WO2015064987A1 - 리튬 이차전지 - Google Patents

리튬 이차전지 Download PDF

Info

Publication number
WO2015064987A1
WO2015064987A1 PCT/KR2014/010137 KR2014010137W WO2015064987A1 WO 2015064987 A1 WO2015064987 A1 WO 2015064987A1 KR 2014010137 W KR2014010137 W KR 2014010137W WO 2015064987 A1 WO2015064987 A1 WO 2015064987A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbonate
compound represented
lithium secondary
secondary battery
Prior art date
Application number
PCT/KR2014/010137
Other languages
English (en)
French (fr)
Inventor
유성훈
이경미
양두경
강유선
이정훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/442,023 priority Critical patent/US10115968B2/en
Priority to EP14857766.1A priority patent/EP2908375B1/en
Priority to IN4228DEN2015 priority patent/IN2015DN04228A/en
Priority to PL14857766T priority patent/PL2908375T3/pl
Priority to JP2015546410A priority patent/JP6241015B2/ja
Priority to CN201480003568.7A priority patent/CN105659425B/zh
Publication of WO2015064987A1 publication Critical patent/WO2015064987A1/ko
Priority to US16/130,019 priority patent/US10826063B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte and a positive electrode including a phosphate compound, and a lithium secondary battery including the same.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • a lithium secondary battery is a battery composed of a positive electrode, a negative electrode, and an electrolyte solution and a separator that provides a movement path of lithium ions between the positive electrode and the negative electrode, and is used for oxidation and reduction reactions when lithium ions are occluded and discharged from the positive electrode and the negative electrode. Thereby generating electrical energy.
  • the average discharge voltage of the lithium secondary battery is about 3.6 to 3.7 V, which is one of the advantages of higher discharge voltage than other alkaline batteries, nickel-cadmium batteries, and the like.
  • an electrochemically stable electrolyte composition is required in the charge and discharge voltage range of 0 to 4.2V.
  • lithium ions derived from the positive electrode active material such as lithium metal oxide are moved to the negative electrode active material such as graphite and inserted into the interlayer of the negative electrode active material.
  • the electrolyte and the carbon constituting the negative electrode active material react on the surface of the negative electrode active material such as graphite to generate a compound such as Li 2 CO 3 , Li 2 O, or LiOH.
  • SEI Solid Electrolyte Interface
  • the SEI membrane acts as an ion tunnel, passing only lithium ions.
  • the SEI membrane is an effect of this ion tunnel, which prevents the breakdown of the negative electrode structure by intercalation of organic solvent molecules having a large molecular weight moving with lithium ions in the electrolyte between the layers of the negative electrode active material. Therefore, by preventing contact between the electrolyte solution and the negative electrode active material, decomposition of the electrolyte solution does not occur, and the amount of lithium ions in the electrolyte solution is reversibly maintained to maintain stable charge and discharge.
  • the first technical problem to be solved by the present invention is to provide a nonaqueous electrolyte that can improve the life characteristics at high temperature and high voltage of the secondary battery by adding a small amount of an additive to the nonaqueous electrolyte of the lithium secondary battery.
  • a second technical problem to be solved by the present invention is to provide a positive electrode that can improve the life characteristics at high temperature and high voltage of the secondary battery by adding a small amount of an additive to the positive electrode of the lithium secondary battery.
  • Another object of the present invention is to provide a lithium secondary battery including the nonaqueous electrolyte or the positive electrode.
  • the present invention is a lithium salt; Electrolyte solvents; And to provide a non-aqueous electrolyte containing a compound represented by the formula (1):
  • Y 1 and Y 2 are each independently Si or Sn
  • R 1 to R 6 are each independently hydrogen or a C 1 to C 10 alkyl group
  • Y 3 is Si or Sn
  • R 7 to R 9 are each independently hydrogen or a C 1 to C 10 alkyl group
  • n 2-4.
  • the present invention also provides a positive electrode comprising a lithium transition metal oxide and the compound represented by the formula (1).
  • the life characteristics of a lithium secondary battery may be improved, and particularly, the life characteristics may be improved at a high temperature of 45 ° C. or higher and a high voltage of 4.3 V or higher. You can. In addition, it can exhibit stable and excellent life characteristics at high temperature and high voltage regardless of the moisture content of the electrode or the presence of drying and pressing.
  • FIG. 1 is a graph showing measurement results of life characteristics at 45 ° C. of secondary batteries in which the lithium secondary batteries of Examples 3 and 4 and Comparative Examples 6 to 8 do not have a roll press of the positive electrode.
  • FIG. 2 is a graph showing measurement results of life characteristics at 45 ° C. of secondary batteries subjected to roll pressing of the positive electrode in the lithium secondary batteries of Examples 3 and 4 and Comparative Examples 6 to 8.
  • FIG. 2 is a graph showing measurement results of life characteristics at 45 ° C. of secondary batteries subjected to roll pressing of the positive electrode in the lithium secondary batteries of Examples 3 and 4 and Comparative Examples 6 to 8.
  • FIG. 3 is a graph showing measurement results of life characteristics at 45 ° C. of a secondary battery in Example 3 and the lithium secondary batteries of Comparative Examples 9 and 10, in which both drying and roll pressing of the positive electrode were not performed.
  • FIG. 3 is a graph showing measurement results of life characteristics at 45 ° C. of a secondary battery in Example 3 and the lithium secondary batteries of Comparative Examples 9 and 10, in which both drying and roll pressing of the positive electrode were not performed.
  • FIG. 4 is a graph showing measurement results of life characteristics at 45 ° C. of secondary batteries in Example 3 and Comparative Examples 9 and 10, in which the positive electrode was dried and the roll press was not performed.
  • FIG. 5 is a graph showing measurement results of life characteristics at 45 ° C. of a secondary battery in which the positive electrode was dried and rolled in the lithium secondary batteries of Example 3 and Comparative Examples 9 and 10.
  • FIG. 5 is a graph showing measurement results of life characteristics at 45 ° C. of a secondary battery in which the positive electrode was dried and rolled in the lithium secondary batteries of Example 3 and Comparative Examples 9 and 10.
  • FIG. 6 is a graph showing measurement results of life characteristics at 45 ° C. according to the lithium secondary battery of Example 3, depending on whether the cathode is dried and roll press is performed.
  • FIG. 7 is a graph illustrating a life characteristic measurement result at 45 ° C. according to drying of a positive electrode and whether roll press is performed in a lithium secondary battery of Comparative Example 9.
  • FIG. 7 is a graph illustrating a life characteristic measurement result at 45 ° C. according to drying of a positive electrode and whether roll press is performed in a lithium secondary battery of Comparative Example 9.
  • FIG. 8 is a graph illustrating a life characteristic measurement result at 45 ° C. according to drying of a positive electrode and whether roll press is performed in a lithium secondary battery of Comparative Example 10.
  • FIG. 9 is a graph showing the results of measuring lifetime characteristics at 45 ° C. of the lithium secondary batteries of Examples 5 and 6 and Comparative Examples 11 and 12.
  • FIG. 9 is a graph showing the results of measuring lifetime characteristics at 45 ° C. of the lithium secondary batteries of Examples 5 and 6 and Comparative Examples 11 and 12.
  • a lithium salt comprising a compound represented by the formula (1):
  • Y 1 and Y 2 are each independently Si or Sn
  • R 1 to R 6 are each independently hydrogen or a C 1 to C 10 alkyl group
  • Y 3 is Si or Sn
  • R 7 to R 9 are each independently hydrogen or a C 1 to C 10 alkyl group
  • n 2-4.
  • A in A of Formula 1, when n is 3 or 4, A is linear or a ring by connecting O to another repeating unit adjacent to P of one repeating unit, or The linear and the ring may be connected together.
  • the compound represented by Formula 1 may be preferably any one selected from the group consisting of the following compounds (1) to (6) or a mixture of two or more thereof:
  • a nonaqueous electrolyte used in a lithium secondary battery has electrolyte stability decomposed at the surface of an electrode during charging and discharging of the battery, or co-intercalation between carbon material negative electrode layers to collapse the negative electrode structure, thereby ensuring stability of the battery. May inhibit.
  • the SEI film formed on the surface of the negative electrode by reduction of the electrolyte solvent during the initial charging of the battery.
  • the SEI film is insufficient to serve as a continuous protective film of the negative electrode, and as a result, when the battery is repeatedly charged and discharged, the life and performance thereof are deteriorated.
  • the SEI film of the conventional lithium secondary battery is not thermally stable, and when the battery is operated or left at a high temperature, it is susceptible to collapse by increased thermal energy over time, and thus, the battery performance is further deteriorated under high temperature.
