 is equal to the length Wx of the long side of the pressing surface 51b. Therefore, the width W1 of the sheet material 60 of the second embodiment is wider than the width W1 of the sheet material 60 of the first embodiment.
  • the long side direction X in the first embodiment is read as the short side direction Y
  • the short-side direction Y in the first embodiment should be read as the long-side direction X.
  • the configuration of the moving mechanism 70 according to the second embodiment will be described in detail below.
  • ⁇ Unwinding part 71> The unwinding portion 71 is a reel rotatable around a rotation axis parallel to the long-side direction X. As shown in FIG. The position of the unwinding portion 71 with respect to the lower pedestal 41 and the upper pedestal 43 is the same as in the first embodiment.
  • ⁇ Unwinding adjustment unit 72> The 1st unwinding guide roller 72a, the 2nd unwinding guide roller 72b, and the unwinding dancer roller 72c can each rotate centering on the rotating shaft parallel to the long side direction X.
  • Both the first unwinding guide roller 72a and the second unwinding guide roller 72b are arranged away from the unwinding portion 71 in the short side direction Y. As shown in FIG.
  • the unwinding dancer roller 72c is arranged apart in the pressing direction Z from an intermediate point in the short side direction Y between the first unwinding guide roller 72a and the second unwinding guide roller 72b.
  • the first support portion 73a and the second support portion 73b are rotatable about rotation axes parallel to the long side direction X, respectively.
  • the first support portion 73a is arranged away from the pressing portion 51 in the short side direction Y. A part of the first support portion 73a faces in the short side direction Y one of the surfaces extending in the pressing direction Z from the long side of the pressing surface 51b.
  • the second support portion 73b is arranged apart in the short side direction Y from the first support portion 73a. A part of the second support portion 73b faces in the short side direction Y one of the surfaces extending in the pressing direction Z from the long side of the pressing surface 51b. The surface of the pressing portion 51 facing the second supporting portion 73b is located opposite in the short side direction Y to the surface of the pressing portion 51 facing the first supporting portion 73a.
  • the first take-up guide roller 74a, the second take-up guide roller 74b, and the take-up dancer roller 74c are each rotatable around a rotation axis parallel to the long side direction X. As shown in FIG.
  • Both the first winding guide roller 74a and the second winding guide roller 74b are arranged away from the unwinding portion 71 in the short side direction Y.
  • the take-up dancer roller 74c is separated in the pressing direction Z from an intermediate point in the short side direction Y between the first take-up guide roller 74a and the second take-up guide roller 74b.
  • the winding unit 75 is a reel rotatable around a rotation axis parallel to the long side direction X. As shown in FIG. The winding portion 75 is arranged apart from the unwinding portion 71 in the short-side direction Y. As shown in FIG.
  • ⁇ Movement direction T of sheet material 60> The first support portion 73a and the second support portion 73b are spaced apart in the short side direction Y. As shown in FIG. Therefore, the movement direction T in this embodiment is parallel to the short-side direction Y. As shown in FIG. Since the short-side direction Y is perpendicular to the pressing direction Z, the moving direction T in this embodiment intersects the pressing direction Z. As shown in FIG.
  • steps S1 to S7 are performed in the same manner as in the first embodiment.
  • the moving direction T is the long side direction X
  • the moving direction T is the short side direction Y in the second embodiment.
  • Deterioration of the sheet material 60 tends to progress particularly in the area of the resin pressing area R1 that contacts the edge E1.
  • the deterioration of the sheet material 60 tends to progress in a region overlapping the edge E1 in a plan view from the pressing direction Z in the sheet pressing region R2.
  • the edge E1 extends in the long side direction X.
  • areas of the sheet material 60 where deterioration is likely to progress are likely to be distributed along the long side direction X. As shown in FIG.
  • the movement direction T intersects with the long side direction X.
  • the sheet material 60 in the moving direction T in the moving step S6 By sliding the sheet material 60 in the moving direction T in the moving step S6, at least the area of the sheet material 60 that was in contact with the edge E1 in the welding step S3 before the moving step S6 is performed. A part of it is located outside the sheet pressing area R2.
  • the first point P1 slides to the second point P2.
  • the length Wy of the short side of the pressing surface 51b is shorter than the length Wx of the long side of the pressing surface 51b. Therefore, the moving mechanism 70 moves the region in contact with the edge E1 in the welding step S3 before the moving step S6 by a smaller moving distance than when the moving direction T is parallel to the long-side direction X. can be moved outside the sheet pressing region R2.
  • the long side direction X is the direction in which the long side of the pressing surface 51b extends. Further, the movement direction T intersects with the long-side direction X. As shown in FIG.
  • the moving direction T intersects with the long-side direction X, compared to the case where the moving direction T is parallel to the long-side direction X, the sheet material 60 covering the pressing surface 51b is slid.
  • the moving distance of the material 60 is shortened. Accordingly, the time required to replace the sheet material 60 can be shortened compared to the case where the moving direction T is parallel to the long side direction X. FIG. Therefore, the operating efficiency of the welding device 40 can be further improved.
  • the sheet material 60 is slid according to the moving distance compared to the case where the moving direction T is parallel to the long-side direction X.
  • the area of the sheet material 60 increases. Therefore, a large amount of sheet material 60 can be slid from the pressing surface 51b in a short moving distance. Therefore, the operating efficiency of the welding device 40 can be further improved.
  • the movement direction T is along the short side direction Y in this embodiment.
  • the moving direction T is parallel to the short-side direction Y.
  • the movement of the sheet material 60 when sliding the sheet material 60 covering the pressing surface 51b is distance becomes even shorter. Therefore, the operating efficiency of the welding device 40 can be further improved.
  • the pressing surface 51b is rectangular. Further, the resin pressing area R1 is rectangular and includes an edge E1 along the long side of the resin pressing area R1. In such a configuration, assuming that the direction in which the edge E1 extends is the long-side direction X, the movement direction T intersects with the long-side direction X. As shown in FIG.
  • the area of the sheet material 60 that is in contact with the edge E1 of the resin pressing area R1 has the surface of the resin pressing area R1. A larger load is applied compared to the contact area. Therefore, the area of the sheet material 60 that is in contact with the edge E1 is more likely to deteriorate than the area that is in contact with the surface of the resin pressing area R1.
  • the movement direction T intersects with the long side direction X.
  • the overlapping of the easily degraded regions before and after the moving mechanism 70 slides the sheet material 60 is reduced. Therefore, local deterioration of the sheet material 60 can be suppressed.
  • Embodiments can be implemented with the following modifications.
  • the embodiments and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the method of manufacturing the electrode unit 10 of the first embodiment and the second embodiment may not include the placement step S2.
  • the welding step S3 may be performed using the electrode plate 11 on which the resin portions 20 and 30 are arranged in advance.
  • the specific aspect of the moving mechanism 70 is arbitrary as long as the sheet member 60 is supported by the support portions 73a and 73b.
  • the moving mechanism 70 may not include the unwinding adjusting section 72 and the winding adjusting section 74 .
  • the support portions 73a and 73b may not be configured by the first support portion 73a and the second support portion 73b.
  • the support portions 73 a and 73 b may be composed of the unwinding portion 71 and the winding portion 75 .
  • the unwinding portion 71 may be substituted for the first supporting portion 73a
  • the winding portion 75 may be substituted for the second supporting portion 73b.
  • the unwinding portion 71 and the winding portion 75 support the sheet material 60 as supporting portions 73a and 73b.
  • the support portions 73 a and 73 b may not be configured as part of the moving mechanism 70 , and the support portions 73 a and 73 b themselves may be configured as the moving mechanism 70 .
  • the moving mechanism 70 should just be provided with the unwinding part 71 and the winding part 75, for example, the unwinding adjustment part 72, the 1st support part 73a, the 2nd support part 73b and the winding adjustment part 74 may not be provided.
  • the support portions 73 a and 73 b may be implemented using the pressing portion 51 .
  • the moving mechanism 70 does not include the first support portion 73a and the second support portion 73b, the sheet material 60 is moved from the unwinding portion 71 through the two short sides of the pressing surface 51b. Move to winding section 75 .
  • the sheet material 60 is supported by two short sides of the pressing surface 51b.
  • the moving mechanism 70 slides the sheet member 60 supported by the two short sides of the pressing surface 51 b relative to the pressing portion 51 . Therefore, the two short sides of the pressing surface 51b function as supporting portions 73a and 73b.
  • the sheet material 60 may be configured to be slidable with respect to the pressing portion 51 .
  • the moving mechanism 70 in the second embodiment does not include the first support portion 73a and the second support portion 73b, the two long sides of the pressing surface 51b are the support portions 73a and 73b. function as
  • the support portions 73a and 73b may not be configured by rollers such as the first support portion 73a and the second support portion 73b, but may be configured by a member that allows the sheet material 60 to slide with respect to the pressing portion 51. . Therefore, the support portions 73 a and 73 b may be included in the moving mechanism 70 or may be separate from the moving mechanism 70 .
  • the moving direction T of the sheet material 60 supported by the supporting portions 73a and 73b is not limited to the long side direction X and the short side direction Y, and intersects the pressing direction Z. Any direction is acceptable. For example, any direction perpendicular to the pressing direction Z can be adopted as the moving direction T.
  • the support portions 73a and 73b are configured to include the pressing portions 51 of the plurality of first pressing assemblies 50a and the pressing portions 51 of the plurality of second pressing assemblies 50b. may support the sheet material 60 so as to crosslink each other.
  • the second support portion 73b of one support portion 73a, 73b and the first support portion 73a of the other support portion 73a, 73b may be omitted.
  • the heating part 54 may not be integrated with the pressing part 51 and may be separate from the pressing part 51 .
  • the heating part 54 may heat the resin parts 20 and 30 by heat radiation from, for example, a resistance heater or a heater coil.
  • the welding apparatus 40 does not need to be equipped with the insulating part 52 and the buffer part 53.
  • FIG. - In 1st Embodiment and 2nd Embodiment the shape of the pressing surface 51b is not restricted to a rectangle, As long as the resin parts 20 and 30 can be pressed by the pressing surface 51b, it is arbitrary.
  • the pressing surface 51b may be configured such that the pressing surface 51b includes the entire resin portions 20 and 30 in plan view from the pressing direction Z. As shown in FIG. In this case, the pressing portion 51 may press the entire resin portions 20 and 30 at once.
  • the support portions 73a and 73b may support the sheet material 60 so that the sheet material 60 includes the entire resin portions 20 and 30 in plan view from the pressing direction Z. As shown in FIG.
  • the shape of the resin pressing area R1 is not limited to a rectangle and may be arbitrary.
  • the resin portions 20 and 30 are not limited to rectangular frames, and may be of any shape according to the shape of the electrode plate 11, for example.
  • the positions of the resin portions 20 and 30 with respect to the electrode plate 11 are arbitrary as long as the resin portions 20 and 30 can be welded to the current collector 12 .
  • the resin side portions 21 and 31 may not be arranged along the side portion 12a, and may be arranged on the first uncoated surface 14a or the second uncoated surface 15a.
  • the electrode plate 11 has the first active material layer 16 and the second active material layer 17 arranged on both sides of the first main surface 14 and the second main surface 15. It does not have to be a so-called bipolar electrode.
  • the electrode plate 11 may be a so-called monopolar electrode in which active material layers 16 and 17 are provided only on one of the first main surface 14 and the second main surface 15, for example.
  • the electrode plate 11 is not restricted to a rectangular shape, For example, the thing of arbitrary shapes, such as a polygon and a circle, may be sufficient.
  • the welding device 40 may be one in which only one of the two pressing assemblies 50a and 50b is provided with the heating section . Such a welding device 40 can be used, for example, when only one of the resin portions 20 and 30 is welded to the electrode plate 11 .
  • the workpiece to which the resin parts 20 and 30 are to be welded using the welding device 40 is not limited to the electrode plate 11, and may be any metal foil, ceramics, wood, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

