WO2023084980A1 - 電気化学的センサ及び測定装置 - Google Patents

電気化学的センサ及び測定装置 Download PDF

Info

Publication number
WO2023084980A1
WO2023084980A1 PCT/JP2022/037889 JP2022037889W WO2023084980A1 WO 2023084980 A1 WO2023084980 A1 WO 2023084980A1 JP 2022037889 W JP2022037889 W JP 2022037889W WO 2023084980 A1 WO2023084980 A1 WO 2023084980A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
electrochemical sensor
switch
measurement
sensor
Prior art date
Application number
PCT/JP2022/037889
Other languages
English (en)
French (fr)
Inventor
英之 山下
達矢 小林
和也 喜多山
茉耶 巻田
誠治 福永
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to CN202280053711.8A priority Critical patent/CN117795327A/zh
Publication of WO2023084980A1 publication Critical patent/WO2023084980A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to electrochemical sensors and measuring devices.
  • an electrochemical sensor that measures the concentration ratio between two ion species contained in a liquid to be measured is known.
  • a calibration operation is performed to determine the characteristic parameters of the sensor head used for sensing using a calibration solution. is possible.
  • Patent Document 1 a standard solution (calibration solution) having a predetermined concentration ratio between two ion species is used to calculate a reference potential for calibrating the potential difference detected for the liquid to be measured.
  • Patent Document 2 describes a multi-ion sensor that measures the concentration ratio of sodium ions and potassium ions in a sample solution based on the respective sensitivity coefficients of the sodium ion electrode and the potassium ion electrode obtained by calibration.
  • the measurement operation will be performed without proper calibration, resulting in inaccurate measurements. may not be obtained.
  • inaccurate calibration based on the liquid to be measured will be performed, resulting in accurate measured values in subsequent measurements. may not be obtained.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique capable of suppressing unintended actions of a user caused by an erroneous operation of the user. .
  • the present invention adopts the following configuration.
  • an electrochemical sensor that measures the concentration ratio of sodium ions and potassium ions in a liquid to be measured, comprising: a sensor head; a calibration operation for calculating characteristic parameters of the sensor head based on sensing data of the sensor head in a state where the sensor head is in contact with the liquid to be measured; and a computing unit capable of performing a measurement operation for calculating the concentration ratio based on the sensing data of the calibration member, and the sensor head is brought into contact with the calibration agent by coupling with the calibration member.
  • the measurement operation is restricted when the calibration member is coupled, and the calibration operation is restricted when the calibration member is not coupled.
  • the measurement operation is restricted when the calibration member and the electrochemical sensor are coupled so that the sensor head is in contact with the calibration agent, and the calibration is performed when the calibration member and the electrochemical sensor are not coupled. Movement is restricted. For this reason, user errors caused by user errors, such as the measurement operation being performed while the sensor head is in contact with the calibration agent, or the calibration operation being performed while the sensor head is not in contact with the calibration agent. unintended operation can be suppressed.
  • the calibrating operation may be performed when coupled with the calibration member, and the measurement operation may be performed when not coupled with the calibration member.
  • the calibration operation can be performed while the sensor head is in contact with the calibration agent, and the measurement operation can be performed while the sensor head is not in contact with the calibration agent.
  • the electrochemical sensor comprising: a calibration switch for causing the calculation unit to perform the calibration operation; and a measurement switch for causing the calculation unit to perform the measurement operation, and the calibration member
  • the measurement switch cannot be operated when coupled with the calibration member, and the calibration switch cannot be operated when the calibration member is not coupled. According to this configuration, it is possible to restrict the measurement operation when the sensor head is in contact with the calibration agent, and restrict the calibration operation when the sensor head is not in contact with the calibration agent.
  • the inoperable state is, for example, a state in which an operation cannot be performed by a normal method.
  • the calibration switch is operable when coupled with the calibration member, and the measurement switch is operable when uncoupled with the calibration member.
  • the calibration operation can be performed when the sensor head is in contact with the calibration agent, and the measurement operation can be performed when the sensor head is not in contact with the calibration agent.
  • the calibration member may be a calibration holder that holds the electrochemical sensor while the sensor head is in contact with the calibration agent.
  • the measurement operation is restricted by holding the electrochemical sensor in the calibration holder, and the calibration operation is restricted by removing the electrochemical sensor from the calibration holder after the calibration operation. Also, since the user does not have to hold the electrochemical sensor by himself/herself, operation of the calibration switch is facilitated.
  • the calibration holder includes a storage portion that stores the calibration agent, and the electric current is generated while the sensor head is in contact with the calibration agent stored in the storage portion.
  • a chemical sensor may be retained. According to this configuration, by holding the electrochemical sensor in the calibration holder, the sensor head is brought into contact with the calibration agent and the measurement operation is restricted.
  • the calibration holder may include a switch for operating the calibration switch of the held electrochemical sensor from outside the calibration holder. According to this configuration, by holding the electrochemical sensor in the calibration holder, it is possible to operate the calibration switch from outside the calibration holder.
  • the calibration holder may include a shielding portion that shields the measurement switch of the held electrochemical sensor. According to this configuration, the measurement switch can be disabled while the electrochemical sensor is held by the calibration holder.
  • the calibration holder may include an operation section that operates the calibration switch by holding the electrochemical sensor. According to this configuration, by holding the electrochemical sensor in the calibration holder, the sensor head comes into contact with the calibration agent, restricting the measurement operation and performing the calibration operation.
  • the operation part may be a magnet
  • the calibration switch may be a magnetic switch.
  • the sensor head is brought into contact with the liquid to be measured by coupling with the measurement holder.
  • the sensor head comes into contact with the liquid to be measured, and the user does not need to hold the electrochemical sensor by himself, so that the measurement can be performed. Switch operation becomes easier.
  • the measurement holder may include a switch for operating the measurement switch of the held electrochemical sensor from outside the measurement holder. According to this configuration, by holding the electrochemical sensor in the measurement holder, the measurement switch can be operated from outside the measurement holder.
  • the measurement holder may include a shielding portion that shields the calibration switch of the held electrochemical sensor. According to this configuration, the calibration switch can be disabled while the electrochemical sensor is held by the measurement holder.
  • the sensor head includes a sodium ion selective electrode that selectively reacts with sodium ions and a potassium ion selective electrode that selectively reacts with potassium ions.
  • the sensing data of the sensor head may be a potential difference between the sodium ion selective electrode and the potassium ion selective electrode.
  • a measuring device includes the electrochemical sensor and the calibration member.
  • FIG. 1 is a diagram showing the configuration of an electrochemical sensor 90 that is an example of an embodiment
  • FIG. FIG. 3 is a diagram showing an example of an external configuration of an electrochemical sensor 90
  • FIG. 4 shows an example of a calibration holder 60 holding an electrochemical sensor 90
  • FIG. 4 is a diagram showing an example of the state of the electrochemical sensor 90 and the calibration holder 60 during calibration operation
  • FIG. 4 is a diagram showing an example of the state of the electrochemical sensor 90 during measurement operation
  • FIG. 10 is a diagram showing an example of a calibration holder 60 according to Embodiment 2
  • FIG. 10 is a diagram showing an example of the state of the electrochemical sensor 90 and the calibration holder 60 during calibration operation according to the second embodiment
  • FIG. 10 is a diagram showing an example of an electrochemical sensor 90 of Embodiment 3;
  • FIG. 10 is a diagram showing an example of a calibration holder 60 according to Embodiment 3;
  • FIG. 10 is a diagram showing an example of the state of the electrochemical sensor 90 and the calibration holder 60 during calibration operation according to Embodiment 3;
  • FIG. 10 is a diagram showing an example of an electrochemical sensor 90 of Embodiment 4;
  • FIG. 10 is a diagram showing an example of a calibration holder 60 according to Embodiment 4;
  • FIG. 12 is a diagram showing an example of the state of the electrochemical sensor 90 and the calibration holder 60 during calibration operation according to the fourth embodiment;
  • FIG. 10 is a diagram showing an example of an electrochemical sensor 90 of Embodiment 3;
  • FIG. 10 is a diagram showing an example of a calibration holder 60 according to Embodiment 3;
  • FIG. 10 is a diagram showing an example of the state of the electrochemical sensor 90 and the calibration holder
  • FIG. 10 is a diagram showing an example of an external configuration of an electrochemical sensor 90 of Embodiment 5;
  • FIG. 10 is a diagram showing an example of a measurement holder 80 holding an electrochemical sensor 90 of Embodiment 5;
  • FIG. 12 is a diagram showing an example of the state of the electrochemical sensor 90 and the measurement holder 80 during the measurement operation of Embodiment 5;
  • FIG. 22 is a diagram showing an example of a state during calibration operation according to the sixth embodiment;
  • FIG. 21 is a diagram showing an example of a state during a measurement operation according to Embodiment 6;
  • FIG. 20 is a diagram showing a calibration spoon 240 as another example of the calibration member according to Embodiment 6;
  • FIG. 20 is a diagram showing a calibration cap 250 that is still another example of the calibration member according to Embodiment 6;
  • FIG. 12 is a diagram showing an example of the configuration of an electrochemical sensor 90 of Embodiment 7;
  • 3 is a diagram showing a sensor head 30A that is an example of the sensor head 30;
  • 23 is a perspective view showing the sensor head 30 shown in FIG. 22 together with a connector 21;
  • FIG. 1 is a diagram showing the configuration of an electrochemical sensor 90 that is an example of an embodiment.
  • the electrochemical sensor 90 is a sensor that measures the concentration ratio of sodium ions (Na + ) and potassium ions (K + ) in a liquid to be measured (human urine, for example).
  • the electrochemical sensor 90 comprises a sensor head 30 and a main body 10 having a housing 10a.
  • a control unit 11 , a data input unit 12 , an operation unit 13 and a display unit 20 are mounted on the main body 10 .
  • the electrochemical sensor 90 is configured as a hand-held device in which the user holds the main body 10 in his or her hand.
  • the body 10 has, for example, an elongated prismatic profile to be gripped by a user's hand.
  • the sensor head 30 has, for example, a substantially rectangular plate-like outer shape.
  • the sensor head 30 has a sodium ion selective electrode 41 that selectively reacts with sodium ions and a potassium ion selective electrode 42 that selectively reacts with potassium ions at the tip.
  • a specific example of the configuration of the sensor head 30 will be described later (see FIGS. 22 to 25, for example).
  • the data input unit 12 inputs each potential (or potential difference) of the sodium ion selection electrode 41 and the potassium ion selection electrode 42 of the sensor head 30 .
  • the control unit 11 controls the operation of the entire electrochemical sensor 90 and performs arithmetic processing.
  • the control unit 11 temporarily stores the respective potentials of the sodium ion selection electrode 41 and the potassium ion selection electrode 42 input by the data input unit 12, and characteristic parameters related to the sodium ion selection electrode 41 and the potassium ion selection electrode 42, which will be described later.
  • the control unit 11 is implemented, for example, by a processor and memory that operate in concert.
  • the processor is, for example, a CPU (Central Processing Unit) or MPU (Micro Processing Unit).
  • the processor operates as the control unit 11 by reading and executing programs stored in the memory. Note that this processor may be a combination of multiple processors.
  • Memory is implemented by RAM (Random Access Memory), ROM (Read Only Memory), flash memory, and the like.
  • the memory stores programs executed by the processor, data used by the processor, and the like.
  • the memory 18 is composed of, for example, a RAM.
  • the control unit 11 is an example of a computing unit capable of calibration operation and measurement operation.
  • the calibration operation is an operation of calculating characteristic parameters of the sensor head 30 based on the sensing data of the sensor head 30 while the sensor head 30 is in contact with the calibration liquid.
  • a calibration solution is an example of a calibration agent having a known concentration ratio of sodium ions and potassium ions.
  • the sensing data of the sensor head 30 are, for example, each potential of the sodium ion selection electrode 41 and the potassium ion selection electrode 42 .
  • the characteristic parameters of the sensor head 30 are parameters related to the sodium ion selective electrode 41 and the potassium ion selective electrode 42, for example. Characteristic parameters will be described later.
  • the measurement operation is based on the characteristic parameters of the sensor head 30 calculated by the calibration operation and the sensing data of the sensor head 30 while the sensor head 30 is in contact with the liquid to be measured. This is an operation for calculating the concentration ratio of ions. Calculation of the concentration ratio of sodium ions and potassium ions in the liquid to be measured will be described later.
  • the operation unit 13 is a user interface that receives operations from the user.
  • the operation unit 13 includes, for example, a power switch for the electrochemical sensor 90 (eg, power switch 13c in FIG. 2).
  • the operation unit 13 also includes a calibration switch 13a for causing the control unit 11 to perform the above calibration operation, and a measurement switch 13b for causing the control unit 11 to perform the above measurement operation.
  • the display unit 20 is a user interface that displays various information such as calculation results by the control unit 11 .
  • the display unit 20 is configured by an LCD (Liquid Crystal Display) or the like.
  • the control unit 11 executes the calibration operation described above, and causes the memory 18 to store the characteristic parameters of the sensor head 30 calculated by the calibration operation.
  • the control section 11 executes the above measurement operation using the characteristic parameters of the sensor head 30 stored in the memory 18, and the display section 20 displays the concentration ratio calculated by the measurement operation. control to allow
  • the user first brings the calibration liquid into contact with the sensor head 30 and operates the calibration switch 13a in that state.
  • the electrochemical sensor 90 is calibrated.
  • the user then removes the sensor head 30 from the calibration fluid and discards the calibration fluid.
  • the user brings the liquid to be measured into contact with the sensor head 30 and operates the measurement switch 13b in that state.
  • the measurement operation of the electrochemical sensor 90 is performed, and the concentration ratio measured by the measurement operation is displayed on the display section 20 .
  • FIG. 2 is a diagram showing an example of the external configuration of the electrochemical sensor 90.
  • Front face 90 a is the front face of electrochemical sensor 90 .
  • Top surface 90 b is the top surface of electrochemical sensor 90 .
  • the housing 10a is provided with a calibration switch 13a, a measurement switch 13b, a power switch 13c, and a display section 20.
  • each of the calibration switch 13a, the measurement switch 13b, and the power switch 13c is a press switch (press button).
  • the calibration switch 13a is provided on the side surface of the housing 10a. Further, the calibration switch 13a is a push-down switch that does not protrude from the housing 10a and is sufficiently small for a user's finger or the like, so that it is difficult for the user to push it down with a finger or the like.
  • the form of the calibration switch 13a can be various forms as long as it is difficult for the user to press it with a finger or the like. For example, if the calibration switch 13a is recessed with respect to the housing 10a, even if the calibration switch 13a is somewhat large, it is difficult for the user to press it with a finger or the like.
  • the measurement switch 13b is provided on the front of the housing 10a. Also, the measurement switch 13b is a push-down switch that protrudes from the housing 10a and can be easily pushed by a user's finger or the like.
  • the power switch 13c is provided on the upper surface of the housing 10a. Also, the power switch 13c is a push-down switch that protrudes from the housing 10a and can be easily pushed by a user's finger or the like.
  • FIG. 3 shows an example of a calibration holder 60 holding an electrochemical sensor 90.
  • the front face 60 a is the front face of the calibration holder 60 .
  • the upper surface 60 b is the upper surface of the calibration holder 60 .
  • the calibration holder 60 is an example of a calibration member.
  • the calibration holder 60 shown in FIG. 3 is a stand-type calibration holder that holds the electrochemical sensor 90 while the sensor head 30 is in contact with the calibration solution.
  • the calibration holder 60 has a holding portion 61 , a sensor head insertion hole 62 , an accommodating portion 63 , a switch 64 and a base 69 .
  • the holding portion 61 is a hole having a shape capable of holding the tip portion (the portion on the side where the sensor head 30 is provided) of the casing 10a of the electrochemical sensor 90.
  • the holding portion 61 since the housing 10a of the electrochemical sensor 90 has a substantially quadrangular prism shape, the holding portion 61 also has a substantially quadrangular prism-shaped hole. Further, the holding portion 61 has a bottom portion that supports the housing 10a from below.
  • the sensor head insertion hole 62 is a hole that conducts from the bottom of the holding part 61 to the housing part 63 and has a shape that allows the sensor head 30 of the electrochemical sensor 90 to be inserted.