  • gases such as CO 2 are continuously generated due to the collapse of the SEI film, decomposition of the electrolyte, and the like, thereby increasing the internal pressure and thickness of the battery.
  • the compound represented by Chemical Formula 1 when added to the nonaqueous electrolyte or electrode of the lithium secondary battery, battery thickness increase and performance degradation due to destruction of the SEI film of the lithium secondary battery may be improved.
  • the lithium secondary battery may improve life characteristics, particularly at high temperatures of 45 ° C. or higher and high voltages of 4.3 V or higher.
  • the non-aqueous electrolyte including the addition may exhibit stable and excellent life characteristics at high temperature and high voltage regardless of the moisture content of the electrode or the drying and pressing of the electrode when the secondary battery is manufactured.
  • the additive of Formula 1 may serve to stabilize anion of lithium salt.
  • the electrolyte contains a material containing fluorine (F) such as LiPF 6
  • the fluorine encounters moisture or lithium impurities during charge and discharge to generate HF (fluoric acid), and the corrosion caused by the HF leads to an electrode cycle.
  • the additive may inhibit the generation of HF, which may be generated due to side reactions between the water generated during charge and discharge and the electrolyte.
  • the structure of the compound of Formula 1 having a more unstable structure than the general phosphate compound having a simple structure for example, a phosphate compound having n of 2 or more in Chemical Formula 1 is electrochemically unstable and can easily be broken to participate in film formation of the electrode. In particular, a conductive film can be formed. These two factors can greatly affect the performance improvement when applying the secondary battery.
  • the nonaqueous electrolyte may further include a compound represented by the following formula (2):
  • R 10 to R 18 are each independently hydrogen or a C 1 to C 10 alkyl group.
  • the compound represented by Chemical Formula 2 may be, for example, tris (trimethylsilyl) phosphate (TMSPa).
  • the mixing ratio of the compound represented by the formula (1) and the compound represented by the formula (2) is 1: 0.1 to 2 by weight, preferably 1: 0.2 to 1 by weight, more preferably 1: 0.2 to 0.6 by weight.
  • the compound represented by Formula 1 is 0.01 to 5% by weight based on the total amount of the non-aqueous electrolyte Wt%, preferably 0.1 wt% to 2 wt%.
  • the secondary battery may be consumed during operation of the initial secondary battery, and thus, deterioration of life may occur during charge / discharge or long-term storage. May adversely affect stability characteristics.
  • the lithium salt contained in the non-aqueous electrolyte may use a lithium salt commonly used in the art, for example, LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiBF 6 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 , LiSO 3 CF 3 and LiClO 4 , or any one selected from two It may be a mixture of the above.
  • a lithium salt commonly used in the art for example, LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiBF 6 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 , LiSO 3 CF 3 and LiClO 4 , or any one selected from two It may be a mixture
  • the electrolyte solvent used in the present invention can be used without limitation those conventionally used in the electrolyte for lithium secondary batteries, for example, ether, ester, amide, linear carbonate, cyclic carbonate and the like, each alone or two or more. It can be mixed and used.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates or mixtures thereof may be included.
  • cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene Carbonate, vinylene carbonate, and halides thereof, any one selected from the group consisting of or mixtures of two or more thereof.
  • linear carbonate compounds include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) and ethylpropyl carbonate (EPC). Any one selected from the group consisting of, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
  • the cyclic carbonate in the carbonate-based electrolyte solvent preferably includes propylene carbonate, ethylene carbonate, and mixtures thereof, and may be preferably used because it dissociates lithium salt in the electrolyte well because of high dielectric constant as a high-viscosity organic solvent.
  • diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and a linear carbonene, which is a mixture thereof, with the cyclic carbonate can be more preferably used because low viscosity, low dielectric constant linear carbonate can be mixed in an appropriate ratio to make an electrolyte having high electrical conductivity.
  • ester in the electrolyte solvent is methyl acetate, ethyl acetate, propyl acetate, ethyl propionate (EP), methyl propionate (MP), ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone , ⁇ -valerolactone and ⁇ -caprolactone, any one selected from the group consisting of, or mixtures of two or more thereof may be used, among which ethyl propionate (EP), methyl propionate (especially low viscosity) MP) and mixtures thereof.
  • the present invention may provide a positive electrode comprising a lithium transition metal oxide and the compound represented by the formula (1) according to another embodiment:
  • A in A of Formula 1, when n is 3 or 4, A is linear or a ring by connecting O to another repeating unit adjacent to P of one repeating unit, or The linear and the ring may be connected together.
  • the preferred compound may be any one selected from the group consisting of compounds of the following (1) to (6) or a mixture of two or more thereof:
  • the anode may further include a compound represented by Chemical Formula 2.
  • the compound represented by Chemical Formula 2 may be, for example, tris (trimethylsilyl) phosphate (TMSPa).
  • the mixing ratio of the compound represented by Formula 1 and the compound represented by Formula 2 is 1: 0.1 to 2 by weight, preferably 1: 0.2 to 1 by weight, more preferably 1: 0.2 to 0.6 by weight.
  • the compound represented by the formula (1) in the case of including the compound represented by the formula (1) as an additive in the positive electrode, it is possible to improve the life characteristics of the lithium secondary battery, especially life characteristics at high temperature of 45 °C or higher and 4.3 V or higher Can improve. In addition, it can exhibit stable and excellent life characteristics at high temperature and high voltage regardless of the moisture content of the electrode or the presence of drying and pressing.
  • the structure of the compound of Formula 1 having a more unstable structure than the general phosphate compound having a simple structure for example, a phosphate compound having n of 2 or more in Chemical Formula 1 is electrochemically unstable and can easily be broken to participate in film formation of the electrode. In particular, a conductive film can be formed.
  • the compound represented by Formula 1 is 0.01% by weight to 5 based on the total amount of the positive electrode mixed slurry containing a positive electrode active material, an additive, a conductive agent and a binder Wt%, preferably 0.1 wt% to 2 wt%.
  • the positive electrode active material for example, a lithium transition metal oxide may be a compound represented by Formula 3 below:
  • a lithium secondary battery the positive electrode; cathode; A separator interposed between the positive electrode and the negative electrode; And a nonaqueous electrolyte, and the positive electrode or the nonaqueous electrolyte may include the compound of Formula 1.
  • a carbon-based negative electrode active material such as crystalline carbon, amorphous carbon, or a carbon composite may be used alone or in combination of two or more thereof.
  • the crystalline carbon is graphite such as natural graphite and artificial graphite. (graphite) carbon.
  • the separator is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer This may be a single or two or more laminated.
  • a porous nonwoven fabrics such as high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used, but are not limited thereto.
  • Lithium secondary battery according to an embodiment of the present invention may be in the range of 4.3V to 5.0V in the charging voltage, even when charged at the high voltage is excellent in the life characteristics of the battery.
  • the moisture content or the press of the electrode for example, it can exhibit a stable and excellent life characteristics at high temperature and high voltage of 45 °C or more.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • TMSPa tris (trimethylsilyl) phosphate
  • a nonaqueous electrolyte was prepared by adding in an amount of 2% by weight based on the total amount.
  • Example 1 In the preparation of the nonaqueous electrolyte of Example 1, a nonaqueous electrolyte was prepared in the same manner as in Example 1, except that tetra (trimethylsilyl) pyrophosphate was added alone as a nonaqueous electrolyte additive.
  • Example 1 propane sultone (PS) and vinylene carbonate (VC) instead of a mixed additive of tetra (trimethylsilyl) pyrophosphate and tris (trimethylsilyl) phosphate (TMSPa) as a nonaqueous electrolyte additive ) was prepared in the same manner as in Example 1, except that 1.5: 1 by weight was added to prepare a nonaqueous electrolyte.
  • PS propane sultone
  • VC vinylene carbonate
  • TMSPa tris (trimethylsilyl) phosphate