溶着装置(40)は、ワークとしての電極板(11)に樹脂部(20,30)を溶着させる。溶着装置(40)は、樹脂部(20,30)の加熱を行うことによって当該樹脂部(20,30)を溶融させる加熱部(54)と、シート材(60)を介して、溶融した樹脂部(20,30)を電極板(11)に向けて押圧方向(Z)に押圧することで、溶融した樹脂部(20,30)を電極板(11)に溶着する押圧部(51)であって、シート材(60)を押圧する押圧面(51b)を有する押圧部(51)と、押圧方向(Z)と交差する移動方向(T)に離れて配置される一対の支持部(73a,73b)であって、シート材(60)が押圧面(51b)を押圧方向(Z)から覆うようにシート材(60)を支持する一対の支持部(73a,73b)と、支持部(73a,73b)によって支持された状態のシート材(60)を移動方向Tにスライドさせる移動機構(70)と、を備える。

Description

溶着装置、及び樹脂溶着ワークの製造方法
 本発明は、溶着装置、及び樹脂溶着ワークの製造方法に関する。
 特許文献1には、ヒートシールバーによって樹脂部を加熱加圧して溶着せしめる溶着装置が開示されている。特許文献1に開示の溶着装置では、ヒートシールバーの表面にフッ素樹脂テープが貼着されている。
特開2016-126826号公報
 ここで、ヒートシールバー等の押圧部がフッ素樹脂テープ等のシート材を介して樹脂部を押圧する場合に、例えば溶着対象物となるワークや樹脂部がシート材に接触する。このとき、シート材が消耗し、シート材の劣化が進行するおそれがある。歩留まりの低下を抑制するには、劣化が進行したシート材を交換する必要がある。しかし、シート材の交換が煩雑であると、溶着装置の運転を長時間停止する必要があり、溶着装置の運転効率が低下することが懸念される。
 上記課題を解決する溶着装置は、ワークに樹脂部を溶着させる溶着装置であって、前記樹脂部の加熱を行うことによって当該樹脂部を溶融させる加熱部と、シート材を介して、溶融した前記樹脂部を前記ワークに向けて押圧方向に押圧することで、溶融した前記樹脂部を前記ワークに溶着する押圧部であって、前記シート材を押圧する押圧面を有する押圧部と、前記押圧方向と交差する方向である前記シート材の移動方向に離れて配置される一対の支持部であって、前記シート材が前記押圧面を前記押圧方向で覆うように前記シート材を支持する一対の支持部と、前記支持部によって支持された状態の前記シート材を前記移動方向にスライドさせる移動機構と、を備える。
 これによれば、押圧部が、シート材を介して溶融した樹脂部をワークに向けて押圧する。これにより、樹脂部がワークに溶着される。このとき、シート材が押圧部の押圧面に代わって樹脂部に接触することで、樹脂部の押圧面への溶着が抑制される。
 本構成では、シート材の劣化が進んだ場合、シート材が支持部に支持された状態で移動機構がシート材を移動方向にスライドさせる。シート材をスライドさせることで、シート材のうち、前回の押圧部による押圧によって樹脂部と接触した領域と異なる領域を、押圧面と樹脂部との間に配置できる。つまり、シート材のうち劣化が進んだ領域を交換できる。これにより、例えばシート材が押圧部に固定されている場合のように、シート材の劣化が進んだ領域を交換するために、シート材と押圧部との固定を解除する手間を省くことができる。その結果、より短時間で押圧部と樹脂部との間に配置されているシート材の交換が可能となる。したがって、溶着装置の運転効率を向上できる。
 上記溶着装置において、前記押圧面は、長方形であり、前記押圧面の長辺が延びる方向を長辺方向とすると、前記シート材の前記移動方向は、前記長辺方向と交差する、ものであってもよい。
 これによれば、移動方向が長辺方向と交差しているため、移動方向が長辺方向に平行な場合に比べて、押圧面を覆うシート材をスライドさせる際のシート材の移動距離が短くなる。これに伴い、移動方向が長辺方向に平行な場合に比べてシート材の交換に要する時間を短くすることができる。したがって、溶着装置の運転効率をさらに向上できる。
 上記課題を解決する樹脂溶着ワークの製造方法は、ワークに樹脂部が溶着された樹脂溶着ワークの製造方法であって、前記ワークに配置された前記樹脂部を溶融させるとともに、シート材を介して溶融した前記樹脂部を押圧部によって前記ワークに押圧し、前記樹脂部を前記ワークに溶着させることで、前記樹脂溶着ワークを製造する溶着工程と、前記溶着工程にて前記樹脂部を前記ワークに押圧する方向を押圧方向とすると、前記溶着工程が1回以上行われた場合に、前記押圧方向と交差する方向である前記シート材の移動方向に前記シート材をスライドさせる移動工程と、を含み、前記シート材において前記溶着工程にて前記押圧部によって押圧される領域をシート押圧領域とすると、前記移動工程では、前記シート材において当該移動工程前の前記溶着工程での前記シート押圧領域とは前記移動方向に異なる領域を、当該移動工程後の前記溶着工程にて押圧可能な位置にスライドさせる。
 これによれば、シート材を介して、溶融した樹脂部をワークに向けて押圧することで、樹脂部がワークに溶着される。このとき、例えばシート材を介して樹脂部を押圧する押圧部に代わってシート材が樹脂部に接触する。そのため、シート材が、当該押圧部への樹脂部の溶着を抑制する。
 本構成では、溶着工程が行われることでシート材の劣化が進んだ場合、移動工程にてシート材が移動方向にスライドする。シート材がスライドすることで、シート材のうち、当該移動工程前の溶着工程でのシート押圧領域と異なる領域が、当該移動工程後の溶着工程にて樹脂部と接触する。そのため、例えばワークを押圧する押圧部にシート材が固定されている場合のように、シート材の劣化が進んだ領域を交換するために必要となるシート材と押圧部との固定を解除する手間を省くことができる。その結果、より短時間でシート材の交換が可能となる。したがって、樹脂溶着ワークの製造効率を向上できる。
 本発明によれば、溶着装置の運転効率を向上できる。
電極ユニットの平面図である。 電極ユニットの側面図である。 第1実施形態の溶着装置の全体斜視図である。 第1実施形態の溶着装置の拡大正面図である。 図4における5-5断面図である。 図4における6-6断面図である。 電極ユニットの製造方法の一例を示すフローチャートである。 第2実施形態の溶着装置の全体斜視図である。 図8における9-9断面図である。 図9における10-10断面図である。 第2実施形態の変形例としての溶着装置を説明するための図である。 図11の12-12断面図である。
 <第1実施形態の構成>
 以下、溶着装置、及び当該溶着装置を用いた電極ユニットの製造方法の第1実施形態について説明する。
 <電極ユニット10>
 図1及び図2に示すように、電極ユニット10は、電極板11と、第1樹脂部20と、第2樹脂部30と、を備える。
 <電極板11>
 ワークとしての電極板11は、バイポーラ型の電極である。電極板11は、集電体12と、第1活物質層16と、第2活物質層17と、を備える。
 <集電体12>
 集電体12は、金属箔により構成される。集電体12は、例えば、銅箔、アルミニウム箔、チタン箔、もしくはニッケル箔である。機械的強度を確保する観点から、集電体12は、ステンレス鋼箔であってもよい。ステンレス鋼箔は、例えばJIS G 4305:2015にて規定されるSUS304、SUS316、SUS301等である。集電体12は、上記金属の合金箔や、複数の上記金属箔を一体化させたものであってもよい。集電体12の表面には、公知のメッキ処理や表面処理が施されていてもよい。集電体12の厚さは、例えば、1μm以上100μm以下、詳細には、5μm以上70μm以下である。集電体12の形状は、長方形のシート状である。集電体12は、その周縁を構成する4つの辺部12aを備える。これらの4つの辺部12aは、電極板11の周縁を構成するものでもある。すなわち、電極板11の形状もまた、長方形のシート状である。そして、電極板11は、その周縁を構成する4つの辺部12aを備えるともいえる。なお、電極板11は、前述のような形態に限られず、2枚の金属箔を単に重ねたものであってもよい。
 <主面13>
 集電体12は、主面13を備える。主面13は、集電体12の厚さ方向に垂直な面である。主面13は、第1主面14と、第2主面15と、を含む。第2主面15は、第1主面14に対して集電体12の厚さ方向において反対に位置している。
 <第1活物質層16>
 活物質層としての第1活物質層16は、正極活物質を含む。正極活物質は、リチウムイオン等の電荷担体を吸蔵及び放出可能である。正極活物質の例には、例えば複合酸化物、金属リチウム、及び硫黄等が含まれる。第1活物質層16は、必要に応じて導電助剤、結着剤、その他成分を含んでもよい。第1活物質層16は、第1主面14に一体に接着されている。第1活物質層16の厚さは、例えば2~150μmである。第1主面14に第1活物質層16を接着する方法としては、例えば、ロールコート法等の公知の方法が挙げられる。
 なお、第1主面14は、第1未塗工面14aを含む。第1未塗工面14aは、第1主面14の領域のうち、第1活物質層16が接着されていない領域である。第1未塗工面14aは、第1主面14の周縁である第1周縁14bを含む。
 <第2活物質層17>
 活物質層としての第2活物質層17は、負極活物質を含む。負極活物質は、リチウムイオン等の電荷担体を吸蔵及び放出可能である。負極活物質の例には、例えば黒鉛、カーボン、金属化合物、リチウムと合金化可能な元素又はその化合物、及びホウ素添加炭素等が含まれる。第2活物質層17は、必要に応じて導電助剤、結着剤、その他成分を含有してよい。第2活物質層17の厚さは、例えば2~150μmである。第2活物質層17は、第2主面15に一体に接着されている。第2活物質層17の厚さは、例えば2~150μmである。第2主面15に第2活物質層17を接着する方法としては、例えば、ロールコート法等の公知の方法が挙げられる。
 なお、第2主面15は、第2未塗工面15aを含む。第2未塗工面15aは、第2主面15の領域のうち、第2活物質層17が接着されていない領域である。第2未塗工面15aは、第2主面15の周縁である第2周縁15bを含む。
 <第1樹脂部20>
 樹脂部としての第1樹脂部20は、枠状に形成されている。第1樹脂部20は、長方形状の枠体である。第1樹脂部20は、4つの第1樹脂辺部21を備える。第1樹脂辺部21は、四角柱状に形成されている。第1樹脂辺部21の端部は、互いに接続されている。各第1樹脂辺部21は、他の第1樹脂辺部21の1つと向かい合っている。
 第1樹脂部20は、第1主面14に溶着されている。詳細には、第1樹脂部20は、第1未塗工面14aに溶着されている。第1樹脂部20は、第1周縁14bに沿って溶着されている。したがって、第1樹脂辺部21は、電極板11の辺部12aに沿って溶着されている。第1樹脂部20は、第1活物質層16を囲うように第1主面14に溶着されているともいえる。第1樹脂部20の一部は、第1活物質層16が接着されている領域から離れる方向に、第1周縁14bの全周にわたって第1周縁14bからはみ出している。
 第1樹脂部20の第1周縁14bからはみ出した部分と、第2樹脂部30の第2周縁15bからはみ出した部分とは、互いに溶着されていてもよい。
 <第2樹脂部30>
 樹脂部としての第2樹脂部30は、枠状に形成されている。第2樹脂部30は、長方形状の枠体である。第2樹脂部30は、4つの第2樹脂辺部31を備える。第2樹脂辺部31は、四角柱状に形成されている。第2樹脂辺部31の端部は、互いに接続されている。各第2樹脂辺部31は、他の第2樹脂辺部31の1つと向かい合っている。
 第2樹脂部30は、第2主面15に溶着されている。詳細には、第2樹脂部30は、第2未塗工面15aに溶着されている。第2樹脂部30は、第2周縁15bに沿って溶着されている。したがって、第2樹脂辺部31は、電極板11の辺部12aに沿って溶着されている。第2樹脂部30は、第2活物質層17を囲うように第2主面15に溶着されているともいえる。第2樹脂部30の一部は、第2活物質層17が接着されている領域から離れる方向に、第2周縁15bの全周にわたって第2周縁15bからはみ出している。
 なお、第1樹脂部20及び第2樹脂部30は、絶縁性の樹脂からなる。第1樹脂部20及び第2樹脂部30の材料としては、例えばポリエチレン(PE)、ポリスチレン(PS)、ポリプロピレン(PP)、ABS樹脂、及びAS樹脂等の種々の樹脂材料や、これらの樹脂材料を変性させたものを用いることができる。
 <蓄電モジュールB>
 このように構成された電極ユニット10が樹脂部20,30を介して積層されることで、蓄電モジュールBを構成する。積層された電極ユニット10のうち、互いに隣り合う一方の電極ユニット10の第1樹脂部20と、他方の電極ユニット10の第2樹脂部30の周縁14b,15bからはみ出している部分同士は、一体化されている。周縁14b,15bからはみ出している部分同士の一体化は、当該はみ出している部分同士の溶着や、接着部材による接着により行われ得る。接着部材としては、例えば樹脂部20,30で例示された樹脂材料等が用いられる。本実施形態の蓄電モジュールBは、バイポーラ型のリチウムイオン蓄電池である。蓄電モジュールBは、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリに用いられる。
 <溶着装置40>
 次に、図3~図6を用いて、溶着装置40の一例について説明する。溶着装置40は、ワークとしての電極板11への樹脂部20,30の押圧及び溶着を行うことで、電極ユニット10を製造する。言い換えれば、溶着装置40は、電極ユニット製造装置である。以下、説明の便宜上、溶着装置40がワークを押圧する方向を押圧方向Zという。本実施形態の電極ユニット10の製造方法では、2つの溶着装置40が用いられる。ここでは、溶着装置40の1つの構成について説明する。
 図3に示すように、溶着装置40は、板状の下部台座41と、2つの脚部42と、板状の上部台座43と、2つの支柱44と、シリンダユニット45と、を備える。
 各脚部42は、地面に対して下部台座41を支持する。
 上部台座43は、下部台座41に対して下部台座41の厚さ方向に離れている。上部台座43の厚さ方向は、下部台座41の厚さ方向と平行である。下部台座41の厚さ方向は、鉛直方向と平行である。鉛直方向とは、物体に重力が作用する方向である。以下、説明の便宜上、鉛直方向を上下方向ということがある。本実施形態では、上下方向及び鉛直方向は、ともに押圧方向Zと平行である。