  • the sensor head insertion hole 62 also has a substantially square prism shape.
  • the storage part 63 is a storage part for storing the calibration liquid.
  • the accommodating portion 63 is a closed space with a view of the part that communicates with the sensor head insertion hole 62 .
  • the switch 64 is a push-down switch for operating the calibration switch 13 a of the held electrochemical sensor 90 from outside the calibration holder 60 .
  • the switch 64 is provided on the side surface of the portion of the calibration holder 60 where the holding portion 61 is provided.
  • the switch 64 is a push-down switch that protrudes outward from the side surface of the calibration holder 60 and can be easily pushed by the user's finger or the like.
  • the portion of the calibration holder 60 where the switch 64 is provided is provided with a hole that conducts from the outside of the calibration holder 60 to the holding portion 61, and the switch 64 is provided with a pin that can slide in this hole. It is When the switch 64 is pressed, the tip of this pin enters the inside of the holding portion 61 .
  • the base 69 is provided at the bottom of the calibration holder 60 and is a member with a flat bottom.
  • the base 69 allows the calibration holder 60 to be stably installed on a flat surface such as a desk.
  • FIG. 4 is a diagram showing an example of the state of the electrochemical sensor 90 and calibration holder 60 during calibration operation.
  • Front face 1a is the front face of electrochemical sensor 90 and calibration holder 60 coupled together.
  • Top surface 1b is the top surface of electrochemical sensor 90 and calibration holder 60 coupled together.
  • the state shown in FIG. 4, for example, is obtained.
  • Installation of the electrochemical sensor 90 in the calibration holder 60 is an example of coupling the calibration holder 60 (calibration member) and the electrochemical sensor 90 .
  • the tip of the sensor head 30 (the portion where the sodium ion selection electrode 41 and the potassium ion selection electrode 42 are exposed) is in contact with the calibrating solution 63a of the container 63 through the sensor head insertion hole 62.
  • the tip portion of the housing 10 a is held by the holding portion 61 . Accordingly, even if the user releases the electrochemical sensor 90, the electrochemical sensor 90 is held while the sensor head 30 is in contact with the calibration liquid 63a.
  • the measurement switch 13b of the electrochemical sensor 90 is shielded from the outside by the side wall portion of the holding portion 61.
  • the side wall portion of the holding portion 61 is an example of a shielding portion that shields the measurement switch 13b of the electrochemical sensor 90 held by the calibration holder 60 .
  • the shielding of the measurement switch 13b makes it difficult for the user to press the measurement switch 13b with a finger or the like.
  • the calibration switch 13a becomes operable and the measurement switch 13b becomes inoperable.
  • the operable state is a state in which it can be easily operated by a normal method (for example, pressing with a finger, etc.).
  • the inoperable state is a state in which an operation cannot be performed by a normal method (a state in which the operation is difficult).
  • the electrochemical sensor 90 can be easily calibrated by pressing the switch 64 by the user, and the electrochemical sensor 90 cannot perform the measurement operation when the user accidentally presses the measurement switch 13b. You can prevent it from running.
  • FIG. 5 is a diagram showing an example of the state of the electrochemical sensor 90 during measurement operation.
  • the user takes out the electrochemical sensor 90 from the calibration holder 60, and as shown in FIG. Hold the electrochemical sensor 90 in contact.
  • the measurement switch 13b In the state of FIG. 5, the measurement switch 13b is not covered, so the user can easily press the measurement switch 13b.
  • the calibration switch 13a is provided so as not to protrude from the housing 10a as described above, the user cannot easily press the measurement switch 13b in the state of FIG. 5 (when the electrochemical sensor 90 and the calibration holder 60 are not coupled), the measurement switch 13b is operable and the calibration switch 13a is inoperable.
  • the user can easily cause the electrochemical sensor 90 to perform a measurement operation by pressing the measurement switch 13b. You can prevent it from running.
  • the electrochemical sensor 90 and the calibration holder 60 are coupled to bring the sensor head 30 into contact with the calibration solution 63a.
  • the measurement switch 13b is disabled, and when the electrochemical sensor 90 and the calibration holder 60 are disconnected, the calibration switch 13a is disabled.
  • the measurement operation is restricted when the electrochemical sensor 90 and the calibration holder 60 are coupled, and the calibration operation is restricted when the electrochemical sensor 90 and the calibration holder 60 are not coupled.
  • the user's erroneous operation such as performing a measurement operation while the sensor head 30 is in contact with the calibration liquid 63a or performing a calibration operation while the sensor head 30 is not in contact with the calibration liquid 63a, is prevented. It is possible to suppress unintended operations caused by the user.
  • the user may mistakenly operate the measurement switch 13b while the sensor head 30 is in contact with the calibration liquid 63a, and the measurement operation may be performed without proper calibration, resulting in an inaccurate measurement value. can be suppressed.
  • the user may accidentally operate the calibration switch 13a while the sensor head 30 is in contact with the liquid 70a to be measured. It is possible to suppress the inability to obtain accurate measurement values.
  • the concentration ratio of sodium ions and potassium ions in the liquid 70a to be measured is determined according to the following principle.
  • ion-selective electrodes such as the sodium ion-selective electrode 41 and the potassium ion-selective electrode 42 generally show a response proportional to the logarithm of the activity of the chemical species according to the Nernst equation as shown in equation (1). .
  • Ew is the potential of the working electrode [V]
  • E0 is the formula potential [V] unique to each electrode
  • T is the absolute Temperature [K]
  • n is the ionic valence
  • F is the Faraday constant ( ⁇ 96,485 [C/mol])
  • r is the activity coefficient representing the ion concentration of the entire solution
  • C is the ion concentration of the object to be measured [mol/ L].
  • the electrode potentials are expressed as E w1 and E w2 , and the formula potentials are expressed as follows.
  • C 1 and C 2 be the concentrations of sodium ions and potassium ions to be measured by the sodium ion selective electrode 41 and the potassium ion selective electrode 42, respectively.
  • the sensitivities of the sodium ion selective electrode 41 and the potassium ion selective electrode 42 are set to S 1 and S 2 as values including the activity coefficient.
  • S 1 and S 2 are values including the activity coefficients, respectively, as described above.
  • k 1 and k 2 be the amount of influence (corresponding to the selectivity of each ion selective electrode) on the potential by the interfering substance at the sodium ion selective electrode 41 and the potassium ion selective electrode 42 .
  • the electrode potentials E w1 and E w2 are expressed by the formulas (2) and (3), respectively.
  • be the difference (sensitivity difference) between the sensitivity of the sodium ion selective electrode 41 and the sensitivity of the potassium ion selective electrode 42 as in Equation (4).
  • Equation (5) the difference (potential difference) ⁇ E between the electrode potential of the sodium ion-selective electrode 41 and the electrode potential of the potassium ion-selective electrode 42 is expressed as in Equation (5).
  • the sensitivities S 1 and S 2 of the sodium ion selective electrode 41 and the potassium ion selective electrode 42, and the influence amounts k 1 and k 2 ( (corresponding to the selectivity of each ion selective electrode) can be aligned with each other, for example, by setting the materials of the sodium ion selective film 41i and the potassium ion selective film 42i, which will be described later.
  • the formula (6), ( 7) can be considered.
  • the constant V0 is defined as follows.
  • the sensitivity S1 is assumed to be constant within a lot of manufactured sensor heads 30, and a known constant value measured in advance is adopted.
  • the constant V0 can be obtained by detecting the potential difference between the sodium ion selective electrode 41 and the potassium ion selective electrode 42 for the calibration solution 63a. That is, if the concentration ratio (known) between sodium ions and potassium ions in the calibrating solution 63a is Mref , and the potential difference detected in the calibrating solution 63a is Vref , then from Equation (8), Equation (9) is obtained. Become.
  • V 0 V ref ⁇ S 1 log(M ref ) ... (9)
  • Equation (8) gives Equation (10).
  • the concentration ratio Ms between sodium ions and potassium ions in the liquid 70a to be measured can be obtained as in Equation (11).
  • the control unit 11 calculates the constant V0 , the sensitivity S1 of the sodium ion selection electrode 41, and the potential difference Vref detected for the calibration liquid 63a as characteristic parameters of the sensor head 30.
  • the control unit 11 controls the potential difference V s detected with respect to the liquid 70a to be measured, the constant V 0 , the sensitivity S 1 of the sodium ion selection electrode 41, and the potential difference V ref detected with respect to the calibration liquid 63a.
  • the known concentration ratio M ref between sodium ions and potassium ions in the calibration solution 63a, and formula (11) the concentration ratio M s between sodium ions and potassium ions in the measurement target liquid 70a is calculated. do.
  • Embodiment 2 Regarding the second embodiment, the parts different from the first embodiment will be described.
  • Embodiment 2 an example of an operation unit in which calibration holder 60 holds electrochemical sensor 90 to operate calibration switch 13a will be described.
  • FIG. 6 is a diagram showing an example of the calibration holder 60 according to the second embodiment.
  • a calibration holder 60 shown in FIG. 6 includes a switch 65 instead of the switch 64 of the calibration holder 60 shown in FIG.
  • the switch 65 is an example of an operating portion that operates the calibration switch 13a by holding the electrochemical sensor 90 in the calibration holder 60.
  • FIG. 6 is a diagram showing an example of the calibration holder 60 according to the second embodiment.
  • a calibration holder 60 shown in FIG. 6 includes a switch 65 instead of the switch 64 of the calibration holder 60 shown in FIG.
  • the switch 65 is an example of an operating portion that operates the calibration switch 13a by holding the electrochemical sensor 90 in the calibration holder 60.
  • the switch 65 is provided in a hole provided inside the side wall of the holding portion 61 and is biased toward the inside of the holding portion 61 by a spring or the like. As a result, when the electrochemical sensor 90 is not inserted into the holding portion 61 , only the tip portion of the holding portion 61 is exposed inside the holding portion 61 .
  • the tip portion of the holding portion 61 is inclined with respect to the direction in which the electrochemical sensor 90 is inserted into the holding portion 61 (vertical direction in FIG. 6). In the example of FIG. 6, the tip portion of the holding portion 61 is hemispherical. This prevents the switch 65 from interfering with the insertion of the electrochemical sensor 90 into the holding portion 61 .
  • FIG. 7 is a diagram showing an example of the state of the electrochemical sensor 90 and the calibration holder 60 during calibration operation according to the second embodiment.
  • the switch 65 presses the calibration switch 13a. Therefore, by installing the electrochemical sensor 90 in the calibration holder 60, the user can easily press the calibration switch 13a.
  • the electrochemical sensor 90 can be easily calibrated. It is possible to prevent the sensor 90 from executing the measurement operation.
  • the measurement operation of the second embodiment is performed, for example, in the same manner as in the first embodiment.
  • Embodiment 3 Regarding Embodiment 3, portions different from Embodiments 1 and 2 will be described.
  • an example of a calibration switch for causing the controller 11 to perform the calibration operation which is different from the calibration switch 13a described above, will be described.
  • FIG. 8 is a diagram showing an example of an electrochemical sensor 90 according to the third embodiment.
  • the electrochemical sensor 90 shown in FIG. 8 includes a magnetic switch 13d instead of the calibration switch 13a of the electrochemical sensor 90 shown in FIG.
  • the magnetic switch 13d is an example of a calibration switch for causing the controller 11 to perform the calibration operation.
  • the magnetic switch 13d is a magnetic proximity switch that outputs a detection signal when magnetism is detected.
  • the control unit 11 performs a calibration operation when the detection signal is output from the magnetic switch 13d.
  • FIG. 9 is a diagram showing an example of the calibration holder 60 according to the third embodiment.
  • a calibration holder 60 shown in FIG. 9 includes a magnet 66 instead of the switch 64 of the calibration holder 60 shown in FIG.
  • the magnet 66 is embedded in the side wall portion of the holding portion 61 .
  • the magnet 66 is provided at a position close to the magnetic switch 13 d of the electrochemical sensor 90 when the electrochemical sensor 90 is held by the holding portion 61 .
  • the magnet 66 is an example of an operating portion that operates the calibration switch (the magnetic switch 13d of the electrochemical sensor 90) by holding the electrochemical sensor 90 in the calibration holder 60.
  • FIG. 9 is a diagram showing an example of the calibration holder 60 according to the third embodiment.
  • a calibration holder 60 shown in FIG. 9 includes a magnet 66 instead of the switch 64 of the calibration holder 60 shown in FIG.
  • the magnet 66 is embedded in the side wall portion of the holding portion 61 .
  • the magnet 66 is provided at a position close
  • FIG. 10 is a diagram showing an example of the state of the electrochemical sensor 90 and the calibration holder 60 during calibration operation according to the third embodiment.
  • the electrochemical sensor 90 when the electrochemical sensor 90 is installed in the calibration holder 60, the magnetic switch 13d of the electrochemical sensor 90 and the magnet 66 of the calibration holder 60 are in close proximity. As a result, a detection signal is output from the magnetic switch 13d, and the calibration operation is performed by the controller 11. FIG. Therefore, the user can easily perform the calibration operation by installing the electrochemical sensor 90 in the calibration holder 60 .
  • the electrochemical sensor 90 can be easily calibrated. It is possible to prevent the sensor 90 from executing the measurement operation.
  • the magnetic switch 13d and the magnet 66 can be non-contact switches, the magnetic switch 13d need not be exposed from the surface of the electrochemical sensor 90, and the magnet 66 is also attached to the holder 60 for calibration. It does not have to be exposed from the surface. This facilitates the waterproof design of the electrochemical sensor 90 and calibration holder 60 .
  • Embodiment 3 Although the calibration operation of Embodiment 3 has been described, the measurement operation of Embodiment 3 is performed in the same manner as in Embodiment 1, for example.
  • Embodiment 4 The fourth embodiment will be described with respect to portions different from those of the first to third embodiments.
  • Embodiment 4 an example of a calibration switch for causing the control unit 11 to perform calibration operation, which is different from the calibration switch 13a and the magnetic switch 13d described above, will be described.
  • FIG. 11 is a diagram showing an example of the electrochemical sensor 90 of Embodiment 4.
  • Electrochemical sensor 90 shown in FIG. 11 includes electrodes 13e and 13f and detection circuit 13h in place of calibration switch 13a of electrochemical sensor 90 shown in FIG.
  • the electrodes 13e and 13f are electrodes exposed on the side surface of the housing 10a while being separated from each other.
  • the detection circuit 13h When the electrodes 13e and 13f are short-circuited, the detection circuit 13h outputs a detection signal.
  • the control unit 11 performs a calibration operation when the detection signal is output from the detection circuit 13h.
  • the electrodes 13e and 13f and the detection circuit 13h are an example of a calibration switch for causing the controller 11 to perform the calibration operation.
  • FIG. 12 is a diagram showing an example of the calibration holder 60 according to the fourth embodiment.
  • a calibration holder 60 shown in FIG. 12 includes electrodes 67a and 67b and a short-circuit path 67c in place of the switch 64 of the calibration holder 60 shown in FIG.
  • the electrodes 67a and 67b are electrodes exposed inside the side wall portion of the holding portion 61 while being separated from each other. Specifically, the electrodes 67a and 67b are provided at positions that come into contact with the electrodes 13e and 13f of the electrochemical sensor 90 when the electrochemical sensor 90 is held by the holding portion 61, respectively.
  • the short-circuit path 67c is embedded in the side wall of the holding portion 61 and connects the electrodes 67a and 67b to each other.
  • the electrodes 67a and 67b and the short-circuit path 67c are an example of an operation part for operating the calibration switch (the electrodes 13e and 13f of the electrochemical sensor 90 and the detection circuit 13h) by holding the electrochemical sensor 90 in the calibration holder 60. is.
  • FIG. 13 is a diagram showing an example of the state of the electrochemical sensor 90 and the calibration holder 60 during calibration operation according to the fourth embodiment.
  • the electrochemical sensor 90 when the electrochemical sensor 90 is installed in the calibration holder 60, the electrodes 13e and 13f of the electrochemical sensor 90 are in contact with the electrodes 67a and 67b of the calibration holder 60, respectively. As a result, the above detection signal is output, and the control unit 11 executes the calibration operation. Therefore, the user can easily perform the calibration operation by installing the electrochemical sensor 90 in the calibration holder 60 .
  • the electrochemical sensor 90 can be easily calibrated. It is possible to prevent the sensor 90 from executing the measurement operation.
  • Embodiment 4 Although the calibration operation of Embodiment 4 has been described, the measurement operation of Embodiment 4 is performed in the same manner as in Embodiment 1, for example.
  • Embodiment 5 The fifth embodiment will be described with respect to portions different from those of the first to fourth embodiments.
  • Embodiment 5 a configuration using a measurement holder that holds the electrochemical sensor 90 while the sensor head 30 is in contact with the liquid 70a to be measured will be described.
  • FIG. 14 is a diagram showing an example of the external configuration of the electrochemical sensor 90 of Embodiment 5.
  • the measurement switch 13b is provided on the side surface of the housing 10a. Further, similarly to the calibration switch 13a, the measurement switch 13b does not protrude from the housing 10a and is sufficiently small with respect to the user's finger or the like. It has become.
  • FIG. 15 is a diagram showing an example of a measurement holder 80 holding the electrochemical sensor 90 of Embodiment 5.
