WO2023085727A1 - 이차전지용 전극의 건식 제조방법 - Google Patents

이차전지용 전극의 건식 제조방법 Download PDF

Info

Publication number
WO2023085727A1
WO2023085727A1 PCT/KR2022/017447 KR2022017447W WO2023085727A1 WO 2023085727 A1 WO2023085727 A1 WO 2023085727A1 KR 2022017447 W KR2022017447 W KR 2022017447W WO 2023085727 A1 WO2023085727 A1 WO 2023085727A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
binder
manufacturing
screw
electrode
Prior art date
Application number
PCT/KR2022/017447
Other languages
English (en)
French (fr)
Inventor
김한성
황욱렬
유정근
윤지희
이진우
오영석
엄문광
Original Assignee
주식회사 윤성에프앤씨
한국재료연구원
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220143743A external-priority patent/KR20230069002A/ko
Application filed by 주식회사 윤성에프앤씨, 한국재료연구원, 경상국립대학교산학협력단 filed Critical 주식회사 윤성에프앤씨
Priority to CN202280067158.3A priority Critical patent/CN118104000A/zh
Publication of WO2023085727A1 publication Critical patent/WO2023085727A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a manufacturing method for omitting a drying process in manufacturing a secondary battery, and more particularly, a thermoplastic binder is applied as a material for binding an active material, but when the thermoplastic binder is used, gaps between active materials are not created. It relates to a manufacturing method for creating a gap between active materials in order to solve the problem of impregnating the electrolyte.
  • lithium ion batteries are mainly used for batteries used in electric vehicles, and all-solid-state batteries are expected to replace them in the future.
  • Lithium-ion batteries have traditionally focused on small-sized batteries used in laptops and mobile phones, but with the spread of electric vehicles, the demand for large-sized batteries capable of traveling more than 500 km on a single charge is explosively increasing, and the production facilities required for battery production are gradually increasing. is a growing trend.
  • Lithium ion batteries are completed by manufacturing a positive electrode and a negative electrode, combining them with a separator in between, stacking them, putting them in a case, filling the battery with an electrolyte solution, and performing an initial charge.
  • FIG. 1 The basic structure of the battery thus prepared is shown in FIG. 1 .
  • the active materials constituting the negative electrode and the positive electrode are attached to a current collector with a specific thickness, a separator is provided between the two electrode plates, and an electrolyte fills the gap between the active materials.
  • lithium ions on the opposite electrode plate gain electrons (charge) or lose electrons (discharge) and move to the opposite side through the separator, creating a flow of electricity through the wire connected to the electrode plate.
  • the electrolyte solution is composed of a liquid.
  • the electrolyte is composed of a solid, and there is a film made of electrolyte instead of a separator.
  • Active materials are lithium compound (Li, Ni, Co, Mn, Al, etc.) powder (about 10um in diameter) for the cathode and graphite or silicon powder (about 10um in diameter) for the cathode.
  • the electrode is manufactured by laminating this active material powder to a thickness of about 100um on an aluminum thin plate of about 10um in the case of the cathode, and by laminating the anode active material to about 100um in thickness on the copper thin plate of about 10um in the case of the cathode. .
  • the problem is that when making electrode plates, the powders must be made to adhere to each other and to the current collector, and gaps must be formed between the active material powders so that the electrolyte can be put into the gaps.
  • the currently used electrode fabrication method is as follows.
  • a binder solution is prepared.
  • Active material powder is added to the prepared binder solution and stirred. As a result, a slurry solution in which the active material powder is evenly stirred in the binder solution is obtained.
  • the solvent NMP for the positive electrode and ultrapure water for the negative electrode
  • the solvent remains between the powders of the active material contained in the coated active material film, and therefore, the electrolyte cannot be impregnated, making it impossible to manufacture a battery in this state.
  • the solvent between the powders of the active material is removed through a drying process after the coating process.
  • the electrode that has been through the drying process is manufactured into a battery after compressing the thickness by about 20% through a press.
  • the drying process takes about 1 minute at about 150 degrees, and since the current maximum electrode plate production speed of battery manufacturers is about 100 m per minute, a drying furnace of 100 m is also required.
  • the solvent evaporated in the drying furnace must be recovered, and a solvent recovery device evaporated in the drying furnace is additionally required.
  • the drying device used in the wet-based electrode manufacturing process requires a large-scale drying device to recover the solvent.
  • the binder melts due to heat and connects active material powders, so that it can be molded into a film after extrusion.
  • a fluorine compound polymer resin such as PTFE (Polytetrafluoroethylene) is currently used as a binder material.
  • PTFE (trade name: Teflon) has a very high melting point and extremely high lubricity, so it does not stick to the surface of the active material.
  • the PTFE powder is stretched like a thread using a kneader (kneader).
  • PTFE which is stretched like a thread mixed with the active material, mechanically holds the active material, so that it can maintain the film shape after extrusion.
  • the method currently being used experimentally is to mix a binder (PTFE) with an active material, stir it in a powder state, put it into a heating kneader to fiberize the binder to make a pallet of active material and binder mixture, and cool the pallet again while coming out of the kneader.
  • a method of making a film is used by putting the pulverized powder between two rollers.
  • PTFE does not have adhesiveness, so it does not fill the gap between the active materials and maintains the gap.
  • This method has a patent for Maxwell of the United States, and Tesla of the United States also acquired this company and tried to mass-produce batteries for electric vehicles in this way, but in the end, it failed to overcome the wall of mass production and in July 2021, two years later, another To the extent that it was sold back to the company, this method is difficult to apply to mass production.
  • a method of manufacturing an energy storage device comprising: providing conductive particles;
  • a method of manufacturing an energy storage device comprising providing conductive particles;
  • the intermixing and forming is done without the practical use of process solvents and lubricants.
  • claim 1 is a method for manufacturing an energy storage device comprising providing conductive particles; providing dry binder particles that consist essentially of a single fibrillizable bonding material in the absence of other bonding materials; mixing conductive and dry binder particles; And in forming the film on the mixed conductive and dry binder particles, the intermixing formation is performed without substantial use of process agents and lubricants.
  • Claim 6 is the method of claim 1 wherein the fibrillizable binding material comprises a fluorinated polymer.
  • Claim 7 is the method of claim 6, wherein the fluorinated polymer includes PTFE.
  • the current wet electrode manufacturing method continuously produces light plate electrodes with a width of 1 m at a rate of 100 m or more per minute, but the dry electrode manufacturing method based on PTFE binder is intermittently produced at the lab scale level and also in batch mode.
  • lithium ion batteries are mainly used for batteries used in electric vehicles, and all-solid-state batteries are expected to replace them in the future.
  • Lithium-ion batteries have previously focused on small-sized batteries used in laptops and mobile phones, but with the spread of electric vehicles, the demand for large-sized batteries capable of traveling more than 500 km on a single charge is explosively increasing, and the production facilities required for battery production are also increasing. It is a trend.
  • the dry electrode manufacturing process also makes a film by converting PTFE, which does not adhere to the active material, into fibers to form pores, but it is difficult to manufacture in mass production due to the high-temperature nature of PTFE. If the binder is put into a screw, melted, stirred with the active material, and extruded through a nozzle, an active material film can be continuously produced, but in this case, the binder fills all of the active materials and there are no voids, so the electrolyte cannot be impregnated. A problem arises.
  • the present invention is to solve the above-mentioned problems, and an object of the present invention is to propose a method for manufacturing a dry electrode for a secondary battery, which omits a drying process in manufacturing the secondary battery.
  • the present invention proposes a method for manufacturing a dry electrode in large quantities without using a solvent and an electrode for a secondary battery manufactured through this manufacturing process.
  • the present invention applies a thermoplastic binder as a material for binding the active material, but proposes a manufacturing method of creating a gap between the active materials to solve the problem of impregnating the active material because the gap between the active materials is not created when the thermoplastic binder is used. .