 各支柱44は、下部台座41に対して上部台座43を支持する。各支柱44は、押圧方向Zに延びる。
 <シリンダユニット45>
 シリンダユニット45は、シリンダボディ46と、シリンダロッド47と、を備える。
 シリンダボディ46は、上部台座43に固定されている。シリンダボディ46の内部には、図示しないサーボモータが収容されている。
 シリンダロッド47は、上部台座43を押圧方向Zに貫通している。シリンダロッド47は、シリンダボディ46に対して押圧方向Zに出没可能に構成されている。シリンダロッド47は、例えばサーボモータの駆動によってシリンダボディ46に対して出没する。
 図4に示すように、溶着装置40は、第1の押圧アセンブリ50aと、第2の押圧アセンブリ50bと、制御回路90と、を備える。
 <押圧アセンブリ50a,50b>
 2つの押圧アセンブリ50a,50bは、それぞれ下部台座41と上部台座43との間に配置されている。第1の押圧アセンブリ50aは、シリンダユニット45によって上部台座43に支持されている。第1の押圧アセンブリ50aは、シリンダロッド47に接続されている。第1の押圧アセンブリ50aは、シリンダユニット45の操作、例えばシリンダロッド47の出没、によって押圧方向Zに移動可能に構成されている。
 第2の押圧アセンブリ50bは、下部台座41に支持されている。本実施形態では、第2の押圧アセンブリ50bは、下部台座41に固定されている。第1の押圧アセンブリ50a及び第2の押圧アセンブリ50bは、押圧方向Zに互いに向かい合っている。押圧方向Zは、2つの押圧アセンブリ50a,50bが互いに向かい合っている方向ともいえる。本実施形態の溶着装置40は、サーボモータの駆動によって第1の押圧アセンブリ50aを移動させる、いわゆるサーボプレスである。なお、溶着装置40はこれに限らず、例えば油圧ポンプを用いた、いわゆる油圧プレスであってもよい。
 図4~図6に示すように、各押圧アセンブリ50a,50bは、押圧部51と、絶縁部52と、緩衝部53と、加熱部54と、溶着抑制機構TFと、を備える。
 以下、各押圧アセンブリ50a,50bの各部材の詳細について説明する。以下で用いる押圧アセンブリ50a,50bの部材は、特に明示がない限り、第1の押圧アセンブリ50aが備える部材として取り扱う。なお、第2の押圧アセンブリ50bが備える各部材は、第1の押圧アセンブリ50aが備えるものと同様である。そのため、第2の押圧アセンブリ50bが備える各部材は、第1の押圧アセンブリ50aのものと同一の部材番号を付すことで、説明を省略することがある。
 <押圧部51>
 押圧部51は、樹脂部20,30を押圧方向Zに押圧するシールバーである。本実施形態の押圧部51は、四角柱状である。押圧部51の長辺方向Xは、押圧方向Zに垂直である。押圧部51の短辺方向Yは、押圧方向Z及び長辺方向Xの両方に垂直である。押圧部51は、接続面51aと、押圧面51bと、2つの端面51cと、2つのガイド部51dと、を備える。
 <接続面51a>
 接続面51aは、押圧方向Zに垂直な2つの平面のうち、シリンダロッド47の先端が接続される面である。本実施形態の接続面51aは、押圧方向Zに垂直な長方形である。接続面51aの長辺は、長辺方向Xに延びている。接続面51aの短辺は、短辺方向Yに延びている。
 <押圧面51b>
 押圧面51bは、押圧方向Zに垂直な平面のうち、押圧方向Zにおいて接続面51aの反対に位置する面である。本実施形態の押圧面51bは、長方形である。押圧面51bの長辺は、長辺方向Xに延びている。押圧面51bの短辺は、短辺方向Yに延びている。長辺方向Xは、押圧面51bの長辺が延びる方向ともいえる。また、短辺方向Yは、押圧面51bの短辺が延びる方向ともいえる。
 <端面51c>
 2つの端面51cは、押圧部51の長辺方向Xの端に位置している。2つの端面51cは、押圧面51bの2つの短辺のそれぞれから押圧方向Zに延びている。
 <ガイド部51d>
 ガイド部51dは、押圧方向Zに延びている柱状の部材である。本実施形態のガイド部51dは円柱状である。ガイド部51dは、押圧部51の接続面51aに接続されている。
 ガイド部51dは、上部台座43に挿入されている。シリンダロッド47がシリンダボディ46に対して出没すると、第1の押圧アセンブリ50aの押圧部51は、ガイド部51dが上部台座43を挿入されている状態で押圧方向Zに移動する。このとき、仮に押圧部51が押圧方向Zと異なる方向に移動しようとすると、ガイド部51dと上部台座43との干渉が起きる。当該干渉により、押圧部51が押圧方向Zと異なる方向に移動することが規制される。これにより、第1の押圧アセンブリ50aが移動する方向が押圧方向Zからずれることが抑制される。なお、第2の押圧アセンブリ50bは、下部台座41に固定されているため、ガイド部51dを備えていなくてもよい。本実施形態の第2の押圧アセンブリ50bは、ガイド部51dを備えていない。
 <絶縁部52>
 絶縁部52は、押圧面51bの絶縁性を保つ絶縁層である。絶縁部52は、押圧面51bを覆っている。本実施形態の絶縁部52は、シート状である。絶縁部52の材料は、例えばガラス繊維、セラミクスなど任意である。なお、絶縁部52は、押圧部51の絶縁性を高めるために、さらに端面51cを覆っていてもよい。
 <緩衝部53>
 緩衝部53は、押圧部51に比べて弾性変形が容易な弾性体である。緩衝部53は、押圧面51bを覆っている。詳細には、緩衝部53は、絶縁部52を介して、押圧面51bを覆っている。緩衝部53は、押圧部51が樹脂部20,30を押圧している場合に弾性変形することにより、押圧部51が樹脂部20,30に印加する圧力のばらつきを抑制する。緩衝部53の材料は、例えば天然ゴム、フッ素ゴム、ウレタンゴムなど任意である。特に緩衝部53の材料としてシリコンゴムを用いる場合、押圧部51の絶縁性が向上する。また、緩衝部53の材料としてシリコンゴムを用いた場合、緩衝部53は、絶縁部52等の隣接する部材の滑り止めとしても機能する。
 <加熱部54>
 加熱部54は、樹脂部20,30の加熱を行う。本実施形態の加熱部54は、押圧部51と一体に設けられている。加熱部54は、電熱シート55と、2つの加熱電極56と、を備える。
 <電熱シート55>
 電熱シート55は、シート状の抵抗体である。電熱シート55は、角U字状に形成されている。電熱シート55の熱膨張率は、緩衝部53の熱膨張率より高い。電熱シート55は、絶縁部52、及び緩衝部53を介して、押圧面51bを覆う。電熱シート55は、2つの端面51cを覆う。なお、端面51cと電熱シート55との間は、図示しない絶縁部材等により絶縁されている。
 <加熱電極56>
 加熱電極56は、電熱シート55に電流を流すための電極である。2つの加熱電極56のそれぞれは、電熱シート55を介して2つの端面51cのそれぞれに配置されている。加熱電極56は、図示しない電源装置に接続されている。電源装置の電力は、加熱電極56を介して電熱シート55に流入する。これにより、電熱シート55が抵抗発熱する。加熱部54は、電熱シート55の抵抗発熱を利用して、樹脂部20,30の加熱を行う。
 本実施形態の加熱部54は、押圧部51にて溶着対象である樹脂部20,30を電極板11に向けて押圧しながら樹脂部20,30を加熱する。本実施形態の加熱部54は、いわゆるインパルスヒータである。加熱部54による加熱が行われている場合、緩衝部53が電熱シート55の熱膨張及び熱収縮を抑制する。電熱シート55の熱膨張及び熱収縮を抑制するという観点においても、緩衝部53の材料としてはシリコンゴムが好ましい。
 <溶着抑制機構TF>
 溶着抑制機構TFは、押圧部51及び押圧面51b上に配置されている部材などへの樹脂部20,30の溶着を抑制する機構である。押圧部51及び押圧面51b上に配置されている部材とは、例えば絶縁部52、緩衝部53、及び加熱部54である。溶着抑制機構TFは、シート材60と、移動機構70と、を備える。
 <シート材60>
 シート材60は、電極板11に比べて樹脂部20,30から剥離しやすい。シート材60の樹脂部20,30に対する剥離強度は、電極板11の樹脂部20,30に対する剥離強度に比べて小さい。例えば、シート材60の樹脂部20,30に対する剥離強度は、電極板11の樹脂部20,30に対する剥離強度の0.5倍以下、好ましくは0.1倍以下、より好ましくは0.01倍以下である。シート材60は、ポリテトラフルオロエチレンなどのフッ素系化合物を含んでもよい。本実施形態のシート材60は、フッ素系化合物を含浸させたガラスクロスである。ガラスクロスはフッ素系化合物に比べて熱伝導率が高いガラス繊維からなる。そのため、シート材60をガラスクロスとすることで、加熱部54から樹脂部20,30への熱の伝達を好適に行うことができる。なお、シート材60は、ガラスクロスに限らず、例えば上記フッ素系化合物からなる樹脂をシート状に成形した樹脂シートであってもよい。
 本実施形態のシート材60は、所定の長手方向に延びる帯状に形成されている。当該長手方向は、シート材60の幅方向に垂直である。シート材60の幅W1は、押圧面51bの短辺の長さWy以上である。本実施形態では、シート材60の幅W1は、押圧面51bの短辺の長さWyと等しい。
 <移動機構70>
 移動機構70は、巻出部71と、巻出調節部72と、一対の支持部73a,73bと、巻取調節部74と、巻取部75と、を備える。移動機構70は、シート材60を支持することで、シート材60が移動するシート移動経路L1を形成する。シート移動経路L1は、巻出部71から供給されたシート材60が辿る経路である。巻出部71から供給されたシート材60は、シート移動経路L1を、巻出調節部72→支持部73a,73b→巻取調節部74→巻取部75の順番で辿る。
 <巻出部71>
 巻出部71は、短辺方向Yに平行な回転軸を中心に回転可能なリールである。巻出部71には、シート材60が巻回されている。これにより、巻出部71は、シート材60の長手方向の端部の1つを支持している。巻出部71は、シート移動経路L1へのシート材60の供給源である。巻出部71は、シート移動経路L1における最上流に位置する。
 巻出部71は、押圧部51から押圧方向Zに離れて配置されている。巻出部71は、押圧方向Zに平行であって且つ押圧面51bから接続面51aに向かう方向に離れて配置されている。特に、第1の押圧アセンブリ50aの巻出部71と押圧部51との間には、上部台座43が介在している。第2の押圧アセンブリ50bの巻出部71と押圧部51との間には、下部台座41が介在している。
 <巻出調節部72>
 巻出調節部72は、巻出部71から供給されるシート材60の搬送量を調整する。シート材60の搬送量は、例えばシート材60の長手方向の長さ、体積、移動距離などで表すことができる。説明の便宜上、シート材60の長手方向の長さを、単にシート材60の長さという。巻出調節部72は、第1巻出ガイドローラ72aと、第2巻出ガイドローラ72bと、巻出ダンサーローラ72cと、を備える。第1巻出ガイドローラ72a、第2巻出ガイドローラ72b、及び巻出ダンサーローラ72cは、それぞれ短辺方向Yに平行な回転軸を中心に回転可能である。
 <巻出ガイドローラ72a,72b>
 第1巻出ガイドローラ72a及び第2巻出ガイドローラ72bは、ともに巻出部71から長辺方向Xに離れて配置されている。第1巻出ガイドローラ72aは、第2巻出ガイドローラ72bと巻出部71との間に位置している。
 <巻出ダンサーローラ72c>
 巻出ダンサーローラ72cは、長辺方向Xにおける第1巻出ガイドローラ72aと第2巻出ガイドローラ72bとの中間点から、押圧方向Zに離れて配置されている。巻出ダンサーローラ72cは、第1巻出ガイドローラ72a及び第2巻出ガイドローラ72bよりも押圧方向Zにおいて押圧部51に近い位置にある。巻出ダンサーローラ72cは、少なくとも押圧方向Zに移動可能に構成されている。本実施形態では、巻出ダンサーローラ72cは、押圧方向Zに移動可能に構成されている。これにより、巻出ダンサーローラ72cは、第1巻出ガイドローラ72a及び第2巻出ガイドローラ72bに対する押圧方向Zの距離を調節できる。巻出ダンサーローラ72cは、後述する支持部73a,73bに支持された状態のシート材60のテンションを調節できる。
 巻出部71から供給されるシート材60は、巻出調節部72において、第1巻出ガイドローラ72a、巻出ダンサーローラ72c、第2巻出ガイドローラ72bの順に搬送される。巻出ダンサーローラ72cが押圧方向Zに移動することにより、巻出ダンサーローラ72cと各巻出ガイドローラ72a,72bとの間に介在するシート材60の長さや、巻出調節部72から搬送されるシート材60の搬送量が調節される。
 <支持部73a,73b>
 支持部73a,73bは、長辺方向Xに離れて配置されている。支持部73a,73bは、シート材60を長辺方向Xに架け渡している。これにより、シート材60は、支持部73a,73bによって押圧部51と樹脂部20,30との間に位置するように支持される。言い換えれば、支持部73a,73bは、シート材60が押圧部51と樹脂部20,30との間に位置するようシート材60を支持する。本実施形態では、支持部73a,73bは、シート材60が押圧面51bと接するようにシート材60を支持する。なお、シート材60が押圧面51bと接している状態には、シート材60が押圧面51bに直接的に接している状態に限られず、シート材60が絶縁部52、緩衝部53、加熱部54等の部材を介して押圧面51bに間接的に接している状態が含まれる。なお、シート材60と押圧面51bとが接している場合であっても、シート材60は押圧面51bに固定されていない。すなわち、シート材60は、押圧面51bに対して相対的に移動可能に構成されている。
 本実施形態の支持部73a,73bのそれぞれは、ガイドローラである。支持部73a,73bは、短辺方向Yに平行な回転軸を中心に回転可能である。第1の押圧アセンブリ50aの支持部73a,73bは、シリンダユニット45の操作、例えばシリンダロッド47の出没、によって押圧方向Zに移動可能に構成されている。以下、説明の便宜上、支持部73a,73bのそれぞれを、第1支持部73a,第2支持部73bという。