  • FIG. The front surface 80 a is the front surface of the measurement holder 80 .
  • the upper surface 80 b is the upper surface of the measurement holder 80 .
  • the measurement holder 80 shown in FIG. 15 is a stand-type measurement holder that holds the electrochemical sensor 90 while the sensor head 30 is in contact with the liquid 70a to be measured.
  • the measurement holder 80 has a holding portion 81 , a sensor head insertion hole 82 , a container installation portion 83 , a switch 84 and a base 89 .
  • the holding portion 81 is, like the holding portion 61 of the calibration holder 60, a hole having a shape capable of holding the tip portion of the housing 10a of the electrochemical sensor 90. Similar to the sensor head insertion hole 62 of the calibration holder 60, the sensor head insertion hole 82 conducts from the bottom of the holding part 81 to the container installation part 83, and has a shape that allows the sensor head 30 of the electrochemical sensor 90 to be inserted. It is a hole with The container installation part 83 is a space in which the container 70 containing the liquid 70a to be measured can be installed.
  • the switch 84 is a push-down switch for operating the measurement switch 13b of the held electrochemical sensor 90 from outside the holder 80 for measurement.
  • the configuration of the switch 84 is similar to that of the switch 64 of the calibration holder 60 .
  • the base 89 is provided at the bottom of the measurement holder 80 and is a member with a flat bottom.
  • FIG. 16 is a diagram showing an example of the state of the electrochemical sensor 90 and the measurement holder 80 during the measurement operation of the fifth embodiment.
  • the tip of the housing 10a is held by the holder 81 while the tip of the sensor head 30 is in contact with the liquid 70a to be measured of the container 70 through the sensor head insertion hole 82.
  • the electrochemical sensor 90 is held while the sensor head 30 is in contact with the liquid 70a to be measured.
  • the calibration switch 13a of the electrochemical sensor 90 is shielded from the outside by the side wall portion of the holding portion 81.
  • the side wall portion of the holding portion 81 is an example of a shielding portion that shields the calibration switch 13a of the electrochemical sensor 90 held by the measurement holder 80 .
  • the measurement holder 80 is not provided with a push-down switch for operating the calibration switch 13 a from outside the measurement holder 80 like the switch 64 of the calibration holder 60 . Therefore, it becomes difficult for the user to press the measurement switch 13b with a finger or the like.
  • the measurement switch 13b becomes operable and the calibration switch 13a becomes inoperable.
  • the user can easily cause the electrochemical sensor 90 to perform the measurement operation by pressing the switch 84, and the user can accidentally press the calibration switch 13a to cause the electrochemical sensor 90 to perform the calibration operation. You can prevent it from running.
  • Embodiment 5 Although the measurement operation of Embodiment 5 has been described, the calibration operation of Embodiment 5 is performed in the same manner as in Embodiment 1, for example. Also, the configuration of the fifth embodiment may be combined with any one of the configurations of the second to fourth embodiments.
  • Embodiment 6 The sixth embodiment will be described with respect to portions different from those of the first to fifth embodiments.
  • the calibration holder 60 has been described above as an example of the calibration member, the calibration member is not limited to the calibration holder 60 .
  • Embodiment 6 another example of the calibration member will be described.
  • FIG. 17 is a diagram illustrating an example of a state during calibration operation according to the sixth embodiment.
  • the calibrator case 220 is an example of a calibration member different from the calibration holder 60 .
  • FIG. 17 shows a cross section of the calibrator case 220 .
  • holes 211 and 212 are provided in housing 10a of electrochemical sensor 90.
  • a calibration switch 13 a is provided at the bottom of the hole 211 . This makes it difficult for the user to press the calibration switch 13a with a finger or the like with the electrochemical sensor 90 alone.
  • the measurement switch 13b is provided so as to protrude from the main body 10.
  • a measurement limit release switch 13g is provided at the bottom of the hole 212 .
  • the control unit 11 performs the measurement operation when the measurement restriction release switch 13g is pressed and the measurement switch 13b is pressed.
  • the electrochemical sensor 90 alone does not perform the measurement operation even if the user presses the measurement switch 13b with a finger or the like. That is, the measurement operation is restricted when the electrochemical sensor 90 and the calibrator case 220 are coupled.
  • the calibration agent case 220 is a case that houses the calibration gel 63b.
  • the calibration gel 63b is an example of a calibration agent having a known concentration ratio of sodium ions and potassium ions, which is different from the calibration liquid 63a.
  • the calibration agent case 220 has a substantially hollow quadrangular prism shape, and the inner upper surface is coated with calibration gel 63b.
  • the calibration agent case 220 has an opening 221 for inserting the sensor head 30 .
  • the sodium ion selective electrode 41 and the potassium ion selective electrode 42 of the sensor head 30 are connected to the calibration gel 63b in the calibrator case 220. come into contact.
  • the calibrator case 220 has a pin 222 protruding from the top of the opening 221 .
  • the pin 222 is formed to fit into the hole 211 and press the calibration switch 13a when the calibrator case 220 is coupled to the housing 10a.
  • the user inserts the sensor head 30 into the opening 221 and connects the calibrator case 220 to the housing 10a, thereby bringing the sodium ion selection electrode 41 and the potassium ion selection electrode 42 into contact with the calibration gel 63b.
  • a calibration operation is performed by the electrochemical sensor 90 .
  • FIG. 18 is a diagram showing an example of a state during measurement operation according to the sixth embodiment.
  • the measuring spoon 230 is a member having a substantially hollow quadrangular prism shape and having a plate portion 231 capable of holding the liquid 70a to be measured. 18 shows a cross section of the measuring spoon 230. As shown in FIG. The measuring spoon 230 has an opening 233 for inserting the sensor head 30 .
  • the sodium ion selective electrode 41 and the potassium ion selective electrode 42 of the sensor head 30 are connected to the bottom of the dish portion 231 of the measuring spoon 230. , and the sodium ion selective electrode 41 and the potassium ion selective electrode 42 come into contact with the liquid to be measured 70a.
  • the measuring spoon 230 also has a pin 232 protruding from the bottom of the opening 233 .
  • the pin 232 is formed so as to fit into the hole 212 in a state where the measuring spoon 230 is coupled to the housing 10a, and to press the measurement limit release switch 13g.
  • the user inserts the sensor head 30 into the opening 233 and couples the measuring spoon 230 to the housing 10a, thereby bringing the sodium ion selective electrode 41 and the potassium ion selective electrode 42 into contact with the liquid 70a to be measured,
  • the measurement restriction release switch 13g is pushed down. In this state, when the user presses the measurement switch 13b, the electrochemical sensor 90 performs a measurement operation.
  • the measurement operation is restricted when the electrochemical sensor 90 and the calibrator case 220 are coupled, and the electrochemical sensor 90 and the calibrator case 220 Calibration operation is limited when uncoupled.
  • the user's erroneous operation such as performing a measurement operation while the sensor head 30 is in contact with the calibration gel 63b or performing a calibration operation while the sensor head 30 is not in contact with the calibration gel 63b, is prevented. It is possible to suppress unintended operations caused by the user.
  • FIG. 19 shows a calibration spoon 240, which is another example of the calibration member according to Embodiment 6.
  • a calibration spoon 240 may be used instead of the calibration agent case 220 .
  • 19 shows a cross section of the calibration spoon 240. As shown in FIG.
  • the calibration spoon 240 is a member having a substantially hollow quadrangular prism shape and having a plate portion 242 capable of holding the calibration liquid 63a.
  • Calibration spoon 240 has an opening 243 for inserting sensor head 30 .
  • the sodium ion selection electrode 41 and the potassium ion selection electrode 42 of the sensor head 30 are aligned with the bottom of the dish portion 242 of the calibration spoon 240. , and the sodium ion selective electrode 41 and the potassium ion selective electrode 42 come into contact with the calibration solution 63a.
  • the calibration spoon 240 also has a pin 244 protruding from the top of the opening 243 . The pin 244 is formed so as to fit into the hole 211 and press the calibration switch 13a when the calibration spoon 240 is coupled to the housing 10a.
  • the user inserts the sensor head 30 into the opening 243 and couples the calibration spoon 240 to the housing 10a, so that the sodium ion selection electrode 41 and the potassium ion selection electrode 42 are brought into contact with the calibration solution 63a. , a calibration operation is performed by the electrochemical sensor 90 .
  • FIG. 20 shows a calibration cap 250 that is still another example of the calibration member according to the sixth embodiment.
  • calibration cap 250 may be used instead of calibration agent case 220 .
  • FIG. 20 shows a cross section of the calibration cap 250 .
  • the calibration cap 250 is a hollow cap that can be attached to the electrochemical sensor 90 so as to cover the sensor head 30 .
  • a calibration gel 63 b is applied to the inside of the calibration cap 250 .
  • the calibration cap 250 also has an opening 253 into which the sensor head 30 is inserted.
  • the sodium ion selection electrode 41 and the potassium ion selection electrode 42 of the sensor head 30 are connected to the calibration gel 63b inside the calibration cap 250. is designed to come into contact with
  • the calibration cap 250 also has a pin 254 projecting from the top of the opening 253 .
  • the pin 254 is formed so as to fit into the hole 211 and press the calibration switch 13a when the calibration cap 250 is coupled to the housing 10a.
  • the user inserts the sensor head 30 into the opening 253 and couples the calibration cap 250 to the housing 10a, thereby bringing the sodium ion selection electrode 41 and the potassium ion selection electrode 42 into contact with the calibration gel 63b.
  • a calibration operation is performed by the electrochemical sensor 90 .
  • Embodiment 7 The seventh embodiment will be described with respect to portions different from those of the first to sixth embodiments.
  • Embodiment 7 a configuration in which the sensor head 30 is attached to the housing 10a via a connector will be described.
  • FIG. 21 is a diagram showing an example of the configuration of an electrochemical sensor 90 according to Embodiment 7.
  • FIG. An electrochemical sensor 90 shown in FIG. 21 has a connector 21 in addition to the configuration of the electrochemical sensor 90 shown in FIG.
  • the connector 21 is provided through the wall surface of the housing 10a.
  • the sensor head 30 is detachable from the connector 21 .
  • the electrochemical sensor 90 may further include a sensor head connection detection section 14.
  • the sensor head connection detection unit 14 detects whether or not the sensor head 30 is attached to the connector 21 based on, for example, sensing data from a switch provided on the connector 21 .
  • the control section 11 may perform the above measurement operation and calibration operation only when the sensor head 30 is attached to the connector 21.
  • FIG. 22 is a diagram showing a sensor head 30A that is an example of the sensor head 30. As shown in FIG. FIG. 22 shows the completed sensor head 30A viewed from a direction perpendicular to the plate surface.
  • FIG. 23 is a cross section taken along line VV in FIG.
  • FIG. 24 is an exploded view of the sensor head 30A.
  • the sensor head 30A includes a rectangular substrate 31 having a predetermined size and a mounting surface 31a, which is one main surface of the substrate 31, along one side 31c.
  • a sodium ion selective electrode 41 and a potassium ion selective electrode 42 which are spaced apart from each other, and from these sodium ion selective electrode 41 and potassium ion selective electrode 42 toward the opposite side (edge) 31e of the substrate 31, It has a first extraction electrode 43 and a second extraction electrode 44 extending parallel to each other in the X direction.
  • the substrate 31 is made of an insulating material such as PET (polyethylene terephthalate), glass, silicon, polyimide film, glass epoxy, polycarbonate or acrylic. Therefore, the mounting surface 31a also has insulating properties.
  • the first extraction electrode 43 and the second extraction electrode 44 are made of a conductive material such as Pt, Ag, Au, Ir, C or IrO2 .
  • the sodium ion selection electrode 41 has a conductive first core material lower layer 41m' made of the same material as the first lead-out electrode 43, and is directly connected to the first core material lower layer 41m'.
  • the first core material upper layer 41m′′ made of AgCl and provided in contact therewith serves as the first internal electrode 41m.
  • the potassium ion selection electrode 42 is composed of a conductive second core lower layer 42m' made of the same material as the second extraction electrode 44 and AgCl provided in direct contact with the second core lower layer 42m'.
  • the potassium ion selective electrode 42 has a second core material upper layer 42m′′ that is formed from the second internal electrode 42m (more precisely, the second core material upper layer 42m). 42m'') has a potassium ion selective membrane 42i provided in direct contact therewith.
  • the region where the first internal electrode 41m and the sodium ion selective film 41i are in contact and the region where the second internal electrode 42m and the potassium ion selective film 42i are in contact are made of an insulating substrate (photocurable or thermosetting). It is defined by the size of the openings 51 and 52 (diameter of about 4 [mm] in this example) provided in the resist or an insulating seal, sheet, tape, or the like) 50 .
  • the sodium ion selective membrane 41i has the property of selectively permeating sodium ions (Na + ) contained in a later-described calibration solution or liquid to be measured.
  • the potassium ion selective membrane 42i has the property of selectively permeating potassium ions (K + ) contained in a calibration solution or a solution to be measured, which will be described later.
  • the first extraction electrode 43 and the second extraction electrode 44 are exposed in the electrode pad portion 30x, which is the portion of the sensor head 30A that is not covered with the insulating base material 50. As shown in FIG. 22, the first extraction electrode 43 and the second extraction electrode 44 are exposed in the electrode pad portion 30x, which is the portion of the sensor head 30A that is not covered with the insulating base material 50. As shown in FIG. 22, the first extraction electrode 43 and the second extraction electrode 44 are exposed in the electrode pad portion 30x, which is the portion of the sensor head 30A that is not covered with the insulating base material 50. As shown in FIG.
  • the sensor head 30A as described above has relatively few constituent elements, and in particular, it is formed in a substantially rectangular flat plate shape, and the internal liquid that a general ion selective electrode has is omitted. Moreover, the electrodes that should come into contact with the liquid to be measured are only the sodium ion selective electrode 41 and the potassium ion selective electrode 42 . Therefore, this sensor head 30A can be constructed in a small size and at a low cost.
  • the connector 21 shown in FIG. 21 has slots 22 into which electrode pad portions 30x of the sensor head 30A are to be inserted, as shown in FIG.
  • contact members 23 and 24 made of doglegged leaf springs are provided at positions corresponding to the first lead-out electrode 43 and the second lead-out electrode 44 of the sensor head 30A.
  • the first extraction electrode 43 and the second extraction electrode 44 contact the contact members 23 and 24 to conduct.
  • the potential difference or current between the sodium ion selective electrode 41 and the potassium ion selective electrode 42 of the sensor head 30A can be detected by the main body 10 via the connector 21 .
  • the shape of the sensor head 30 is not limited to the shape of the sensor head 30A shown in FIGS.
  • the sodium ion selection electrode 41 and the potassium ion selection electrode 42 may be arranged along the longitudinal direction of the sensor head 30A.
  • the configuration of the sensor head 30A shown in FIGS. 22 to 25 can also be applied to a configuration in which the sensor head 30A is directly connected to the main body 10 without providing the connector 21 as in the first to sixth embodiments. .
  • the proofreading agent is not limited to a liquid or a gel, but may be, for example, an absorber impregnated with a liquid. good too.
  • the configuration in which the electrochemical sensor 90 includes the power switch 13c has been described, the configuration is not limited to this.
  • the calibration switch 13a may also serve as the power switch. That is, when the calibration switch 13a is pressed, the electrochemical sensor 90 may be powered on and start the calibration operation.
  • the control unit 11 restricts the measurement operation when the calibration member and the electrochemical sensor 90 are coupled and the calibration operation restriction when the calibration member and the electrochemical sensor 90 are not coupled by software. may be restricted by processing.
  • the control unit 11 includes a detection unit that detects coupling between the calibration member and the electrochemical sensor 90, and when the calibration member and the electrochemical sensor 90 are coupled, the measurement switch 13b is pressed. If the calibration member and the electrochemical sensor 90 are not coupled, no calibration operation is performed even if the calibration switch 13a is pressed.
  • the configuration for example, the side wall portion of the holding portion 61 of the calibration holder 60
  • the calibration member and the electrochemical A configuration that disables operation of the calibration switch 13a when the target sensor 90 is not coupled for example, a configuration in which the calibration switch 13a does not protrude from the housing 10a
  • each switch described above can be changed as appropriate.
  • the measurement switch 13b may be provided not only on the front surface of the housing 10a, but also on the side or rear surface of the housing 10a.
  • the calibration switch 13a may be provided not only on the side surface of the housing 10a, but also on the front or rear surface of the housing 10a.
  • the shape and size of the housing 10a and the sensor head 30 are not limited to the above configurations, and can be changed as appropriate.
  • the calibration holder 60 may have a space in which a container containing the calibration solution 63a can be installed, similar to the container installation portion 83 of the measurement holder 80, instead of the storage portion 63.
  • FIG. 5 The calibration holder 60 may have a space in which a container containing the calibration solution 63a can be installed, similar to the container installation portion 83 of the measurement holder 80, instead of the storage portion 63.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