  • Example 1 propane sultone (PS) and vinylene carbonate (VC) instead of a mixed additive of tetra (trimethylsilyl) pyrophosphate and tris (trimethylsilyl) phosphate (TMSPa) as a nonaqueous electrolyte additive ) And ethylene sulfate (ESa) was prepared in the same manner as in Example 1, except that 0.5: 3: 1 weight ratio was added to prepare a nonaqueous electrolyte.
  • PS propane sultone
  • VC vinylene carbonate
  • TMSPa tris (trimethylsilyl) phosphate
  • ESa ethylene sulfate
  • Example 1 propane sultone (PS) and vinylene carbonate (VC) instead of a mixed additive of tetra (trimethylsilyl) pyrophosphate and tris (trimethylsilyl) phosphate (TMSPa) as a nonaqueous electrolyte additive ) was prepared in a weight ratio of 1.5: 3 and added, and a nonaqueous electrolyte was prepared in the same manner as in Example 1 except that LiPF 6 was used at a concentration of 1.3 M.
  • PS propane sultone
  • VC vinylene carbonate
  • TMSPa tris (trimethylsilyl) phosphate
  • Example 1 propane sultone (PS) and vinylene carbonate (VC) instead of a mixed additive of tetra (trimethylsilyl) pyrophosphate and tris (trimethylsilyl) phosphate (TMSPa) as a nonaqueous electrolyte additive ) And LiBF 4 were prepared in the same ratio as in Example 1, except that LiBF 4 was added in a weight ratio of 1.5: 1: 2 to prepare a nonaqueous electrolyte.
  • PS propane sultone
  • VC vinylene carbonate
  • TMSPa tris (trimethylsilyl) phosphate
  • TMSPa tris (trimethylsilyl) phosphate
  • TMSPa tris (trimethylsilyl) phosphate
  • TMSPa tris (trimethylsilyl) phosphate
  • Li (Li 0.2 Mn 0.55 Ni 0.15 Co 0.1 ) O 2 94% by weight of Li (Li 0.2 Mn 0.55 Ni 0.15 Co 0.1 ) O 2 as a positive electrode active material, 3% by weight of carbon black as a conductive agent, 3% by weight of PVdF as a binder, N-methyl-2-pyrrolidone as a solvent (NMP) was added to prepare a positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, and dried to prepare a positive electrode.
  • Al aluminum
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • the positive electrode and the negative electrode prepared as described above were manufactured in a conventional manner with a PE separator, and then the non-aqueous electrolyte prepared in Example 1 was injected to complete the production of a lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 3, except that the nonaqueous electrolyte prepared in Example 2 was used.
  • a lithium secondary battery was manufactured in the same manner as in Example 3, except that the nonaqueous electrolyte prepared in Comparative Example 1 was used.
  • a lithium secondary battery was manufactured in the same manner as in Example 3, except that the nonaqueous electrolytes prepared in Comparative Examples 2 to 5 were used.
  • the lithium secondary batteries prepared in Examples 3 and 4 and Comparative Examples 6 to 8 (based on 3.26 mAh of battery capacity) were charged at 45 ° C. at a constant current of 1 C until they reached 4.35 V, and then charged at a constant voltage of 4.35 V. Charging was terminated when the charging current became 0.163 mAh. Thereafter, it was left for 10 minutes and then discharged until it became 2.94V with a constant current of 2 C. This was repeated with 1 to 100 cycles and 200 cycles. The results are shown in FIGS. 1 and 2, respectively.
  • FIG. 1 shows the life characteristics of a lithium secondary battery using a positive electrode that does not perform a roll press when manufacturing a positive electrode
  • FIG. 2 shows a lithium secondary battery using a positive electrode that performs a roll press. The lifetime characteristics of the result.
  • the lithium secondary batteries of Examples 3 and 4 of the present invention containing tetra (trimethylsilyl) pyrophosphate (Compound (1)) as an additive of a non-aqueous electrolyte have a roll press during the production of the positive electrode Regardless, the slope was slow up to 100 cycles.
  • TMSPa tris (trimethylsilyl) phosphate
  • Figure 3 is a result of the life characteristics of the lithium secondary battery using a positive electrode that did not perform both drying and roll press in the production of the positive electrode (A)
  • Figure 4 is a positive electrode that does not perform the drying, roll press It is a result of the life characteristics of the used lithium secondary battery (B)
  • Figure 5 is a result of the life characteristics of the lithium secondary battery using the positive electrode that performed both drying and roll press (C).
  • Example 3 the life characteristic results of the lithium secondary battery using the positive electrode that did not perform both drying and roll press (roll press), Example 3 was a graph of the life characteristic results up to 30 cycles.
  • the secondary batteries of Comparative Examples 9 and 10 can be seen that the slope is significantly reduced from the tenth cycle.
  • the lithium secondary battery of Comparative Example 10 using only TMSPa as the electrolyte additive drops rapidly from the fifth cycle.
  • the lithium secondary battery of Example 3 showed a stable life characteristics, regardless of the drying and roll press performed.
  • the drying performance and the roll press were affected, and the life performance was lower than that in Example 3.
  • 6 to 8 are graphs illustrating the graphs of FIGS. 3 to 5 separated by lithium secondary batteries.
  • the lithium secondary battery of Example 3 is a graph for the presence of drying and roll pressing. It can be seen that the lithium secondary battery of Example 3 has excellent life characteristics up to 30 cycles regardless of drying and roll pressing.
  • FIG. 7 is a graph showing whether drying and roll pressing are performed on the lithium secondary battery of Comparative Example 9.
  • FIG. The lithium secondary battery of Comparative Example 9 had excellent life characteristics up to 30 cycles when both dry and roll press were performed, but when the dry or roll press was not performed, the life characteristics decreased.
  • FIG. 8 is a graph for the presence or absence of drying and roll press for the lithium secondary battery of Comparative Example 10.
  • the lithium secondary battery of Comparative Example 10 had excellent life characteristics up to 30 cycles when both drying and roll pressing were performed, but life characteristics were decreased when drying or roll pressing was not performed.
  • the lithium secondary battery of Comparative Example 10 is further affected by the presence or absence of drying and roll pressing, compared to Comparative Example 9.
  • Tetra (trimethylsilyl) pyrophosphate (Compound (1)) and tris (trimethylsilyl) phosphate (TMSPa) were mixed at a weight ratio of 3: 1 to prepare an additive mixture, which was then added to the total weight of the positive electrode mixture slurry.
  • TMSPa tris (trimethylsilyl) phosphate
  • a positive electrode mixture slurry was prepared by addition to 2-pyrrolidone (NMP).
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, and dried to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • VMC vinylene carbonate
  • PS propane sultone
  • the positive electrode and the negative electrode prepared as described above were manufactured in a conventional method with a PE separator, and then the non-aqueous electrolyte was prepared by pouring the prepared lithium secondary battery.
  • Example 5 In preparing the positive electrode of Example 5, a positive electrode and a lithium secondary battery were manufactured in the same manner as in Example 5, except that tetra (trimethylsilyl) pyrophosphate alone was used instead of the additive mixture.
  • a positive electrode and a lithium secondary battery were manufactured in the same manner as in Example 5, except that the additive mixture was not used when preparing the positive electrode of Example 5.
  • Example 5 In preparing the positive electrode of Example 5, a positive electrode and a lithium secondary battery were manufactured in the same manner as in Example 5, except that TMSPa alone was used instead of the additive mixture.
  • the lithium secondary batteries prepared in Examples 5 and 6 and Comparative Examples 11 and 12 (based on 3.26 mAh of battery capacity) were charged at 45 ° C. with a constant current of 1 C until they reached 4.35 V, and then charged at a constant voltage of 4.35 V. Charging was terminated when the charging current became 0.163 mAh. Thereafter, it was left for 10 minutes and then discharged until it became 2.94V with a constant current of 2 C. This was repeated for 1 to 100 cycles.
  • the lithium secondary batteries of Examples 5 and 6 of the present invention including tetra (trimethylsilyl) pyrophosphate (Compound (1)) as an additive had a gentle slope up to 100 cycles.
  • Example 5 using an additive mixture in which tetra (trimethylsilyl) pyrophosphate (compound (1)) and TMSPa were mixed as an additive for the positive electrode were tetra (trimethylsilyl) pyrophosphate (compound (1)). Although it was superior to 100 cycles compared to Example 6, which was used alone, it showed a remarkable difference compared to Comparative Examples 11 and 12 without the tetra (trimethylsilyl) pyrophosphate in the positive electrode.
  • Examples 5 and 6 of the present invention showed about 25% improvement in the 90th cycle compared to Comparative Example 11 without using the positive electrode additive, and did not include tetra (trimethylsilyl) pyrophosphate, and added only TMSPa. Compared to Comparative Example 12, the discharge capacity was improved by about 150% or more at the 100th cycle.
  • the life characteristics of a lithium secondary battery may be improved, and particularly, the life characteristics may be improved at a high temperature of 45 ° C. or higher and a high voltage of 4.3 V or higher. You can. Therefore, the nonaqueous electrolyte and the positive electrode according to the exemplary embodiment of the present invention may be usefully used in the lithium secondary battery field.