  • the present invention is a dry electrode manufacturing method for a secondary battery, in which a solvent-free binder is used, but a foaming process is applied to solve the problem that voids are not formed due to not using a solvent in the binder.
  • a dry electrode for a secondary battery means that the process is performed without using a solvent in the binder, but the drying process is omitted because the solvent is not applied. It refers to an electrode manufactured by forming pores using a foaming agent in order to solve problems caused by
  • the foaming agent used to introduce foaming into the binder may be a chemical foaming agent or a gas.
  • the active material, the binder, and the conductive material may be mixed and introduced into a screw mixer, or may be separately introduced depending on the case.
  • An organic or inorganic foaming agent is included in the mixture to prepare a mixture, and in step b, the primary heating temperature is higher than the melting temperature of the binder so that the binder is melted and mixed with the active material, the conductive material, and the foaming agent.
  • the secondary heating temperature is higher than the vaporization temperature of the foaming agent so that the foaming agent is vaporized and mixed with the molten binder, and in the step e, as the stirred mixture is pressurized and advanced, the vaporized gas is mixed with the molten binder in a compressed state.
  • the foam material preferably contains at least one of carbon monoxide, carbon dioxide, helium, butane, pentane, nitrogen, water vapor, and nitrogen compounds.
  • the gas compressed in the molten binder expands to form air bubbles, and these air gaps are later used as a space in which the electrolyte is impregnated when the electrolyte is injected.
  • the foam material when the foam material is foamed, it is converted into one or more of carbon monoxide, carbon dioxide, helium, butane, pentane, nitrogen, water vapor, and nitrogen compounds to evaporate, thereby forming open-cell pores in the binder.
  • the gas or supercritical fluid is mixed with the molten binder, and when the mixture is discharged through the nozzle in step f, gas or supercritical fluid mixed in the binder solution
  • the critical fluid expands to form bubbles, and when the amount of gas or supercritical fluid and temperature conditions are adjusted, the gas escapes and the bubbles are connected to each other to open pores, and the pores are filled with electrolyte.
  • a dry electrode manufacturing method for batteries is proposed.
  • the supercritical fluid is preferably one of nitrogen, helium, butane, pentane, carbonic acid, and hydrocarbon in a supercritical state.
  • thermoplastic resin as the binder used in the manufacturing process described above. Since a solvent is not used, the drying process is eliminated, while a foaming agent is applied to form pores in the binder to secure a space for impregnating the electrolyte, thereby securing a secondary battery.
  • a manufacturing method for manufacturing a dry electrode for use is a key technology of the present invention.
  • the advantage of being able to easily manufacture a dry electrode for a secondary battery is expected.
  • FIG 3 illustrates a process of making an electrode plate by making an active material film and adhering the film to a current collector.
  • FIG. 4 shows an electrode structure for a secondary battery.
  • FIG. 5 is a diagram illustrating a process of forming voids between active materials in a wet electrode process.
  • FIG. 7 illustrates a process of making a mixture for a dry electrode by applying a screw mixer.
  • the dry electrode manufacturing process currently under review makes a film by fiberizing PTFE (Polytetrafluoroethylene), which does not adhere to the active material, to form pores, but has a disadvantage in that it is difficult to mass-produce due to the high-temperature characteristics of PTFE.
  • PTFE Polytetrafluoroethylene
  • thermoplastic resin and the active material are heated and stirred, the film can be continuously produced even with a general twin-screw extruder.
  • a method of forcibly creating voids using an organic or inorganic foaming agent can be applied to create voids. That is, when stirring the active material powder and the binder using a twin screw extruder, a foaming agent is also added and stirred together.
  • the binder melts and is evenly mixed with the active material and the foaming agent, and then passed through a section set above the temperature at which the foaming agent is decomposed.
  • the foaming agent is decomposed by heat and releases gases such as carbon dioxide, nitrogen, and water vapor.
  • This gas is dissolved in the binder melt and then extruded into a film shape through a nozzle. When the pressure is lowered, this gas expands and the active material A gap may be formed in the space between them.
  • an organic or inorganic foaming agent is used to form a void, it may be considered to capture the emitted carbon dioxide using a capture facility.
  • Another foaming method is a method using a gas such as carbon dioxide, nitrogen, helium, butane, pentane, hydrocarbon gas or a supercritical fluid.
  • a gas such as carbon dioxide, nitrogen, helium, butane, pentane, hydrocarbon gas or a supercritical fluid.
  • the active material and binder are put into a screw extruder, heat is applied to melt the binder, and stirring is performed, and carbon dioxide, nitrogen, helium, butane, pentane, hydrocarbon gas, etc. After impregnation, the supercritical fluid, active material, and binder mixture are further stirred.
  • the gas evenly distributed between the binders or one or more gases of supercritical nitrogen, helium, butane, pentane, carbonic acid, hydrocarbons, and carbon dioxide expands to form microbubbles.
  • round active materials having a particle diameter of about 10 ⁇ m are attached by a binder having pores connected therebetween.
  • FIG. 4 is a three-dimensional image of a cut surface of a battery electrode, in which a) is a SEM image magnified 500 times in which a hole is drilled in a portion of the electrode, and b) is a yellow rectangular area among the holes in the above photo a). is an SEM picture magnified 4000 times, c) is an enlarged picture of the green part of the picture b) above, and d) is a picture in which the voids in the picture c) above have been clearly processed.
  • FIG. 5 shows a process of forming voids between active materials in a wet electrode process.
  • FIG. 5 shows the current production method of LIB (Lithium Ion Battery) electrodes, a) shows a wet film having a uniform distribution, and b) shows a state in which the inside is filled as the solvent evaporates and contracts, c) continues to evaporate the solvent, but partially fills the capillary to form a network to show the state in which shrinkage has ended, d) shows the remaining liquid (solvent) remaining in the pores, and e) It shows a dried film in which all liquid (solvent) has evaporated.
  • LIB Lithium Ion Battery
  • pores inside the electrode are to be implemented using a foaming method, and a method using an organic or inorganic foaming agent and a method using a gas or supercritical fluid are intended to be applied.
  • the screw mixer is used as a single or twin and consists of a series of interchangeable blades of various shapes connected on one long shaft.
  • the high pressure is higher than that of the front end.
  • the 'Y' section is a lower pressure section than the 'X' section (i.e., the blade pitch of the Y section is greater than that of the X section) in the general configuration of the twin screw mixer, if a hole is formed here Gas can be released here.
  • voids are formed inside the binder in the following way.
  • 1 is a powder mixture
  • 2 is heating and melting
  • 3 is conveying and stirring
  • 4 is additional heating and stirring
  • 5 is conveying
  • 6 is an joining section.
  • the foaming agent powder is added to and supplied to the powder mixture (active material + binder + conductive material) No. 1 together.
  • the foaming agent in the stirred molten mixture passes through section 4 heated above the foaming temperature of the foaming agent, becomes a gas and is mixed with the molten mixture, passes through section 6, is compressed, and passes through a nozzle. It expands in volume to form bubbles.
  • the pores are either closed or open.
  • No. 1 powder mixture is supplied with only active material + binder + conductive material without adding a foaming agent, and then heated through section 2 to melt the binder and mixed through section 3 and 4.
  • the impregnated gas or supercritical fluid is mixed with the binder and passed through the high-pressure part No. 6, and additional stirring is performed under high pressure to evenly mix the molten mixture and the impregnated gas or supercritical fluid, so the moment it comes out through the nozzle As the pressure is released, the compressed gas mixed in the binder expands to form bubbles.
  • a binder solution is prepared by dissolving a binder in a solvent, coated on a current collector, and then dried to form pores.
  • This pore formation method does not require a dryer with a length of about 100 m based on the current secondary battery, and since the solvent does not evaporate, there is no need for a solvent recovery device, and electricity costs for operating the dryer can be reduced. savings can be made