ユーザの誤操作に起因する、ユーザの意図しない動作を抑制することができる技術を提供する。 本発明の一側面に係る電気化学的センサは、測定対象液におけるナトリウムイオンとカリウムイオンの濃度比を測定する電気化学的センサであって、センサヘッドと、前記センサヘッドを校正剤に接触させた状態における前記センサヘッドのセンシングデータに基づいて前記センサヘッドの特性パラメータを算出する校正動作と、前記センサヘッドの特性パラメータと前記センサヘッドを前記測定対象液に接触させた状態における前記センサヘッドのセンシングデータとに基づいて前記濃度比を算出する測定動作と、が可能な演算部と、を備え、校正用部材との結合により前記センサヘッドを前記校正剤に接触させた状態となり、前記校正用部材との結合時には前記測定動作が制限され、前記校正用部材との非結合時には前記校正動作が制限される。

Description

電気化学的センサ及び測定装置
 本発明は、電気化学的センサ及び測定装置に関する。
 従来、測定対象液に含まれた2つのイオン種の間の濃度比を測定する電気化学的センサが知られている。電気化学的センサにおいては、測定対象液に含まれた2つのイオン種の間の濃度比を測定する測定動作の前に、校正液を用いて、センシングに用いるセンサヘッドの特性パラメータを求める校正動作が可能な物がある。
 例えば、特許文献1には、2つのイオン種の間の予め定められた濃度比を有する標準液(校正液)を用いて、測定対象液について検出した電位差を校正するための基準電位を算出することが記載されている。特許文献2には、校正により求めたナトリウムイオン電極及びカリウムイオン電極の各感度係数に基づいて、試料溶液中のナトリウムイオンとカリウムイオンとの濃度比を測定するマルチイオンセンサが記載されている。
日本国特開2014-095675号公報 日本国特開2014-095692号公報
 しかしながら、従来技術では、校正動作を実行するための校正スイッチと、測定動作を実行するための測定スイッチと、が電気化学的センサに設けられている場合、これらの各スイッチをユーザが誤って操作すると、ユーザの意図しない動作が実行されてしまうことがある。
 例えば、電気化学的センサのセンサヘッドを校正液に接触させた状態でユーザが誤って測定スイッチを操作してしまうと、正しく校正ができていない状態で測定動作が行われて正確な測定値が得られなくなる場合がある。また、センサヘッドを測定対象液に接触させた状態でユーザが誤って校正スイッチを操作してしまうと、測定対象液を基準とした不正確な校正が行われ、その後の測定において正確な測定値が得られなくなる場合がある。
 本発明は、一側面では、このような実情を鑑みてなされたものであり、その目的は、ユーザの誤操作に起因する、ユーザの意図しない動作を抑制することができる技術を提供することである。
 本発明は、上記の課題を解決するために、以下の構成を採用する。
 すなわち、本発明の一側面に係る電気化学的センサは、測定対象液におけるナトリウムイオンとカリウムイオンの濃度比を測定する電気化学的センサであって、センサヘッドと、前記センサヘッドを校正剤に接触させた状態における前記センサヘッドのセンシングデータに基づいて前記センサヘッドの特性パラメータを算出する校正動作と、前記センサヘッドの特性パラメータと前記センサヘッドを前記測定対象液に接触させた状態における前記センサヘッドのセンシングデータとに基づいて前記濃度比を算出する測定動作と、が可能な演算部と、を備え、校正用部材との結合により前記センサヘッドを前記校正剤に接触させた状態となり、前記校正用部材との結合時には前記測定動作が制限され、前記校正用部材との非結合時には前記校正動作が制限される。
 上記構成では、センサヘッドを校正剤に接触させた状態とするための校正用部材と電気化学的センサとの結合時には測定動作が制限され、校正用部材と電気化学的センサとの非結合時には校正動作が制限される。このため、センサヘッドを校正剤に接触させた状態で測定動作が実行されたり、センサヘッドが校正剤に接触していない状態で校正動作が実行されたりするといった、ユーザの誤操作に起因する、ユーザの意図しない動作を抑制することができる。
 上記一側面に係る電気化学的センサにおいて、前記校正用部材との結合時には前記校正動作を実行可能であり、前記校正用部材との非結合時には前記測定動作を実行可能であってもよい。当該構成によれば、センサヘッドを校正剤に接触させた状態で校正動作が実行可能になり、センサヘッドを校正剤に接触させていない状態で測定動作が実行可能になる。
 上記一側面に係る電気化学的センサにおいて、前記校正動作を前記演算部に実行させるための校正スイッチと、前記測定動作を前記演算部に実行させるための測定スイッチと、を備え、前記校正用部材との結合時には前記測定スイッチが操作不可となり、前記校正用部材との非結合時には前記校正スイッチが操作不可となる。当該構成によれば、センサヘッドを校正剤に接触させた状態では測定動作を制限し、センサヘッドが校正剤に接触していない状態では校正動作を制限することができる。操作不可とは、例えば通常の方法では操作できない状態である。
 上記一側面に係る電気化学的センサにおいて、前記校正用部材との結合時には前記校正スイッチが操作可能となり、前記校正用部材との非結合時には前記測定スイッチが操作可能となる。当該構成によれば、センサヘッドを校正剤に接触させた状態では校正動作が実行可能になり、センサヘッドが校正剤に接触していない状態では測定動作が実行可能になる。
 上記一側面に係る電気化学的センサにおいて、前記校正用部材は、前記センサヘッドを前記校正剤に接触させた状態で前記電気化学的センサを保持する校正用ホルダであってもよい。当該構成によれば、電気化学的センサを校正用ホルダに保持させることで測定動作が制限され、校正動作の後に電気化学的センサを校正用ホルダから取り外すことで校正動作が制限される。また、ユーザは自身で電気化学的センサを保持しなくてもよいため校正スイッチの操作が容易になる。
 上記一側面に係る電気化学的センサにおいて、前記校正用ホルダは、前記校正剤を収容する収容部を備え、前記収容部に収容された前記校正剤に前記センサヘッドを接触させた状態で前記電気化学的センサを保持してもよい。当該構成によれば、電気化学的センサを校正用ホルダに保持させることで、センサヘッドが校正剤に接触した状態となり、かつ測定動作が制限される。
 上記一側面に係る電気化学的センサにおいて、前記校正用ホルダは、保持した前記電気化学的センサの前記校正スイッチを前記校正用ホルダの外部から操作するためのスイッチを備えてもよい。当該構成によれば、電気化学的センサを校正用ホルダに保持させることで、校正用ホルダの外部から校正スイッチを操作することが可能になる。
 上記一側面に係る電気化学的センサにおいて、前記校正用ホルダは、保持した前記電気化学的センサの前記測定スイッチを遮蔽する遮蔽部を備えてもよい。当該構成によれば、電気化学的センサを校正用ホルダに保持させた状態において、測定スイッチを操作不可とすることができる。
 上記一側面に係る電気化学的センサにおいて、前記校正用ホルダは、前記電気化学的センサを保持することにより前記校正スイッチを操作する操作部を備えてもよい。当該構成によれば、電気化学的センサを校正用ホルダに保持させることで、センサヘッドが校正剤に接触した状態となり、測定動作が制限されるとともに、校正動作が実行される。
 上記一側面に係る電気化学的センサにおいて、前記操作部は磁石であり、前記校正スイッチは磁気スイッチであってもよい。当該構成によれば、電気化学的センサ及び校正用ホルダを防水設計とすることが容易になる。
 上記一側面に係る電気化学的センサにおいて、測定用ホルダとの結合により前記センサヘッドを前記測定対象液に接触させた状態となる。当該構成によれば、電気化学的センサを測定用ホルダに保持させることで、センサヘッドが測定対象液に接触した状態となり、かつユーザは自身で電気化学的センサを保持しなくてもよいため測定スイッチの操作が容易になる。
 上記一側面に係る電気化学的センサにおいて、前記測定用ホルダは、保持した前記電気化学的センサの前記測定スイッチを前記測定用ホルダの外部から操作するためのスイッチを備えてもよい。当該構成によれば、電気化学的センサを測定用ホルダに保持させることで、測定用ホルダの外部から測定スイッチを操作することが可能になる。
 上記一側面に係る電気化学的センサにおいて、前記測定用ホルダは、保持した前記電気化学的センサの前記校正スイッチを遮蔽する遮蔽部を備えてもよい。当該構成によれば、電気化学的センサを測定用ホルダに保持させた状態において、校正スイッチを操作不可とすることができる。
 上記一側面に係る電気化学的センサにおいて、前記センサヘッドは、ナトリウムイオンに対して選択的に反応するナトリウムイオン選択電極と、カリウムイオンに対して選択的に反応するカリウムイオン選択電極と、を含み、前記センサヘッドのセンシングデータは、前記ナトリウムイオン選択電極及び前記カリウムイオン選択電極の電位差であってもよい。
 本発明の一側面に係る測定装置は、前記電気化学的センサと、前記校正用部材と、を備える。
 本発明によれば、ユーザの誤操作に起因する、ユーザの意図しない動作を抑制することができる技術を提供することができる。
実施の形態の一例である電気化学的センサ90の構成を示す図である。 電気化学的センサ90の外観構成の一例を示す図である。 電気化学的センサ90を保持する校正用ホルダ60の一例を示す図である。 校正動作時の電気化学的センサ90及び校正用ホルダ60の状態の一例を示す図である。 測定動作時の電気化学的センサ90の状態の一例を示す図である。 実施の形態2の校正用ホルダ60の一例を示す図である。 実施の形態2の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態の一例を示す図である。 実施の形態3の電気化学的センサ90の一例を示す図である。 実施の形態3の校正用ホルダ60の一例を示す図である。 実施の形態3の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態の一例を示す図である。 実施の形態4の電気化学的センサ90の一例を示す図である。 実施の形態4の校正用ホルダ60の一例を示す図である。 実施の形態4の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態の一例を示す図である。 実施の形態5の電気化学的センサ90の外観構成の一例を示す図である。 実施の形態5の電気化学的センサ90を保持する測定用ホルダ80の一例を示す図である。 実施の形態5の測定動作時の電気化学的センサ90及び測定用ホルダ80の状態の一例を示す図である。 実施の形態6の校正動作時の状態の一例を示す図である。 実施の形態6の測定動作時の状態の一例を示す図である。 実施の形態6の校正用部材の別の例である校正用スプーン240を示す図である。 実施の形態6の校正用部材のさらに別の例である校正用キャップ250を示す図である。 実施の形態7の電気化学的センサ90の構成の一例を示す図である。 センサヘッド30の一例であるセンサヘッド30Aを示す図である。 図22におけるV-V線断面である。 センサヘッド30Aを分解状態で示す図である。 図22に示したセンサヘッド30をコネクタ21とともに示す斜視図である。
 以下、本発明の一側面に係る各実施の形態を、図面に基づいて説明する。
(実施の形態1)
<実施の形態の一例である電気化学的センサ90の構成>
 図1は、実施の形態の一例である電気化学的センサ90の構成を示す図である。電気化学的センサ90は、測定対象液(例えばヒトの尿)におけるナトリウムイオン(Na)とカリウムイオン(K)の濃度比を測定するセンサである。電気化学的センサ90は、センサヘッド30と、筐体10aを有する本体10と、を備えている。本体10には、制御部11、データ入力部12、操作部13及び表示部20が搭載されている。
 電気化学的センサ90は、ユーザが本体10を手に持って使用する手持ちタイプの装置として構成されている。本体10は、例えば、ユーザの手で把持されるべき細長い角柱状の外形を有している。
 センサヘッド30は、例えば略矩形板状の外形を有している。センサヘッド30は、ナトリウムイオンに対して選択的に反応するナトリウムイオン選択電極41と、カリウムイオンに対して選択的に反応するカリウムイオン選択電極42と、を先端部に有する。センサヘッド30の構成の具体例については後述する(例えば図22~図25参照)。
 データ入力部12は、センサヘッド30のナトリウムイオン選択電極41及びカリウムイオン選択電極42の各電位(又は電位差)を入力する。
 制御部11は、電気化学的センサ90全体の動作の制御や演算処理を行う。また、制御部11は、データ入力部12によって入力されたナトリウムイオン選択電極41とカリウムイオン選択電極42の各電位や、後述のナトリウムイオン選択電極41とカリウムイオン選択電極42に関する特性パラメータを一時的に記憶するメモリ18を有している。
 制御部11は、例えば協調して動作するプロセッサ及びメモリによって実現される。プロセッサは、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などのプロセッサである。プロセッサは、メモリに記憶されたプログラムを読み出して実行することで制御部11として動作する。なお、このプロセッサは、複数のプロセッサの組み合わせであってもよい。
 メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどによって実現される。メモリは、プロセッサによって実行されるプログラム、又はプロセッサによって用いられるデータなどを記憶する。メモリ18は、例えばRAMにより構成される。
 制御部11は、校正動作と測定動作が可能な演算部の一例である。校正動作は、センサヘッド30を校正液に接触させた状態におけるセンサヘッド30のセンシングデータに基づいて、センサヘッド30の特性パラメータを算出する動作である。校正液は、ナトリウムイオンとカリウムイオンの濃度比が既知である校正剤の一例である。
 センサヘッド30のセンシングデータは、例えばナトリウムイオン選択電極41及びカリウムイオン選択電極42の各電位である。センサヘッド30の特性パラメータは、例えばナトリウムイオン選択電極41及びカリウムイオン選択電極42に関する各パラメータである。特性パラメータについては後述する。
 測定動作は、校正動作によって算出したセンサヘッド30の特性パラメータと、センサヘッド30を測定対象液に接触させた状態におけるセンサヘッド30のセンシングデータと、に基づいて、測定対象液におけるナトリウムイオンとカリウムイオンの濃度比を算出する動作である。測定対象液におけるナトリウムイオンとカリウムイオンの濃度比の算出については後述する。
 操作部13は、ユーザからの操作を受け付けるユーザインターフェースである。操作部13は、例えば電気化学的センサ90の電源スイッチ(例えば図2の電源スイッチ13c)を含む。また、操作部13は、上記の校正動作を制御部11に実行させるための校正スイッチ13aと、上記の測定動作を制御部11に実行させるための測定スイッチ13bと、を含む。
 表示部20は、制御部11による演算結果などの各種情報を表示するユーザインターフェースである。例えば、表示部20は、LCD(Liquid Crystal Display)等によって構成される。
 校正スイッチ13aが操作されると、制御部11は、上記の校正動作を実行し、校正動作により算出したセンサヘッド30の特性パラメータをメモリ18に記憶させる。測定スイッチ13bが操作されると、制御部11は、メモリ18に記憶させたセンサヘッド30の特性パラメータを用いて上記の測定動作を実行し、測定動作により算出した濃度比を表示部20により表示させる制御を行う。
 ユーザは、まず、センサヘッド30に校正液を接触させ、その状態で校正スイッチ13aを操作する。これにより電気化学的センサ90の校正動作が行われる。次に、ユーザは、センサヘッド30を校正液から離し、校正液は破棄する。そして、ユーザは、センサヘッド30に測定対象液を接触させ、その状態で測定スイッチ13bを操作する。これにより電気化学的センサ90の測定動作が行われ、測定動作により測定された濃度比が表示部20に表示される。
<電気化学的センサ90の外観構成>
 図2は、電気化学的センサ90の外観構成の一例を示す図である。正面90aは、電気化学的センサ90の正面である。上面90bは、電気化学的センサ90の上面である。図2の例では、筐体10aに、校正スイッチ13a、測定スイッチ13b、及び電源スイッチ13c、及び表示部20が設けられている。図2の例では、校正スイッチ13a、測定スイッチ13b、及び電源スイッチ13cのそれぞれは、押下スイッチ(押下ボタン)である。
 具体的には、校正スイッチ13aは、筐体10aの側面に設けられている。また、校正スイッチ13aは、筐体10aから突出しておらず、かつユーザの指等に対して十分に小さいことにより、ユーザが指等によって押下することが困難な押下スイッチである。なお、校正スイッチ13aの形態は、ユーザが指等によって押下することが困難であれば、各種の形態とすることができる。例えば、筐体10aに対して校正スイッチ13aが陥没した状態になっていれば、校正スイッチ13aがある程度大きくても、ユーザが指等によって押下することが困難である。
 測定スイッチ13bは、筐体10aの正面に設けられている。また、測定スイッチ13bは、筐体10aから突出しており、ユーザが指等によって容易に押下可能な押下スイッチである。電源スイッチ13cは、筐体10aの上面に設けられている。また、電源スイッチ13cは、筐体10aから突出しており、ユーザが指等によって容易に押下可能な押下スイッチである。
<電気化学的センサ90を保持する校正用ホルダ60>
 図3は、電気化学的センサ90を保持する校正用ホルダ60の一例を示す図である。正面60aは、校正用ホルダ60の正面である。上面60bは、校正用ホルダ60の上面である。校正用ホルダ60は、校正用部材の一例である。図3に示す校正用ホルダ60は、センサヘッド30を校正液に接触させた状態で電気化学的センサ90を保持するスタンド型の校正用ホルダである。校正用ホルダ60は、保持部61と、センサヘッド挿入孔62と、収容部63と、スイッチ64と、土台69を有する。
 保持部61は、電気化学的センサ90の筐体10aにおける先端部(センサヘッド30が設けられる側の部分)を保持可能な形状を有する孔である。この例では電気化学的センサ90の筐体10aが略四角柱形状であるため、保持部61も略四角柱形状の孔となっている。また、保持部61は、筐体10aを下方から支持する底部を有する。
 センサヘッド挿入孔62は、保持部61の底部から収容部63に導通し、電気化学的センサ90のセンサヘッド30を挿入可能な形状を有する孔である。この例では電気化学的センサ90のセンサヘッド30が略四角柱形状であるため、センサヘッド挿入孔62も略四角柱形状の孔となっている。
 収容部63は、校正液を収容するための収容部である。収容部63は、センサヘッド挿入孔62と導通する部分を覗いて密閉された空間である。
 スイッチ64は、保持した電気化学的センサ90の校正スイッチ13aを校正用ホルダ60の外部から操作するための押下スイッチである。具体的には、スイッチ64は、校正用ホルダ60において保持部61が設けられた部分の側面に設けられている。また、スイッチ64は、校正用ホルダ60の側面から外側に突出しており、ユーザが指等によって容易に押下可能な押下スイッチである。
 校正用ホルダ60においてスイッチ64が設けられた部分には、校正用ホルダ60の外部から保持部61へ導通する孔が設けられており、スイッチ64にはこの孔内を摺動可能なピンが設けられている。スイッチ64を押下すると、このピンの先端が保持部61の内部にまで進入するようになっている。
 土台69は、校正用ホルダ60の底部に設けられており、底面が平らな部材である。土台69によって、校正用ホルダ60を机等の平らな場所に安定して設置可能である。
<校正動作時の電気化学的センサ90及び校正用ホルダ60の状態>
 図4は、校正動作時の電気化学的センサ90及び校正用ホルダ60の状態の一例を示す図である。正面1aは、互いに結合された電気化学的センサ90及び校正用ホルダ60の正面である。上面1bは、互いに結合された電気化学的センサ90及び校正用ホルダ60の上面である。
 校正用ホルダ60の収容部63に校正液63aを入れ、電気化学的センサ90を校正用ホルダ60に設置すると、例えば図4に示す状態となる。校正用ホルダ60への電気化学的センサ90の設置は、校正用ホルダ60(校正用部材)と電気化学的センサ90との結合の一例である。
 図4の状態においては、センサヘッド挿入孔62を介してセンサヘッド30の先端部(ナトリウムイオン選択電極41及びカリウムイオン選択電極42が露出した部分)が収容部63の校正液63aと接触した状態で、筐体10aにおける先端部が保持部61に保持される。これにより、例えばユーザが電気化学的センサ90から手を離しても、センサヘッド30を校正液63aに接触させた状態で電気化学的センサ90が保持される。
 また、図4の状態においては、電気化学的センサ90の測定スイッチ13bが、保持部61の側壁部によって外部から遮蔽されている。すなわち、保持部61の側壁部は、校正用ホルダ60が保持した電気化学的センサ90の測定スイッチ13bを遮蔽する遮蔽部の一例である。測定スイッチ13bが遮蔽されることにより、ユーザは指等で測定スイッチ13bを押下することが困難になる。
 一方で、図4の状態においては、スイッチ64を押下すると、スイッチ64に設けられたピンの先端によって校正スイッチ13aが押下されるようになっている。したがって、ユーザは、指等によってスイッチ64を押下することにより、校正スイッチ13aを容易に押下することができる。
 すなわち、図4の状態(電気化学的センサ90と校正用ホルダ60との結合時)においては、校正スイッチ13aが操作可能となり、測定スイッチ13bが操作不可となる。操作可能とは、通常の方法(例えば指で押下する等)で容易に操作できる状態である。操作不可とは、通常の方法では操作できない状態(操作が困難な状態)である。
 これにより、ユーザがスイッチ64を押下することにより電気化学的センサ90に容易に校正動作を実行させることができるとともに、ユーザが誤って測定スイッチ13bを押下して電気化学的センサ90が測定動作を実行してしまうことを抑制することができる。
<測定動作時の電気化学的センサ90の状態>
 図5は、測定動作時の電気化学的センサ90の状態の一例を示す図である。図4に示した状態における測定動作が終了すると、ユーザは、校正用ホルダ60から電気化学的センサ90を取り出し、図5に示すように、容器70に入った測定対象液70aにセンサヘッド30が接触するように電気化学的センサ90を保持する。
 そして、ユーザは、測定スイッチ13bを押下する。図5の状態においては、測定スイッチ13bは遮蔽されていないため、ユーザは測定スイッチ13bを容易に押下することができる。一方で、上記のように校正スイッチ13aは筐体10aから突出しないように設けられているため、図5の状態においては、ユーザは測定スイッチ13bを容易に押下することができない。すなわち、図5の状態(電気化学的センサ90と校正用ホルダ60との非結合時)においては、測定スイッチ13bが操作可能となり、校正スイッチ13aが操作不可となる。
 これにより、ユーザが測定スイッチ13bを押下して電気化学的センサ90に容易に測定動作を実行させることができるとともに、ユーザが誤って校正スイッチ13aを押下して電気化学的センサ90が校正動作を実行してしまうことを抑制することができる。
 このように、電気化学的センサ90においては、電気化学的センサ90と校正用ホルダ60(校正用部材)との結合によりセンサヘッド30を校正液63aに接触させた状態となり、電気化学的センサ90と校正用ホルダ60の結合時には測定スイッチ13bが操作不可となり、電気化学的センサ90と校正用ホルダ60との非結合時には校正スイッチ13aが操作不可となる。これにより、電気化学的センサ90と校正用ホルダ60の結合時には測定動作が制限され、電気化学的センサ90と校正用ホルダ60との非結合時には校正動作が制限される。
 このため、センサヘッド30を校正液63aに接触させた状態で測定動作が実行されたり、センサヘッド30が校正液63aに接触していない状態で校正動作が実行されたりするといった、ユーザの誤操作に起因する、ユーザの意図しない動作を抑制することができる。
 例えば、センサヘッド30を校正液63aに接触させた状態でユーザが誤って測定スイッチ13bを操作してしまい、正しく校正ができていない状態で測定動作が行われて正確な測定値が得られなくなることを抑制することができる。また、センサヘッド30を測定対象液70aに接触させた状態でユーザが誤って校正スイッチ13aを操作してしまい、測定対象液70aを基準とした不正確な校正が行われ、その後の測定において正確な測定値が得られなくなることを抑制することができる。
(測定方法について)
 電気化学的センサ90では、測定対象液70aにおけるナトリウムイオンとカリウムイオンの濃度比が、次のような原理によって求められる。
 まず、ナトリウムイオン選択電極41、カリウムイオン選択電極42のようなイオン選択電極は、一般に、式(1)のようにネルンストの式に従った、化学種の活量の対数に比例した応答を示す。
Figure JPOXMLDOC01-appb-M000001