Abstract

본 발명은 리튬 이차전지의 수명 특성을 향상시킬 수 있으며, 특히 전극의 수분 함유량 또는 프레스 유무에 상관 없이 고온 및 고전압에서 안정적이고 우수한 수명 특성을 나타낼 수 있는 포스페이트계 화합물을 포함하는 비수 전해액 또는 양극을 제공할 수 있다.

Description

리튬 이차전지
본 발명은 포스페이트계 화합물을 포함하는 비수 전해액 및 양극, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 정보 통신 산업의 발전에 따라 전자 기기가 소형화, 경량화, 박형화 및 휴대화되고 있다. 그 결과, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지는 양극, 음극 및 상기 양극과 음극 사이에 리튬 이온의 이동 경로를 제공하는 전해액과 세퍼레이터로 구성되는 전지로서, 리튬 이온이 상기 양극 및 음극에서 흡장 및 방출될 때의 산화, 환원 반응에 의해 전기에너지를 생성한다.
리튬 이차전지의 평균 방전 전압은 약 3.6 내지 3.7V로서, 다른 알칼리 전지, 니켈-카드뮴 전지 등에 비하여 방전 전압이 높은 것이 장점 중의 하나이다. 이러한 높은 구동 전압을 내기 위해서는 충방전 전압 영역인 0 내지 4.2V에서 전기화학적으로 안정한 전해액 조성이 필요하다.
리튬 이차전지의 초기 충전시 리튬 금속 산화물 등의 양극 활물질로부터 나온 리튬 이온은 흑연계 등의 음극 활물질로 이동하여, 음극 활물질의 층간에 삽입된다. 이때, 리튬은 반응성이 강하므로 흑연계 등의 음극 활물질 표면에서 전해액과 음극 활물질을 구성하는 탄소가 반응하여 Li2CO3, Li2O 또는 LiOH 등의 화합물을 생성한다. 이들 화합물은 흑연계 등의 음극 활물질의 표면에 일종의 SEI(Solid Electrolyte Interface) 막을 형성하게 된다.
SEI 막은 이온 터널의 역할을 수행하여 리튬 이온만을 통과시킨다. SEI 막은 이러한 이온 터널의 효과로서, 전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기 용매 분자가 음극 활물질의 층간에 삽입되어 음극 구조가 파괴되는 것을 막아준다. 따라서, 전해액과 음극 활물질의 접촉을 방지함으로써 전해액의 분해가 발생하지 않고, 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다.
종래에는 전해액 첨가제를 포함하지 않거나 열악한 특성의 전해액 첨가제를 포함하는 전해액의 경우 불균일한 SEI막의 형성으로 인해 수명 특성의 향상을 기대하기 어려웠다. 더욱이, 전해액 첨가제를 포함하는 경우에도 그 투입량을 필요량으로 조절하지 못하는 경우, 상기 전해액 첨가제로 인해 고온 반응시 양극 표면이 분해되거나 전해액이 산화 반응을 일으켜 궁극적으로 이차전지의 비가역 용량이 증가하고 수명 특성이 저하되는 문제가 있었다.
[선행기술문헌]
[특허문헌]
대한민국 공개 특허 KR 2012-0132811 A1
본 발명의 해결하고자 하는 제1 기술적 과제는 리튬 이차전지의 비수 전해액에 첨가제를 소량 첨가함으로써, 이차전지의 고온 및 고전압에서의 수명 특성을 향상시킬 수 있는 비수 전해액을 제공하는 것이다
또한, 본 발명의 해결하고자 하는 제2 기술적 과제는 리튬 이차전지의 양극에 첨가제를 소량 첨가함으로써, 이차전지의 고온 및 고전압에서의 수명 특성을 향상시킬 수 있는 양극을 제공하는 것이다.
본 발명이 이루고자 하는 제3 기술적 과제는 상기 비수 전해액 또는 양극을 포함하는 리튬 이차전지를 제공하는 것이다.
상기 해결하고자 하는 과제를 해결하기 위하여, 본 발명은 리튬염; 전해액 용매; 및 하기 화학식 1로 표시되는 화합물을 포함하는 비수 전해액을 제공하는 것이다:
<화학식 1>
Figure PCTKR2014010137-appb-I000001
상기 식에서,
Y1 및 Y2는 각각 독립적으로 Si 또는 Sn이고,
R1 내지 R6은 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이며;
A는
Figure PCTKR2014010137-appb-I000002
이고,
여기서, Y3는 Si 또는 Sn이고,
R7 내지 R9는 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이며,
n은 2 내지 4 이다.
또한, 본 발명은 리튬 전이금속 산화물 및 상기 화학식 1로 표시되는 화합물을 포함하는 양극을 제공하는 것이다.
본 발명의 일 실시예에 따른 상기 화학식 1의 화합물을 포함하는 비수 전해액 및 양극에 의하면, 리튬 이차전지의 수명 특성을 향상시킬 수 있으며, 특히 45 ℃ 이상의 고온 및 4.3 V 이상의 고전압에서 수명 특성을 향상시킬 수 있다. 또한, 전극의 수분 함유량 또는 건조 및 프레스 유무에 상관없이 고온 및 고전압에서 안정적이고 우수한 수명 특성을 나타낼 수 있다.
도 1은 실시예 3과 4, 및 비교예 6 내지 8의 리튬 이차전지에 있어서, 양극의 롤 프레스를 수행하지 않은 이차전지의 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
도 2는 실시예 3과 4, 및 비교예 6 내지 8의 리튬 이차전지에 있어서, 양극의 롤 프레스를 수행한 이차전지의 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
도 3은 실시예 3, 및 비교예 9 및 10의 리튬 이차전지에 있어서, 양극의 건조 및 롤 프레스를 모두 수행하지 않은 이차전지의 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
도 4는 실시예 3, 및 비교예 9 및 10의 리튬 이차전지에 있어서, 양극의 건조는 수행하고 롤 프레스를 수행하지 않은 이차전지의 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
도 5는 실시예 3, 및 비교예 9 및 10의 리튬 이차전지에 있어서, 양극의 건조 및 롤 프레스를 모두 수행한 이차전지의 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
도 6은 실시예 3의 리튬 이차전지에 있어서, 양극의 건조 및 롤 프레스 수행 유무에 따른 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
도 7은 비교예 9의 리튬 이차전지에 있어서, 양극의 건조 및 롤 프레스 수행 유무에 따른 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
도 8은 비교예 10의 리튬 이차전지에 있어서, 양극의 건조 및 롤 프레스 수행 유무에 따른 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
도 9는 실시예 5와 6, 및 비교예 11과 12의 리튬 이차전지의 45 ℃에서의 수명 특성 측정 결과를 나타내는 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예를 따르면, 리튬염; 전해액 용매; 및 하기 화학식 1로 표시되는 화합물을 포함하는 비수 전해액을 제공할 수 있다:
<화학식 1>
Figure PCTKR2014010137-appb-I000003
상기 식에서,
Y1 및 Y2는 각각 독립적으로 Si 또는 Sn이고,
R1 내지 R6은 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이며;
A는
Figure PCTKR2014010137-appb-I000004
이고,
여기서, Y3는 Si 또는 Sn이고,
R7 내지 R9는 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이며,
n은 2 내지 4 이다.
본 발명의 일 실시예에 따르면, 상기 화학식 1의 A에서, n이 3 또는 4인 경우, 상기 A는 하나의 반복단위의 P와 인접하는 다른 반복단위의 O가 서로 연결되어 선형 또는 고리, 또는 선형과 고리가 함께 연결되어 형성될 수 있다.
본 발명의 일 실시예에 따른 상기 화학식 1로 표시되는 화합물은 바람직하게는 하기 (1) 내지 (6)의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다:
Figure PCTKR2014010137-appb-I000005
,
Figure PCTKR2014010137-appb-I000006
일반적으로, 리튬 이차전지에 사용되는 비수 전해액은 전지의 충방전 중 전해질 용매가 전극 표면에서 분해되거나, 탄소재 음극 층간에 코인터칼레이션(co-intercalation)되어 음극 구조를 붕괴시켜, 전지의 안정성을 저해할 수 있다.
상기 문제들은 전지의 초기 충전 시 전해액 용매의 환원에 의해 음극 표면에 형성된 SEI 막에 의해서 해결될 수 있는 것으로 알려져 있다. 하지만 일반적으로 상기 SEI 막은 음극의 지속적인 보호막으로서의 역할을 수행하기에 불충분하며, 결국 전지가 충방전을 반복하게 되면 수명 및 성능이 저하되게 된다. 특히, 종래의 리튬 이차전지의 SEI 막은 열적으로 안정하지 못하여, 전지가 고온 하에서 작동되거나 방치되는 경우, 시간 경과에 따라 증가된 열에너지에 의해 붕괴되기 쉽고, 이에 따라, 고온 하에서는 전지 성능이 더욱 떨어지게 되고, 특히 SEI 막의 붕괴, 전해액 분해 등에 의해 CO2 등의 가스가 계속적으로 발생하여, 전지의 내압 및 두께가 증가하는 문제가 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물을 리튬 이차전지의 비수 전해액 또는 전극에 첨가하는 경우, 리튬 이차전지의 SEI 막의 파괴로 인한 전지 두께 증가 및 성능 저하를 개선시킬 수 있을 뿐만 아니라, 리튬 이차전지가 특히 45 ℃ 이상의 고온 및 4.3 V 이상의 고전압에서 수명 특성을 향상시킬 수 있다.
특히, 상기 첨가를 포함하는 비수 전해액의 경우 이차전지 제조시 전극의 수분 함유량 또는 전극의 건조 및 프레스 유무에 상관없이 고온 및 고전압에서 안정적이고 우수한 수명 특성을 나타낼 수 있다.
구체적으로 상기 화학식 1의 첨가제는 리튬염의 음이온(anion)을 안정화시키는 역할을 할 수 있다. 예를 들어 전해액에는 LiPF6 등 불소(F)를 포함하는 물질을 포함할 경우, 상기 불소는 충방전시 수분 혹은 리튬 불순물 등과 만나 HF(불산)을 생성하고, 이 HF로 인한 부식으로 전극 사이클이 퇴화할 수 있는데, 상기 첨가제는 충방전시 생성되는 수분과 전해액과의 부반응으로 인해 생성될 수 있는 HF의 생성을 억제할 수 있다.
또한, 단순한 구조의 일반적인 포스페이트계 화합물 보다 불안정한 구조의 화학식 1의 화합물, 예를 들어 화학식 1에서 n이 2 이상인 포스페이트계 화합물의 구조는 전기 화학적으로 불안정하여 쉽게 깨져 전극의 피막 형성에 참여할 수 있고, 특히 도전성 피막을 형성할 수 있다. 이러한 두 요인이 이차전지 적용시 성능 향상에 큰 영향을 미칠 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 비수 전해액은 하기 화학식 2로 표시되는 화합물을 더 포함할 수 있다:
<화학식 2>
Figure PCTKR2014010137-appb-I000007
상기 식에서,
R10 내지 R18은 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이다.
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 화합물은 예를 들어, 트리스(트리메틸실릴)포스페이트(TMSPa)일 수 있다.
상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 혼합비는 1: 0.1 내지 2 중량비, 바람직하게는 1: 0.2 내지 1 중량비, 더욱 바람직하게는 1: 0.2 내지 0.6 중량비인 것이 바람직하다.
또한, 상기 화학식 1로 표시되는 화합물은 비수 전해액 총량을 기준으로 0.01 중량% 내지 5 중량%, 바람직하게는 0.1 중량% 내지 2 중량% 일 수 있다.
상기 화학식 1로 표시되는 화합물은 그 함량이 너무 적으면 초기 이차전지 작동시 모두 소모되어 충방전 또는 장기 보존시 수명 열화가 발생할 수 있고, 그 함량이 너무 많으면 남는 첨가제의 부반응으로 인해 전지의 용량 및 안정성 특성에 악영향을 미칠 수 있다.
한편, 본 발명의 일 실시예에 따른 비수 전해액에 포함되는 리튬염은 당 분야에서 통상적으로 사용되는 리튬염을 사용할 수 있으며, 예를 들어 LiPF6, LiAsF6, LiCF3SO3, LiN(CF3SO2)2, LiBF4, LiBF6, LiSbF6, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiSO3CF3 및 LiClO4로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 본 발명에 사용되는 전해액 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
그 중에서 대표적으로 환형 카보네이트, 선형 카보네이트 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다. 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다.
또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 전해액 용매 중 환형 카보네이트는 프로필렌 카보네이트, 에틸렌 카보네이트 및 이들의 혼합물을 포함하는 것이 바람직하며, 이는 고점도의 유기 용매로서 유전율이 높아 전해액 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있다.
또한, 상기 환형 카보네이트에 디에틸 카보네이트, 디메틸 카보네이트, 에틸메틸 카보네이트 및 이들의 혼합물인 선형 카보네이를 혼합하여 사용하는 것이 바람직하다. 이들은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 가지는 전해액을 만들 수 있어서 더욱 바람직하게 사용될 수 있다.
또한, 상기 전해액 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 에틸 프로피오네이트(EP), 메틸 프로피오네이트(MP), γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 이중에서도 특히 저점도인 에틸 프로피오네이트(EP), 메틸 프로피오네이트(MP) 및 이들의 혼합물을 포함하는 것이 바람직하다.
한편, 본 발명은 또 다른 실시예에 따라, 리튬 전이금속 산화물 및 상기 화학식 1로 표시되는 화합물을 포함하는 양극을 제공할 수 있다:
본 발명의 일 실시예에 따르면, 상기 화학식 1의 A에서, n이 3 또는 4인 경우, 상기 A는 하나의 반복단위의 P와 인접하는 다른 반복단위의 O가 서로 연결되어 선형 또는 고리, 또는 선형과 고리가 함께 연결되어 형성될 수 있다.
상기 화학식 1의 화합물에 있어서, 바람직한 화합물은 하기 (1) 내지 (6)의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다:
Figure PCTKR2014010137-appb-I000008
,
Figure PCTKR2014010137-appb-I000009
또한, 본 발명의 일 실시예에 다르면, 상기 양극은 상기 화학식 2로 표시되는 화합물을 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 화합물은 예를 들어, 트리스(트리메틸실릴)포스페이트(TMSPa)일 수 있다.
이때, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 혼합비는 1: 0.1 내지 2 중량비, 바람직하게는 1: 0.2 내지 1 중량비, 더욱 바람직하게는 1: 0.2 내지 0.6 중량비인 것이 바람직하다.
본 발명의 일 실시예에 따르면, 양극에 상기 화학식 1로 표시되는 화합물을 첨가제로 포함하는 경우, 리튬 이차전지의 수명 특성을 향상시킬 수 있으며, 특히 45 ℃ 이상의 고온 및 4.3 V 이상의 고전압에서 수명 특성을 향상시킬 수 있다. 또한, 전극의 수분 함유량 또는 건조 및 프레스 유무에 상관없이 고온 및 고전압에서 안정적이고 우수한 수명 특성을 나타낼 수 있다.
또한, 단순한 구조의 일반적인 포스페이트계 화합물 보다 불안정한 구조의 화학식 1의 화합물, 예를 들어 화학식 1에서 n이 2 이상인 포스페이트계 화합물의 구조는 전기 화학적으로 불안정하여 쉽게 깨져 전극의 피막 형성에 참여할 수 있고, 특히 도전성 피막을 형성할 수 있다. 이러한 요인이 이차전지 적용시 성능 향상, 특히 수명 특성에 큰 영향을 미칠 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 양극 활물질, 첨가제, 도전제 및 바인더를 포함하는 양극 혼합 슬러리 총량을 기준으로 0.01 중량% 내지 5 중량%, 바람직하게는 0.1 중량% 내지 2 중량% 일 수 있다.
상기 양극 활물질, 예를 들어 리튬 전이금속 산화물은 하기 화학식 3으로 표시되는 화합물일 수 있다:
<화학식 3>
Li[LixNiaCobMnc]O2 (-0.05 ≤ x ≤ +0.5, 0 < a, b, c ≤1, x+a+b+c=1, 0.4 < c < 1)
한편, 본 발명의 일 실시예에 따르는 리튬 이차전지는 상기 양극; 음극; 상기 양극과 상기 음극 사이에 개재된 세퍼레이터; 및 비수 전해액을 포함하며, 상기 양극 또는 비수 전해액은 상기 화학식 1의 화합물을 포함할 수 있다.
한편, 상기 음극 활물질로는 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있으며, 바람직하게는 결정질 탄소로 천연흑연과 인조흑연과 같은 흑연질(graphite) 탄소일 수 있다.
또한, 상기 세퍼레이터는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름이 단독으로 또는 2종 이상이 적층된 것일 수 있다. 이 외에 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으며, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 리튬 이차전지는 충전 전압에 4.3V 내지 5.0V 범위일 수 있으며, 상기 고전압으로 충전하여도 전지의 수명 특성이 우수하다.
또한, 전극의 수분 함유량 또는 프레스 유무에 상관 없이 예를 들어, 45 ℃ 이상의 고온 및 고전압에서 안정적이고 우수한 수명 특성을 나타낼 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
<화학식 1을 포함하는 비수 전해액의 제조>
실시예 1
에틸렌 카보네이트(EC):디메틸 카보네이트(DMC):에틸메틸 카보네이트(EMC) =3:4:3 (부피비)의 조성을 갖는 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하였다. 또한, 비수 전해액 첨가제로서, 테트라(트리메틸실릴)파이로포스페이트(화학물 (1) 및 트리스(트리메틸실릴)포스페이트(TMSPa)를 3:1의 중량비로 제조한 후, 상기 혼합물에 상기 첨가제를 비수 전해액 총량을 기준으로 2 중량%의 양으로 첨가하여 비수 전해액을 제조하였다.
실시예 2
상기 실시예 1의 비수 전해액의 제조에 있어서, 비수 전해액 첨가제로서, 테트라(트리메틸실릴)파이로포스페이트 단독으로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 비수 전해액을 제조하였다.
비교예 1
상기 실시예 1의 비수 전해액의 제조에 있어서, 비수 전해액 첨가제로서 테트라(트리메틸실릴)파이로포스페이트 및 트리스(트리메틸실릴)포스페이트(TMSPa)의 혼합 첨가제 대신, 프로판 설톤(PS) 및 비닐렌 카보네이트(VC)를 1.5:1중량비로 제조하여 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행 하여 비수 전해액을 제조하였다.
비교예 2
상기 실시예 1의 비수 전해액의 제조에 있어서, 비수 전해액 첨가제로서 테트라(트리메틸실릴)파이로포스페이트 및 트리스(트리메틸실릴)포스페이트(TMSPa)의 혼합 첨가제 대신, 프로판 설톤(PS), 비닐렌 카보네이트(VC) 및 에틸렌설페이트(ESa)를 0.5:3:1 중량비로 제조하여 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행 하여 비수 전해액을 제조하였다.
비교예 3
상기 실시예 1의 비수 전해액의 제조에 있어서, 비수 전해액 첨가제로서 테트라(트리메틸실릴)파이로포스페이트 및 트리스(트리메틸실릴)포스페이트(TMSPa)의 혼합 첨가제 대신, 프로판 설톤(PS) 및 비닐렌 카보네이트(VC)를 1.5:3 중량비로 제조하여 첨가하고, LiPF6를 1.3M 농도로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행 하여 비수 전해액을 제조하였다.
비교예 4
상기 실시예 1의 비수 전해액의 제조에 있어서, 비수 전해액 첨가제로서 테트라(트리메틸실릴)파이로포스페이트 및 트리스(트리메틸실릴)포스페이트(TMSPa)의 혼합 첨가제 대신, 프로판 설톤(PS), 비닐렌 카보네이트(VC) 및 LiBF4를 1.5:1:2의 중량비로 제조하여 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행 하여 비수 전해액을 제조하였다.
비교예 5
상기 실시예 1의 비수 전해액의 제조에 있어서, 비수 전해액 첨가제로서 테트라(트리메틸실릴)파이로포스페이트 및 트리스(트리메틸실릴)포스페이트(TMSPa)의 혼합 첨가제 대신, 트리스(트리메틸실릴)포스페이트(TMSPa) 단독을 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행 하여 비수 전해액을 제조하였다.
[리튬 이차전지의 제조]
실시예 3