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

전고체 이차전지 제조방법에 있어서 a. 활물질과 바인더 및 도전재를 혼합한 혼합물하여 스크류믹서에 투입하는 단계; b. 상기 혼합물을 스크류를 회전시켜 앞으로 전진시키면서 1차가열 및 용융시키는 단계; c. 상기 가열 및 용융시킨 혼합물을 상기 스크류를 회전시켜 앞으로 전진시키면서 교반시키는 단계; d. 상기 교반된 혼합물을 상기 스크류를 회전시켜 앞으로 전진시키면서 2차가열 및 교반시키는 단계; e. 상기 2차가열 및 교반된 혼합물을 상기 스크류를 회전시켜 앞으로 가압하여 노즐단으로 전진시키는 단계; f. 상기 노즐을 통해 필름 모양으로 토출된 상기 혼합물을 상하에 위치한 로울러 압착하여 뽑아내는 필름제조단계; g. 상기 제조된 필름을 금속박판에 부착시켜 전극을 제조하는 단계;를 포함하여 이루어져 2차전지용 전극을 제조하는 것을 특징으로 하는 이차전지용 건식 전극 제조방법에 관한 것이다.

Description

이차전지용 전극의 건식 제조방법
본 발명은 이차전지를 제조함에 있어서 건조공정을 생략하는 제조방법에 관한 것으로서, 더욱 상세하게는 활물질을 바인딩하는 소재로 열가소성 바인더를 적용하되 상기 열가소성 바인더를 사용했을 때 활물질 사이의 공극이 생성되지 않아 전해액 함침이 불가한 문제를 해결하기 위해 활물질 사이의 공극을 생성하는 제조방법에 관한 것이다.
최근 이차전지는 내연기관을 대체하여 전기자동차가 보급되면서 급성장을 하고 있다.
전 세계적으로 한 해에 1억 대에 가까운 내연기관 자동차가 판매되고 있고, 이 내연기관 자동차에서 배출되는 이산화탄소로 인해 전 지구적인 온난화 현상 및 이로 인한 각 종 자연재해가 전 세계에서 발생하고 있어서, 수소 연료 전지를 사용한 전기차, 배터리를 이용한 전기차 등이 부각되고 있으며 이 중에서 배터리를 사용하는 전기차가 현실적인 대안으로 채택되고 있다.
이 전기 자동차에 사용되는 배터리는 현재 리튬이온전지가 주로 사용되고 있으며, 향후에 전고체 전지 등이 그 자리를 대체할 것으로 예상된다.
리튬이온전지(LIB)는 기존에는 노트북이나 핸드폰 등에 들어가는 소형 전지가 주력이었으나, 전기 자동차가 보급되면서 한 번 충전에 500km 이상 주행 가능한 대형 전지 수요가 폭발적으로 늘어나고 있고, 전지 생산에 필요한 생산 시설 역시 점점 커지는 추세이다.
리튬이온 전지는 양극 전극과 음극 전극을 제조한 후에 분리막을 사이에 두고 결합하고 이를 적층하여 케이스에 넣은 다음, 전지 안에 전해액을 충진하고 초기 충전하여 완성한다.
이렇게 만들어진 전지의 기본 구조는 도 1과 같다.
도 1을 참조하여 설명하면 음극과 양극을 구성하는 활물질이 집전체에 특정 두께로 붙어 있고, 두 극판 사이에 분리막이 있으며 전해액이 활물질 사이의 공극에 가득 차 있다.
충전과 방전을 하면 각각 반대 쪽 극판에 있던 리튬 이온이 전자를 얻거나(충전), 전자를 잃으면서(방전) 분리막을 통하여 반대 쪽으로 이동하여 극판에 연결된 도선으로 전기의 흐름을 만들어낸다.
이때 리튬이온이 원만하게 활물질 사이를 통과하여 이동하기 위해서는 전해액이 필요하며, 현재의 리튬이온전지는 해당 전해액이 액체로 구성되어 있다.
미래의 전지로 평가받는 전고체 전지는 전해액이 고체로 구성되어 있고 분리막 대신 전해질로 만들어진 필름이 존재한다.
상술한대로 이차전지를 제조하기 위해서는 양극 및 음극 극판을 제조해야하며 이 극판은 집전체와 활물질 가루(분체)로 구성되어 있다.
활물질은 각각 양극은 리튬화합물(Li, Ni, Co, Mn, Al 등)의 분체(직경 약 10um)이고 음극은 흑연이나 실리콘 분체(직경 약 10um)이다.
전극은 이 활물질 분체를 양극의 경우 두께 약 10um 정도의 알루미늄 박판에 약 100um 두께로 양극 활물질을 적층하여 제조하고 음극의 경우 두께 약 10um 정도의 구리 박판에 약 100um 두께로 음극활물질을 적층하여 제조한다.
문제는 극판을 만들 때 분체를 서로 달라붙도록 만들어야 하고, 또한 집전체에 붙도록 만들어야 하며, 또한 활물질 분체 사이에 공극을 형성하여 해당 공극에 전해액을 넣을 수 있도록 해주어야 한다는 점이다.
공극이 없으면 전해액을 함침 할 수 없어서 이온이 분리막을 통해 이동할 수 없기 때문에 전지가 동작을 하지 않는다. 이 문제를 해결하기 위해서 현재 사용되고 있는 전극 제작법은 다음과 같다.
우선 바인더 용액을 만든다. 바인더 용액은 양극의 경우 PVDF(폴리비닐리덴플루오라이드)를 NMP(N-Methyl-2-Pyrrolidone) 용액에 녹여서 만들고, 음극은 SBR(styrere=butadiene rubber) 용액과 CMC(carboxy methyl cellulose)를 초순수(DI)에 녹여서 만든다.
이렇게 만들어진 바인더 용액에 활물질 분체를 넣어서 교반한다. 결과물은 활물질 분체가 바인더 용액에 골고루 교반된 슬러리(Slurry) 용액이 얻어진다.
이 슬러리 용액을 코팅 장비에 공급하고, 티다이(T-Die)를 통해 집전체 위에 코팅하면 일차 전극판이 얻어진다.
그러나 이 경우, 코팅된 활물질 막 안에 들어있는 활물질 분체 사이에 용매(양극은 NMP, 음극은 초순수)가 남아 있으며 따라서 전해액을 함침할 수 없어 이 상태로 전지를 만들 수 없다.
이 활물질 분체 사이 사이의 용매는 코팅 공정 후에 건조 공정을 통해서 제거된다.
건조 과정까지 거친 전극은 프레스를 거쳐서 약 20% 정도의 두께를 압축한 후에 전지로 제조된다.
이때 건조 과정에서 활물질 분체 사이의 용매가 날아가면 해당 공간이 비고, 그 공간에 전해액을 채울 수 있는 공극이 생성되는 것이다.
이러한 이차전지 제조공정에서 가장 비용이 많이 드는 공정은 건조 공정이다.
도 2을 통해 건조장치를 설명하면 건조과정은 약 150도에서 약 1분 정도가 소요되며, 현재 전지사들의 최대 전극판 생산속도는 분당 약 100m이므로 건조로 역시 100m가 필요하다.
건조로에서 증발되는 용매는 회수되어야 하며 이 건조로에서 증발되는 용매 회수 장치가 추가로 필요하다.
이에 필요한 비용은 전극 제조 시설 하나 당 약 300억에서 500억원 정도라고 알려져 있으므로, 최소한 전극제조 시설을 음극 및 양극 한 라인씩을 갖춰야 하는 전지 회사는 건조에 관계된 시설 비용만 전지 한 개 라인(양, 음극 전극 제조 시설)에 최대 천 억원 가량의 시설투자가 들어가는 문제가 있다.
또한 건조로와 용매 회수 장치를 운용하는 전기 비용도 막대하게 들어간다. 이 건조로 문제로 인하여 이산화탄소 배출을 저감하는 역할로 내연기관 자동차를 대체하여 채택되고 있는 전기 자동차의 배터리 제조 단계에서, 막대한 전기 사용으로 인해 이 전기를 만들어내기 위해 발전소에서 이산화탄소를 배출하며 전기를 만들어야 하는 모순된 문제가 있다.
도 2에서 보는 바와 같이 습식기반의 전극제조공정에서 사용되는 건조장치는 용매를 회수하기 위해 대단위의 건조장치가 필요함을 알 수 있다.
이 문제를 해결하기 위하여 용매 없이 활물질 필름을 만들어서 이 필름을 집전체에 접착하여 전극판을 만드는 방법이 있다.
도 3을 통해 활물질 필름을 만들어서 이 필름을 집전체에 접착하여 전극판을 만드는 방식을 설명하면, 이 방식에서는 바인더와 활물질을 공급하여 이축 교반기에서 가열(용융) 교반한 후에 이를 노즐을 통하여 압출하여 필름을 만든 다음, 이 필름과 집전체 박판을 가열된 롤러 사이에 통과시켜 접착(라미네이팅)하는 방법을 사용한다.
도 3에서와 보는 바와 같이, 이축 교반기에서 가열 교반하는 과정에서 바인더가 열로 인해 녹아 활물질 분체 사이를 연결하여 압출 후에 필름 상으로 성형이 될 수 있다.