                             …(1)
 ここで、Eは作用極の電位[V]、Eは各電極に固有の式量電位[V]、Rは気体定数(=8.314[J/K・mol])、Tは絶対温度[K]、nはイオン価数、Fはファラデー定数(≒96,485[C/mol])、rは溶液全体のイオン濃度を表す活量係数、Cは測定対象のイオン濃度[mol/L]を表す。
 ここで、ナトリウムイオン選択電極41、カリウムイオン選択電極42について、それぞれ電極電位をEw1、Ew2、式量電位をそれぞれ次のように表す。
Figure JPOXMLDOC01-appb-M000002
 ナトリウムイオン選択電極41、カリウムイオン選択電極42での測定対象であるナトリウムイオン、カリウムイオンの濃度をそれぞれC,Cとする。また、ナトリウムイオン選択電極41、カリウムイオン選択電極42の感度を、活量係数を含めた値でS,Sとする。なお、ナトリウムイオン選択電極41及びカリウムイオン選択電極42での応答の感度は、測定対象が1価イオンで温度が25[℃]のとき、理論的にはS=S=59.2となるが、実際には、膜のばらつきや感応物質の劣化・溶出の影響で異なるので、上述のようにそれぞれ活量係数を含めた値でS,Sとする。また、ナトリウムイオン選択電極41、カリウムイオン選択電極42での干渉物質による電位への影響量(各イオン選択電極の選択性に対応する)をk,kとする。すると、電極電位Ew1、Ew2は、それぞれ式(2)、(3)のように示される。
Figure JPOXMLDOC01-appb-M000003

                            …(2)
Figure JPOXMLDOC01-appb-M000004

                            …(3)
 ここで、式(4)のようにナトリウムイオン選択電極41の感度とカリウムイオン選択電極42の感度との間の差(感度差)をαとする。
 S=S-α
        …(4)
 すると、ナトリウムイオン選択電極41の電極電位とカリウムイオン選択電極42の電極電位との間の差(電位差)ΔEは、式(5)のように表される。
Figure JPOXMLDOC01-appb-M000005

                              …(5)
 ここで、ナトリウムイオン選択電極41、カリウムイオン選択電極42の感度S,Sと、ナトリウムイオン選択電極41、カリウムイオン選択電極42での干渉物質による電位への影響量k,k(各イオン選択電極の選択性に対応する)については、例えば後述のナトリウムイオン選択膜41i、カリウムイオン選択膜42iの材料を設定することによって、互いに揃えることができる。そのように、ナトリウムイオン選択電極41の感度S、選択性kを、それぞれカリウムイオン選択電極42の感度S、選択性kと揃えた場合、実質的に、式(6)、(7)のようにみなすことができる。
 α=S-S=0
          …(6)
 k=k
       …(7)
 この結果、式(5)は、次の式(8)のように簡略化される。
Figure JPOXMLDOC01-appb-M000006

                          …(8)
 この式は、ナトリウムイオン、カリウムイオン間の既知の濃度比をもつ溶液(校正液63a)についてΔEを測定して、下記の定数Vと感度Sとを予め求めておけば、測定対象液70aにおけるナトリウムイオン、カリウムイオン間の濃度比M(=C/C)を測定できることを表している。定数Vは次のように定義される。
Figure JPOXMLDOC01-appb-M000007
 特に、感度Sについては、作製したセンサヘッド30のロット内では一定と仮定し、予め測定しておいた既知の一定の値を採用する。定数Vについては、校正液63aについて、ナトリウムイオン選択電極41とカリウムイオン選択電極42との間の電位差を検出することにより求めることができる。すなわち、校正液63aにおけるナトリウムイオン、カリウムイオン間の濃度比(既知)をMrefとし、校正液63aについて検出された電位差をVrefとすると、式(8)から、式(9)のようになる。
 V=Vref-Slog(Mref
                 …(9)
 一方、測定対象液70aについてナトリウムイオン選択電極41とカリウムイオン選択電極42の電位差を検出する。測定対象液70a中のナトリウムイオン、カリウムイオン間の濃度比をMとし、測定対象液70aについて検出された電位差をVとすると、式(8)から、式(10)のようになる。
 logM=(V-V)/S
                 …(10)
 よって、測定対象液70a中のナトリウムイオン、カリウムイオン間の濃度比Mを、式(11)のように求められる。
Figure JPOXMLDOC01-appb-M000008