 <第1支持部73a>
 第1支持部73aは、第2巻出ガイドローラ72bから押圧方向Zに離れて配置されている。第1支持部73aは、押圧部51から長辺方向Xに離れて配置されている。第1支持部73aの少なくとも一部は、端面51cの1つと長辺方向Xに向かい合っている。
 <第2支持部73b>
 第2支持部73bは、第1支持部73aから長辺方向Xに離れて配置されている。押圧方向Zからの平面視において、押圧部51、詳細には押圧面51bは、第1支持部73aと第2支持部73bとの間に位置している。第2支持部73bの少なくとも一部は、端面51cの1つと長辺方向Xに向かい合っている。第2支持部73bが向かい合う端面51cは、第1支持部73aが向かい合う端面51cと長辺方向Xにおいて反対に位置する。
 第2巻出ガイドローラ72bから搬送されたシート材60は、第1支持部73a、第2支持部73bの順に搬送される。このとき、第1支持部73a及び第2支持部73bは、シート材60を押圧面51b上で支持している。言い換えれば、押圧面51bは、第1支持部73a及び第2支持部73bによって支持されたシート材60によって押圧方向Zで覆われている。これにより、押圧面51bは、支持部73a,73bによって支持されたシート材60を介して樹脂部20,30と押圧方向Zに向かい合う。これにより、押圧部51は、支持部73a,73bによって支持されるシート材60を介して樹脂部20,30を押圧できる。
 <巻取調節部74>
 巻取調節部74は、シート移動経路L1における支持部73a,73bより下流へのシート材60の搬送量を調整する。巻取調節部74は、第1巻取ガイドローラ74aと、第2巻取ガイドローラ74bと、巻取ダンサーローラ74cと、を備える。第1巻取ガイドローラ74a、第2巻取ガイドローラ74b、及び巻取ダンサーローラ74cは、それぞれ短辺方向Yに平行な回転軸を中心に回転可能である。
 <巻取ガイドローラ74a,74b>
 第1巻取ガイドローラ74a及び第2巻取ガイドローラ74bは、ともに巻取部75から長辺方向Xに離れて配置されている。第2巻取ガイドローラ74bは、第1巻取ガイドローラ74aと巻取部75との間に位置している。
 <巻取ダンサーローラ74c>
 巻取ダンサーローラ74cは、長辺方向Xにおける第1巻取ガイドローラ74aと第2巻取ガイドローラ74bとの中間点から、押圧方向Zに離れている。巻取ダンサーローラ74cは、第1巻取ガイドローラ74a及び第2巻取ガイドローラ74bよりも押圧方向Zにおいて押圧部51に近い位置にある。巻取ダンサーローラ74cは、少なくとも押圧方向Zに移動可能に構成されている。本実施形態では、巻取ダンサーローラ74cは、押圧方向Zに移動可能に構成されている。これにより、巻取ダンサーローラ74cは、第1巻取ガイドローラ74a及び第2巻取ガイドローラ74bに対する押圧方向Zの距離を調節できる。これにより、巻取ダンサーローラ74cは、支持部73a,73bに支持された状態のシート材60のテンションを調節できる。
 第2支持部73bからのシート材60は、巻取調節部74において、第1巻取ガイドローラ74a、巻取ダンサーローラ74c、第2巻取ガイドローラ74bの順に搬送される。巻取ダンサーローラ74cが押圧方向Zに移動することにより、巻取ダンサーローラ74cと各巻取ガイドローラ74a,74bとの間に介在するシート材60の長さや、巻取調節部74から搬送されるシート材60の搬送量が調節される。
 <巻取部75>
 巻取部75は、短辺方向Yに平行な回転軸を中心に回転可能なリールである。巻取部75は、巻出部71からシート移動経路L1に沿って供給されたシート材60を巻き取る。詳細には、巻取部75は、巻取調節部74から供給されたシート材60を巻き取る。巻取部75は、シート材60を巻き取ることにより、シート材60の長手方向の端部の1つを支持している。巻取部75は、シート移動経路L1からのシート材60の排出先である。巻取部75は、シート移動経路L1における最下流に位置する。
 巻取部75は、押圧部51から押圧方向Zに離れて配置されている。巻取部75は、押圧方向Zと平行であって且つ押圧面51bから接続面51aに向かう方向に離れて配置されている。特に、第1の押圧アセンブリ50aの巻取部75と押圧部51との間には、上部台座43が介在している。第2の押圧アセンブリ50bの巻取部75と押圧部51との間には、下部台座41が介在している。巻取部75は、巻出部71と長辺方向Xに離れている。
 <シート材60の移動方向T>
 このように構成された溶着抑制機構TFでは、巻出部71から供給されたシート材60が、巻出調節部72、第1支持部73a、第2支持部73b、巻取調節部74を順番に経由して巻取部75に搬送される。このとき、移動機構70は、支持部73a,73bによって支持された状態のシート材60を移動方向Tにスライドさせる。移動方向Tとは、支持部73a,73bによって支持された状態のシート材60がスライドする方向である。具体的には、移動方向Tとは、第1支持部73aから第2支持部73bに向かう方向である。
 「スライドさせる」とは、支持部73a,73bによって支持された状態のシート材60を、支持部73a,73bによって支持された状態のまま、押圧面51bに対して押圧方向Zと交差する方向に移動させることである。シート材60をスライドさせることには、シート材60が押圧面51bに対して摺動させることが含まれる。また、支持部73a,73bがシート材60を押圧面51bから押圧方向Zに離れた位置で支持している場合、シート材60をスライドさせることには、シート材60が押圧面51bから離れて支持された状態のまま、シート材60を移動方向Tに移動させることが含まれる。
 上述したように、第1支持部73aと第2支持部73bとは、長辺方向Xに離れている。したがって、本実施形態における移動方向Tは、長辺方向Xに平行である。言い換えれば、一対の支持部73a,73bは、移動方向Tに離れて配置されている。長辺方向Xは押圧方向Zに垂直であるため、移動方向Tは押圧方向Zと交差している。
 なお、第1支持部73aと第2支持部73bとの移動方向Tにおける距離は、押圧面51bの移動方向Tにおける長さ(本実施形態では押圧面51bの長辺の長さWx)より長い。そのため、支持部73a,73bによって支持された状態のシート材60の移動方向Tにおける長さは、押圧面51bの移動方向Tにおける長さより長い。押圧面51bの移動方向Tにおける長さは、樹脂辺部21,31の移動方向Tにおける長さより長い。そのため、支持部73a,73bによって支持された状態のシート材60の移動方向Tにおける長さは、押圧面51bの移動方向Tにおける長さより長い。すなわち、シート材60は、移動方向Tにおいて樹脂部20,30よりも長い、いわゆる長尺状に形成されている。
 <押圧アセンブリ50a,50bの位置関係>
 このように構成された第1の押圧アセンブリ50aの押圧部51と第2の押圧アセンブリ50bの押圧部51とは、互いの支持部73a,73bによって支持されたそれぞれのシート材60を介して押圧方向Zに向かい合っている。第1の押圧アセンブリ50aのシート材60のうち支持部73a,73bによって支持されている領域と、第2の押圧アセンブリ50bのシート材60のうち支持部73a,73bによって支持されている領域と、は、押圧方向Zに離れて向かい合っている。第1の押圧アセンブリ50aのシート材60のうち支持部73a,73bによって支持されている領域と、第2の押圧アセンブリ50bのシート材60のうち支持部73a,73bによって支持されている領域と、の間には、樹脂部20,30が配置されている電極板11を配置可能である。
 <制御回路90>
 制御回路90は、プロセッサと、記憶部と、を備える。プロセッサとしては、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、又はDSP(Digital Signal Processor)が用いられる。記憶部は、RAM(Random Access Memory)及びROM(Read Only Memory)を含む。記憶部は、処理をプロセッサに実行させるように構成されたプログラムコード又は指令を格納している。記憶部、即ち、コンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。制御回路90は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェア回路によって構成されていてもよい。処理回路である制御回路90は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。
 制御回路90は、シリンダボディ46に対するシリンダロッド47の出没を制御する。シリンダロッド47の出没に連動して、第1の押圧アセンブリ50aの押圧部51が押圧方向Zに移動する。これに伴い、押圧方向Zにおける第1の押圧アセンブリ50aの押圧部51と第2の押圧アセンブリ50bの押圧部51との距離が変わる。第1の押圧アセンブリ50aの押圧部51と第2の押圧アセンブリ50bの押圧部51との間に電極板11及び樹脂部20,30が配置されている場合、押圧アセンブリ50a,50bの両押圧部51は、樹脂部20,30を電極板11に向けて押圧する。
 制御回路90は、電源装置から加熱部54に与える電力を制御することにより、加熱部54を発熱させる。制御回路90は、加熱部54を用いて、樹脂部20,30の加熱を行う。
 制御回路90は、押圧部51が樹脂部20,30を押圧する圧力を取得する。当該圧力は、例えば図示しない圧力センサの測定値を取得すればよい。また、制御回路90は、加熱部54の温度を取得する。加熱部54の温度は、例えば図示しない温度センサの測定値を取得すればよい。制御回路90は、取得した圧力及び温度が所定の目標値となるように、シリンダユニット45及び電源装置を制御する。
 制御回路90は、移動機構70を制御することで、シート材60を移動方向Tにスライドさせる。本実施形態では、制御回路90は、巻出部71、巻出調節部72、巻取調節部74、巻取部75を制御する。制御回路90は、巻出部71の回転量を制御することで、巻出部71から巻出調節部72へのシート材60の搬送量を制御する。制御回路90は、巻出調節部72、詳細には巻出ダンサーローラ72cの押圧方向Zの位置を制御することで、支持部73a,73bへのシート材60の搬送量を調整する。制御回路90は、巻取調節部74、詳細には巻取ダンサーローラ74cの押圧方向Zの位置を制御することで、巻取部75へのシート材60の搬送量を調整する。制御回路90は、このように溶着抑制機構TFを制御することにより、支持部73a,73bによって支持された状態のシート材60を移動方向T(本実施形態では長辺方向X)にスライドさせる。このように、移動機構70に含まれる巻出部71、巻出調節部72、支持部73a,73b、巻取調節部74、及び巻取部75が、支持部73a,73bによって支持された状態のシート材60を移動方向Tにスライドさせる機能を有する。
 <電極ユニット10の製造方法>
 次に、図5~図7を用いて、上記溶着装置40を用いた樹脂溶着ワークとしての電極ユニット10の製造方法について説明する。本実施形態では、2つの溶着装置40を用いて、電極ユニット10の製造が行われる。2つの溶着装置40の長辺方向Xは平行である。2つの溶着装置40の短辺方向Yは平行である。2つの溶着装置40の押圧方向Zは平行である。2つの溶着装置40は、短辺方向Yに離れて配置されている。
 <初期化工程S1>
 図7に示すように、制御回路90は、初期化工程S1において、変数kを0に設定する。変数kは、0以上の整数である。
 <配置工程S2>
 次に、配置工程S2に進む。配置工程S2では、電極板11及び樹脂部20,30が、第1の押圧アセンブリ50aと第2の押圧アセンブリ50bとの間に配置される。本実施形態では、樹脂辺部21,31が辺部12aに沿って配置されている。樹脂部20,30の電極板11への配置は、例えば圧着等により予め実現されていてもよいし、後述する溶着工程S3にて樹脂部20,30の一部が電極板11に溶着されているものでもよい。樹脂部20,30の一部とは、例えば向かい合う2つの第1樹脂辺部21及び向かい合う2つの第2樹脂辺部31である。このとき、互いに向かい合う2つの第1樹脂辺部21が、それぞれ異なる溶着装置40における第1の押圧アセンブリ50aの押圧部51と押圧方向Zに向かい合う。同様に、互いに向かい合う2つの第2樹脂辺部31が、それぞれ異なる溶着装置40における第2の押圧アセンブリ50bの押圧部51と押圧方向Zに向かい合う。当該電極板11は、例えば図示しないロボットハンド等によって第1の押圧アセンブリ50a及び第2の押圧アセンブリ50bの間に配置される。
 <溶着工程S3>
 次に、溶着工程S3に進む。溶着工程S3において、制御回路90は、2つの溶着装置40を用いて樹脂部20,30を電極板11に溶着することで、電極ユニット10を製造する。本実施形態では、配置工程S2にて各押圧アセンブリ50a,50bの間に配置された樹脂辺部21,31が電極板11に溶着される。
 ここで、溶着工程S3における制御回路90の処理の一例について説明する。まず制御回路90は、押圧部51を、シート材60を介して樹脂部20,30に接触させる。具体的には制御回路90は、シリンダユニット45のシリンダロッド47をシリンダボディ46から押圧方向Zへ突出させることで押圧方向Zに押圧部51を移動させる。押圧部51の押圧方向Zの移動によって、第1の押圧アセンブリ50aの押圧面51bと第2の押圧アセンブリ50bの押圧面51bとが、樹脂辺部21,31に接触する。
 次に制御回路90は、加熱部54を用いて、押圧部51に押圧されている樹脂辺部21,31の加熱を行う。当該加熱によって、当該樹脂辺部21,31が溶融する。
 次に制御回路90は、押圧部51を用いて、シート材60を介して、溶融した樹脂部20,30を押圧する。具体的には、制御回路90は、シリンダロッド47をシリンダボディ46から押圧方向Zへさらに突出させることで、押圧面51bにシート材60を介して樹脂辺部21,31を押圧させる。