그러나 도 3의 방식에서도 문제가 있는데 그 이유는 사용하는 바인더가 열에 의해 녹아서 활물질을 완전히 감싸게 되면, 활물질 분체와 분체 사이에 해당 바인더가 꽉 차게 되고 공극을 형성할 수 없어서 전해액을 함침 할 수 없기 때문이다.
따라서 도 3의 방식에서는 현재는 바인더 물질로 PTFE(Polytetra- fluoroethylene) 등 불소화합물 고분자 수지를 사용하고 있다.
PTFE(상품명 테프론)은 녹는점이 매우 높으며, 윤활성이 극히 높아서 활물질 표면에 달라 붙지 않는다.
이 특성을 이용해서, 이 PTFE 가루를 활물질과 섞어서 적당히 가열한 후(약 130도 정도. PTFE의 녹는점은 327도) 니더(Kneader, 반죽기)를 이용하여 PTFF를 실처럼 늘인다.
활물질과 섞여서 실처럼 늘어난 PTFE는 활물질을 기계적으로 붙잡아서, 압출 후 필름 모양을 유지할 수 있게 된다.
그러나 PTFE를 저온에서 실처럼 늘이기 위해서는 강력한 니더가 필요하며 연속식으로 구현하기 어려워서 활물질 필름을 연속식으로 양산 제조하기 어렵다.
현재 실험적으로 사용되고 있는 공법은 바인더(PTFE)를 활물질과 섞어서 파우더 상태에서 교반한 다음, 이를 가열 니더에 넣어서 바인더를 섬유화를 해서 활물질과 바인더 혼합 팰릿을 만들고, 니더에서 나오면서 식어서 만들어진 이 팰릿을 다시 분쇄한 다음 분쇄된 가루를 두 개의 롤러 사이에 넣어서 필름으로 만드는 방법을 사용한다.
이 모든 공정은 현재 단속적 작업 방법인 배치(batch) 방식으로 이루어져 있고, 각 공정 모두 연속화가 어려운 설비이므로 이 제조 방법으로 건식 전극을 양산할 수는 없다.
그럼에도 불구하고 이 공법을 사용하여 전지를 만들려는 이유는, PTFE가 접착성이 없어서 활물질 사이의 공극을 메꾸지 않고 공극 상태를 유지할 수 있게 해주기 때문이다.
이런 이유로 인해 PTFE 기반의 바인더를 사용하는 전극 제조 방법이 현재 건식 전극 제조 방법으로 제안되어 있으나, 역시 PTFE가 사용됨으로 인해서 양산 제조의 한계가 발생하고 있다.
이 방법은 미국의 Maxwell이 특허를 가지고 있고, 역시 미국의 테슬라가 이 회사를 인수하여 이 방법으로 전기자동차용 전지를 양산하려고 하였으나, 결국 양산의 벽을 넘지 못하고 2년 만인 2021년 7월에 다른 회사에 다시 매각했을 정도로, 이 방법은 양산에 적용하기 어렵다.
이 특허는 2016.12.09.일에 출원번호 15374043으로 미국에 출원되었으며 2020.01.28.에 등록번호 10547057로 등록되었다.
청구항 1항 과 6항 및 7항은 다음과 같다.
[00001] 1. A method of manufacturing an energy storage device, comprising: providing conductive particles;
[00001] 1. 다음을 포함하는 에너지 저장장치의 제조방법 도전성 입자를 제공하는것 ;
providing dry binder particles consisting essentially of a single fibrillizable binder material in the absence of other binders;
본질적으로 다른 결합 물질이 없을 경우의 단일의 fibrillizable접합 물질의 구성하는 건조 바인더 입자를 제공하는 것;
intermixing the conductinve and dry binder paricles; and
전도성 그리고 건조 바인더 입자를 혼합하는 것 ; 그리고
forming a flim with the intermixed conductive and dry binder particles, wherein the intermixing and forming are performed without the substantial use of processing solvent and lubricant.
혼합 전도성 및 건조 바인더 입자에 필름을 형성시키는 것에 있어서, 상호 혼합과 형성은 공정 용제와 윤활제의 실절적 사용 없이 행한다.
[00006] 6. The method of claim 1, wherein the fibrillizable binder comprises a fluorinated polymer.
[00006] 6. 제 1 항의 방법에 있어서, fibrillizable 결합 물질은 불화계 중합체를 포함한다.
[00007] 7. The method of claim 6, wherein the fluorinated polymer comprises PTFE.
[00007] 7. 제 6 항의 방법에 있어서, 불화계 중합체는 PTFE를 포함한다.
즉 청구항1은 다음을 포함하는 에너지 저장 장치의 제조 방법 도전성 입자를 제공하는 것 ; 본질적으로 다른 결합 물질이 없을 경우의 단일의 fibrillizable 접합 물질의 구성하는 건조 바인더 입자를 제공하는 것 ; 전도성 그리고 건조 바인더 입자를 혼합하는 것 ; 그리고 혼합 전도성 및 건조 바인더 입자에 필름을 형성시키는 것에 있어서, 상호 혼합화 형성은 공정 영제와 윤활제의 실질적 사용 없이 행한다.
청구항 6은 제 1항의 방법에 있어서, fibrillizable 결합 물질은 불화계 중합체를 포함한다.
청구항7은 제 6항의 방법에 있어서, 불화계 중합체는 PTFE를 포함한다.
위 기재와 같이 섬유화가 가능한 물질을 바인더로 사용하는 것에 대한 특허가 1번 청구항으로 되어 있어 권리 범위가 광범위하여, 만약 배치 방법으로라도 PTFE를 사용하여 니더를 통해 섬유화한 후 활물질 필름을 만들어 전지를 만들고자 하면 해당 특허에 저촉된다.
이러한 문제로 인하여 현재 제안된 PTFE 기반의 건식 전극 제조 방법은 기존의 습식 전극 제조 방법을 대치하기 어렵다.
현재의 습식 전극 제조 방법은 폭 1m의 광판 전극을 분 당 100m 이상의 속도로 연속 생산을 하지만, PTFE 바인더 기반의 건식 전극 제조 방법은 랩 스케일 수준으로 그것도 배치 방식으로 단속적으로 생산이 되고 있다.
이 전기 자동차에 사용되는 배터리는 현재 리튬이온전지가 주로 사용되고 있으며, 향후에 전고체 전지 등이 그 자리를 대체할 것으로 기대된다.
리튬이온전지는 기존에는 노트북이나 핸드폰 등에 들어가는 소형 전지가 주력이었으나, 전기 자동차가 보급 되면서, 한 번 충전에 500km 이상 주행 가능한 대형 전지 수요가 폭발적으로 늘어나고 있고, 전지 생산에 필요한 생산 시설 역시 점점 커지고 있는 추세이다.
그런데 리튬이온전지는 제조공정에서 바인더를 건조시켜야 하기 때문에 생산량을 맞추기 위해서는 대용량 건조기가 필요하고 이러한 대용량의 건조기는 생산단가와 운영에 많은 문제점을 야기한다.
또한 건식 전극 제조 공정 역시 공극 형성을 위해서 활물질에 붙지 않는 PTFE를 섬유화하여 필름을 만들지만 PTFE의 고온 특성으로 인해 양산 제조가 어려워서, 이런 문제를 해결하여 연속식으로 생산하기 위해 열가소성 바인더와 활물질을 이축 스크류에 투입하여 바인더를 용융시켜서 활물질과 교반하여 노즐을 통하여 압출하면 연속적으로 활물질 필름을 생산할 수 있지만, 이 경우 바인더가 활물질 사이를 모두 채우고 있고 공극이 없어서 전해액을 함침할 수 없는 문제가 발생한다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명은 이차전지를 제조함에 있어서 건조공정을 생략하는 이차전지의 건식전극 제조방법을 제안하는 것에 목적이 있다.
이를 위해 본 발명은 용매를 사용하지 않고도 대량으로 건식전극을 제조하는 방법과 이러한 제조공정을 통해 제조된 이차전지용 전극을 제안한다.
따라서 본 발명은 활물질을 바인딩하는 소재로 열가소성 바인더를 적용하되 상기 열가소성 바인더를 사용했을 때 활물질 사이의 공극이 생성되지 않아 전해액 함침불가 문제를 해결하기 위해 활물질 사이의 공극을 생성하는 제조방법을 제안한다.