                             …(11)
 すなわち、制御部11は、校正動作において、定数Vと、ナトリウムイオン選択電極41の感度Sと、校正液63aについて検出された電位差Vrefと、をセンサヘッド30の特性パラメータとして算出する。
 また、制御部11は、測定動作において、測定対象液70aについて検出された電位差Vと、定数Vと、ナトリウムイオン選択電極41の感度Sと、校正液63aについて検出された電位差Vrefと、校正液63aにおけるナトリウムイオン、カリウムイオン間の既知の濃度比Mrefと、式(11)と、に基づいて、測定対象液70a中のナトリウムイオン、カリウムイオン間の濃度比Mを算出する。
(実施の形態2)
 実施の形態2について、実施の形態1と異なる部分について説明する。実施の形態2においては、校正用ホルダ60が電気化学的センサ90を保持することにより校正スイッチ13aを操作する操作部の例について説明する。
<実施の形態2の校正用ホルダ60>
 図6は、実施の形態2の校正用ホルダ60の一例を示す図である。図6に示す校正用ホルダ60は、図3に示した校正用ホルダ60のスイッチ64に代えてスイッチ65を備える。スイッチ65は、校正用ホルダ60が電気化学的センサ90を保持することにより校正スイッチ13aを操作する操作部の一例である。
 スイッチ65は、保持部61の側壁の内側に設けられた穴に設けられ、保持部61の内部に向かってバネ等により付勢されている。その結果、保持部61に電気化学的センサ90が挿入されていない状態では、保持部61の先端部のみが保持部61の内部に露出するようになっている。
 保持部61の先端部は、保持部61への電気化学的センサ90の挿入方向(図6の縦方向)に対して傾斜を有している。図6の例では、保持部61の先端部は半球形状になっている。これにより、保持部61への電気化学的センサ90の挿入をスイッチ65が妨げないようになっている。
<実施の形態2の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態>
 図7は、実施の形態2の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態の一例を示す図である。図6に示した校正用ホルダ60の収容部63に校正液63aを入れ、電気化学的センサ90を校正用ホルダ60に設置すると、例えば図7に示す状態となる。
 具体的には、電気化学的センサ90を校正用ホルダ60に設置すると、スイッチ65によって校正スイッチ13aが押下される。したがって、ユーザは、電気化学的センサ90を校正用ホルダ60に設置することにより、校正スイッチ13aを容易に押下することができる。
 これにより、電気化学的センサ90を校正用ホルダ60に設置することにより電気化学的センサ90に容易に校正動作を実行させることができるとともに、ユーザが誤って測定スイッチ13bを押下して電気化学的センサ90が測定動作を実行してしまうことを抑制することができる。
 実施の形態2の校正動作について説明したが、実施の形態2の測定動作は、例えば実施形態1と同様に行われる。
(実施の形態3)
 実施の形態3について、実施の形態1,2と異なる部分について説明する。実施の形態2においては、校正動作を制御部11に実行させるための校正スイッチの、上記の校正スイッチ13aとは異なる例について説明する。
<実施の形態3の電気化学的センサ90>
 図8は、実施の形態3の電気化学的センサ90の一例を示す図である。図8に示す電気化学的センサ90は、図2に示した電気化学的センサ90の校正スイッチ13aに代えて磁気スイッチ13dを備える。磁気スイッチ13dは、校正動作を制御部11に実行させるための校正スイッチの一例である。磁気スイッチ13dは、磁気を検知すると検知信号を出力する磁気形近接スイッチである。制御部11は、磁気スイッチ13dから検知信号が出力されると校正動作を行う。
<実施の形態3の校正用ホルダ60>
 図9は、実施の形態3の校正用ホルダ60の一例を示す図である。図9に示す校正用ホルダ60は、図3に示した校正用ホルダ60のスイッチ64に代えて磁石66を備える。磁石66は、保持部61の側壁部に埋め込まれている。具体的には、磁石66は、保持部61によって電気化学的センサ90が保持された際に電気化学的センサ90の磁気スイッチ13dに近接する位置に設けられている。磁石66は、校正用ホルダ60が電気化学的センサ90を保持することにより校正スイッチ(電気化学的センサ90の磁気スイッチ13d)を操作する操作部の一例である。
<実施の形態3の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態>
 図10は、実施の形態3の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態の一例を示す図である。図9に示した校正用ホルダ60の収容部63に校正液63aを入れ、図8に示した電気化学的センサ90を校正用ホルダ60に設置すると、例えば図10に示す状態となる。
 具体的には、電気化学的センサ90を校正用ホルダ60に設置すると、電気化学的センサ90の磁気スイッチ13dに校正用ホルダ60の磁石66が近接した状態となる。これにより、磁気スイッチ13dから検知信号が出力され、制御部11によって校正動作が実行される。したがって、ユーザは、電気化学的センサ90を校正用ホルダ60に設置することにより、容易に校正動作を実行させることができる。
 これにより、電気化学的センサ90を校正用ホルダ60に設置することにより電気化学的センサ90に容易に校正動作を実行させることができるとともに、ユーザが誤って測定スイッチ13bを押下して電気化学的センサ90が測定動作を実行してしまうことを抑制することができる。
 また、磁気スイッチ13d及び磁石66は、互いに非接触のスイッチとすることができるため、磁気スイッチ13dは電気化学的センサ90の表面から露出していなくてもよく、磁石66も校正用ホルダ60の表面から露出していなくてもよい。このため、電気化学的センサ90及び校正用ホルダ60を防水設計とすることが容易になる。
 実施の形態3の校正動作について説明したが、実施の形態3の測定動作は、例えば実施形態1と同様に行われる。
(実施の形態4)
 実施の形態4について、実施の形態1~3と異なる部分について説明する。実施の形態4においては、校正動作を制御部11に実行させるための校正スイッチの、上記の校正スイッチ13aや磁気スイッチ13dとは異なる例について説明する。
<実施の形態4の電気化学的センサ90>
 図11は、実施の形態4の電気化学的センサ90の一例を示す図である。図11に示す電気化学的センサ90は、図2に示した電気化学的センサ90の校正スイッチ13aに代えて電極13e,13f及び検知回路13hを備える。電極13e,13fは、互いに離間した状態で、筐体10aの側面において露出した各電極である。
 電極13e,13fが短絡すると、検知回路13hによって検知信号が出力される。制御部11は、検知回路13hから検知信号が出力されると校正動作を行う。電極13e,13f及び検知回路13hは、校正動作を制御部11に実行させるための校正スイッチの一例である。
<実施の形態4の校正用ホルダ60>
 図12は、実施の形態4の校正用ホルダ60の一例を示す図である。図12に示す校正用ホルダ60は、図3に示した校正用ホルダ60のスイッチ64に代えて電極67a,67b及び短絡経路67cを備える。電極67a,67bは、互いに離間した状態で保持部61の側壁部の内側において露出した各電極である。具体的には、電極67a,67bは、保持部61によって電気化学的センサ90が保持された際に、それぞれ電気化学的センサ90の電極13e,13fと接触する位置に設けられている。
 短絡経路67cは、保持部61の側壁部に埋め込まれており、電極67a,67bを互いに接続している。電極67a,67b及び短絡経路67cは、校正用ホルダ60が電気化学的センサ90を保持することにより校正スイッチ(電気化学的センサ90の電極13e,13f及び検知回路13h)を操作する操作部の一例である。
<実施の形態4の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態>
 図13は、実施の形態4の校正動作時の電気化学的センサ90及び校正用ホルダ60の状態の一例を示す図である。図12に示した校正用ホルダ60の収容部63に校正液63aを入れ、図11に示した電気化学的センサ90を校正用ホルダ60に設置すると、例えば図13に示す状態となる。
 具体的には、電気化学的センサ90を校正用ホルダ60に設置すると、電気化学的センサ90の電極13e,13fに、それぞれ校正用ホルダ60の電極67a,67bが接触した状態となる。これにより、上記の検知信号が出力され、制御部11によって校正動作が実行される。したがって、ユーザは、電気化学的センサ90を校正用ホルダ60に設置することにより、容易に校正動作を実行させることができる。
 これにより、電気化学的センサ90を校正用ホルダ60に設置することにより電気化学的センサ90に容易に校正動作を実行させることができるとともに、ユーザが誤って測定スイッチ13bを押下して電気化学的センサ90が測定動作を実行してしまうことを抑制することができる。
 実施の形態4の校正動作について説明したが、実施の形態4の測定動作は、例えば実施形態1と同様に行われる。
(実施の形態5)
 実施の形態5について、実施の形態1~4と異なる部分について説明する。実施の形態5においては、センサヘッド30を測定対象液70aに接触させた状態で電気化学的センサ90を保持する測定用ホルダを用いる構成について説明する。
<実施の形態5の電気化学的センサ90の外観構成>
 図14は、実施の形態5の電気化学的センサ90の外観構成の一例を示す図である。図14の例では、測定スイッチ13bが、筐体10aの側面に設けられている。また、測定スイッチ13bが、校正スイッチ13aと同様に、筐体10aから突出しておらず、かつユーザの指等に対して十分に小さいことにより、ユーザが指等によって押下することが困難な押下スイッチとなっている。
<実施の形態5の電気化学的センサ90を保持する測定用ホルダ80>
 図15は、実施の形態5の電気化学的センサ90を保持する測定用ホルダ80の一例を示す図である。正面80aは、測定用ホルダ80の正面である。上面80bは、測定用ホルダ80の上面である。図15に示す測定用ホルダ80は、センサヘッド30を測定対象液70aに接触させた状態で電気化学的センサ90を保持するスタンド型の測定用ホルダである。測定用ホルダ80は、保持部81と、センサヘッド挿入孔82と、容器設置部83と、スイッチ84と、土台89を有する。
 保持部81は、校正用ホルダ60の保持部61と同様に、電気化学的センサ90の筐体10aにおける先端部を保持可能な形状を有する孔である。センサヘッド挿入孔82は、校正用ホルダ60のセンサヘッド挿入孔62と同様に、保持部81の底部から容器設置部83に導通し、電気化学的センサ90のセンサヘッド30を挿入可能な形状を有する孔である。容器設置部83は、測定対象液70aを入れた容器70を設置可能なスペースである。
 スイッチ84は、保持した電気化学的センサ90の測定スイッチ13bを測定用ホルダ80の外部から操作するための押下スイッチである。スイッチ84の構成は、校正用ホルダ60のスイッチ64と同様の構成である。土台89は、校正用ホルダ60の土台69と同様に、測定用ホルダ80の底部に設けられており、底面が平らな部材である。
<実施の形態5の測定動作時の電気化学的センサ90及び測定用ホルダ80の状態>
 図16は、実施の形態5の測定動作時の電気化学的センサ90及び測定用ホルダ80の状態の一例を示す図である。測定対象液70aを入れた容器70を測定用ホルダ80の容器設置部83に設置し、電気化学的センサ90を測定用ホルダ80に設置すると、例えば図16に示す状態となる。
 図16の状態においては、センサヘッド挿入孔82を介してセンサヘッド30の先端部が容器70の測定対象液70aと接触した状態で、筐体10aにおける先端部が保持部81に保持される。これにより、例えばユーザが電気化学的センサ90から手を離しても、センサヘッド30を測定対象液70aに接触させた状態で電気化学的センサ90が保持される。
 また、図16の状態においては、電気化学的センサ90の校正スイッチ13aが、保持部81の側壁部によって外部から遮蔽されている。すなわち、保持部81の側壁部は、測定用ホルダ80が保持した電気化学的センサ90の校正スイッチ13aを遮蔽する遮蔽部の一例である。また、測定用ホルダ80には、校正用ホルダ60のスイッチ64のような、校正スイッチ13aを測定用ホルダ80の外部から操作するための押下スイッチが設けられていない。このため、ユーザは指等で測定スイッチ13bを押下することが困難になる。
 一方で、図16の状態においては、スイッチ84を押下すると、スイッチ84に設けられたピンの先端によって測定スイッチ13bが押下される。したがって、ユーザは、指等によってスイッチ84を押下することにより、測定スイッチ13bを容易に押下することができる。
 すなわち、図16の状態(電気化学的センサ90と測定用ホルダ80との結合時)においては、測定スイッチ13bが操作可能となり、校正スイッチ13aが操作不可となる。これにより、ユーザがスイッチ84を押下することにより電気化学的センサ90に容易に測定動作を実行させることができるとともに、ユーザが誤って校正スイッチ13aを押下して電気化学的センサ90が校正動作を実行してしまうことを抑制することができる。
 実施の形態5の測定動作について説明したが、実施の形態5の校正動作は、例えば実施の形態1と同様に行われる。また、実施の形態5の構成を、実施の形態2~4のいずれかの構成と組み合わせてもよい。
(実施の形態6)
 実施の形態6について、実施の形態1~5と異なる部分について説明する。上記において、校正用部材の一例として校正用ホルダ60を説明したが、校正用部材は校正用ホルダ60に限らない。実施の形態6においては、校正用部材の他の例について説明する。
<実施の形態6の校正動作時の状態>
 図17は、実施の形態6の校正動作時の状態の一例を示す図である。校正剤ケース220は、校正用部材の、校正用ホルダ60とは異なる例である。なお、図17においては校正剤ケース220の断面を示している。図17の例では、電気化学的センサ90の筐体10aには穴211,212が設けられている。そして、校正スイッチ13aは穴211の底部に設けられている。これにより、電気化学的センサ90の単体では、ユーザが指等によって校正スイッチ13aを押下することが困難になっている。
 また、測定スイッチ13bは本体10から突出して設けられている。穴212の底部には測定制限解除スイッチ13gが設けられている。制御部11は、測定制限解除スイッチ13gが押下されており、かつ測定スイッチ13bが押下された場合に、測定動作を実行する。これにより、電気化学的センサ90の単体では、ユーザが指等によって測定スイッチ13bを押下しても測定動作が実行されないようになっている。すなわち、電気化学的センサ90と校正剤ケース220との結合時には測定動作が制限される。
 校正剤ケース220は、校正ゲル63bを収納するケースである。校正ゲル63bは、ナトリウムイオンとカリウムイオンの濃度比が既知である校正剤の、校正液63aとは異なる例である。図17の例では、校正剤ケース220は、略中空四角柱形状であり、内側の上面に校正ゲル63bが塗布されている。
 また、校正剤ケース220は、センサヘッド30を差し込むための開口部221を有する。開口部221にセンサヘッド30を差し込み、筐体10aに校正剤ケース220を結合することで、センサヘッド30のナトリウムイオン選択電極41及びカリウムイオン選択電極42が校正剤ケース220内の校正ゲル63bに接触するようになっている。