 このとき、図6に示すように、押圧面51bがシート材60を介して樹脂部20,30における樹脂押圧領域R1を押圧する。樹脂押圧領域R1は、樹脂部20,30においてシート材60を介して押圧面51bによって押圧される領域である。本実施形態の樹脂押圧領域R1は、長方形である。また、樹脂押圧領域R1は、樹脂押圧領域R1の長辺に沿う端縁E1を含む。端縁E1は、樹脂押圧領域R1の外縁の一部である。端縁E1は、樹脂辺部21,31の長辺方向Xに延びる端縁でもある。端縁E1が延びる方向は、長辺方向Xと平行である。したがって、端縁E1が延びる方向は、長辺方向Xでもある。
 押圧部51がシート材60を押圧することにより、シート材60においてシート押圧領域R2が生じる。シート押圧領域R2とは、シート材60において、溶着工程S3にて押圧部51によって押圧される領域である。押圧方向Zからの平面視において、シート押圧領域R2は、押圧面51bと重なる。そのため、本実施形態のシート押圧領域R2は長方形である。また、押圧方向Zからの平面視において、シート押圧領域R2は、樹脂押圧領域R1を含む。シート押圧領域R2は、シート材60のうち、押圧方向Zにて向かい合う2つの押圧面51b、すなわち第1の押圧アセンブリ50aの押圧面51b及び第2の押圧アセンブリ50bの押圧面51b、の間に位置する領域でもある。
 次に制御回路90は、加熱部54による加熱を停止して、樹脂辺部21,31を冷却する。当該冷却によって樹脂部20,30が凝固する。これにより、樹脂部20,30が電極板11に溶着する。このとき、シート材60のうち支持部73a,73bによって支持されている領域、特にシート押圧領域R2に含まれる領域、に、樹脂辺部21,31の一部、特に樹脂押圧領域R1、が溶着する可能性がある。
 次に制御回路90は、押圧部51による樹脂部20,30の押圧を停止する。具体的には、制御回路90は、シリンダロッド47をシリンダボディ46に収容する。これにより、押圧部51が樹脂部20,30から押圧方向Zに離れることで、樹脂部20,30の押圧が停止する。このとき、シート材60のうち支持部73a,73bによって支持されている領域が、樹脂辺部21,31から剥離される。
 なお、この段階で溶着されていない樹脂辺部21,31がある場合、制御回路90は、溶着されていない樹脂辺部21,31に対して同様の処理を行うことで、当該樹脂辺部21,31を溶着してもよい。また、制御回路90は、樹脂部20,30の一部が溶着された電極板11を、上記溶着工程S3を行った2つの溶着装置40とは別に用意された2つの溶着装置40に同様の処理を行わせることで、溶着されていない樹脂辺部21,31の溶着を行ってもよい。このように、全ての樹脂辺部21,31を電極板11に溶着することで、電極ユニット10が製造される。言い換えれば、樹脂部20,30を電極板11に溶着することで、電極ユニット10が製造される。製造された電極ユニット10は、ロボットハンド等により溶着装置40から取り除かれる。
 なお、溶着工程S3にて製造された電極ユニット10が所定数に達した場合、図示しない積層工程が行われる。積層工程では、溶着工程S3にて製造された複数の電極ユニット10を電極板11の厚さ方向に積層することで、蓄電モジュールBが製造される。
 <計数工程S4>
 図7に示すように、溶着工程S3の終了後、計数工程S4に進む。計数工程S4において、制御回路90は、変数kの値を1増やす。
 <移動判定工程S5>
 次に移動判定工程S5に進む。移動判定工程S5において、制御回路90は、溶着工程S3が所定の回数行われたか否かを判定する。本実施形態では、制御回路90は、変数kが判定値Nと一致しているか否かを判定する。すなわち、移動判定工程S5における所定の回数とは判定値Nで表される回数である。判定値Nは、1以上の整数であれば任意である。判定値Nは、例えばシート材60の耐用回数以下であれば任意である。シート材60の耐用回数とは、例えば溶着工程S3の後にシート材60を樹脂部20,30から剥離できることを1回として、この1回を実行可能な回数である。判定値Nは、例えば耐用回数の0.001~1倍、好ましくは0.005~0.5倍、より好ましくは0.01~0.1倍の範囲に含まれる。
 なお、これに限らず、移動判定工程S5の判定手法は任意であり、例えばシート材60をスライドさせるか否かは、シート材60の劣化の度合いに基づいて判定可能である。
 シート材60の劣化の要因の1つとしては、樹脂部20,30の押圧の際に、電極板11の加工痕、例えば辺部12aのバリ、がシート材60に干渉することが考えられる。辺部12aのバリは、例えば電極板11の母材をダイカッター等で切断することで電極板11を製造する際に生じる。このような電極板11の加工痕による劣化は、押圧部51に押圧される樹脂辺部21,31が延びる長辺方向Xに生じる。
 また、シート材60の劣化の別の要因としては、溶融した樹脂部20,30の一部がシート材60に残留することが考えられる。溶融した樹脂部20,30の一部がシート材60に残留することで、シート材60の樹脂部20,30に対する剥離強度が大きくなる。言い換えれば、シート材60が樹脂部20,30に溶着しやすくなる。特に、シート材60のうち溶着の際に樹脂押圧領域R1の端縁E1と接触する領域は、シート材60における他の領域に比べて特に劣化が進行しやすい。
 このようなシート材60の劣化は、溶着工程S3を行う度に進行する。シート材60の劣化の度合いは、例えば支持部73a,73bに支持された状態のシート材60の全体面積のうち、樹脂部20,30が溶着している領域の面積の比率に基づいて判定すればよい。また、シート材60の劣化の度合いは、支持部73a,73bに支持された状態のシート材60から押圧方向Zのガラス繊維の毛羽立ちに基づいて判定してもよい。このような判定は、例えば目視や画像認識によって行われる。これらの手法により判定されたシート材60の劣化の度合いに基づいて、判定値Nを設定すればよい。なお、判定値Nは、シート材60の劣化の度合いに応じて設定される可変な値としてもよい。
 <移動工程S6>
 一方、移動判定工程S5の判定結果が肯定の場合、すなわち変数kが判定値Nに達している場合、移動工程S6に進む。移動判定工程S5の判定結果が肯定の場合とは、溶着工程S3が所定の回数行われた場合である。したがって、移動工程S6は、溶着工程S3が1回以上行われた場合に行われる。移動工程S6は、溶着工程S3の後に行われる工程ともいえる。
 移動工程S6において、制御回路90は、巻出部71を制御することによって、巻出部71から巻出調節部72に向けてシート材60を供給する。制御回路90は、巻出部71からシート材60の供給に伴い、巻出調節部72及び巻取調節部74を制御することによって、支持部73a,73bに支持された状態のシート材60を移動方向T(本実施形態では長辺方向X)にスライドさせる。具体的には、制御回路90は、巻出部71からシート材60を供給するとともに、巻出ダンサーローラ72cを第1巻出ガイドローラ72a及び第2巻出ガイドローラ72bに近づける。これにより、シート材60が巻出部71及び巻出調節部72から支持部73a,73bに向けて供給される。これに伴い、支持部73a,73bに支持された状態のシート材60の少なくとも一部が、巻取調節部74に向けて供給される。これにより、支持部73a,73bに支持された状態のシート材60が移動方向T(長辺方向X)にスライドする。具体的には、図6に示すように、シート材60のうちの第1点P1が、第2点P2へとスライドする。第1点P1は、シート材60のうち、移動工程S6が行われる前の溶着工程S3にて樹脂部20,30の樹脂押圧領域R1、特に端縁E1と接触する箇所を示す。第1点P1は、樹脂部20,30と押圧方向Zに向かい合っている。すなわち、第1点P1は、シート押圧領域R2に含まれる。第2点P2は、移動工程S6によるスライド後の第1点P1を示す。第2点P2は、樹脂部20,30と押圧方向Zに向かい合っていない。すなわち、第2点P2は、シート押圧領域R2に含まれない。そのため、シート材60のうちの前回の溶着工程S3にて樹脂押圧領域R1の端縁E1と接触した領域の一部が、次回の溶着工程S3にて樹脂部20,30と接触しなくなる。また、これにより、シート材60のうちの前回の溶着工程S3にて樹脂押圧領域R1の端縁E1と接触しなかった領域の一部が、次回の溶着工程S3にて樹脂部20,30と接触する。このように、移動工程S6では、シート材60のうち溶着工程S3にて樹脂部20,30と接触する領域の少なくとも一部が交換される。移動工程S6でのシート材60の移動距離は、例えば樹脂辺部21,31の移動方向Tの長さに、所定の係数をかけた長さ以上である。当該係数は、0より大きく且つ1以下である。当該係数は、例えば判定値Nを耐用回数で割った値である。これにより、1回の移動工程S6でのシート材60の移動距離を小さくしつつ、シート材60のうち、溶着工程S3が耐用回数以上行われる領域が生じることが抑制される。1回の移動工程S6でのシート材60の移動距離が小さくなることにより、1回の移動工程S6に要する時間が短くなる。
 また、移動工程S6にて、制御回路90は、巻出ダンサーローラ72cの移動量に応じて、巻取ダンサーローラ74cを第1巻取ガイドローラ74a及び第2巻取ガイドローラ74bから遠ざける。これにより、支持部73a,73bから巻取調節部74に供給されるシート材60が、巻取調節部74に蓄えられる。そのため、支持部73a,73bに支持された状態のシート材60の張力を維持しつつ、シート材60をスライドさせることができる。なお、制御回路90は、巻取調節部74に蓄えられているシート材60を、適宜、巻取部75で巻き取る。
 移動工程S6が実行された後は、以降の電極ユニット10の製造が初期化工程S1から再び実行される。したがって、以降の電極ユニット10の製造の際に、移動工程S6が実行される都度、シート材60が、巻出部71から巻取部75に向けて送り出される。これにより、移動工程S6において適宜、シート材60の移動方向Tへのスライドが行われる。これにより、移動機構70は、シート材60において当該移動工程S6前の溶着工程S3でのシート押圧領域R2とは移動方向Tに異なる領域を、当該移動工程S6後の溶着工程S3にて押圧可能な位置にスライドさせる。
 なお、シート材60の移動距離は、樹脂部20,30の材料や形状、シート材60の材料や形状、及び溶着工程S3の具体的態様に応じて適宜設定すればよい。
 <第1実施形態の作用>
 以下、本実施形態の作用について説明する。
 押圧部51は、溶着工程S3にて溶融した樹脂部20,30を電極板11に向けて押圧することで、樹脂部20,30が電極板11に溶着される。このとき、押圧部51は、シート材60を介して樹脂部20,30を電極板11に押圧する。
 ここで、制御回路90は、移動工程S6において、移動機構70に含まれる巻出部71、巻出調節部72、巻取調節部74、及び巻取部75を制御することによって、移動方向Tにシート材60を移動させる。これにより、シート材60のうち、前回の溶着工程S3にて押圧された樹脂部20,30と接触した領域と異なる領域の少なくとも一部が、押圧部51と樹脂部20,30との間に配置される。
 移動工程S6が実行された後、以降の電極ユニット10の製造方法が初期化工程S1から再び実行される。
 <第1実施形態の効果>
 以下、本実施形態の効果について説明する。
 (1-1)溶着装置40は、ワークとしての電極板11に樹脂部20,30を溶着させる。溶着装置40は、押圧部51と、一対の支持部73a,73bと、移動機構70と、を備える。支持部73a,73bは、移動方向Tに離れて配置される。また、支持部73a,73bは、シート材60が押圧面51bを押圧方向Zから覆うようにシート材60を支持する。移動機構70は、支持部73a,73bによって支持された状態のシート材60を移動方向Tにスライドさせる。
 これによれば、押圧部51が、溶融した樹脂部20,30をワークに向けて押圧する。これにより、樹脂部20,30が電極板11に溶着される。このとき、押圧部51は、シート材60を介して樹脂部20,30を電極板11に押圧する。シート材60が押圧面51bに代わって樹脂部20,30に接触することで、樹脂部20,30の押圧面51bへの溶着が抑制される。
 本構成では、シート材60の劣化が進んだ場合、シート材60が支持部73a,73bに支持された状態で移動機構70が移動方向Tにシート材60をスライドさせる。シート材60をスライドさせることで、シート材60のうち、前回の押圧部51による押圧によって樹脂部20,30と接触した領域と異なる領域を、押圧面51bと樹脂部20,30との間に配置できる。つまり、シート材60が押圧部51に固定されている場合のように、シート材60の劣化が進んだ領域を交換するために、シート材60と押圧部51との固定を解除する手間を省くことができる。その結果、より短時間で押圧部51と樹脂部20,30との間に配置されているシート材60の交換が容易となる。したがって、溶着装置40の運転効率を向上できる。
 (1-2)樹脂溶着ワークとしての電極ユニット10を製造する製造方法は、移動工程S6を含む。移動工程S6は、溶着工程S3が1回以上行われた場合に、移動方向T(長辺方向X)にシート材60をスライドさせる。
 かかる構成において、移動工程S6では、シート材60において当該移動工程S6前の溶着工程S3でのシート押圧領域R2とは移動方向Tに異なる領域を、当該移動工程S6後の溶着工程S3にて押圧可能な位置にスライドさせる。
 移動工程S6により、シート材60がスライドすることで、シート材60のうち、当該移動工程S6前の溶着工程S3でのシート押圧領域R2、つまり樹脂部20,30と接触した領域と異なる領域が、当該移動工程S6後の溶着工程S3にて樹脂部20,30と接触する。そのため、例えば電極板11を押圧する押圧部51にシート材60が固定されている場合のように、シート材60の劣化が進んだ領域を交換するために必要となるシート材60と押圧部51との固定を解除する手間を省くことができる。その結果、より短時間でシート材60の交換が可能となる。したがって、電極ユニット10の製造効率を向上できる。
 <第2実施形態の構成>
 次に、溶着装置、及び当該溶着装置を用いた電極ユニットの製造方法の第2実施形態について説明する。なお、説明の便宜上、第2実施形態の構成のうち、第1実施形態と同様の構成については同一の部材番号を付すことによって説明を省略するとともに、異なる構成を説明する。