그러나 본 발명의 목적은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위하여, 본 발명은 이차전지용 건식 전극 제조방법에 있어서, 용매가 없는 바인더를 사용하되 상기 바인더에 용매를 사용하지 않으므로 인해 공극이 형성되지 않은 문제를 해결하기 위해 발포공정을 적용하는 방식을 제안한다.
여기서 이차전지용 건식전극이란 바인더에 용매를 사용하지 않고 공정을 진행하되 용매가 적용되지 않음으로 인해 건조과정이 생략되며, 이때 바인더에 용매를 사용하지 않아 생기는 무공극(공극이 생기지 않아 전해액이 함침되지 못하는 문제)으로 인해 생기는 문제를 해결하기 위해 발포제를 사용하여 공극을 형성시켜 제조하는 전극을 의미한다.
또한 바인더에 발포를 도입하기 위해 사용되는 발포제는 화학발포제, 기체 등 다양한 방법으로 진행될 수 있다.
먼저 화학발포제를 사용하는 경우에 대해 설명한다.
a. 활물질과 바인더 및 도전재를 혼합한 혼합물을 스크류믹서에 투입하는 단계;와
b. 상기 혼합물을 스크류를 회전시켜 앞으로 전진시키면서 1차가열 및 용융시키는 단계;와
c. 상기 가열 및 용융시킨 혼합물을 상기 스크류를 회전시켜 앞으로 전진시키면서 교반시키는 단계;와
d. 상기 교반된 혼합물을 상기 스크류를 회전시켜 앞으로 전진시키면서 2차가열 및 교반시키는 단계;와
e. 상기 2차가열 및 교반된 혼합물을 상기 스크류를 회전시켜 앞으로 가압하여 노즐단으로 전진시키는 단계;와
f. 상기 노즐을 통해 필름 모양으로 토출된 상기 혼합물을 상하에 위치한 로울러를 통해 뽑아내는 필름제조단계;와
g. 상기 제조된 필름을 금속박판에 부착시켜 전극을 제조하는 단계;를 포함하여 이루어져 2차전지용 전극을 제조하는 것을 특징으로 하는 건식 전극 제조방법을 제안한다.
또한 상기 a단계에서 활물질과 바인더 및 도전재를 혼합하여 스크류믹서에 투입할 수도 있고 경우에 따라 각각 투입할 수 있다.
상기 혼합물에는 유기 혹은 무기 발포제를 포함시켜 혼합물을 제조하며 상기 b단계에서 1차가열온도는 상기 바인더의 용융온도보다 높도록 하여 상기 바인더가 용융되면서 상기 활물질과 도전재 및 발포제와 섞이게 되도록 한다.
다음으로 상기 d단계에서 2차 가열온도를 상기 발포제의 기화온도보다 높게 하여 상기 발포제가 기화되면서 상기 용융된 바인더에 섞이게 되며, 상기 e단계에서 상기 교반된 혼합물을 가압하면서 전진함에 따라 상기 기화된 기체는 상기 용융된 바인더에 압축된 상태로 섞이게 된다.
이때 상기 발포재는 일산화탄소, 이산화탄소, 헬륨, 부탄, 펜탄, 질소, 수증기, 질소화합물중의 하나이상을 포함하는 것이 바람직하다.
이후 상기 f단계에서 상기 노즐로 상기 혼합물이 토출될 때 상기 용융된 바인더에 압축된 기체가 팽창하여 기포를 형성되면서 공극이 만들어지고, 이러한 공극은 나중에 전해액 주입시 전해액이 함침되는 공간으로 활용된다.
또한 본 발명은 상기 발포재가 발포되면, 일산화탄소, 이산화탄소, 헬륨, 부탄, 펜탄, 질소, 수증기, 질소화합물중의 하나이상으로 변환되어 증발함에 따라 상기 바인더에 오픈셀공극을 만드는 것을 특징으로 한다.
다음으로 기체 또는 초임계 유체를 투입하여 상기 공극을 만드는 다른 실시예를 소개하고자 한다.
a. 활물질과 바인더 및 도전재를 혼합한 혼합물하여 스크류믹서에 투입하는 단계;
b. 상기 혼합물을 스크류를 회전시켜 앞으로 전전시키면서 가열 및 용융시키는 단계;
c 상기 스크류믹서에 이산화탄소, 질소, 헬륨, 부탄, 펜탄, 탄화수소기체 중 하나를 기체 또는 초임계유체 상태로 투입하는 단계,
d. 상기 가열 및 용융시킨 혼합물을 상기 스크류를 회전시켜 앞으로 전진시키면서 교반시키는 단계
e. 상기 교반된 혼합물을 상기 스크류를 회전시켜 앞으로 가압하여 노즐단으로 전진시키는 단계
f. 상기 노즐을 통해 필름 모양으로 토출된 상기 혼합물을 상하에 위치한 로울러를 통해 뽑아내는 필름제조단계;
g. 상기 제조된 필름을 금속박판에 부착시켜 전극을 제조하는 단계;를 포함하여 이루어져 2차전지용 전극을 제조하는 것을 특징으로 하는 이차전지 용 건식 전극 제조방법을 제안한다.
또한 상기 e단계에서 상기 교반된 혼합물을 가압하면서 전진함에 따라 상기 기체 또는 초임계유체는 상기 용융된 바인더에 섞이게 되고, 상기 f단계에서 상기 노즐로 상기 혼합물이 토출되면 상기 바인더 용액에 섞인 기체 또는 초임계유체는 팽창하여 기포를 형성하고, 가스 또는 초임계유체의 양과 온도 조건 등을 조절하면 가스가 빠져나가면서 해당 기포는 서로 연결되어 열린 공극되어, 상기 공극에 전해액이 채워지는 것을 특징으로 하는 이차전지 용 건식 전극 제조방법을 제안한다.
이때 상기 초임계유체는 초임계상태의 질소, 헬륨, 부탄, 펜탄, 탄산, 탄화수소 중 하나의 기체를 적용하는 것이 바람직하다.
위에서 설명한 제조공정에 사용되는 바인더는 열가소성수지를 적용하는 것이 바람직하며, 용매를 사용하지 않기 때문에 건조공정을 삭제하는 한편 발포제를 적용하여 바인더에 공극을 형성시켜 전해액을 함침시키는 공간을 확보하여 이차전지 용 건식 전극을 제작하는 제조방법이 본 발명의 핵심기술이다.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야 한다.
이상에서 살펴본 바와 같이 본 발명에 따르면, 이차전지용 건식 전극을 쉽게 제작할 수 있는 장점이 기대된다.
또한 현재 이차전지 기준 길이 약 100m의 건조기가 필요 없고, 용매가 증발하지 않으므로 용매 회수 장치가 필요없어, 건조기 운영에 따른 전기 비용을 절감할 수 있으며 건조기 생략에 따른 공장 부지도 크게 절감할 수 있는 효과가 있다.
나아가 길이 100m 용매 건조기가 필요 없기 때문에 용매 회수장치도 가동할 필요가 없고, 이에 따라 배터리 제조원가 감소와 이산화탄소, 유기용매 배출 등 환경문제 유발되지 않는 장점이 있다.
도 1은 이차전지의 기본구조를 도시한 것이다
도 2은 이차전지용 건조장비를 도시한 것이다
도 3은 활물질 필름을 만들고 해당 필름에 집전체에 접착하여 전극판을 만드는 과정을 도시한 것이다
도 4은 이차전지용 전극 구조를 도시한 것이다
도 5는 습식 전극 공정에서 활물질 사이의 공극을 형성하는 프로세스를 설명한 그림이다.
도 6은 일반적인 트윈 스크류 믹서 구성을 도시한 것이다.
도 7는 스크류 믹서를 적용하여 건식전극 용 혼합물을 만드는 과정을 도시한 것이다.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 설명하기로 한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 하여 내려져야 할 것이다.
아울러, 아래의 실시예는 본 발명의 권리범위를 한정하는 것이 아니라 본 발명의 청구범위에 제시된 구성요소의 예시적인 사항에 불과하며, 본 발명의 명세서 전반에 걸친 기술사상에 포함되고 청구범위의 구성요소에서 균등물로서 치환 가능한 구성요소를 포함하는 실시 예는 본 발명의 권리범위에 포함될 수 있다.
현재 검토되고 있는 건식 전극 제조 공정은 공극 형성을 위해서 활물질에 붙지 않는 PTFE(폴리테트라 플루오로에틸렌, Polytetrafluoroethylene)를 섬유화하여 필름을 만들지만 PTFE의 고온 특성으로 인해 양산 제조가 어려운 단점이 있다.
이를 극복하기 위한 방법으로 열가소성 수지와 활물질을 가열하여 교반하면 일반적인 이축 스크류 압출기로도 연속적으로 필름을 생산할 수 있다.
하지만 이 경우 활물질 사이에 공극이 없어서 전해액이 주입되지 못하는 문제가 발생한다.
이 경우 공극을 만들기 위해 유, 무기 발포제를 사용하여 공극을 강제로 생성하는 방법을 적용할 수 있다. 즉 이축 스크류 압출기를 사용하여 활물질 분체와 바인더를 교반할 때 역시 발포제를 투입하여 같이 교반한다.