 また、校正剤ケース220は、開口部221の上部から突出するピン222を有する。ピン222は、筐体10aに校正剤ケース220が結合した状態において穴211に嵌合して校正スイッチ13aを押下するように形成されている。これにより、ユーザが、開口部221にセンサヘッド30を差し込み、筐体10aに校正剤ケース220を結合することで、ナトリウムイオン選択電極41及びカリウムイオン選択電極42が校正ゲル63bに接触した状態となり、電気化学的センサ90により校正動作が実行される。
<実施の形態6の測定動作時の状態>
 図18は、実施の形態6の測定動作時の状態の一例を示す図である。測定用スプーン230は、略中空四角柱形状であり、測定対象液70aを保持可能な皿部231を有する部材である。なお、図18においては測定用スプーン230の断面を示している。測定用スプーン230は、センサヘッド30を差し込むための開口部233を有する。
 開口部233にセンサヘッド30を差し込み、筐体10aに測定用スプーン230を結合することで、センサヘッド30のナトリウムイオン選択電極41及びカリウムイオン選択電極42が測定用スプーン230の皿部231の底部から露出し、ナトリウムイオン選択電極41及びカリウムイオン選択電極42が測定対象液70aに接触するようになっている。
 また、測定用スプーン230は、開口部233の下部から突出するピン232を有する。ピン232は、筐体10aに測定用スプーン230が結合した状態において穴212に嵌合し、測定制限解除スイッチ13gを押下するように形成されている。
 これにより、ユーザが、開口部233にセンサヘッド30を差し込み、筐体10aに測定用スプーン230を結合することで、ナトリウムイオン選択電極41及びカリウムイオン選択電極42が測定対象液70aに接触し、測定制限解除スイッチ13gが押下された状態となる。この状態で、ユーザが測定スイッチ13bを押下すると、電気化学的センサ90により測定動作が実行される。
 一方で、図18の状態では校正スイッチ13aの押下は困難である。すなわち、電気化学的センサ90と校正剤ケース220との非結合時には校正動作が制限される。
 図17,図18に示したように、実施の形態6においても、電気化学的センサ90と校正剤ケース220との結合時には測定動作が制限され、電気化学的センサ90と校正剤ケース220との非結合時には校正動作が制限される。このため、センサヘッド30を校正ゲル63bに接触させた状態で測定動作が実行されたり、センサヘッド30が校正ゲル63bに接触していない状態で校正動作が実行されたりするといった、ユーザの誤操作に起因する、ユーザの意図しない動作を抑制することができる。
<実施の形態6の校正用部材の別の例である校正用スプーン240>
 図19は、実施の形態6の校正用部材の別の例である校正用スプーン240を示す図である。実施の形態6において、校正剤ケース220に代えて校正用スプーン240を用いてもよい。なお、図19においては校正用スプーン240の断面を示している。
 校正用スプーン240は、測定用スプーン230と同様に、略中空四角柱形状であり、校正液63aを保持可能な皿部242を有する部材である。校正用スプーン240は、センサヘッド30を差し込むための開口部243を有する。
 開口部243にセンサヘッド30を差し込み、筐体10aに校正用スプーン240を結合することで、センサヘッド30のナトリウムイオン選択電極41及びカリウムイオン選択電極42が校正用スプーン240の皿部242の底部から露出し、ナトリウムイオン選択電極41及びカリウムイオン選択電極42が校正液63aに接触するようになっている。また、校正用スプーン240は、開口部243の上部から突出するピン244を有する。ピン244は、筐体10aに校正用スプーン240が結合した状態において穴211に嵌合して校正スイッチ13aを押下するように形成されている。
 これにより、ユーザが、開口部243にセンサヘッド30を差し込み、筐体10aに校正用スプーン240を結合することで、ナトリウムイオン選択電極41及びカリウムイオン選択電極42が校正液63aに接触した状態となり、電気化学的センサ90により校正動作が実行される。
<実施の形態6の校正用部材のさらに別の例である校正用キャップ250>
 図20は、実施の形態6の校正用部材のさらに別の例である校正用キャップ250を示す図である。実施の形態6において、校正剤ケース220に代えて校正用キャップ250を用いてもよい。なお、図20においては校正用キャップ250の断面を示している。
 校正用キャップ250は、センサヘッド30を覆うように電気化学的センサ90に装着可能な中空形状のキャップである。校正用キャップ250の内部には校正ゲル63bが塗布されている。また、校正用キャップ250は、センサヘッド30を差し込むための開口部253を有する。
 開口部253にセンサヘッド30を差し込み、筐体10aに校正用キャップ250を結合することで、センサヘッド30のナトリウムイオン選択電極41及びカリウムイオン選択電極42が校正用キャップ250の内部の校正ゲル63bに接触するようになっている。また、校正用キャップ250は、開口部253の上部から突出するピン254を有する。ピン254は、筐体10aに校正用キャップ250が結合した状態において穴211に嵌合して校正スイッチ13aを押下するように形成されている。
 これにより、ユーザが、開口部253にセンサヘッド30を差し込み、筐体10aに校正用キャップ250を結合することで、ナトリウムイオン選択電極41及びカリウムイオン選択電極42が校正ゲル63bに接触した状態となり、電気化学的センサ90により校正動作が実行される。
(実施の形態7)
 実施の形態7について、実施の形態1~6と異なる部分について説明する。実施の形態7においては、センサヘッド30がコネクタを介して筐体10aに装着される構成について説明する。
<実施の形態7の電気化学的センサ90の構成>
 図21は、実施の形態7の電気化学的センサ90の構成の一例を示す図である。図21に示す電気化学的センサ90は、図1に示した電気化学的センサ90の構成に加えて、コネクタ21を備えている。コネクタ21は、筐体10aの壁面を貫通して設けられている。センサヘッド30は、コネクタ21に対して着脱可能になっている。
 また、電気化学的センサ90は、さらにセンサヘッド接続検知部14を備えてもよい。センサヘッド接続検知部14は、例えばコネクタ21に設けられたスイッチのセンシングデータ等に基づいて、コネクタ21にセンサヘッド30が装着されているか否かを検出する。制御部11は、センサヘッド接続検知部14による検知結果に基づいて、コネクタ21にセンサヘッド30が装着されている状態にのみ上記の測定動作及び校正動作を実行するようにしてもよい。
<センサヘッド30の構成例>
 図22は、センサヘッド30の一例であるセンサヘッド30Aを示す図である。図22においては、完成状態のセンサヘッド30Aを板面に対して垂直な方向から見たところを示している。図23は、図22におけるV-V線断面である。また、図24は、センサヘッド30Aを分解状態で示す図である。
 図22~図24によって分かるように、センサヘッド30Aは、所定のサイズを持つ矩形状の基板31と、この基板31の一方の主面である搭載面31a上に、1つの辺31cに沿って互いに離間して配置されたナトリウムイオン選択電極41及びカリウムイオン選択電極42と、これらのナトリウムイオン選択電極41、カリウムイオン選択電極42からそれぞれ基板31の反対側の辺(縁部)31eへ向かってX方向に互いに平行に延在する第1引出電極43及び第2引出電極44を備えている。
 基板31は、PET(ポリエチレンテレフタレート)、ガラス、シリコン、ポリイミドフィルム、ガラスエポキシ、ポリカーボネート又はアクリルなどの絶縁性材料からなっている。したがって、搭載面31aも、絶縁性をもつ。
 第1引出電極43、第2引出電極44は、Pt、Ag、Au、Ir、C又はIrOなどの導電性材料からなっている。
 図23及び図24によって分かるように、ナトリウムイオン選択電極41は、第1引出電極43と同じ材料からなる導電性をもつ第1芯材下層41m′と、この第1芯材下層41m′に直接接して設けられたAgClからなる第1芯材上層41m″とを、第1の内部電極41mとして有している。これとともに、ナトリウムイオン選択電極41は、第1の内部電極41m(より正確には、第1芯材上層41m″)に直接接して設けられたナトリウムイオン選択膜41iを有している。
 同様に、カリウムイオン選択電極42は、第2引出電極44と同じ材料からなる導電性を持つ第2芯材下層42m′と、この第2芯材下層42m′に直接接して設けられたAgClからなる第2芯材上層42m″とを、第2の内部電極42mとして有している。これとともに、カリウムイオン選択電極42は、第2の内部電極42m(より正確には、第2芯材上層42m″)に直接接して設けられたカリウムイオン選択膜42iを有している。
 第1の内部電極41mとナトリウムイオン選択膜41iとが接する領域、第2の内部電極42mとカリウムイオン選択膜42iとが接する領域は、それぞれ、絶縁性基材(光硬化型若しくは熱硬化型のレジスト、又は絶縁性を有するシール、シート、テープなどからなる。)50に設けられた開口51,52のサイズ(この例では、直径約4[mm])によって画定されている。
 ナトリウムイオン選択膜41iは、後述の校正液又は測定対象液に含まれたナトリウムイオン(Na)を選択的に透過する性質を有している。カリウムイオン選択膜42iは、それぞれ後述の校正液又は測定対象液に含まれたカリウムイオン(K)を選択的に透過する性質を有している。
 図22によって分かるように、センサヘッド30Aのうち絶縁性基材50によって覆われていない部分である電極パッド部30xでは、第1引出電極43、第2引出電極44が露出している。
 上述のようなセンサヘッド30Aは、比較的構成要素が少なく、特に、略矩形の平板状に形成されるとともに、一般的なイオン選択電極が有する内部液が省略されている。また、測定対象液に接触すべき電極は、ナトリウムイオン選択電極41及びカリウムイオン選択電極42のみである。したがって、このセンサヘッド30Aは、小型かつ低価格で構成され得る。
<図22に示したセンサヘッド30をコネクタ21とともに示す斜視図である。>
 図25は、図22に示したセンサヘッド30をコネクタ21とともに示す斜視図である。図21に示したコネクタ21は、図25中に示すように、センサヘッド30Aの電極パッド部30xが挿入されるべきスロット22を有している。スロット22内で、センサヘッド30Aの第1引出電極43、第2引出電極44に対応する位置には、くの字状の板ばねからなるコンタクト部材23,24が設けられている。ユーザがセンサヘッド30Aの電極パッド部30xをスロット22内に挿入すると、第1引出電極43、第2引出電極44がコンタクト部材23,24と接触して導通する。この結果、センサヘッド30Aのナトリウムイオン選択電極41とカリウムイオン選択電極42との間の電位差又は電流が、コネクタ21を介して、本体10によって検出され得る。
 なお、センサヘッド30の形状は、図22~図25に示したセンサヘッド30Aの形状に限らず、各種の形状とすることができる。例えば、ナトリウムイオン選択電極41及びカリウムイオン選択電極42をセンサヘッド30Aの長手方向に沿って配置された構成としてもよい。
 また、図22~図25に示したセンサヘッド30Aの構成は、実施の形態1~6のように、コネクタ21を設けずにセンサヘッド30を本体10に直接接続する構成にも適用可能である。
(変形例1)
 校正剤の例として、校正液63aや校正ゲル63bについて説明したが、校正剤は、液状のものやゲル状のものに限らず、例えば吸収体に液状のものを含ませたものなどであってもよい。
(変形例2)
 電気化学的センサ90が電源スイッチ13cを備える構成について説明したが、このような構成に限らない。例えば、校正スイッチ13aが電源スイッチを兼ねていてもよい。すなわち、電気化学的センサ90は、校正スイッチ13aが押下されると、電源がオンになるとともに校正動作を開始してもよい。
(変形例3)
 制御部11は、校正用部材と電気化学的センサ90との結合時の測定動作の制限と、校正用部材と電気化学的センサ90との非結合時の校正動作の制限と、をソフトウェア的な処理によって制限してもよい。例えば、制御部11は、校正用部材と電気化学的センサ90との結合を検知する検知部を備え、校正用部材と電気化学的センサ90が結合している場合には測定スイッチ13bが押下されても測定動作を実行せず、校正用部材と電気化学的センサ90が結合していない場合には校正スイッチ13aが押下されても校正動作を実行しない。
 この場合、校正用部材と電気化学的センサ90が結合している場合に測定スイッチ13bを操作不可にする構成(例えば校正用ホルダ60の保持部61の側壁部)や、校正用部材と電気化学的センサ90が結合していない場合に校正スイッチ13aを操作不可にする構成(例えば校正スイッチ13aが筐体10aから突出していない構成)は不要である。
(変形例4)
 上記の各スイッチの配置、形状、及び大きさは、適宜変更することができる。例えば、図2に示した電気化学的センサ90において、測定スイッチ13bは、筐体10aの正面に限らず、筐体10aの側面や裏面に設けられてもよい。また、図2に示した電気化学的センサ90において、校正スイッチ13aは、筐体10aの側面に限らず、筐体10aの正面や裏面に設けられてもよい。また、筐体10aやセンサヘッド30の形状や大きさについても、上記の構成に限らず、適宜変更することができる。
(変形例5)
 校正用ホルダ60は、収容部63に代えて、測定用ホルダ80の容器設置部83と同様の、校正液63aを入れた容器を設置可能なスペースを有する構成であってもよい。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2021年11月10日出願の日本特許出願(特願2021-183711)に基づくものであり、その内容は本出願の中に参照として援用される。
 1a,60a,80a,90a 正面
 1b,60b,80b,90b 上面
 10 本体
 10a 筐体
 11 制御部
 12 データ入力部
 13 操作部
 13a 校正スイッチ
 13b 測定スイッチ
 13c 電源スイッチ
 13d 磁気スイッチ
 13e,13f,67a,67b 電極
 13g 測定制限解除スイッチ
 13h 検知回路
 14 センサヘッド接続検知部
 18 メモリ
 20 表示部
 21 コネクタ
 22 スロット
 23,24 コンタクト部材
 30,30A センサヘッド
 30x 電極パッド部
 31 基板
 31a 搭載面
 31c 辺
 41 ナトリウムイオン選択電極
 41i ナトリウムイオン選択膜
 41m 第1の内部電極
 41m′ 第1芯材下層
 41m″ 第1芯材上層
 42 カリウムイオン選択電極
 42i カリウムイオン選択膜
 42m 第2の内部電極
 42m′ 第2芯材下層
 42m″ 第2芯材上層
 43 第1引出電極
 44 第2引出電極
 50 絶縁性基材
 51,52 開口
 60 校正用ホルダ
 61,81 保持部
 62,82 センサヘッド挿入孔
 63 収容部
 63a 校正液
 63b 校正ゲル
 64,65,84 スイッチ
 66 磁石
 67c 短絡経路
 69,89 土台
 70 容器
 70a 測定対象液
 80 測定用ホルダ
 83 容器設置部
 90 電気化学的センサ
 211,212 穴
 220 校正剤ケース
 221,233,243,253 開口部
 222,232,244,254 ピン
 230 測定用スプーン
 231,242 皿部
 240 校正用スプーン
 250 校正用キャップ