 まず、図8~図10に示すように、第1実施形態と第2実施形態とでは、シート材60の移動方向Tが異なる。第1実施形態では、支持部73a,73bに支持された状態のシート材60の移動方向Tは、長辺方向Xと一致している。これに対し、第2実施形態におけるシート材60の移動方向Tは短辺方向Yと一致している。
 また、第1実施形態と第2実施形態とでは、シート材60の幅W1が異なる。第1実施形態におけるシート材60の幅W1は、押圧面51bの短辺の長さWyと等しい。押圧面51bの短辺の長さWyは樹脂辺部21,31の長辺の長さより大きい。そのため、シート材60の幅W1は樹脂辺部21,31の長辺の長さより大きい。これに対し、第2実施形態におけるシート材60の幅W1は、押圧面51bの長辺の長さWx以上である。詳細には、シート材60の幅W1は、押圧面51bの長辺の長さWxと等しい。したがって、第2実施形態のシート材60の幅W1は、第1実施形態のシート材60の幅W1より広い。
 これに伴い、移動機構70を構成する各部材71,72,73a,73b,74,75の寸法及び方向が変わる。なお、第2実施形態における移動機構70の各部材71,72,73a,73b,74,75の互いの位置関係については、第1実施形態における長辺方向Xを短辺方向Yと読み替えるとともに、第1実施形態における短辺方向Yを長辺方向Xと読み替えればよい。
 以下、第2実施形態における移動機構70の構成について詳述する。
 <巻出部71>
 巻出部71は、長辺方向Xに平行な回転軸を中心に回転可能なリールである。下部台座41及び上部台座43に対する巻出部71の位置は、第1実施形態と同様である。
 <巻出調節部72>
 第1巻出ガイドローラ72a、第2巻出ガイドローラ72b、及び巻出ダンサーローラ72cは、それぞれ長辺方向Xに平行な回転軸を中心に回転可能である。
 <巻出ガイドローラ72a,72b>
 第1巻出ガイドローラ72a及び第2巻出ガイドローラ72bは、ともに巻出部71から短辺方向Yに離れて配置されている。
 <巻出ダンサーローラ72c>
 巻出ダンサーローラ72cは、短辺方向Yにおける第1巻出ガイドローラ72aと第2巻出ガイドローラ72bとの中間点から、押圧方向Zに離れて配置されている。
 <支持部73a,73b>
 第1支持部73a及び第2支持部73bは、それぞれ長辺方向Xに平行な回転軸を中心に回転可能である。
 第1支持部73aは、押圧部51から短辺方向Yに離れて配置されている。第1支持部73aの一部は、押圧面51bの長辺から押圧方向Zに延びる面の1つと短辺方向Yに向かい合っている。
 第2支持部73bは、第1支持部73aから短辺方向Yに離れて配置されている。第2支持部73bの一部は、押圧面51bの長辺から押圧方向Zに延びる面の1つと短辺方向Yに向かい合っている。第2支持部73bが向かい合う押圧部51の面は、第1支持部73aが向かい合う押圧部51の面と短辺方向Yにおいて反対に位置する。
 <巻取ガイドローラ74a,74b>
 第1巻取ガイドローラ74a、第2巻取ガイドローラ74b、及び巻取ダンサーローラ74cは、それぞれ長辺方向Xに平行な回転軸を中心に回転可能である。
 第1巻取ガイドローラ74a及び第2巻取ガイドローラ74bは、ともに巻出部71から短辺方向Yに離れて配置されている。
 <巻取ダンサーローラ74c>
 巻取ダンサーローラ74cは、短辺方向Yにおける第1巻取ガイドローラ74aと第2巻取ガイドローラ74bとの中間点から、押圧方向Zに離れている。
 <巻取部75>
 巻取部75は、長辺方向Xに平行な回転軸を中心に回転可能なリールである。巻取部75は、巻出部71と短辺方向Yに離れて配置されている。
 <シート材60の移動方向T>
 第1支持部73aと第2支持部73bとは、短辺方向Yに離れて配置されている。したがって、本実施形態における移動方向Tは、短辺方向Yに平行である。短辺方向Yは押圧方向Zに垂直であるため、本実施形態の移動方向Tは、押圧方向Zと交差している。
 <電極ユニット10の製造方法>
 第2実施形態の溶着装置40を用いた電極ユニット10の製造方法では、第1実施形態と同様の工程S1~S7が行われる。なお、第1実施形態の電極ユニット10の製造方法では移動方向Tが長辺方向Xであったのに対し、第2実施形態では、移動方向Tが短辺方向Yとなっている。
 <第2実施形態の作用>
 シート材60の劣化は、シート材60において、樹脂押圧領域R1のうちの特に端縁E1と接触する領域で進行しやすい。言い換えれば、シート材60の劣化は、シート押圧領域R2のうち、押圧方向Zからの平面視において端縁E1と重なる領域で進行しやすい。端縁E1は、長辺方向Xに延びている。そのため、シート材60のなかで劣化が進行しやすい領域は、長辺方向Xに沿って分布しやすい。
 そこで、第2実施形態では、移動方向Tが長辺方向Xと交差している。移動工程S6にて、シート材60を移動方向Tにスライドさせることで、シート材60のうち、移動工程S6が行われる前までの溶着工程S3にて端縁E1と接触していた領域の少なくとも一部が、シート押圧領域R2の外に位置することとなる。具体的には、シート材60を移動方向Tにスライドさせることにより、第1点P1が第2点P2へとスライドする。ここで、押圧面51bの短辺の長さWyは、押圧面51bの長辺の長さWxより短い。そのため、移動機構70は、移動方向Tが長辺方向Xに平行な場合に比べて小さい移動距離で、移動工程S6が行われる前までの溶着工程S3にて端縁E1と接触していた領域を、シート押圧領域R2の外に移動させることができる。
 <第2実施形態の効果>
 (2-1)長辺方向Xは、押圧面51bの長辺が延びる方向である。また、移動方向Tは、長辺方向Xと交差する。
 これによれば、移動方向Tが長辺方向Xと交差しているため、移動方向Tが長辺方向Xに平行な場合に比べて、押圧面51bを覆うシート材60をスライドさせる際のシート材60の移動距離が短くなる。これに伴い、移動方向Tが長辺方向Xに平行な場合に比べてシート材60の交換に要する時間を短くすることができる。したがって、溶着装置40の運転効率をさらに向上できる。
 また、これによれば、移動方向Tが長辺方向Xと交差しているため、移動方向Tが長辺方向Xに平行な場合に比べて、シート材60の移動距離に応じてスライドされるシート材60の面積が増加する。そのため、短い移動距離でより大量のシート材60を押圧面51bからスライドさせることができる。したがって、溶着装置40の運転効率をさらに向上できる。
 特に、本実施形態では、移動方向Tは短辺方向Yに沿っている。詳細には、移動方向Tは短辺方向Yに平行である。これにより、移動方向Tが長辺方向Xと交差しており、かつ、長辺方向Xに沿っている場合に比べて、押圧面51bを覆うシート材60をスライドさせる際のシート材60の移動距離がさらに短くなる。したがって、溶着装置40の運転効率をさらに向上できる。
 (2-2)押圧面51bは、長方形である。また、樹脂押圧領域R1は長方形であるとともに、当該樹脂押圧領域R1の長辺に沿う端縁E1を含む。
 かかる構成において、端縁E1が延びる方向を長辺方向Xとすると、移動方向Tは長辺方向Xと交差する。
 押圧面51bがシート材60を介して樹脂部20,30を押圧する際、シート材60のなかでも樹脂押圧領域R1の端縁E1に接触している領域には、樹脂押圧領域R1の面に接触している領域に比べて大きな負荷が加わる。そのため、シート材60の中でも当該端縁E1に接触している領域は、樹脂押圧領域R1の面に接触している領域に比べて劣化しやすい。
 そこで本構成では、移動方向Tが長辺方向Xと交差している。これにより、移動機構70がシート材60をスライドさせる前後における上記劣化しやすい領域の重なりが小さくなる。したがって、シート材60の局所的な劣化を抑制できる。
 <変形例>
 実施形態は以下のように変更して実施できる。実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
 ・第1実施形態及び第2実施形態の電極ユニット10の製造方法は、配置工程S2を含まなくてもよい。例えば、溶着工程S3は、予め樹脂部20,30が配置された電極板11を用いて行われてもよい。
 ・第1実施形態及び第2実施形態において、移動機構70の具体的態様は、シート材60が支持部73a,73bによって支持されていれば任意である。例えば、移動機構70は、巻出調節部72及び巻取調節部74を備えていなくてもよい。
 ・第1実施形態及び第2実施形態において、支持部73a,73bは、第1支持部73a及び第2支持部73bにより構成されなくてもよい。例えば、支持部73a,73bは、巻出部71及び巻取部75により構成されてもよい。例えば、第1支持部73aを巻出部71に、第2支持部73bを巻取部75に置き換えればよい。この場合、巻出部71及び巻取部75が支持部73a,73bとしてシート材60を支持する。
 要は、支持部73a,73bは移動機構70の一部として構成されていなくてもよく、支持部73a,73b自体が移動機構70として構成されていてもよい。
 ・第1実施形態及び第2実施形態において、移動機構70は、巻出部71及び巻取部75を備えていればよく、例えば巻出調節部72、第1支持部73a、第2支持部73b、及び巻取調節部74を備えていなくてもよい。この場合、支持部73a,73bは、押圧部51を用いて実現されてもよい。
 例えば、第1実施形態において、移動機構70が第1支持部73a及び第2支持部73bを備えていない場合、シート材60は、巻出部71から押圧面51bの2つの短辺を介して巻取部75に移動する。この場合、シート材60は、押圧面51bの2つの短辺によって支持されている。移動機構70は、押圧面51bの2つの短辺によって支持された状態のシート材60を、押圧部51に対して摺動させる。そのため、押圧面51bの2つの短辺が支持部73a,73bとして機能する。なお、この場合、シート材60は押圧部51に対して摺動可能に構成されてもよい。
 第1実施形態の場合と同様に、第2実施形態において移動機構70が第1支持部73a及び第2支持部73bを備えていない場合、押圧面51bの2つの長辺が支持部73a,73bとして機能する。
 すなわち、支持部73a,73bは、第1支持部73a及び第2支持部73bのようなローラによって構成されず、押圧部51に対してシート材60が摺動可能な部材によって構成されてもよい。したがって、支持部73a,73bは、移動機構70に含まれるものであっても、移動機構70とは別体のものであってもよい。
 ・第1実施形態及び第2実施形態において、支持部73a,73bに支持された状態のシート材60の移動方向Tは、長辺方向X及び短辺方向Yに限られず、押圧方向Zと交差する方向であれば任意である。例えば、移動方向Tは、押圧方向Zに垂直な任意の方向を採用できる。
 ・図11及び図12に示すように、第2実施形態において、支持部73a,73bは、複数の第1の押圧アセンブリ50aの押圧部51、及び複数の第2の押圧アセンブリ50bの押圧部51を、それぞれ架橋するようにシート材60を支持していてもよい。この場合、例えば、一方の支持部73a,73bの第2支持部73bと他方の支持部73a,73bの第1支持部73aを省略してもよい。
 ・第1実施形態及び第2実施形態において、加熱部54は押圧部51と一体でなくてもよく、押圧部51と別体でもよい。この場合、加熱部54は、例えば抵抗発熱器やヒータコイルなどの熱輻射によって樹脂部20,30を加熱するものであってもよい。
 ・第1実施形態及び第2実施形態において、溶着装置40は、絶縁部52、緩衝部53を備えていなくてもよい。
 ・第1実施形態及び第2実施形態において、押圧面51bの形状は長方形に限られず、押圧面51bで樹脂部20,30を押圧可能であれば任意である。押圧面51bは、押圧方向Zからの平面視において、押圧面51bが樹脂部20,30の全体を含むように構成されていてもよい。この場合、押圧部51は、樹脂部20,30の全体を一度に押圧してもよい。なお、支持部73a,73bは、押圧方向Zからの平面視において、シート材60が樹脂部20,30の全体を含むように、シート材60を支持すればよい。
 ・押圧面51bと同様に、樹脂押圧領域R1の形状は長方形に限られず任意である。
 ・第1実施形態及び第2実施形態において、樹脂部20,30は長方形の枠体のものに限らず、例えば電極板11の形状に合わせて任意の形状のものを採用できる。
 ・第1実施形態及び第2実施形態において、樹脂部20,30が集電体12に溶着可能であれば、電極板11に対する樹脂部20,30の位置は任意である。例えば各樹脂辺部21,31は、辺部12aに沿って配置されていなくてもよく、第1未塗工面14a又は第2未塗工面15a上に配置されていればよい。
 ・第1実施形態及び第2実施形態において、樹脂部20,30のうちのいずれか一方のみが主面13に配置されていてもよい。
 ・第1実施形態及び第2実施形態において、電極板11は、第1主面14及び第2主面15の両面に第1活物質層16及び第2活物質層17が配置されている、いわゆるバイポーラ電極でなくてもよい。電極板11は、例えば第1主面14及び第2主面15のいずれか一方にのみ活物質層16,17が設けられている、いわゆるモノポーラ電極であってもよい。
 ・第1実施形態及び第2実施形態において、電極板11は長方形状のものに限られず、例えば多角形、円形など任意の形状のものでもよい。
 ・第1実施形態及び第2実施形態において、溶着装置40は、2つの押圧アセンブリ50a,50bの一方のみが加熱部54を備えるものであってもよい。このような溶着装置40は、例えば樹脂部20,30のうちのいずれか一方のみを電極板11に溶着する場合に用いることができる。
 ・溶着装置40を用いた樹脂部20,30の溶着対象であるワークは電極板11に限らず、金属箔、セラミクス、木材等、任意である。
 10      電極ユニット
 11      電極板
 12a     辺部
 20,30   樹脂部
 21,31   樹脂辺部
 40      溶着装置
 51      押圧部
 51b     押圧面
 54      加熱部
 60      シート材
 70      移動機構
 73a,73b 支持部
 R2      シート押圧領域
 S3      溶着工程
 S7      移動工程
 T       移動方向
 X       長辺方向
 Z       押圧方向