교반 중 바인더가 녹아서 활물질, 발포제와 고르게 섞인 다음, 발포제가 분해되는 온도 이상으로 설정된 구간을 통과시킨다.
이 구간에서 발포제는 열에 의하여 분해되면서 이산화탄소, 질소, 수증기 등의 가스를 배출하고 이 가스가 바인더 용융액 사이에 녹아 들어간 다음, 노즐을 통과하여 필름 모양으로 압출되면서 압력이 낮아지면 이 가스가 팽창하여 활물질 사이의 공간에 공극을 형성할 수 있다.
이 방법은 모든 유,무기 발포제가 이산화탄소나 물을 소량이라도 배출하기 때문에, 전극 제조 공정 중 건조기를 제거하여 전기를 적게 소모하여 이산화탄소 저감에 도움을 주려는 목표와 배치가 되어서 이차전지 용 건식 전극에 사용할 수는 있으나 바람직하지는 않다.
만약 유,무기 발포제를 사용하여 공극을 형성한다면 이때 배출되는 이산화탄소를 포집 시설을 이용하여 포집하는 것을 고려해 볼 수 있다.
또 다른 발포 방법으로는 이산화탄소, 질소, 헬륨, 부탄, 펜탄, 탄화수소기체 등의 가스 또는 초임계유체를 이용하는 방법이다.
활물질과 바인더를 스크류 압출기에 넣어서 열을 가해 바인더를 녹여 교반을 하고, 용융 교반된 액체에 가스 또는 초임계펌프를 이용하여 초임계 상태로 만든 이산화탄소, 질소, 헬륨, 부탄, 펜탄, 탄화수소기체 등을 함침하여 이 초임계 상태의 유체와 활물질 및 바인더 혼합액을 추가로 교반한다.
이 물질이 노즐을 통하여 압출되어 나오면, 바인더 사이에 고르게 퍼져 있던 가스 또는 초임계 상태의 질소나 헬륨, 부탄, 펜탄, 탄산, 탄화수소, 이산화탄소 중 하나이상의 가스가 팽창하여 미세 기포를 형성한다.
도 4는 이차전지 용 전극 구조를 도시한 것이다
도 4를 살펴보면 약 10um의 입경을 가진 동그란 활물질들이 사이 사이에 연결된 기공을 가진 바인더에 의해 붙어 있다.
즉 도 4는 배터리 전극의 절단면을 3차원으로 시각화한 사진으로 a)는 전극의 일부분에 구멍을 뚫은 것을 500배 확대한 SEM 사진이고, b)는 위 a)사진의 구멍 부분 중 노란색 사각 영역 부분을 4000배 확대한 SEM 사진이며, c)는 위 b)사진의 초록색 부분을 확대한 사진이고, d)는 위 c)사진에서 공극 부분을 선명하게 처리한 사진이다.
위 습식 공정에서는 슬러리를 코팅 후에 용매를 날려서 공극(도 4의 d.에서 검정색으로 도시됨)을 형성한다.
도 5는 습식 전극 공정에서 활물질 사이의 공극을 형성하는 프로세스를 보여준다.
도 5는 LIB(리튬이온배터리) 전극의 현재의 생산방식을 도시한 것으로 a)는 균일한 분포를 갖는 습식 필름을 보여주고 있고 b)는 솔벤트가 증발되어 수축되면서 내부가 채워지는 상태를 보여주고 있으며, c)는 계속하여 솔벤트가 증발하지만 모세관에 부분적으로 채워져 네트워크를 형성하여 수축이 종료된 상태를 보여주고 있고, d)는 공극에 남아있는 잔여 액체(솔벤트)를 보여주고 있으며, e)는 액체(솔벤트)가 모두 증발된 건조된 필름을 보여주고 있다.
그러나 건식 전극은 상술한 습식 공정과 같이 용매를 사용할 수 없고, 바인더를 열로 녹여서 교반을 해야하기 때문에 건조 과정을 통해서 공극을 형성할 수 없다.
따라서 본 발명에서는 전극 내부의 기공을 발포 방법을 사용하여 구현하려고 하며 유, 무기 발포제를 사용하는 방법과 가스 또는 초임계유체를 사용하는 방법을 적용하고자 한다.
이 과정을 자세히 도 6 및 도 7를 통해 설명하면 다음과 같다.
스크류 믹서는 싱글이나 트윈으로 사용되며 하나의 긴 축에 교환 가능한 여러 가지 모양의 블레이드를 직렬로 연결한 구성으로 되어 있다.
특히 블레이드 피치의 예를 들면, 동일길이에 대해 블레이드 직경 대비 1 턴의 피치를 가지는 블레이드 다음에 블레이드 직경 대비 2턴의 피치를 가지는 블레이드를 배치하는 경우, 2 피치 블레이드 영역에서는 전 단에 비해 고압이 걸린다.
반대로 2 피치 블레이드 다음에 1 피치 블레이드를 배치하면 1피치 블레이드 구간에서는 저압이 걸리기 때문에, 믹서에 교반되는 물질 표면에 붙어 있는 가스 등을 빼주기 위해서는 이와 같은 저압 구간에서 배럴에 구멍을 마련하여 이곳으로 가스를 배출한다.
도 6에서 보는 바와 같이 일반적인 트윈 스크류 믹서 구성 예에서 'Y' 구간은 'X' 구간에 비해 저압 구간(즉 Y 구간의 블레이드 피치가 X 구간의 블레이드 피치에 비해 큼)이므로 여기에 구멍을 형성시키면 이 곳으로 가스를 배출할 수 있다.
해당 방법을 이용하여 건식 전극 용 혼합물을 만들 때 다음과 같은 방법으로 바인더 내부에 공극을 형성한다.
도 7을 설명하면 1번은 파우더 혼합물, 2는 가열 및 용융, 3은 이송 및 교반, 4는 추가 가열 및 교반, 5는 이송, 6은 가입 구간이다.
도 7의 구조에서 발포제를 사용하여 기공을 형성하기 위해서는, 우선 1번 파우더 혼합물(활물질+바인더+도전재)에 발포제 분말을 같이 첨가하여 공급한다.
이 혼합물은 2번 구간을 통과하며 가열이 되어 용융되고, 3번 구간에서 이 용융된 혼합물이 골고루 교반된다.
교반된 용융 혼합물의 발포제는 해당 발포제의 발포 온도 이상으로 가열된 4번 구간을 통과하며 기체가 되어서 용융 혼합물에 섞이고, 6번 구간을 거치며 압축된 후 노즐을 통과하여 나오면, 용융액에 섞여 있던 기체가 부피 팽창하여 기포를 형성한다.
이때 6번 구간에는 추가적인 교반 용 블레이드를 배치하면 기체를 골고루 섞는데 유리하다.
여기서 첨가된 발포제의 양이나 온도 조건에 따라서 닫힌 기공 또는 열린 기공이 된다.
또 다른 실시예로 발포제를 기체 또는 초임계유체를 사용하는 경우를 설명한다.
1번 파우더 혼합물에는 발포제를 넣지 않고 활물질+바인더+도전재만 넣어 공급 한 다음 마찬가지로 2번 구간을 지나며 가열되어 바인더가 용융되고 3, 4번 구간을 지나며 혼합된다.
다음으로 5번 이송 단계 마지막 부분에 이산화탄소, 질소, 헬륨, 부탄, 펜탄, 탄화수소기체등을 기체 또는 초임계유체 상태로 적용하여 함침하는 것이 바람직하다.
상기 함침한 가스나 초임계유체는 바인더에 섞여서 6번 고압 부분을 지나면서, 고압 상태에서 추가 교반을 실시하여 용융된 혼합물과 함침된 기체 또는 초임계 유체를 골고루 섞어주게 되므로, 노즐을 통하여 나오는 순간 압력이 해제되면서 바인더 사이에 섞여 있던 압축된 가스가 팽창하여 기포를 형성한다.
이러한 과정을 거쳐 함침된 가스 양이나 온도조건에 따라서 닫힌 기공 또는 연결된 기공이 된다.
위에서 설명한 바와같이, 기존에 이차전지 다공성 전극을 제조하기 위해서는 바인더를 용매에 녹여서 바인더 용액을 제조하고 이를 집전체에 코팅한 다음 건조 과정을 통해 기공을 만든다.
이 과정에서 고가의 건조기가 필요하고 이의 운용을 위해서는 전기 비용도 많이 발생하지만, 본 발명에서는 트윈스크류 믹서를 사용하여 바인더를 열로 녹여서 활물질과 교반을 하고 여기에 유,무기 화학 발포제 또는 이산화탄소, 질소, 헬륨, 부탄, 펜탄, 탄화수소기체 등의 가스나 이 가스들의 초임계유체를 교반한 다음, 노즐을 통하여 필름 형상으로 만들 때 발포가 되면서 기공을 형성하는 제조방법을 제안한다.
이와 같은 기공 형성 방법은 현재 이차전지 기준 길이 약 100m의 건조기가 필요 없고, 용매가 증발하지 않으므로 용매 회수 장치가 필요없고, 건조기 운영에 따른 전기 비용을 절감할 수 있으며 건조기 생략에 따른 공장 부지도 크게 절감할 수 있다.
이상 본 발명을 구체적인 실시 예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 범주에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의해 명확해질 것이다.
[부호의 설명]
1번은 파우더 혼합물, 2는 가열 및 용융, 3은 이송 및 교반, 4는 추가 가열 및 교반, 5는 이송, 6은 가입 구간임