양극 활물질로서 Li(Li0.2Mn0.55Ni0.15Co0.1)O2 94 중량%, 도전제로 카본 블랙(carbon black) 3 중량%, 바인더로 PVdF 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조하였다.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극을 PE 분리막과 함께 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 실시예 1에서 제조된 비수 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 4
비수 전해액으로서, 실시예 2에서 제조된 비수 전해액을 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.
비교예 6
비수 전해액으로서, 비교예 1에서 제조된 비수 전해액을 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.
비교예 7 내지 10
비수 전해액으로서, 비교예 2 내지 5에서 제조된 비수 전해액을 각각 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.
실험예 1
<45℃에서의 수명 특성-양극의 롤 프레스(roll press) 수행 유무에 따른 리튬 이차전지의 수명 특성 비교>
실시예 3과 4, 및 비교예 6 내지 8에서 제조된 리튬 이차전지(전지용량 3.26 mAh 기준)를 45℃에서 1C의 정전류로 4.35V가 될 때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 0.163 mAh가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 2 C의 정전류로 2.94V가 될 때까지 방전하였다. 이를 1 내지 100 회의 사이클 및 200회의 사이클로 반복 실시하였다. 그 결과를 각각 도 1 및 2에 나타내었다.
구체적으로 살펴보면, 도 1은 양극 제조시 롤 프레스(roll press)를 수행하지 않은 양극을 사용한 리튬 이차전지의 수명 특성 결과이고, 도 2는 롤 프레스(roll press)를 수행한 양극을 사용한 리튬 이차전지의 수명 특성 결과이다.
도 1과 2를 살펴보면, 테트라(트리메틸실릴)파이로포스페이트(화합물 (1))을 비수 전해액의 첨가제로 포함하는 본 발명의 실시예 3 및 4의 리튬 이차전지는 양극 제조시 롤 프레스의 수행 유무에 상관없이 100 회의 사이클까지 기울기가 완만하였다.
이에 반해, 비교예 6 내지 8의 경우, 양극에 롤 프레스를 수행하지 않은 경우 1 회의 사이클 수행 이후부터 기울기가 급격히 떨어져 70 회 사이클 이후 측정이 불가능하였으며, 양극에 롤 프레스를 수행한 경우 약 25 회 사이클까지 완만한 기울기를 유지하다가 약 50회 사이클까지는 사이클 수가 증가할수록 기울기가 현저히 감소함을 확인할 수 있다.
따라서, 도 1과 2의 수명 특성 결과, 본 발명의 실시예와 같이 테트라(트리메틸실릴)파이로포스페이트 단독, 또는 테트라(트리메틸실릴)파이로포스페이트 및 트리스(트리메틸실릴)포스페이트(TMSPa)의 혼합 첨가제를 사용한 경우, 양극의 롤 프레스 수행 유무에 상관없이 200 회 사이클까지 우수한 수명 성능을 보임을 확인하였다
실험예 2
<45℃에서의 수명 특성-양극의 건조 및 롤 프레스(roll press) 수행 유무에 따른 리튬 이차전지의 수명 특성 비교>
실시예 3, 및 비교예 9와 10에서 제조된 리튬 이차전지(전지용량 3.26 mAh 기준)를 45℃에서 1C의 정전류로 4.35V가 될 때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 0.163 mAh가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 2 C의 정전류로 2.94V가 될 때까지 방전하였다. 이를 1 내지 30 회의 사이클로 반복 실시하였다.
이때, 실시예 3, 및 비교예 9와 10에서 제조된 리튬 이차전지에 사용된 양극의 건조 및 롤 프레스 수행 유무는 하기 표 1과 같다:
표 1
건조 롤 프레스
(A) Set X X
(B) Set O X
(C) Set O O
상기 표 1에 따른 수명 특성 결과를 도 3 내지 5에 나타내었다.
도 3은 양극 제조시 건조 및 롤 프레스(roll press)를 모두 수행하지 않은 양극을 사용한 리튬 이차전지의 수명 특성 결과이고(A), 도 4는 건조는 수행하고, 롤 프레스를 수행하지 않은 양극을 사용한 리튬 이차전지의 수명 특성 결과이고(B), 도 5는 건조 및 롤 프레스(roll press)를 모두 수행한 양극을 사용한 리튬 이차전지의 수명 특성 결과이다(C).
구체적으로 살펴보면, 도 3과 같이 건조 및 롤 프레스(roll press)를 모두 수행하지 않은 양극을 사용한 리튬 이차전지에 대해 수명 특성 결과, 실시예 3은 30 회의 사이클까지 수명 특성 결과 그래프가 완만하였다. 이에 반해, 비교예 9 및 10의 이차전지는 10 회의 사이클째부터 기울기가 현저히 감소함을 확인할 수 있다. 특히, 전해액 첨가제로서 TMSPa만을 사용한 비교예 10의 리튬 이차전지의 경우 5회의 사이클째부터 급격히 떨어짐을 알 수 있다.
도 4 및 도 5도 마찬가지로, 실시예 3의 리튬 이차전지의 경우 건조 및 롤 프레스 수행 유무와 상관없이, 안정적인 수명 특성을 보여주었다. 이에 반해, 비교예 9 및 10의 리튬 이차전지의 경우 건조 및 롤 프레스에 영향을 받아, 수명 성능이 실시예 3에 비해 수명 성능이 저하되었다.
도 6 내지 8은 도 3 내지 5의 그래프를 리튬 이차전지별로 분리하여 나타낸 그래프이다.
도 6의 경우, 실시예 3의 리튬 이차전지에 대한 건조 및 롤 프레스 수행 유무에 대한 그래프이다. 실시예 3의 리튬 이차전지는 건조 및 롤 프레스 수행 유무에 상관 없이 30회의 사이클까지 수명 특성이 모두 우수함을 확인할 수 있다.
이에 반해, 도 7의 경우는 비교예 9의 리튬 이차전지에 대한 건조 및 롤 프레스 수행 유무에 대한 그래프이다. 비교예 9의 리튬 이차전지는 건조 및 롤 프레스를 모두 수행한 경우 30회의 사이클까지 수명 특성이 우수하였으나, 건조 또는 롤 프레스를 수행하지 않은 경우 수명 특성이 감소하였다.
한편, 도 8의 경우 비교예 10의 리튬 이차전지에 대한 건조 및 롤 프레스 수행 유무에 대한 그래프이다. 비교예 10의 리튬 이차전지는 건조 및 롤 프레스를 모두 수행한 경우 30회의 사이클까지 수명 특성이 우수하였으나, 건조 또는 롤 프레스를 수행하지 않은 경우 수명 특성이 감소하였다. 특히, 비교예 10의 리튬 이차전지는 비교예 9에 비해도 건조 및 롤 프레스 수행 유무에 영향을 더 받음을 알 수 있다.
<화학식 1을 포함하는 양극의 제조>
실시예 5
테트라(트리메틸실릴)파이로포스페이트(화합물 (1)) 및 트리스(트리메틸실릴)포스페이트(TMSPa)를 3:1의 중량비로 혼합하여 첨가제 혼합물을 제조한 후, 양극 혼합물 슬러리 전체 중량에 대해 상기 첨가제 혼합물을 2 중량%, 양극 활물질로서 Li(Li0.2Mn0.55Ni0.15Co0.1)O2 92.12 중량%, 도전제로 카본 블랙(carbon black) 2.94 중량%, 바인더로 PVdF 2.94 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조하였다.
<리튬 이차전지의 제조>
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
비수 전해액은 에틸렌 카보네이트(EC):디메틸 카보네이트(DMC):에틸메틸 카보네이트(EMC) =3:4:3 (부피비)의 조성을 갖는 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하였다. 상기 용액에 비수 전해액 첨가제로서, 비닐렌 카보네이트(VC) 및 프로판 설톤(PS)을 1:1.5 중량비로 첨가하여 비수 전해액을 제조하였다.
이와 같이 제조된 양극과 음극을 PE 분리막과 함께 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 6
상기 실시예 5의 양극 제조시, 첨가제 혼합물을 사용하는 대신 테트라(트리메틸실릴)파이로포스페이트 단독을 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 11
상기 실시예 5의 양극 제조시, 첨가제 혼합물을 사용하지 않은 것을 제외하고는, 실시예 5와 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 12
상기 실시예 5의 양극 제조시, 첨가제 혼합물을 사용하는 대신 TMSPa 단독을 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
실험예 3
<45℃에서의 수명 특성-양극의 건조 및 롤 프레스(roll press) 수행>
실시예 5와 6, 및 비교예 11과 12에서 제조된 리튬 이차전지(전지용량 3.26 mAh 기준)를 45℃에서 1C의 정전류로 4.35V가 될 때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 0.163 mAh가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 2 C의 정전류로 2.94V가 될 때까지 방전하였다. 이를 1 내지 100 회의 사이클로 반복 실시하였다.
이때, 실시예 5와 6, 및 비교예 11과 12에서 제조된 리튬 이차전지에 사용된 양극의 건조 및 롤 프레스는 모두 수행되었다. 상기 수명 특성 결과는 도 9에 나타내었다.
도 9를 살펴보면, 첨가제로서 테트라(트리메틸실릴)파이로포스페이트(화합물 (1))를 양극에 포함하는 본 발명의 실시예 5와 6의 리튬 이차전지는 100 회의 사이클까지 기울기가 완만하였다.
또한, 양극의 첨가제로서 테트라(트리메틸실릴)파이로포스페이트(화합물 (1)) 및 TMSPa를 혼합한 첨가제 혼합물을 사용한 실시예 5의 수명특성이 테트라(트리메틸실릴)파이로포스페이트(화합물 (1))를 단독으로 사용한 실시예 6에 비해 100회 사이클까지 더 우수하였으나, 양극에 테트라(트리메틸실릴)파이로포스페이트를 포함하지 않은 비교예 11 및 12에 비해 현저한 차이를 보였다.
구체적으로, 본 발명의 실시예 5와 6은 양극 첨가제를 사용하지 않은 비교예 11에 비해 90회째 사이클에서는 약 25% 정도 향상됨을 보였고, 테트라(트리메틸실릴)파이로포스페이트을 포함하지 않고, TMSPa 만을 첨가한 비교예 12에 비해 100회째 사이클에서는 약 150% 이상 방전 용량이 향상됨을 보였다.
따라서, 도 9의 리튬 이차전지의 수명 특성 결과, 본 발명의 실시예와 같이 테트라(트리메틸실릴)파이로포스페이트(화합물 (1)) 단독, 또는 테트라(트리메틸실릴)파이로포스페이트(화합물 (1)) 및 트리스(트리메틸실릴)포스페이트(TMSPa)의 혼합 첨가제를 사용한 경우, 화학식 1로 표시되는 화합물을 포함하지 않은 비교예들에 비해 고온 및 고전압에서 우수한 수명 성능을 보임을 확인하였다.
본 발명의 일 실시예에 따른 상기 화학식 1의 화합물을 포함하는 비수 전해액 및 양극에 의하면, 리튬 이차전지의 수명 특성을 향상시킬 수 있으며, 특히 45 ℃ 이상의 고온 및 4.3 V 이상의 고전압에서 수명 특성을 향상시킬 수 있다. 따라서, 본 발명의 일 실시예에 따른 비수 전해액 및 양극은 리튬 이차전지 분야에 유용하게 사용될 수 있다.