Claims (3)

  1.  ワークに樹脂部を溶着させる溶着装置であって、
     前記樹脂部の加熱を行うことによって当該樹脂部を溶融させる加熱部と、
     シート材を介して、溶融した前記樹脂部を前記ワークに向けて押圧方向に押圧することで、溶融した前記樹脂部を前記ワークに溶着する押圧部であって、前記シート材を押圧する押圧面を有する押圧部と、
     前記押圧方向と交差する方向である前記シート材の移動方向に離れて配置される一対の支持部であって、前記シート材が前記押圧面を前記押圧方向で覆うように前記シート材を支持する一対の支持部と、
     前記支持部によって支持された状態の前記シート材を前記移動方向にスライドさせる移動機構と、を備える、溶着装置。
  2.  前記押圧面は、長方形であり、
     前記押圧面の長辺が延びる方向を長辺方向とすると、
     前記シート材の前記移動方向は、前記長辺方向と交差する、請求項1に記載の溶着装置。
  3.  ワークに樹脂部が溶着された樹脂溶着ワークの製造方法であって、
     前記ワークに配置された前記樹脂部を溶融させるとともに、シート材を介して溶融した前記樹脂部を押圧部によって前記ワークに押圧し、前記樹脂部を前記ワークに溶着させることで、前記樹脂溶着ワークを製造する溶着工程と、
     前記溶着工程にて前記樹脂部を前記ワークに押圧する方向を押圧方向とすると、前記溶着工程が1回以上行われた場合に、前記押圧方向と交差する方向である前記シート材の移動方向に前記シート材をスライドさせる移動工程と、を含み、
     前記シート材において前記溶着工程にて前記押圧部によって押圧される領域をシート押圧領域とすると、
     前記移動工程では、前記シート材において当該移動工程前の前記溶着工程での前記シート押圧領域とは前記移動方向に異なる領域を、当該移動工程後の前記溶着工程にて押圧可能な位置にスライドさせる、樹脂溶着ワークの製造方法。
PCT/JP2022/034402 2021-11-22 2022-09-14 溶着装置、及び樹脂溶着ワークの製造方法 WO2023089931A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247012922A KR20240063152A (ko) 2021-11-22 2022-09-14 용착 장치 및 수지 용착 워크의 제조 방법
CN202280077052.1A CN118265601A (zh) 2021-11-22 2022-09-14 熔接装置和树脂熔接工件的制造方法
EP22893984.9A EP4438273A1 (en) 2021-11-22 2022-09-14 Welding device and method for manufacturing resin welding workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189617 2021-11-22
JP2021189617A JP2023076285A (ja) 2021-11-22 2021-11-22 溶着装置、及び樹脂溶着ワークの製造方法