Claims (15)

  1.  測定対象液におけるナトリウムイオンとカリウムイオンの濃度比を測定する電気化学的センサであって、
     センサヘッドと、
     前記センサヘッドを校正剤に接触させた状態における前記センサヘッドのセンシングデータに基づいて前記センサヘッドの特性パラメータを算出する校正動作と、前記センサヘッドの特性パラメータと前記センサヘッドを前記測定対象液に接触させた状態における前記センサヘッドのセンシングデータとに基づいて前記濃度比を算出する測定動作と、が可能な演算部と、
     を備え、
     校正用部材との結合により前記センサヘッドを前記校正剤に接触させた状態となり、
     前記校正用部材との結合時には前記測定動作が制限され、前記校正用部材との非結合時には前記校正動作が制限される、
     電気化学的センサ。
  2.  請求項1に記載の電気化学的センサであって、
     前記校正用部材との結合時には前記校正動作を実行可能であり、前記校正用部材との非結合時には前記測定動作を実行可能である、
     電気化学的センサ。
  3.  請求項1又は2に記載の電気化学的センサであって、
     前記校正動作を前記演算部に実行させるための校正スイッチと、
     前記測定動作を前記演算部に実行させるための測定スイッチと、
     を備え、
     前記校正用部材との結合時には前記測定スイッチが操作不可となり、前記校正用部材との非結合時には前記校正スイッチが操作不可となる、
     電気化学的センサ。
  4.  請求項3に記載の電気化学的センサであって、
     前記校正用部材との結合時には前記校正スイッチが操作可能となり、前記校正用部材との非結合時には前記測定スイッチが操作可能となる、
     電気化学的センサ。
  5.  請求項3又は4に記載の電気化学的センサであって、
     前記校正用部材は、前記センサヘッドを前記校正剤に接触させた状態で前記電気化学的センサを保持する校正用ホルダである、
     電気化学的センサ。
  6.  請求項5に記載の電気化学的センサであって、
     前記校正用ホルダは、
     前記校正剤を収容する収容部を備え、
     前記収容部に収容された前記校正剤に前記センサヘッドを接触させた状態で前記電気化学的センサを保持する、
     電気化学的センサ。
  7.  請求項5又は6に記載の電気化学的センサであって、
     前記校正用ホルダは、保持した前記電気化学的センサの前記校正スイッチを前記校正用ホルダの外部から操作するためのスイッチを備える、
     電気化学的センサ。
  8.  請求項5から7のいずれか1項に記載の電気化学的センサであって、
     前記校正用ホルダは、保持した前記電気化学的センサの前記測定スイッチを遮蔽する遮蔽部を備える、
     電気化学的センサ。
  9.  請求項5から8のいずれか1項に記載の電気化学的センサであって、
     前記校正用ホルダは、前記電気化学的センサを保持することにより前記校正スイッチを操作する操作部を備える、
     電気化学的センサ。
  10.  請求項9に記載の電気化学的センサであって、
     前記操作部は磁石であり、
     前記校正スイッチは磁気スイッチである、
     電気化学的センサ。
  11.  請求項3から10のいずれか1項に記載の電気化学的センサであって、
     測定用ホルダとの結合により前記センサヘッドを前記測定対象液に接触させた状態となる、
     電気化学的センサ。
  12.  請求項11に記載の電気化学的センサであって、
     前記測定用ホルダは、保持した前記電気化学的センサの前記測定スイッチを前記測定用ホルダの外部から操作するためのスイッチを備える、
     電気化学的センサ。
  13.  請求項11又は12に記載の電気化学的センサであって、
     前記測定用ホルダは、保持した前記電気化学的センサの前記校正スイッチを遮蔽する遮蔽部を備える、
     電気化学的センサ。
  14.  請求項1から13のいずれか1項に記載の電気化学的センサであって、
     前記センサヘッドは、ナトリウムイオンに対して選択的に反応するナトリウムイオン選択電極と、カリウムイオンに対して選択的に反応するカリウムイオン選択電極と、を含み、
     前記センサヘッドのセンシングデータは、前記ナトリウムイオン選択電極及び前記カリウムイオン選択電極の電位差である、
     電気化学的センサ。
  15.  請求項1から14のいずれか1項に記載の電気化学的センサと、
     前記校正用部材と、
     を備える測定装置。
PCT/JP2022/037889 2021-11-10 2022-10-11 電気化学的センサ及び測定装置 WO2023084980A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280053711.8A CN117795327A (zh) 2021-11-10 2022-10-11 电化学传感器以及测定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-183711 2021-11-10
JP2021183711A JP2023071101A (ja) 2021-11-10 2021-11-10 電気化学的センサ及び測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/442,588 Continuation US20240183819A1 (en) 2021-11-10 2024-02-15 Electrochemical sensor, and measuring device

Publications (1)

Publication Number Publication Date
WO2023084980A1 true WO2023084980A1 (ja) 2023-05-19

Family

ID=86335682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037889 WO2023084980A1 (ja) 2021-11-10 2022-10-11 電気化学的センサ及び測定装置

Country Status (3)

Country Link
JP (1) JP2023071101A (ja)
CN (1) CN117795327A (ja)
WO (1) WO2023084980A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190653A (ja) * 1983-04-11 1984-10-29 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 液体の電解質成分を電気化学的に分析するための電極装置
JPH03100452A (ja) * 1989-09-14 1991-04-25 Taiyo Yuden Co Ltd イオンセンサ及びセンサプレート
JP2002048750A (ja) * 2000-08-01 2002-02-15 Nec Corp 液体試料中の成分の測定装置
JP2009030981A (ja) * 2007-07-24 2009-02-12 Tanita Corp 液体成分測定装置、基準液、液体成分測定方法
JP2013032945A (ja) * 2011-08-01 2013-02-14 Omron Corp センサヘッド、電気化学的センサおよび電気化学的センサの使用方法
JP2014095692A (ja) * 2012-10-11 2014-05-22 Horiba Ltd マルチイオンセンサ
JP2014095675A (ja) * 2012-11-12 2014-05-22 Omron Healthcare Co Ltd 電気化学的センサおよびセンサヘッド

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190653A (ja) * 1983-04-11 1984-10-29 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 液体の電解質成分を電気化学的に分析するための電極装置
JPH03100452A (ja) * 1989-09-14 1991-04-25 Taiyo Yuden Co Ltd イオンセンサ及びセンサプレート
JP2002048750A (ja) * 2000-08-01 2002-02-15 Nec Corp 液体試料中の成分の測定装置
JP2009030981A (ja) * 2007-07-24 2009-02-12 Tanita Corp 液体成分測定装置、基準液、液体成分測定方法
JP2013032945A (ja) * 2011-08-01 2013-02-14 Omron Corp センサヘッド、電気化学的センサおよび電気化学的センサの使用方法
JP2014095692A (ja) * 2012-10-11 2014-05-22 Horiba Ltd マルチイオンセンサ
JP2014095675A (ja) * 2012-11-12 2014-05-22 Omron Healthcare Co Ltd 電気化学的センサおよびセンサヘッド

Also Published As

Publication number Publication date
CN117795327A (zh) 2024-03-29
JP2023071101A (ja) 2023-05-22

Similar Documents

Publication Publication Date Title
JP5834599B2 (ja) センサヘッド、電気化学的センサおよび電気化学的センサの使用方法
JP4143753B2 (ja) 取り出し機構を備えた分析用具カートリッジ、およびこれと分析装置のセット
JP5809969B2 (ja) イオン分析装置
JP2014095692A (ja) マルチイオンセンサ
JP6127460B2 (ja) 電気化学的センサ
US11175281B2 (en) Well plate cover with embedded electronic sensors for monitoring cell metabolism
KR20160061375A (ko) 통합형 배터리를 가진 분석 검사 스트립
JP5809968B2 (ja) 校正液
WO2023084980A1 (ja) 電気化学的センサ及び測定装置
KR101470370B1 (ko) 분석장치
JPH03503082A (ja) 携帯型血液化学測定装置
JP6268484B2 (ja) 生体ガス検知装置、方法、及びプログラム
US20240183819A1 (en) Electrochemical sensor, and measuring device
KR20140147730A (ko) 배향 독립형 측정기
JPH05126781A (ja) 電気化学的な計測装置
US10772210B2 (en) Solution property sensor
TWM526071U (zh) 檢測蔬果農藥殘留的快篩處理晶片
JP5114284B2 (ja) 電気化学センサ及び携帯用電気化学センサセット
WO2023105583A1 (ja) 電解液分析用試験片、電解液分析装置および電解液分析方法
US20160097762A1 (en) Gas measurement apparatus
TWI586333B (zh) A blood volume detecting method and a detecting device using the same
JP7371219B2 (ja) 分析物測定システムで使用されるバイオセンサの汚染の決定
US20230249179A1 (en) Testing implement and measuring device
US20060180467A1 (en) Electrochemical biosensor strip
WO2022102649A1 (ja) 電解液分析用試験片および電解液分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053711.8

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024003427

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112024003427

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240221