Claims (20)

  1. 리튬염; 전해액 용매; 및 하기 화학식 1로 표시되는 화합물을 포함하는 비수 전해액:
    <화학식 1>
    Figure PCTKR2014010137-appb-I000010
    상기 식에서,
    Y1 및 Y2는 각각 독립적으로 Si 또는 Sn이고,
    R1 내지 R6은 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이며;
    A는
    Figure PCTKR2014010137-appb-I000011
    이고,
    여기서, Y3는 Si 또는 Sn이고,
    R7 내지 R9는 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이며,
    n은 2 내지 4 이다.
  2. 제 1 항에 있어서,
    상기 화학식 1의 A에서, n이 3 또는 4인 경우, 상기 A는 하나의 반복단위의 P와 인접하는 다른 반복단위의 O가 서로 연결되어 선형 또는 고리, 또는 선형과 고리가 함께 연결되어 형성되는 것을 특징으로 하는 비수 전해액.
  3. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 (1) 내지 (6)의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 비수 전해액:
    Figure PCTKR2014010137-appb-I000012
    ,
    Figure PCTKR2014010137-appb-I000013
    .
  4. 제 1 항에 있어서,
    상기 비수 전해액은 하기 화학식 2로 표시되는 화합물을 더 포함하는 것을 특징으로 하는 비수 전해액.
    <화학식 2>
    Figure PCTKR2014010137-appb-I000014
    상기 식에서,
    R10 내지 R18은 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이다.
  5. 제 4 항에 있어서,
    상기 화학식 2로 표시되는 화합물은 트리스(트리메틸실릴)포스페이트(TMSPa)인 것을 특징으로 하는 비수 전해액.
  6. 제 4 항에 있어서,
    상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 혼합비는 1: 0.1 내지 2 중량비인 것을 특징으로 하는 비수 전해액.
  7. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 화합물은 비수 전해액 총량을 기준으로 0.01 중량% 내지 5 중량%인 것을 특징으로 하는 비수 전해액.
  8. 제 1 항에 있어서,
    상기 리튬염은 LiPF6, LiAsF6, LiCF3SO3, LiN(CF3SO2)2, LiBF4, LiBF6, LiSbF6, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiSO3CF3 및 LiClO4로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 비수 전해액.
  9. 제 1 항에 있어서,
    상기 전해액 용매는 선형 카보네이트, 환형 카보네이트, 에스테르, 또는 이들의 조합을 포함하는 것을 특징으로 하는 비수 전해액.
  10. 제 9 항에 있어서,
    상기 선형 카보네이트는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하고; 상기 환형 카보네이트는 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하고; 상기 에스테르는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 에틸 프로피오네이트(EP), 메틸 프로피오네이트(MP), γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 비수 전해액.
  11. 리튬 전이금속 산화물 및 하기 화학식 1로 표시되는 화합물을 포함하는 양극:
    <화학식 1>
    Figure PCTKR2014010137-appb-I000015
    상기 식에서,
    Y1 및 Y2는 각각 독립적으로 Si 또는 Sn이고,
    R1 내지 R6은 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이며;
    A는
    Figure PCTKR2014010137-appb-I000016
    이고,
    여기서, Y3는 Si 또는 Sn이고,
    R7 내지 R9는 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이며,
    n은 2 내지 4 이다.
  12. 제 11 항에 있어서,
    상기 화학식 1의 A에서, n이 3 또는 4인 경우, 상기 A는 하나의 반복단위의 P와 인접하는 다른 반복단위의 O가 서로 연결되어 선형 또는 고리, 또는 선형과 고리가 함께 연결되어 형성되는 것을 특징으로 하는 양극.
  13. 제 11 항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 (1) 내지 (6)의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 양극:
    Figure PCTKR2014010137-appb-I000017
    ,
    Figure PCTKR2014010137-appb-I000018
    .
  14. 제 11 항에 있어서,
    상기 양극은 하기 화학식 2로 표시되는 화합물을 더 포함하는 것을 특징으로 하는 양극:
    <화학식 2>
    Figure PCTKR2014010137-appb-I000019
    상기 식에서,
    R10 내지 R18은 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이다.
  15. 제 14 항에 있어서,
    상기 화학식 2로 표시되는 화합물은 트리스(트리메틸실릴)포스페이트(TMSPa)인 것을 특징으로 하는 양극.
  16. 제 14 항에 있어서,
    상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 혼합비는 1: 0.1 내지 2 중량비인 것을 특징으로 하는 양극.
  17. 제 11 항에 있어서,
    상기 화학식 1로 표시되는 화합물은 리튬 전이금속 산화물 총량을 기준으로 0.01 중량% 내지 5 중량%인 것을 특징으로 하는 양극.
  18. 제 11 항에 있어서,
    상기 리튬 전이금속 산화물은 하기 화학식 3으로 표시되는 화합물인 것을 특징으로 하는 양극:
    <화학식 3>
    Li[LixNiaCobMnc]O2 (-0.05 ≤ x ≤ +0.5, 0 < a, b, c ≤1, x+a+b+c=1, 0.4 < c < 1).
  19. 제 1 항 또는 제 11 항의 양극을 포함하는 리튬 이차전지.
  20. 제 19 항에 있어서,
    상기 리튬 이차전지의 충전 전압은 4.3V 내지 5.0V 범위인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/010137 2013-10-28 2014-10-27 리튬 이차전지 WO2015064987A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/442,023 US10115968B2 (en) 2013-10-28 2014-10-27 Lithium secondary battery
EP14857766.1A EP2908375B1 (en) 2013-10-28 2014-10-27 Lithium secondary battery
IN4228DEN2015 IN2015DN04228A (ko) 2013-10-28 2014-10-27
PL14857766T PL2908375T3 (pl) 2013-10-28 2014-10-27 Litowa bateria akumulatorowa
JP2015546410A JP6241015B2 (ja) 2013-10-28 2014-10-27 リチウム二次電池
CN201480003568.7A CN105659425B (zh) 2013-10-28 2014-10-27 锂二次电池
US16/130,019 US10826063B2 (en) 2013-10-28 2018-09-13 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0128641 2013-10-28
KR20130128641 2013-10-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/442,023 A-371-Of-International US10115968B2 (en) 2013-10-28 2014-10-27 Lithium secondary battery
US16/130,019 Division US10826063B2 (en) 2013-10-28 2018-09-13 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2015064987A1 true WO2015064987A1 (ko) 2015-05-07