Claims (7)

  1. 이차전지 용 건식 전극 제조방법에 있어서
    a. 활물질과 바인더 도전재를 혼합하여 스크류믹서에 투입하는 단계;
    b. 상기 혼합물을 스크류를 회전시켜 앞으로 전진시키면서 1차가열 및 용융시키는 단계;
    c. 상기 가열 및 용융시킨 혼합물을 상기 스크류를 회전시켜 앞으로 전진시키면서 교반시키는 단계
    d. 상기 교반된 혼합물을 상기 스크류를 회전시켜 앞으로 전진시키면서 2차가열 및 교반시키는 단계
    e. 상기 2차가열 및 교반된 혼합물을 상기 스크류를 회전시켜 앞으로 가압하여 노즐단으로 전진시키는 단계
    f. 상기 노즐을 통해 필름형태로 토출된 상기 혼합물을 상하에 위치한 로울러를 통해 뽑아내는 필름제조단계;
    g. 상기 제조된 필름을 금속박판에 부착시켜 전극을 제조하는 단계;를 포함하여 이루어져 2차전지용 전극을 제조하는 것을 특징으로 하는 이차전지 용 건식 전극 제조방법.
  2. 제1항에 있어서
    상기 혼합물에 도전재를 추가하여 혼합하는 것을 특징으로 하는 이차전지 용 건식 전극 제조방법.
  3. 제2항에 있어서
    상기 a단계에서 상기 혼합물에는 열에 의해 가스로 분해되는 유기 혹은 무기 발포제를 포함시켜 혼합물을 제조하며,
    상기 b단계에서 1차가열온도는 상기 바인더의 용융온도보다 높음에 따라 상기 바인더가 용융되면서 상기 활물질과 도전재 및 발포제와 섞이게 되고
    상기 d단계에서 2차 가열온도는 상기 발포제의 기화온도보다 높음에 따라 상기 발포제는 기화하여 상기 용융된 바인더에 섞이게 되며
    상기 e단계에서 상기 교반된 혼합물을 가압하면서 전진함에 따라 상기 기화된 발포제는 상기 용융된 바인더에 섞이게 되고
    상기 f단계에서 상기 노즐로 상기 혼합물이 토출되면 상기 바인더 용액에 섞인 발포제는 기체가 팽창하여 기포를 형성하여, 상기 기포로 인해 생성된 공극에 전해액이 채워지는 것을 특징으로 하는 이차전지 용 건식 전극 제조방법.
  4. 이차전지 용 건식 전극 제조방법에 있어서
    a. 활물질과 바인더를 혼합물하여 스크류믹서에 투입하는 단계;
    b. 상기 혼합물을 스크류를 회전시켜 앞으로 전진시키면서 가열 및 용융시키는 단계;
    c 상기 스크류믹서에 기체 또는 초임계유체를 투입하는 단계,
    d. 상기 가열 및 용융시킨 혼합물을 상기 스크류를 회전시켜 앞으로 전진시키면서 교반시키는 단계
    e. 상기 교반된 혼합물을 상기 스크류를 회전시켜 앞으로 가압하여 노즐단으로 전진시키는 단계
    f. 상기 노즐을 통해 필름 모양으로 토출된 상기 혼합물을 상하에 위치한 로울러를 통해 압착하는 필름제조단계;
    g. 상기 제조된 필름을 금속박판에 부착시켜 전극을 제조하는 단계;를 포함하여 이루어져 2차전지용 전극을 제조하는 것을 특징으로 하는 이차전지 용 건식 전극 제조방법.
  5. 제4항에 있어서
    상기 혼합물에 도전재를 추가하여 혼합하는 것을 특징으로 하는 이차전지 용 건식 전극 제조방법.
  6. 제4항에 있어서
    상기 기체 또는 초임계유체는 이산화탄소, 질소, 헬륨, 부탄, 펜탄, 탄화수소기체 중 하나이상이며,
    상기 e단계에서 상기 교반된 혼합물을 가압하면서 전진함에 따라 투입하는 상기 기체 또는 초임계유체는 상기 용융된 바인더에 섞이게 되고
    상기 f단계에서 상기 노즐로 상기 혼합물이 토출되면 상기 바인더 용액에 섞인 기체 또는 초임계유체는 팽창하여 기포를 형성하되 상기 기포로 인해 생성되는 공극에 전해액이 채워지는 것을 특징으로 하는 이차전지 용 건식 전극 제조방법.
  7. 제1항 내지 제7항중 한항의 제조공정을 할용하여 건조공정을 적용하지 않고도 바인더에 공극을 형성하여 제작된 건식 전극용 이차전지
PCT/KR2022/017447 2021-11-10 2022-11-08 이차전지용 전극의 건식 제조방법 WO2023085727A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280067158.3A CN118104000A (zh) 2021-11-10 2022-11-08 二次电池用电极的干式制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0154014 2021-11-10
KR20210154014 2021-11-10
KR1020220143743A KR20230069002A (ko) 2021-11-10 2022-11-01 이차전지용 전극의 건식 제조방법
KR10-2022-0143743 2022-11-01

Publications (1)

Publication Number Publication Date
WO2023085727A1 true WO2023085727A1 (ko) 2023-05-19

Family

ID=86336116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017447 WO2023085727A1 (ko) 2021-11-10 2022-11-08 이차전지용 전극의 건식 제조방법

Country Status (1)

Country Link
WO (1) WO2023085727A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089914A (ko) * 2016-12-19 2019-07-31 쥐알에스티 인터내셔널 리미티드 2차 전지용 캐소드 물질의 제조 방법
US10547057B2 (en) 2003-07-09 2020-01-28 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
KR20200020702A (ko) * 2017-05-16 2020-02-26 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 드라이 필름의 제조방법, 롤링 장치, 드라이 필름 및 드라이 필름으로 코팅된 기판
CN212006658U (zh) * 2020-01-06 2020-11-24 张英 一种用于锂离子动力电池生产石墨烘干装置
KR102255987B1 (ko) * 2019-03-08 2021-05-25 대성기계공업 주식회사 이차전지의 양극재 제조를 위한 분말원료 건조장치 및 이를 이용하는 분말원료 처리방법
KR20210133365A (ko) * 2020-04-28 2021-11-08 현대자동차주식회사 이차전지용 전극의 제조 시스템 및 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547057B2 (en) 2003-07-09 2020-01-28 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
KR20190089914A (ko) * 2016-12-19 2019-07-31 쥐알에스티 인터내셔널 리미티드 2차 전지용 캐소드 물질의 제조 방법
KR20200020702A (ko) * 2017-05-16 2020-02-26 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 드라이 필름의 제조방법, 롤링 장치, 드라이 필름 및 드라이 필름으로 코팅된 기판
KR102255987B1 (ko) * 2019-03-08 2021-05-25 대성기계공업 주식회사 이차전지의 양극재 제조를 위한 분말원료 건조장치 및 이를 이용하는 분말원료 처리방법
CN212006658U (zh) * 2020-01-06 2020-11-24 张英 一种用于锂离子动力电池生产石墨烘干装置
KR20210133365A (ko) * 2020-04-28 2021-11-08 현대자동차주식회사 이차전지용 전극의 제조 시스템 및 제조 방법

Similar Documents

Publication Publication Date Title
WO2011055967A2 (ko) 내열성 및 고강도 초극세 섬유상 분리막 및 그의 제조방법과 이를 이용한 이차 전지
WO2014092334A1 (ko) 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
WO2009125985A2 (en) Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
WO2012060604A2 (ko) 내열성 분리막, 전극 조립체 및 이를 이용한 이차 전지와 그 제조방법
WO2019190126A1 (ko) 전고체 전지용 복합 고체 전해질 막 및 이를 포함하는 전고체 전지
WO2009125984A2 (en) Microporous polyolefin composite film with a thermally stable porous layer at high temperature
WO2021010753A1 (ko) 리튬 금속 음극 및 이를 포함하는 리튬 금속 전지
WO2014142450A1 (ko) 이차전지용 다공성 분리막의 제조방법 및 이에 따라 제조된 이차전지용 다공성 분리막
WO2020067717A1 (ko) 전고체 전지용 음극 및 이의 제조방법
WO2021096025A1 (ko) 서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법
WO2020149679A1 (ko) 리튬 이차전지 및 이의 제조방법
WO2010041907A2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
WO2014112776A1 (ko) 폴리머 전해질, 이를 이용한 리튬 이차 전지 및 그의 제조방법
WO2023085727A1 (ko) 이차전지용 전극의 건식 제조방법
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2015080507A1 (ko) 분리막, 이의 제조방법 및 이를 이용한 전지
WO2015064987A1 (ko) 리튬 이차전지
WO2014098519A1 (ko) 다공성 분리막, 이를 이용한 이차전지 및 그의 제조방법
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2020179978A1 (ko) 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법
WO2021225359A1 (ko) 기계적 강도가 향상된 고분자계 고체 전해질 및 이의 제조 방법, 및 이 고체 전해질을 포함하는 리튬 이차전지
WO2020231088A1 (ko) 음극의 제조방법
WO2022080979A1 (ko) 음극 및 이의 제조방법
WO2023121088A1 (ko) 이차전지용 음극 활물질 및 이의 제조 방법
KR20230069002A (ko) 이차전지용 전극의 건식 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893147

Country of ref document: EP

Kind code of ref document: A1