Publications (1)

Publication Number Publication Date
WO2023089931A1 true WO2023089931A1 (ja) 2023-05-25

Family

ID=86396778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034402 WO2023089931A1 (ja) 2021-11-22 2022-09-14 溶着装置、及び樹脂溶着ワークの製造方法

Country Status (5)

Country Link
EP (1) EP4438273A1 (ja)
JP (1) JP2023076285A (ja)
KR (1) KR20240063152A (ja)
CN (1) CN118265601A (ja)
WO (1) WO2023089931A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001063256A (ja) * 1999-08-31 2001-03-13 Lintec Corp カードの製造方法
JP2016518262A (ja) * 2013-03-14 2016-06-23 コーニング インコーポレイテッド フレキシブルガラスとポリマーの複合構造を製造および切断する方法および装置
JP2016126826A (ja) 2014-12-26 2016-07-11 昭和電工パッケージング株式会社 電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001063256A (ja) * 1999-08-31 2001-03-13 Lintec Corp カードの製造方法
JP2016518262A (ja) * 2013-03-14 2016-06-23 コーニング インコーポレイテッド フレキシブルガラスとポリマーの複合構造を製造および切断する方法および装置
JP2016126826A (ja) 2014-12-26 2016-07-11 昭和電工パッケージング株式会社 電池の製造方法

Also Published As

Publication number Publication date
JP2023076285A (ja) 2023-06-01
EP4438273A1 (en) 2024-10-02
KR20240063152A (ko) 2024-05-09
CN118265601A (zh) 2024-06-28

Similar Documents

Publication Publication Date Title
US9310130B2 (en) Method and apparatus for drying electrode material
JP6297073B2 (ja) タブ形成方法とその装置
KR101869470B1 (ko) 권회 장치
JP5394588B1 (ja) ロールプレス設備
TWI656545B (zh) Transformer and amorphous ribbon
WO2014188774A1 (ja) ラミネート型二次電池の製造方法および製造装置
US20110284501A1 (en) Welding system
JP2016062864A (ja) 電極の製造方法及び電極の製造装置
WO2023089931A1 (ja) 溶着装置、及び樹脂溶着ワークの製造方法
CN104051679B (zh) 电化学电池以及电化学电池的制造方法
CN108860814B (zh) 密封装置
CN112838275A (zh) 电池单体
JP2015205419A (ja) ヒートシーラー及びその製造方法
JPH05314969A (ja) 電池の製造方法
CN208062167U (zh) 极片模切设备
JP5886480B1 (ja) スリット装置及びセパレータ捲回体の製造方法
US20040226919A1 (en) Method and system for resistance seam welding of a foil and at least one foil support of a fuel cell system
JP6077413B2 (ja) 電池用電極の製造方法及び製造装置
JP6198709B2 (ja) 捲回装置
JP2010212005A (ja) 燃料電池電極の製造方法及び製造装置
JP2018026274A (ja) セパレータ一体型電極板の製造方法
JP2006127824A (ja) 二次電池の製造装置及び製造方法
JP2020057463A (ja) 電池外装材、電池、およびそれらの製造方法
WO2024029532A1 (ja) 巻線体、巻線体の製造方法、溶接用電極、及び製造装置
JP7348119B2 (ja) 溶接方法及び電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247012922

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18711468

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280077052.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022893984

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022893984

Country of ref document: EP

Effective date: 20240624