Family

ID=53004518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010137 WO2015064987A1 (ko) 2013-10-28 2014-10-27 리튬 이차전지

Country Status (9)

Country Link
US (2) US10115968B2 (ko)
EP (1) EP2908375B1 (ko)
JP (1) JP6241015B2 (ko)
KR (1) KR101640994B1 (ko)
CN (1) CN105659425B (ko)
IN (1) IN2015DN04228A (ko)
PL (1) PL2908375T3 (ko)
TW (1) TWI539643B (ko)
WO (1) WO2015064987A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192401A (ja) * 2015-03-30 2016-11-10 旭化成株式会社 非水蓄電デバイス用電解液添加剤、非水蓄電デバイス用電解液、及びリチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004273A (zh) * 2017-06-07 2018-12-14 宁德时代新能源科技股份有限公司 电解液及二次电池
KR102270118B1 (ko) 2017-11-13 2021-06-28 주식회사 엘지에너지솔루션 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
KR102460958B1 (ko) * 2019-07-16 2022-10-31 삼성에스디아이 주식회사 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
CN117276673B (zh) * 2023-11-21 2024-02-27 天鹏锂能技术(淮安)有限公司 一种电解液及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804696B1 (ko) * 2006-11-20 2008-02-18 삼성에스디아이 주식회사 리튬 이차 전지용 전해질, 및 이를 포함하는 리튬 이차전지
KR20080108043A (ko) * 2007-06-07 2008-12-11 주식회사 엘지화학 리튬이온 이차전지용 비수 전해액 및 이를 함유한 리튬이온이차전지
KR20090018003A (ko) * 2007-08-16 2009-02-19 주식회사 엘지화학 비수 전해액 리튬 이차전지
KR20100090150A (ko) * 2009-02-05 2010-08-13 리켐주식회사 고순도의 트리스트리메틸실릴포스페이트 제조방법
US20120202122A1 (en) * 2011-02-09 2012-08-09 Su-Hee Han Rechargeable lithium battery
KR20120132811A (ko) 2011-05-30 2012-12-10 파낙스 이텍(주) 디플루오로 인산염을 포함하는 전지용 비수 전해액

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538886B2 (ja) * 1999-03-16 2010-09-08 住友化学株式会社 非水電解液およびこれを用いたリチウム二次電池
US6379846B1 (en) * 1999-03-16 2002-04-30 Sumitomo Chemical Company, Limited Non-aqueous electrolyte and lithium secondary battery using the same
JP2005293962A (ja) * 2004-03-31 2005-10-20 Sony Corp 電解質用組成物、高分子電解質およびそれを用いた電池
KR100708210B1 (ko) * 2005-12-07 2007-04-16 테크노세미켐 주식회사 2차전지용 비수전해액
EP2320501B1 (en) * 2008-08-06 2015-09-30 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery
DE102010004541A1 (de) 2010-01-14 2011-07-21 Christian-Albrechts-Universität zu Kiel, 24118 Chimäre humane beta-Defensine
WO2011125180A1 (ja) * 2010-04-06 2011-10-13 株式会社 東芝 非水電解質電池
JP5427101B2 (ja) * 2010-04-27 2014-02-26 株式会社日立製作所 非水電解液及びそれを用いた非水電解液二次電池
US20120231325A1 (en) 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
JP5498419B2 (ja) * 2011-03-22 2014-05-21 株式会社東芝 非水電解質電池及び電池パック
US20130250485A1 (en) 2011-06-09 2013-09-26 Wildcat Discovery Technologies, Inc. Materials for electrolytes and methods for use
US8703344B2 (en) 2011-06-09 2014-04-22 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
CN104025353A (zh) * 2011-10-04 2014-09-03 旭化成株式会社 用于电池组电解质的材料及使用方法
JP2015072867A (ja) * 2013-10-04 2015-04-16 旭化成株式会社 リチウムイオン二次電池の製造方法
US20150099193A1 (en) 2013-10-04 2015-04-09 Asahi Kasei Kabushiki Kaisha Electrolytic solution for non-aqueous energy storage device and lithium ion secondary battery
US10050306B2 (en) * 2013-10-04 2018-08-14 Asahi Kasei Kabushiki Kaisha Electrolyte and lithium-ion secondary battery
JP2015092470A (ja) 2013-10-04 2015-05-14 旭化成株式会社 電解液及びリチウムイオン二次電池
JP6600449B2 (ja) 2013-10-04 2019-10-30 旭化成株式会社 リチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804696B1 (ko) * 2006-11-20 2008-02-18 삼성에스디아이 주식회사 리튬 이차 전지용 전해질, 및 이를 포함하는 리튬 이차전지
KR20080108043A (ko) * 2007-06-07 2008-12-11 주식회사 엘지화학 리튬이온 이차전지용 비수 전해액 및 이를 함유한 리튬이온이차전지
KR20090018003A (ko) * 2007-08-16 2009-02-19 주식회사 엘지화학 비수 전해액 리튬 이차전지
KR20100090150A (ko) * 2009-02-05 2010-08-13 리켐주식회사 고순도의 트리스트리메틸실릴포스페이트 제조방법
US20120202122A1 (en) * 2011-02-09 2012-08-09 Su-Hee Han Rechargeable lithium battery
KR20120132811A (ko) 2011-05-30 2012-12-10 파낙스 이텍(주) 디플루오로 인산염을 포함하는 전지용 비수 전해액

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192401A (ja) * 2015-03-30 2016-11-10 旭化成株式会社 非水蓄電デバイス用電解液添加剤、非水蓄電デバイス用電解液、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
CN105659425A (zh) 2016-06-08
US10826063B2 (en) 2020-11-03
PL2908375T3 (pl) 2019-01-31
CN105659425B (zh) 2018-05-25
TWI539643B (zh) 2016-06-21
IN2015DN04228A (ko) 2015-10-16
US20150325879A1 (en) 2015-11-12
JP2016504725A (ja) 2016-02-12
US10115968B2 (en) 2018-10-30
KR101640994B1 (ko) 2016-07-19
US20190013520A1 (en) 2019-01-10
EP2908375B1 (en) 2018-09-19
JP6241015B2 (ja) 2017-12-06
TW201539835A (zh) 2015-10-16
EP2908375A1 (en) 2015-08-19
KR20150048658A (ko) 2015-05-07
EP2908375A4 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2020130575A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013012250A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2018169369A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 전해질
WO2015064987A1 (ko) 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022055258A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2013009155A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2017204599A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2019107838A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018048188A1 (ko) 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021006629A1 (ko) 음극의 제조방법
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022080770A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지
WO2021049875A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018048189A1 (ko) 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
WO2019172650A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2023191541A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2023191572A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14442023

Country of ref document: US

Ref document number: 2014857766

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015546410

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE