WO2023084600A1 - 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 - Google Patents
電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 Download PDFInfo
- Publication number
- WO2023084600A1 WO2023084600A1 PCT/JP2021/041185 JP2021041185W WO2023084600A1 WO 2023084600 A1 WO2023084600 A1 WO 2023084600A1 JP 2021041185 W JP2021041185 W JP 2021041185W WO 2023084600 A1 WO2023084600 A1 WO 2023084600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- ripple compensation
- current
- compensation control
- power supply
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 37
- 238000005057 refrigeration Methods 0.000 title description 8
- 239000003990 capacitor Substances 0.000 claims abstract description 113
- 238000001514 detection method Methods 0.000 claims description 38
- 230000010349 pulsation Effects 0.000 claims description 25
- 238000007599 discharging Methods 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 20
- 238000009499 grossing Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 230000015654 memory Effects 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/05—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present disclosure relates to a power conversion device, a motor drive device, and a refrigeration cycle application device that convert AC power into desired power.
- a power conversion device that converts AC power supplied from an AC power supply into desired AC power and supplies it to a load such as an air conditioner.
- a power conversion device which is a control device for an air conditioner, rectifies AC power supplied from an AC power supply with a diode stack, which is a rectifier, and further smoothes the power with a smoothing capacitor. is converted into desired AC power by an inverter comprising a plurality of switching elements, and the AC power is output to a compressor motor as a load.
- the present disclosure has been made in view of the above, and an object thereof is to obtain a power conversion device capable of suppressing an increase in the size of the device while suppressing deterioration of the capacitor.
- the power conversion device includes a rectifier that rectifies first AC power supplied from a commercial power supply, and a capacitor that is connected to the output end of the rectifier. and an inverter connected to both ends of the capacitor for generating the second AC power and outputting it to the motor.
- the power conversion device also includes a control unit that controls the operation of the inverter so that the pulsation corresponding to the power state of the capacitor is superimposed on the drive pattern of the motor, and suppresses the charging and discharging current of the capacitor.
- the control unit performs load pulsation compensation control to reduce vibration of the motor and power supply pulsation compensation control to suppress charge/discharge current of the capacitor while giving priority to constant current load control that controls the rotation speed of the motor.
- a torque current command for load ripple compensation control is generated so that there remains a torque current command that can be assigned to ripple compensation control.
- the power converter according to the present disclosure it is possible to suppress the deterioration of the capacitor and suppress the enlargement of the device.
- FIG. 1 is a diagram showing a configuration example of a power converter according to Embodiment 1;
- FIG. FIG. 2 is a block diagram showing a configuration example of a control unit included in the power converter according to Embodiment 1;
- 1 is a block diagram showing an example of a hardware configuration realizing functions of a control unit according to Embodiment 1;
- FIG. FIG. 4 is a block diagram showing another example of a hardware configuration that implements the functions of the control unit according to Embodiment 1; The figure which shows the structural example of the power converter device which concerns on Embodiment 2.
- FIG. 4 is a block diagram showing a configuration example of a control unit included in a power converter according to Embodiment 2; Flowchart for explaining the operation of the main part of the power converter according to Embodiment 2
- FIG. 11 is a diagram showing a configuration example of a power conversion device according to Embodiment 3
- FIG. 11 is a block diagram showing a configuration example of a control unit included in a power converter according to Embodiment 3
- Flowchart for explaining the operation of the main part of the power converter according to Embodiment 3 The figure which shows the structural example of the power converter device which concerns on Embodiment 4.
- FIG. 11 is a diagram showing a configuration example of a power conversion device according to Embodiment 3
- FIG. 11 is a block diagram showing a configuration example of a control unit included in a power converter according to Embodiment 3
- Flowchart for explaining the operation of the main part of the power converter according to Embodiment 3 The figure which shows the structural example of the
- FIG. 10 is a block diagram showing a configuration example of a control unit included in a power converter according to Embodiment 4; Flowchart for explaining the operation of the main part of the power converter according to the fourth embodiment A diagram showing a configuration example of a refrigeration cycle application device according to Embodiment 5
- FIG. 1 is a diagram showing a configuration example of a power conversion device 1 according to Embodiment 1.
- the power converter 1 is connected to a commercial power source 110 and a compressor 315 .
- the power conversion device 1 converts first AC power of power supply voltage Vs supplied from the commercial power supply 110 into second AC power having desired amplitude and phase, and supplies the second AC power to the compressor 315 .
- the commercial power supply 110 is an example of an AC power supply
- the compressor 315 is an example of the equipment referred to in the first embodiment.
- a motor 314 is mounted on the compressor 315 .
- a motor drive device 2 is configured by the power conversion device 1 and the motor 314 included in the compressor 315 .
- the power conversion device 1 includes a reactor 120 , a rectification section 130 , current detection sections 501 and 502 , a smoothing section 200 , an inverter 310 , current detection sections 313 a and 313 b , and a control section 400 .
- the reactor 120 is connected between the commercial power supply 110 and the rectifying section 130 .
- Rectifying section 130 has a bridge circuit configured by rectifying elements 131 to 134, rectifies the first AC power of the power supply voltage supplied from commercial power supply 110, and outputs the first AC power.
- the rectifier 130 performs full-wave rectification.
- the smoothing section 200 is connected to the output terminal of the rectifying section 130 .
- Smoothing section 200 has capacitor 210 as a smoothing element, and smoothes the power rectified by rectifying section 130 .
- Capacitor 210 is, for example, an electrolytic capacitor, a film capacitor, or the like.
- Capacitor 210 is connected to the output end of rectifying section 130 and has a capacity to smooth the power rectified by rectifying section 130 . It does not have a waveform shape, but has a waveform shape in which a voltage ripple corresponding to the frequency of the commercial power supply 110 is superimposed on the DC component, and does not pulsate greatly.
- the frequency of this voltage ripple is a component twice the frequency of the power supply voltage Vs when the commercial power supply 110 is single-phase, and the main component is a frequency component six times the frequency of the power supply voltage Vs when the commercial power supply 110 is three-phase. If the power input from commercial power supply 110 and the power output from inverter 310 do not change, the amplitude of this voltage ripple is determined by the capacitance of capacitor 210 . For example, it pulsates in such a range that the maximum value of the voltage ripple generated in the capacitor 210 is less than twice the minimum value.
- the current detection section 501 detects the rectified current I1 flowing out from the rectification section 130 and outputs the detected value of the detected rectified current I1 to the control section 400 .
- Current detection unit 502 detects inverter input current I ⁇ b>2 that flows into inverter 310 and outputs a detected value of inverter input current I ⁇ b>2 to control unit 400 .
- Current detection units 501 and 502 can be used as detection units that detect the power state of capacitor 210 .
- the inverter 310 is connected to both ends of the smoothing section 200 , that is, the capacitor 210 .
- the inverter 310 has switching elements 311a-311f and freewheeling diodes 312a-312f.
- the switching elements 311a to 311f are controlled to be turned on/off under the control of the control unit 400.
- FIG. Through this control, the power output from the rectifying section 130 and the smoothing section 200 is converted into second AC power having desired amplitude and phase. That is, the inverter 310 turns on and off the switching elements 311 a to 311 f to generate the second AC power and output it to the motor 314 .
- Each of the current detection units 313 a and 313 b detects the current value of one phase out of the three phase currents output from the inverter 310 and outputs the detected current value to the control unit 400 .
- Control unit 400 acquires two-phase current values among the three-phase current values output from inverter 310, thereby calculating the remaining one-phase current value output from inverter 310. .
- a motor 314 mounted on the compressor 315 rotates according to the amplitude and phase of the AC power supplied from the inverter 310 to perform compression operation.
- the compressor 315 is a hermetic compressor used in an air conditioner or the like, the load torque of the compressor 315 can often be regarded as a constant torque load.
- FIG. 1 shows a case where the motor windings in the motor 314 are Y-connected
- the present invention is not limited to this example.
- the motor windings of the motor 314 may be delta-connection, or may be switchable between Y-connection and delta-connection.
- each configuration shown in FIG. 1 is an example, and the arrangement of each configuration is not limited to the example shown in FIG.
- reactor 120 may be arranged after rectifying section 130 .
- the power conversion device 1 may include a booster section, or the rectifier section 130 may have the function of the booster section.
- each of the current detection units 313a, 313b, 501, 502 may be simply referred to as "detection unit”.
- the current values detected by the current detection units 313a, 313b, 501, 502 are sometimes simply referred to as "detected values”.
- the control unit 400 acquires the detection value of the rectified current I1 detected by the current detection unit 501 and the detection value of the inverter input current I2 detected by the current detection unit 502. The control unit 400 also acquires the detected values of the motor currents detected by the current detection units 313a and 313b. Control unit 400 controls the operation of inverter 310, specifically, the on/off of switching elements 311a to 311f included in inverter 310, using the detection values detected by the respective detection units. Further, control unit 400 controls inverter 310 so that second AC power including pulsation corresponding to the pulsation of power flowing into capacitor 210 of smoothing unit 200 from rectifying unit 130 is output from inverter 310 to compressor 315 . control behavior.
- the pulsation according to the pulsation of the power flowing into the capacitor 210 of the smoothing section 200 is, for example, the pulsation that varies depending on the frequency of the pulsation of the power flowing into the capacitor 210 of the smoothing section 200 .
- control unit 400 suppresses capacitor current I3, which is the charge/discharge current of capacitor 210 .
- the control unit 400 performs control so that any one of the speed, voltage, and current of the motor 314 is in a desired state. Note that the control unit 400 does not have to use all the detection values acquired from each detection unit, and can perform control using some of the detection values.
- the control unit 400 controls the motor 314 without a position sensor.
- position sensorless control methods for the motor 314 There are two types of position sensorless control methods for the motor 314: primary magnetic flux constant control and sensorless vector control. Embodiment 1 will be described based on sensorless vector control as an example. It should be noted that the control method described below can also be applied to the primary magnetic flux constant control with minor modifications.
- the rectified current I1 flowing out of the rectifier 130 is affected by the power phase of the commercial power supply 110, the characteristics of elements installed before and after the rectifier 130, and the like.
- the rectified current I1 has characteristics including the power supply frequency and harmonic components of the power supply frequency (frequency components of integer multiples of 2 or more).
- the capacitor current I3 when the capacitor current I3 is large, aging deterioration of the capacitor 210 is accelerated. In particular, when an electrolytic capacitor is used as the capacitor 210, the degree of aging deterioration is accelerated.
- control unit 400 controls the inverter 310 so that the inverter input current I2 becomes equal to the rectified current I1, and controls the capacitor current I3 to approach zero. This suppresses deterioration of the capacitor 210 .
- a ripple component caused by PWM Pulse Width Modulation
- control unit 400 needs to control inverter 310 with the ripple component taken into account.
- the control unit 400 monitors the power state of the smoothing unit 200, that is, the capacitor 210, and applies appropriate pulsation to the motor 314 so that the capacitor current I3 decreases.
- the power state of the capacitor 210 includes the rectified current I1, the inverter input current I2, the capacitor current I3, the capacitor voltage Vdc that is the voltage of the capacitor 210, and the like.
- control unit 400 at least one of these power states of capacitor 210 serves as information necessary for deterioration suppression control.
- the current detection section 501 detects the current value of the rectified current I1 and outputs the detected value to the control section 400 .
- Current detection unit 502 also detects the current value of inverter input current I2 and outputs the detected value to control unit 400 .
- Control unit 400 controls inverter 310 so that the value obtained by removing PWM ripple from inverter input current I2 matches rectified current I1, and adds pulsation to the power output to motor 314.
- This control is called "power supply ripple compensation control”.
- the power converter 1 needs to pulsate the inverter input current I2 and the q-axis current of the motor 314 appropriately.
- the compressor 315 when the compressor 315 is used in an air conditioner and the load on the compressor 315 is substantially constant, that is, even when the effective value of the inverter input current I2 is constant, depending on the type of load on the compressor 315 Some are known to have mechanisms that produce periodic rotational fluctuations. Therefore, when driving a compressor load having such a mechanism, the load torque has periodic fluctuations. Therefore, when the compressor 315 is driven with a constant output current from the inverter 310, that is, with a constant torque output, speed fluctuations occur due to the torque difference. Speed fluctuations occur remarkably in the low speed range, and the speed fluctuations decrease as the operating point moves to the high speed range.
- the speed fluctuation part flows out to the outside, it will be observed as vibration, and it is necessary to add parts for vibration countermeasures. Therefore, in addition to the constant current output from the inverter 310, that is, the constant torque output current, the pulsating torque, that is, the pulsating current is supplied to the compressor 315, so that the torque corresponding to the load torque fluctuation is transferred from the inverter 310 to the compressor 315.
- the method of giving to As a result by bringing the torque difference closer to zero, it is possible to reduce the speed fluctuation of the motor 314 of the compressor 315 and suppress the vibration. As a result, the torque difference between the output torque of inverter 310 and the load torque can approach zero. As a result, speed fluctuation of the motor 314 provided in the compressor 315 can be reduced, and vibration of the compressor 315 can be suppressed.
- This control is called "load ripple compensation control”.
- the control unit 400 performs constant current load control for controlling the rotation speed of the motor 314, power supply ripple compensation control for compensating for power supply ripple, and load ripple compensation control for compensating for load ripple. and
- the distribution by each control is not appropriate, the rotation speed of the motor 314 cannot follow the speed command, the load ripple compensation control is overcompensated, and the power supply ripple compensation cannot be satisfactorily controlled. There is a risk of Therefore, in Embodiment 1, the power converter 1 is operated so that each control operation is appropriate. A specific control method will be described below.
- the control unit 400 performs control giving priority to the constant current load control.
- the control unit 400 sets a limit value of the q-axis current command that can be used in each control of constant current load control, power supply ripple compensation control, and load ripple compensation control.
- the control unit 400 performs power supply ripple compensation control and load ripple compensation control within a range obtained by subtracting the value of the q-axis current command used in constant current load control from the limit value of the overall q-axis current command.
- a limit value is set, and a q-axis current command for power supply ripple compensation control and load ripple compensation control is generated. That is, the control unit 400 preferentially performs constant current load control for controlling the rotation speed of the motor 314, load ripple compensation control for reducing vibration of the motor 314, and power supply ripple compensation control for suppressing the capacitor current I3 of the capacitor 210. Perform compensation control.
- the overall q-axis current limit value Iqlim varies depending on the value of the d -axis current id, the speed of the motor 314, and the like. From the viewpoint of the demagnetization limit of the motor 314 in the low speed range, the maximum current of the inverter 310, and the like, the q-axis current limit value Iqlim is determined, for example, by the following equation (1). In addition, in this paper, the q-axis current limit value Iqlim may be referred to as a "first limit value".
- I rmslim represents the limit value of the phase current expressed as an effective value
- i d * represents the d-axis current command.
- I rmslim is generally set 10% to 20% lower than the overcurrent cutoff protection threshold in inverter 310 .
- the q-axis current iq that can flow is reduced due to the influence of voltage saturation. It is well known that when the q-axis current command becomes excessive, there are cases where control becomes unstable due to the windup phenomenon of the integrator. Since the equation (1) does not take into consideration the decrease in the maximum q-axis current due to the increase in speed, a mathematical expression that takes into account the decrease in the maximum q-axis current is derived.
- the limit value of the dq-axis voltage is Vom
- the relationship of the approximation formula (2) holds for Vom .
- Equation (6) the q-axis current limit value I qlim is set as shown in Equation (6), taking into account both Equations (1) and (4).
- MIN is a function that selects the minimum.
- FIG. 2 is a block diagram showing a configuration example of the control unit 400 included in the power converter 1 according to Embodiment 1.
- the control unit 400 includes a rotor position estimation unit 401, a speed control unit 402, a flux-weakening control unit 403, a current control unit 404, coordinate conversion units 405 and 406, a PWM signal generation unit 407, and a subtraction unit 408. , a distribution ratio multiplication unit 409 , a load ripple compensation control unit 410 , an addition unit 411 , a subtraction unit 412 , a power supply ripple compensation control unit 413 , and an addition unit 414 .
- the adders 411 and 414 constitute a q-axis current command generator 415 .
- the rotor position estimation unit 401 calculates the dq-axis Estimate an estimated phase angle ⁇ est , which is the direction at , and an estimated speed ⁇ est , which is the rotor speed.
- the speed control unit 402 automatically adjusts, that is, generates the q-axis current command I qsp so that the speed command ⁇ * and the estimated speed ⁇ est match.
- the q-axis current command Iqsp is a torque current command for constant current load control.
- the speed command ⁇ * is, for example, a temperature detected by a temperature sensor (not shown) or an instruction from a remote controller (not shown). It is based on information indicating the set temperature, operation mode selection information, operation start and operation end instruction information, and the like.
- the operation modes are, for example, heating, cooling, and dehumidification.
- the flux-weakening control unit 403 automatically adjusts the d-axis current command i d * so that the absolute value of the dq-axis voltage command vector V dq * falls within the limits of the voltage limit value V lim * .
- the flux-weakening control can be broadly divided into a method of calculating the d-axis current command id * from the equation of the voltage limit ellipse, and a method in which the absolute value deviation between the voltage limit value Vlim * and the dq-axis voltage command vector Vdq * is zero. There are two methods of calculating the d-axis current command i d * so that
- the current control unit 404 automatically adjusts the dq-axis voltage command vector V dq * so that the dq-axis current vector i dq follows the d-axis current command id * and the q-axis current command i q * .
- the coordinate conversion unit 405 coordinates-converts the dq-axis voltage command vector V dq * from the dq coordinates into the voltage command V uvw * of the AC quantity according to the estimated phase angle ⁇ est .
- a coordinate transformation unit 406 coordinates-transforms the current I uvw flowing through the motor 314 from an alternating current quantity to a dq-axis current vector i dq of dq coordinates in accordance with the estimated phase angle ⁇ est .
- the control unit 400 controls the two-phase current values detected by the current detection units 313a and 313b among the three-phase current values output from the inverter 310 for the current Iuvw flowing through the motor 314, It can be obtained by calculating the current value of the remaining one phase using the current values of the two phases.
- PWM signal generation unit 407 generates a PWM signal based on voltage command V uvw * coordinate-transformed by coordinate transformation unit 405 .
- Control unit 400 applies a voltage to motor 314 by outputting the PWM signal generated by PWM signal generation unit 407 to switching elements 311 a to 311 f of inverter 310 .
- a subtraction unit 408 generates a q-axis current margin I qmargin that is the difference between the q-axis current limit value I qlim described above and the absolute value of the q-axis current command I qsp . If the value of the q-axis current command Iqsp is positive, the calculation of the absolute value is unnecessary.
- a q-axis current limit value I qlim is a limit value for the q-axis current command i q * input to the current control unit 404 .
- the q-axis current margin Iqmargin is the remainder obtained by subtracting the current of the q-axis current command Iqsp required for constant current load control from the q-axis current limit value Iqlim .
- subtraction section 408 may smooth it using a low-pass filter as shown in equation (7).
- T is the filter time constant, which is the reciprocal of the cut-off angular frequency
- s is the Laplace transform variable.
- the distribution ratio multiplier 409 adds the q-axis current margin Iqmargin generated by the subtractor 408 to the load ripple compensation control for reducing the vibration of the motor 314 and the capacitor current of the capacitor 210, as shown in equation (8).
- a distribution ratio K margin for each compensation control of power supply ripple compensation control for suppressing I3 is multiplied to generate a current limit value I qlimAVS for load ripple compensation control.
- the distribution ratio K margin is a distribution ratio of the q-axis current margin I qmargin and is a variable of 0 or more and 1 or less.
- the distribution ratio K margin may be set according to the power state of the capacitor 210, the operating state of the motor 314, the operating state of the air conditioner when the power conversion device 1 is used as a refrigerating cycle device in the air conditioner, and the like.
- the current limit value I qlimAVS for load ripple compensation control is set using the q-axis current margin I qmargin .
- a load ripple compensation control unit 410 generates a load ripple compensation q-axis current command I qavs using a current limit value I qlimAVS for load ripple compensation control.
- the load ripple compensation q-axis current command I qavs is a torque current command for load ripple compensation control.
- load ripple compensation control section 410 performs load ripple compensation control within the range of current limit value IqlimAVS for load ripple compensation control generated by distribution ratio multiplication section 409, and load ripple compensation q-axis Generate the current command I qavs .
- the load ripple compensation q-axis current command I qavs is expressed as in Equation (9).
- the magnitude relation among the q-axis current margin I qmargin , the current limit value I qlimAVS for load ripple compensation control, and the load ripple compensation q-axis current command I qavs is I qmargin ⁇ I qlimAVS ⁇ I qavs .
- load ripple compensation control section 410 does not use up all of current limit value I qlimAVS for load ripple compensation control.
- the subtraction unit 412 calculates a limit value I qlimd2v to generate
- the limit value I qlimd2v for power supply ripple compensation control is set using the q-axis current margin I qmargin .
- the power supply ripple compensation control unit 413 uses the limit value Iqlimd2v for power supply ripple compensation control to generate the current amplitude Iqd2v for the power supply ripple compensation control.
- the current amplitude Iqd2v for power supply ripple compensation control is a torque current command for power supply ripple compensation control.
- the power supply ripple compensation control unit 413 determines the current amplitude I qd2v for the power supply ripple compensation control as shown in equation (11).
- the power supply ripple compensation control unit 413 sets the current amplitude Iqd2v for power supply ripple compensation control to the limit value for power supply ripple compensation control.
- the power supply ripple compensation control unit 413 sets the current amplitude Iqd2v for power supply ripple compensation control to the absolute value of the q-axis current command Iqsp . Select a value.
- a q-axis current command generation unit 415 generates a q-axis current command i q * using the q-axis current command I qsp , the load ripple compensation q-axis current command I qavs , and the current amplitude I qd2v for power supply ripple compensation control. .
- the addition unit 411 adds the q-axis current command I qsp and the load ripple compensation q-axis current command I qavs .
- the addition unit 414 adds the q-axis current command I qsp + load ripple compensation q-axis current command I qavs which is the addition result of the addition unit 411 and the current amplitude I qd2v of the power supply ripple compensation control.
- the q-axis current command generation unit 415 outputs the addition result of the addition unit 414 to the current control unit 404 as the q-axis current command i q * .
- control unit 400 allows the distribution ratio multiplication unit 409 to set an appropriate distribution ratio K margin according to the situation, thereby performing power supply ripple compensation control and load ripple compensation control while following the speed command ⁇ * . can be properly implemented.
- the control unit 400 uses the distribution ratio K margin to generate the current limit value I qlimAVS for load ripple compensation control, and the q-axis current margin I qmargin and the load ripple compensation q-axis current command I
- the limit value I qlimd2v for power supply ripple compensation control is generated from the difference from qavs
- the present invention is not limited to this.
- the control unit 400 replaces the arrangement of the load ripple compensation control unit 410 and the power supply ripple compensation control unit 413 in FIG .
- a current limit value I qlimAVS for load ripple compensation control may be generated from the difference between the margin I qmargin and the current amplitude I qd2v for power supply ripple compensation control.
- the distribution ratio multiplier 409 multiplies the q-axis current margin Iqmargin , which is the difference, by the distribution ratio Kmargin to generate the current limit value IqlimAVS for load ripple compensation control.
- the current limit value I qlimAVS for load ripple compensation control is a value obtained by multiplying the q-axis current margin I qmargin , which is the difference, by the distribution ratio K margin of 0 or more and 1 or less.
- the limit value I qlimd2v for power supply ripple compensation control is a value obtained by subtracting the load ripple compensation q-axis current command I qavs from the difference q-axis current margin I qmargin .
- the power supply ripple compensation control unit 413 sets the current amplitude Iqd2v for power supply ripple compensation control to the limit value for power supply ripple compensation control. Select I qlimd2v .
- the power supply ripple compensation control unit 413 sets the current amplitude Iqd2v for the power supply ripple compensation control to the q-axis current command I Choose the absolute value of qsp .
- the limit value I qlimd2v for power supply ripple compensation control is a value obtained by multiplying the q-axis current margin I qmargin , which is the difference, by the distribution ratio K margin of 0 or more and 1 or less.
- the current limit value I qlimAVS for load ripple compensation control is a value obtained by subtracting the current amplitude I qd2v for power supply ripple compensation control from the difference q-axis current margin I qmargin .
- the load ripple compensation control unit 410 sets the current for load ripple compensation control as the load ripple compensation q-axis current command Iqavs .
- Select limit value I_qlimAVS when the current limit value I qlimAVS for load ripple compensation control is greater than the absolute value of the q-axis current command I qsp , the power supply ripple compensation control unit 413 sets the q-axis current command I qavs as the load ripple compensation q-axis current command I qavs. Choose the absolute value of I qsp .
- FIG. 3 is a first flow chart for explaining the operation of the main part of the power converter 1 according to the first embodiment.
- the power converter 1 generates a q-axis current margin I qmargin that is the difference between the q-axis current limit value I qlim and the q-axis current command I qsp (step S1).
- the power converter 1 generates a torque current command for load ripple compensation control so that there remains a torque current command that can be assigned to power supply ripple compensation control (step S2).
- the power converter 1 can preferentially perform constant current load control for controlling the rotation speed of the motor 314. Further, by the above step S2, it is possible to achieve a balance between the load ripple compensation control and the power supply ripple compensation control, thereby making it possible to achieve both.
- FIG. 4 is a second flowchart for explaining the operation of the main part of the power converter 1 according to the first embodiment.
- the power converter 1 generates a q-axis current margin I qmargin that is the difference between the q-axis current limit value I qlim and the q-axis current command I qsp (step S11).
- the power converter 1 generates a torque current command for power supply ripple compensation control so that there remains a torque current command that can be assigned to load ripple compensation control (step S12).
- the power conversion device 1 can preferentially perform constant current load control for controlling the rotational speed of the motor 314. Further, by the above-described step S12, it is possible to achieve a balance between the load ripple compensation control and the power supply ripple compensation control, thereby making it possible to achieve both of them.
- FIG. 5 is a block diagram showing an example of a hardware configuration realizing functions of the control unit 400 according to the first embodiment.
- FIG. 6 is a block diagram showing another example of the hardware configuration that implements the functions of the control unit 400 according to the first embodiment.
- the configuration may include an interface 424 .
- the processor 420 is an example of computing means.
- the processor 420 may be a computing means called a microprocessor, microcomputer, CPU (Central Processing Unit), or DSP (Digital Signal Processor).
- the memory 422 includes nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), Magnetic discs, flexible discs, optical discs, compact discs, mini discs, and DVDs (Digital Versatile Discs) can be exemplified.
- the memory 422 stores programs for executing the functions of the control unit 400 .
- the processor 420 transmits and receives necessary information via the interface 424, the processor 420 executes the program stored in the memory 422, and the processor 420 refers to the data stored in the memory 422, thereby performing the above-described processing. can be executed. Results of operations by processor 420 may be stored in memory 422 .
- the processor 420 and memory 422 shown in FIG. 5 may be replaced with a processing circuit 423 as shown in FIG.
- the processing circuit 423 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
- Information to be input to the processing circuit 423 and information to be output from the processing circuit 423 can be obtained via the interface 424 .
- part of the processing in the control unit 400 may be performed by the processing circuit 423 and the processing not performed by the processing circuit 423 may be performed by the processor 420 and the memory 422 .
- the control unit performs load pulsation compensation for reducing vibration of the motor while giving priority to constant current load control for controlling the rotational speed of the motor. control, and power supply ripple compensation control that suppresses the charging and discharging current of the capacitor. Further, the control unit generates a torque current command for load ripple compensation control so that there remains a torque current command that can be assigned to power supply ripple compensation control. Further, the control unit generates a torque current command for current ripple compensation control so that there remains a torque current command that can be assigned to load ripple compensation control. As a result, it is possible to suppress an increase in the size of the device while suppressing deterioration of the smoothing capacitor. Also, a balance can be achieved between the load ripple compensation control and the power supply ripple compensation control, and both can be achieved at the same time.
- FIG. 7 is a diagram showing a configuration example of a power converter 1A according to Embodiment 2.
- the controller 400 is replaced with a controller 400A.
- 2 A of motor drive apparatuses are comprised by 1 A of power converters, and the motor 314 with which the compressor 315 is provided.
- a vibration sensor 316 that detects the vibration level of the compressor 315 is added to the compressor 315 that is driven by the motor drive device 2A.
- Detected value VB of vibration sensor 316 is input to control unit 400A.
- Other configurations are the same as or equivalent to those of the power conversion device 1 shown in FIG. 1, and the same or equivalent components are denoted by the same reference numerals, and overlapping descriptions are omitted.
- FIG. 8 is a block diagram showing a configuration example of a control section 400A included in the power converter 1A according to Embodiment 2. As shown in FIG. In the control unit 400A shown in FIG. 8, compared with the control unit 400 shown in FIG. Added. Load ripple compensation q-axis current command I qavs , current amplitude I qd2v for power supply ripple compensation control, and detection value VB of vibration sensor 316 are input to adjustment unit 416A. Other configurations are the same as or equivalent to those of the control unit 400 shown in FIG. 2, and the same or equivalent components are denoted by the same reference numerals, and redundant description is omitted.
- Adjustment unit 416A adjusts the value of load ripple compensation q-axis current command I qavs based on detection value VB of vibration sensor 316 . Specifically, adjustment unit 416A adjusts the value of load ripple compensation q-axis current command I qavs so that detection value VB of vibration sensor 316 is equal to or less than a threshold.
- the threshold referred to here is a set value determined in the compressor 315 from the viewpoint of preventing fatigue fracture caused by vibration. Adjusting unit 416A adjusts the value of load ripple compensation q-axis current command I qavs to positively perform load ripple compensation control when detection value VB of vibration sensor 316 exceeds a threshold.
- the adjustment unit 416A adjusts the value of the current amplitude I qd2v for the power supply ripple compensation control by the amount of the adjustment of the value of the load ripple compensation q-axis current command I qavs .
- the addition unit 411 of the q-axis current command generation unit 415 outputs the adjusted load ripple compensation q-axis current command Iqavs .
- the addition unit 414 of the q-axis current command generation unit 415 outputs the adjusted current amplitude Iqd2v of the power supply ripple compensation control.
- the output of the load ripple compensation control section 410 passes through the processing of the adjustment section 416A and is directly input to the addition section 411, and the output of the power supply ripple compensation control section 413 is directly input to the addition unit 414 without being processed by the adjustment unit 416A.
- FIG. 9 is a flow chart for explaining the operation of the main part of the power converter 1A according to the second embodiment.
- the power conversion device 1A acquires the detection value VB of the vibration sensor 316 (step S21).
- the power converter 1A generates a q-axis current margin I qmargin that is the difference between the q-axis current limit value I qlim and the q-axis current command I qsp (step S22).
- the power conversion device 1A generates a torque current command for load ripple compensation control so that a torque current command that can be assigned to the power supply ripple compensation control remains, and the detection value VB of the vibration sensor 316 is set to be equal to or less than the threshold.
- a torque current command for load ripple compensation control is adjusted (step S23).
- the power converter 1A can preferentially perform constant current load control for controlling the rotation speed of the motor 314.
- steps S21 and S23 described above it is possible to reduce the possibility of compressor 315 being damaged by fatigue fracture while achieving compatibility between load ripple compensation control and power supply ripple compensation control.
- the control unit performs load pulsation compensation for reducing vibration of the motor while giving priority to constant current load control for controlling the rotational speed of the motor. control, and power supply ripple compensation control that suppresses the charging and discharging current of the capacitor. Further, when generating the torque current command for the load ripple compensation control so that the torque current command that can be assigned to the power supply ripple compensation control remains, the control unit controls the load so that the detection value of the vibration sensor is equal to or less than the threshold value. Adjust the torque current command for pulsation compensation control. As a result, while enjoying the effects of the first embodiment, it is possible to reduce the possibility that the equipment mounted with the motor will be damaged due to fatigue fracture.
- FIG. 10 is a diagram showing a configuration example of a power conversion device 1B according to Embodiment 3.
- the controller 400 is replaced with a controller 400B.
- a motor drive device 2B is configured by the power conversion device 1B and the motor 314 included in the compressor 315 .
- a voltage detection unit 503 that detects the capacitor voltage Vdc is added to the power conversion device 1B.
- a detected value of the capacitor voltage Vdc detected by the voltage detection unit 503 is input to the control unit 400B.
- Other configurations are the same as or equivalent to those of the power conversion device 1 shown in FIG. 1, and the same or equivalent components are denoted by the same reference numerals, and overlapping descriptions are omitted.
- FIG. 11 is a block diagram showing a configuration example of a control section 400B included in the power converter 1B according to Embodiment 3. As shown in FIG. In the control unit 400B shown in FIG. 11, compared with the control unit 400 shown in FIG. Added.
- the load ripple compensation q-axis current command I qavs , the current amplitude I qd2v for the power supply ripple compensation control, and the detected values of the capacitor voltage V dc are input to the adjuster 416B.
- Other configurations are the same as or equivalent to those of the control unit 400 shown in FIG. 2, and the same or equivalent components are denoted by the same reference numerals, and redundant description is omitted.
- the adjustment unit 416B calculates the capacitor current I3 by the following equation (12).
- Adjustment unit 416B adjusts the value of current amplitude Iqd2v for power supply ripple compensation control based on the calculated value of capacitor current I3. Specifically, adjustment unit 416B adjusts the value of current amplitude I qd2v for power supply ripple compensation control so that the calculated value of capacitor current I3 is equal to or less than the threshold.
- the threshold here is a set value determined by the rated ripple current of capacitor 210 . When the calculated value of the capacitor current I3 exceeds the threshold, the adjuster 416B adjusts the value of the current amplitude Iqd2v for the power supply ripple compensation control so as to positively perform the power supply ripple compensation control.
- the adjuster 416B adjusts the value of the load ripple compensation q-axis current command I qavs by the amount of the adjustment of the value of the current amplitude I qd2v for the power supply ripple compensation control.
- the addition unit 411 of the q-axis current command generation unit 415 outputs the adjusted load ripple compensation q-axis current command Iqavs .
- the addition unit 414 of the q-axis current command generation unit 415 outputs the adjusted current amplitude Iqd2v of the power supply ripple compensation control.
- the output of the load ripple compensation control unit 410 passes through the processing of the adjustment unit 416B and is directly input to the addition unit 411, and the output of the power supply ripple compensation control unit 413 is The data is directly input to the addition section 414 without being processed by the adjustment section 416B.
- FIG. 12 is a flow chart for explaining the operation of the main part of the power converter 1B according to the third embodiment.
- the power converter 1B acquires the detected value of the capacitor voltage Vdc (step S31).
- the power converter 1B calculates the capacitor current I3 based on the detected value of the capacitor voltage Vdc and the capacitance C of the capacitor 210 (step S32).
- the power converter 1B generates a q-axis current margin I qmargin that is the difference between the q-axis current limit value I qlim and the q-axis current command I qsp (step S33).
- the power conversion device 1B generates a torque current command for power supply ripple compensation control so that a torque current command that can be assigned to load ripple compensation control remains, and adjusts the power supply so that the calculated value of the capacitor current I3 is equal to or less than the threshold.
- a torque current command for pulsation compensation control is adjusted (step S34).
- step S33 the power converter 1B can preferentially perform constant current load control for controlling the rotation speed of the motor 314.
- steps S31, S32, and S34 described above it is possible to extend the life of capacitor 210 while achieving compatibility between load ripple compensation control and power supply ripple compensation control.
- the control unit performs load pulsation compensation for reducing vibration of the motor while giving priority to constant current load control for controlling the rotational speed of the motor. control, and power supply ripple compensation control that suppresses the charging and discharging current of the capacitor.
- the control unit controls the power supply so that the calculated value of the capacitor current is equal to or less than the threshold value. Adjust the torque current command for pulsation compensation control. As a result, it is possible to extend the life of the capacitor while enjoying the effects of the first embodiment.
- FIG. 13 is a diagram showing a configuration example of a power converter 1C according to the fourth embodiment.
- the controller 400 is replaced with a controller 400C.
- 2 C of motor drive apparatuses are comprised by 1 C of power converters, and the motor 314 with which the compressor 315 is provided.
- a current detection unit 504 that detects the capacitor current I3 is added to the power converter 1C.
- a detected value of the capacitor current I3 detected by the current detection unit 504 is input to the control unit 400C.
- Other configurations are the same as or equivalent to those of the power conversion device 1 shown in FIG. 1, and the same or equivalent components are denoted by the same reference numerals, and overlapping descriptions are omitted.
- FIG. 14 is a block diagram showing a configuration example of a control unit 400C included in the power converter 1C according to the fourth embodiment.
- the load ripple compensation q-axis current command Iqavs compared with the control unit 400 shown in FIG. Added.
- the load ripple compensation q-axis current command Iqavs compared with the control unit 400 shown in FIG. Added.
- the load ripple compensation q-axis current command Iqavs compared with the control unit 400 shown in FIG. Added.
- the load ripple compensation q-axis current command Iqavs the current amplitude Iqd2v for the power supply ripple compensation control
- the detected value of the capacitor current I3 are input to the adjuster 416C.
- Other configurations are the same as or equivalent to those of the control unit 400 shown in FIG. 2, and the same or equivalent components are denoted by the same reference numerals, and redundant description is omitted.
- Adjusting unit 416C adjusts the value of current amplitude Iqd2v for power supply ripple compensation control based on the detected value of capacitor current I3. Specifically, the adjustment unit 416C adjusts the value of the current amplitude I qd2v for power supply ripple compensation control so that the detected value of the capacitor current I3 is equal to or less than the threshold.
- the threshold here is a set value determined by the rated ripple current of capacitor 210 .
- the adjuster 416C adjusts the value of the current amplitude Iqd2v for the power supply ripple compensation control so as to positively perform the power supply ripple compensation control.
- the adjuster 416C adjusts the value of the load ripple compensation q-axis current command Iqavs by the amount of the adjustment of the value of the current amplitude Iqd2v for the power supply ripple compensation control.
- the addition unit 411 of the q-axis current command generation unit 415 outputs the adjusted load ripple compensation q-axis current command Iqavs .
- the addition unit 414 of the q-axis current command generation unit 415 outputs the adjusted current amplitude Iqd2v of the power supply ripple compensation control.
- the output of the load ripple compensation control unit 410 passes through the processing of the adjustment unit 416C and is directly input to the addition unit 411, and the output of the power supply ripple compensation control unit 413 is It is directly input to the addition section 414 without processing of the adjustment section 416C.
- FIG. 15 is a flow chart for explaining the operation of the main part of the power converter 1C according to the fourth embodiment.
- the power converter 1C of power converters acquire the detected value of the capacitor
- the power converter 1C generates a q-axis current margin I qmargin that is the difference between the q-axis current limit value I qlim and the q-axis current command I qsp (step S42).
- the power conversion device 1C generates a torque current command for power supply ripple compensation control so that a torque current command that can be assigned to load ripple compensation control remains, and adjusts the power supply so that the detected value of the capacitor current I3 is equal to or less than the threshold.
- a torque current command for pulsation compensation control is adjusted (step S43).
- the power converter 1C can preferentially perform constant current load control for controlling the rotation speed of the motor 314.
- steps S41 and S43 described above it is possible to extend the life of the capacitor 210 while achieving compatibility between the load ripple compensation control and the power supply ripple compensation control.
- the control unit performs load pulsation compensation for reducing vibration of the motor while giving priority to constant current load control for controlling the rotation speed of the motor. control, and power supply ripple compensation control that suppresses the charging and discharging current of the capacitor.
- the control unit controls the power supply so that the detected value of the capacitor current is equal to or less than the threshold value. Adjust the torque current command for pulsation compensation control. As a result, it is possible to extend the life of the capacitor while enjoying the effects of the first embodiment.
- FIG. 16 is a diagram showing a configuration example of a refrigeration cycle applied equipment 900 according to Embodiment 5.
- a refrigerating cycle-applied equipment 900 according to the fifth embodiment includes the power converter 1 described in the first embodiment.
- the refrigerating cycle applied equipment 900 according to Embodiment 5 can be applied to products equipped with a refrigerating cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters.
- constituent elements having functions similar to those of the first embodiment are assigned the same reference numerals as those of the first embodiment.
- Refrigerating cycle applied equipment 900 includes compressor 315 incorporating motor 314 according to Embodiment 1, four-way valve 902, indoor heat exchanger 906, expansion valve 908, and outdoor heat exchanger 910 with refrigerant pipe 912. attached through
- a compression mechanism 904 that compresses the refrigerant and a motor 314 that operates the compression mechanism 904 are provided inside the compressor 315 .
- the refrigeration cycle applied equipment 900 can perform heating operation or cooling operation by switching operation of the four-way valve 902 .
- the compression mechanism 904 is driven by a variable speed controlled motor 314 .
- the refrigerant is pressurized by the compression mechanism 904 and sent out through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910, and the four-way valve 902. Return to compression mechanism 904 .
- the refrigerant is pressurized by the compression mechanism 904 and sent through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to compression mechanism 904 .
- the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat.
- the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat.
- the expansion valve 908 reduces the pressure of the refrigerant to expand it.
- the refrigeration cycle applied equipment 900 according to Embodiment 5 has been described as including the power converter 1 described in Embodiment 1, it is not limited to this. It may include the power converter 1A shown in FIG. 7, the power converter 1B shown in FIG. 10, or the power converter 1C shown in FIG. Also, power converters other than the power converters 1, 1A, 1B, and 1C may be used as long as the control methods of the first to fourth embodiments can be applied.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
電力変換装置(1)は、商用電源(110)から供給される第1の交流電力を整流する整流部(130)の出力端に接続されるコンデンサ(210)と、コンデンサ(210)の両端に接続され、第2の交流電力を生成してモータ(314)に出力するインバータ(310)と、コンデンサ(210)の電力状態に応じた脈動がモータ(314)の駆動パターンに重畳されるようにインバータ(310)の動作を制御し、コンデンサ(210)の充放電電流を抑制する制御部(400)を備える。制御部(400)は、モータ(314)の回転速度を制御する定電流負荷制御を優先して行いつつ、モータ(314)の振動を低減する負荷脈動補償制御、及びコンデンサ(210)の充放電電流を抑制する電源脈動補償制御を行い、電源脈動補償制御に割り当て可能なトルク電流指令が残存するように負荷脈動補償制御用のトルク電流指令を生成する。
Description
本開示は、交流電力を所望の電力に変換する電力変換装置、モータ駆動装置及び冷凍サイクル適用機器に関する。
従来、交流電源から供給される交流電力を所望の交流電力に変換し、空気調和機などの負荷に供給する電力変換装置がある。例えば、下記特許文献1には、空気調和機の制御装置である電力変換装置が、交流電源から供給される交流電力を整流部であるダイオードスタックで整流し、更に平滑用のコンデンサで平滑した電力を、複数のスイッチング素子からなるインバータで所望の交流電力に変換し、負荷である圧縮機モータに出力する技術が開示されている。
しかしながら、上記従来の技術によれば、平滑用のコンデンサに大きな脈動電流が流れるため、コンデンサの経年劣化が加速するという問題があった。この問題に対して、コンデンサの容量を大きくすることでコンデンサ電圧のリプル変化を抑制する方法、又はリプルによる劣化耐量の大きいコンデンサを使用する方法が考えられる。しかしながら、このような方法では、コンデンサ部品のコストが高くなり、装置が大型化してしまうという問題がある。
本開示は、上記に鑑みてなされたものであって、コンデンサの劣化を抑制しつつ、装置の大型化を抑制可能な電力変換装置を得ることを目的とする。
上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、商用電源から供給される第1の交流電力を整流する整流部と、整流部の出力端に接続されるコンデンサと、コンデンサの両端に接続され、第2の交流電力を生成してモータに出力するインバータと、を備える。また、電力変換装置は、コンデンサの電力状態に応じた脈動がモータの駆動パターンに重畳されるようにインバータの動作を制御し、コンデンサの充放電電流を抑制する制御部を備える。制御部は、モータの回転速度を制御する定電流負荷制御を優先して行いつつ、モータの振動を低減する負荷脈動補償制御、及びコンデンサの充放電電流を抑制する電源脈動補償制御を行い、電源脈動補償制御に割り当て可能なトルク電流指令が残存するように負荷脈動補償制御用のトルク電流指令を生成する。
本開示に係る電力変換装置によれば、コンデンサの劣化を抑制しつつ、装置の大型化を抑制できるという効果を奏する。
以下に添付図面を参照し、本開示の実施の形態に係る電力変換装置、モータ駆動装置及び冷凍サイクル適用機器について詳細に説明する。
実施の形態1.
図1は、実施の形態1に係る電力変換装置1の構成例を示す図である。電力変換装置1は、商用電源110及び圧縮機315に接続される。電力変換装置1は、商用電源110から供給される電源電圧Vsの第1の交流電力を所望の振幅及び位相を有する第2の交流電力に変換し、圧縮機315に供給する。商用電源110は交流電源の一例であり、圧縮機315は実施の形態1で言う機器の一例である。圧縮機315には、モータ314が搭載されている。電力変換装置1と、圧縮機315が備えるモータ314とによって、モータ駆動装置2が構成される。
図1は、実施の形態1に係る電力変換装置1の構成例を示す図である。電力変換装置1は、商用電源110及び圧縮機315に接続される。電力変換装置1は、商用電源110から供給される電源電圧Vsの第1の交流電力を所望の振幅及び位相を有する第2の交流電力に変換し、圧縮機315に供給する。商用電源110は交流電源の一例であり、圧縮機315は実施の形態1で言う機器の一例である。圧縮機315には、モータ314が搭載されている。電力変換装置1と、圧縮機315が備えるモータ314とによって、モータ駆動装置2が構成される。
電力変換装置1は、リアクトル120と、整流部130と、電流検出部501,502と、平滑部200と、インバータ310と、電流検出部313a,313bと、制御部400と、を備える。
リアクトル120は、商用電源110と整流部130との間に接続される。整流部130は、整流素子131~134によって構成されるブリッジ回路を有し、商用電源110から供給される電源電圧の第1の交流電力を整流して出力する。整流部130は、全波整流を行う。
平滑部200は、整流部130の出力端に接続される。平滑部200は、平滑素子としてコンデンサ210を有し、整流部130によって整流された電力を平滑化する。コンデンサ210は、例えば、電解コンデンサ、フィルムコンデンサなどである。コンデンサ210は、整流部130の出力端に接続され、整流部130によって整流された電力を平滑化するような容量を有し、平滑化によりコンデンサ210に発生する電圧は商用電源110の全波整流波形形状ではなく、直流成分に商用電源110の周波数に応じた電圧リプルが重畳した波形形状となり、大きく脈動しない。この電圧リプルの周波数は、商用電源110が単相の場合は電源電圧Vsの周波数の2倍成分となり、商用電源110が三相の場合は6倍成分が主成分となる。商用電源110から入力される電力とインバータ310から出力される電力が変化しない場合、この電圧リプルの振幅はコンデンサ210の容量によって決まる。例えば、コンデンサ210に発生する電圧リプルの最大値が最小値の2倍未満となるような範囲で脈動している。
電流検出部501は、整流部130から流出する整流電流I1を検出し、検出した整流電流I1の検出値を制御部400に出力する。電流検出部502は、インバータ310に流入する電流であるインバータ入力電流I2を検出し、検出したインバータ入力電流I2の検出値を制御部400に出力する。電流検出部501,502は、コンデンサ210の電力状態を検出する検出部として用いることができる。
インバータ310は、平滑部200、即ちコンデンサ210の両端に接続される。インバータ310は、スイッチング素子311a~311f、及び還流ダイオード312a~312fを有する。インバータ310は、制御部400の制御によってスイッチング素子311a~311fがオンオフ制御される。この制御によって、整流部130及び平滑部200から出力される電力は、所望の振幅及び位相を有する第2の交流電力に変換される。即ち、インバータ310は、スイッチング素子311a~311fをオンオフすることで、第2の交流電力を生成して、モータ314に出力する。
電流検出部313a,313bは、各々、インバータ310から出力される3相の電流のうち1相の電流値を検出し、検出した電流値を制御部400に出力する。なお、制御部400は、インバータ310から出力される3相の電流値のうち2相の電流値を取得することで、インバータ310から出力される残りの1相の電流値を算出することができる。
圧縮機315に搭載されるモータ314は、インバータ310から供給される交流電力の振幅及び位相に応じて回転し、圧縮動作を行う。圧縮機315が空気調和機などで使用される密閉型圧縮機の場合、圧縮機315の負荷トルクは、定トルク負荷とみなせる場合が多い。
なお、図1では、モータ314におけるモータ巻線がY結線の場合を示しているが、この例に限定されない。モータ314のモータ巻線は、Δ結線であってもよいし、Y結線とΔ結線とが切り替え可能な仕様であってもよい。
また、電力変換装置1において、図1に示す各構成の配置は一例であり、各構成の配置は図1で示される例に限定されない。例えば、リアクトル120は、整流部130の後段に配置されてもよい。また、電力変換装置1は、昇圧部を備えてもよいし、整流部130に昇圧部の機能を持たせるようにしてもよい。以降の説明において、電流検出部313a,313b,501,502の各々を単に「検出部」と称することがある。また、電流検出部313a,313b,501,502で検出された電流値を、単に「検出値」と称することがある。
制御部400は、電流検出部501で検出された整流電流I1の検出値、及び電流検出部502で検出されたインバータ入力電流I2の検出値を取得する。また、制御部400は、電流検出部313a,313bで検出されたモータ電流の検出値を取得する。制御部400は、各々の検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。また、制御部400は、整流部130から平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動を含む第2の交流電力がインバータ310から圧縮機315に出力されるようにインバータ310の動作を制御する。平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動とは、例えば、平滑部200のコンデンサ210に流入する電力の脈動の周波数などによって変動する脈動である。これにより、制御部400は、コンデンサ210の充放電電流であるコンデンサ電流I3を抑制する。制御部400は、モータ314の速度、電圧及び電流の何れかが所望の状態になるように制御を行う。なお、制御部400は、各検出部から取得した全ての検出値を用いなくてもよく、一部の検出値を用いて制御を行うことができる。
なお、モータ314が圧縮機315の駆動用に使用され、圧縮機315が密閉型圧縮機の場合、モータ314に回転子位置を検出する位置センサを取り付けることが構造的にもコスト的にも困難なことが多い。このため、制御部400は、モータ314の制御を位置センサレスで行う。モータ314の位置センサレス制御方法については、一次磁束一定制御、及びセンサレスベクトル制御の2種類がある。実施の形態1では、一例として、センサレスベクトル制御をベースに説明する。なお、以降で説明する制御方法については、軽微な変更で一次磁束一定制御に適用することも可能である。
次に、制御部400における実施の形態1での特徴的な動作について説明する。まず、整流部130から流出する整流電流I1は、商用電源110の電源位相、整流部130の前後に設置される素子の特性などの影響を受ける。その結果、整流電流I1は、電源周波数及び電源周波数の高調波成分(2以上の整数倍の周波数成分)を含む特性を有する。また、コンデンサ210において、コンデンサ電流I3が大きいとコンデンサ210の経年劣化が加速する。特に、コンデンサ210として電解コンデンサを用いる場合、経年劣化の加速の度合いが大きくなる。そこで、制御部400は、インバータ入力電流I2が整流電流I1と等しくなるようにインバータ310を制御して、コンデンサ電流I3をゼロに近づける制御を行う。これにより、コンデンサ210の劣化が抑制される。但し、インバータ入力電流I2には、PWM(Pulse Width Modulation)に起因するリプル成分が重畳される。このため、制御部400は、リプル成分を加味してインバータ310を制御する必要がある。
そこで、制御部400は、コンデンサ210の劣化を抑制するため、平滑部200、即ちコンデンサ210の電力状態を監視し、モータ314に適切な脈動を与えてコンデンサ電流I3が減少するようにする。ここで、コンデンサ210の電力状態とは、整流電流I1、インバータ入力電流I2、コンデンサ電流I3、コンデンサ210の電圧であるコンデンサ電圧Vdcなどのことである。制御部400においては、これらのコンデンサ210の電力状態のうちの少なくとも1つが劣化抑制制御に必要な情報となる。
電力変換装置1において、電流検出部501は、整流電流I1の電流値を検出し、その検出値を制御部400に出力する。また、電流検出部502は、インバータ入力電流I2の電流値を検出し、その検出値を制御部400に出力する。制御部400は、インバータ入力電流I2からPWMリプルを除いた値が整流電流I1と一致するようにインバータ310を制御し、モータ314に出力される電力に脈動を加える。即ち、制御部400は、コンデンサ210の電力状態に応じた脈動がモータ314の駆動パターンに重畳されるようにインバータ310の動作を制御する。これにより、コンデンサ電流I3が抑制される。この制御は、「電源脈動補償制御」と呼ばれる。
なお、前述のように、整流電流I1には電源周波数の高調波成分が含まれることから、インバータ入力電流I2及びモータ314のq軸電流にも電源周波数の高調波成分が含まれることになる。このため、電力変換装置1は、インバータ入力電流I2及びモータ314のq軸電流を適切に脈動させる必要がある。
また、例えば圧縮機315が空気調和機で使用され、圧縮機315の負荷がほぼ一定となる、即ちインバータ入力電流I2の実効値が一定となる場合においても、圧縮機315の負荷の種別によっては周期的な回転変動を生ずる機構を有するものがあることが知られている。従って、このような機構を有する圧縮機負荷を駆動する場合、負荷トルクは周期変動を有するものとなる。このため、インバータ310から出力電流一定、即ち定トルク出力で圧縮機315を駆動すると、トルク差分に起因する速度変動が生じる。速度変動は低速域にて顕著に生じ、高速域に動作点が移動するに連れて速度変動は小さくなる特性がある。また、速度変動分は外部流出するため、振動として外部観測されることとなり、振動対策部品の追加などが必要である。そのため、インバータ310から出力される一定電流、即ち定トルク出力分電流とは別に、脈動トルク、即ち脈動電流分を圧縮機315に流すことで負荷トルク変動に応じたトルクをインバータ310から圧縮機315に与える方法がとられることが多い。これにより、トルク差分をゼロに近づけることで圧縮機315のモータ314の速度変動を低減して振動抑制することができる。その結果、インバータ310の出力トルクと負荷トルクとのトルク差分はゼロに近づけることができる。これにより、圧縮機315に具備されるモータ314の速度変動を低減することができ、圧縮機315の振動を抑制することができる。この制御は、「負荷脈動補償制御」と呼ばれる。
以上のように、実施の形態1において、制御部400は、モータ314の回転速度を制御する定電流負荷制御と、電源脈動を補償する電源脈動補償制御と、負荷脈動を補償する負荷脈動補償制御とを実施する。その一方で、各制御による配分が適切ではない場合、モータ314の回転速度が速度指令に対し追従できない、負荷脈動補償制御が過補償になる、電源脈動補償が満足に制御できないなどの状態が発生するおそれがある。そこで、実施の形態1では、各制御の動作が適切になるように電力変換装置1を動作させる。以下、具体的な制御方法について説明する。
まず、電力変換装置1においては、駆動するモータ314が速度指令に追従することは必須の事項である。このため、制御部400は、定電流負荷制御を優先した制御を行う。また、制御部400は、定電流負荷制御、電源脈動補償制御、及び負荷脈動補償制御の各制御で使用可能なq軸電流指令のリミット値を設定する。具体的に、制御部400は、全体のq軸電流指令のリミット値から定電流負荷制御で使用するq軸電流指令の値を引いた範囲内で、電源脈動補償制御及び負荷脈動補償制御の各リミット値を設定し、電源脈動補償制御及び負荷脈動補償制御のq軸電流指令を生成する。即ち、制御部400は、モータ314の回転速度を制御する定電流負荷制御を優先して行いつつ、モータ314の振動を低減する負荷脈動補償制御、及びコンデンサ210のコンデンサ電流I3を抑制する電源脈動補償制御を行う。
次に、全体のq軸電流リミット値Iqlimについて説明する。全体のq軸電流リミット値Iqlimは、d軸電流idの値、モータ314の速度などによって変化する。低速度域におけるモータ314の減磁限界、インバータ310の最大電流などの観点から、q軸電流リミット値Iqlimを、例えば、以下の式(1)のように決定する。なお、本稿では、q軸電流リミット値Iqlimを「第1のリミット値」と称することがある。
式(1)において、Irmslimは相電流のリミット値を実効値表記したものを示し、id
*はd軸電流指令を示す。Irmslimは、インバータ310における過電流遮断保護の閾値よりも10%から20%程度低めに設定するのが一般的である。高速度域では、電圧飽和の影響によって流せるq軸電流iqが減少してしまう。q軸電流指令が過大な状態になると、積分器のワインドアップ現象によって制御不安定に陥るケースがあることがよく知られている。式(1)では速度上昇に伴う最大q軸電流の低下が考慮されていないため、最大q軸電流の低下を加味した数式を導出する。高速領域では、dq軸電圧のリミット値をVomとした場合、Vomに対して式(2)の近似式の関係が成り立つ。
式(2)において、Vomはdq平面上の電圧制限円の半径である。式(2)は、(vd
*)2+(vq
*)2=Vom
2に定常状態の電圧方程式を代入し、電機子抵抗による電圧降下を無視して整理したものである。ここで、式(2)をq軸電流iqについて解くと、式(3)が得られる。
従って、d軸電流idをリミット値限界まで流したとき、q軸電流リミット値Iqlimは式(4)のように表される。
なお、電圧が最小になるまでd軸電流idを流した場合、Φa+LdIdlim=0となるが、このときは式(5)が成立する。この場合、q軸電流リミット値Iqlimは、モータ314の電気角速度ωeに反比例して減少していくことが分かる。
最終的な結論として、q軸電流リミット値Iqlimは、式(1)及び式(4)の両方を加味して、式(6)のように設定される。
式(6)において、MINは最小のものを選択する関数である。
上記のような演算を行う制御部400の構成について説明する。図2は、実施の形態1に係る電力変換装置1が備える制御部400の構成例を示すブロック図である。制御部400は、回転子位置推定部401と、速度制御部402と、弱め磁束制御部403と、電流制御部404と、座標変換部405,406と、PWM信号生成部407と、減算部408と、分配比乗算部409と、負荷脈動補償制御部410と、加算部411と、減算部412と、電源脈動補償制御部413と、加算部414と、を備える。なお、加算部411,414でq軸電流指令生成部415を構成している。
回転子位置推定部401は、モータ314を駆動するためのdq軸電圧指令ベクトルVdq
*及びdq軸電流ベクトルidqを用いて、モータ314が有する図示しない回転子について、回転子磁極のdq軸での方向である推定位相角θest、及び回転子速度である推定速度ωestを推定する。
速度制御部402は、速度指令ω*と推定速度ωestとが一致するようにq軸電流指令Iqspを自動調整、即ち生成する。q軸電流指令Iqspは、前述の定電流負荷制御用のトルク電流指令である。また、速度指令ω*は、電力変換装置1が冷凍サイクル適用機器として空気調和機などに使用される場合、例えば、図示しない温度センサで検出された温度、図示しない操作部であるリモコンから指示される設定温度を示す情報、運転モードの選択情報、運転開始及び運転終了の指示情報などに基づくものである。運転モードとは、例えば、暖房、冷房、除湿などである。
弱め磁束制御部403は、dq軸電圧指令ベクトルVdq
*の絶対値が電圧リミット値Vlim
*の制限値内に収まるようにd軸電流指令id
*を自動調整する。弱め磁束制御は、大別して、電圧制限楕円の方程式からd軸電流指令id
*を計算する方法、及び電圧リミット値Vlim
*とdq軸電圧指令ベクトルVdq
*との絶対値の偏差がゼロになるようにd軸電流指令id
*を計算する方法の2種類があるが、どちらの方法を使用してもよい。
電流制御部404は、dq軸電流ベクトルidqがd軸電流指令id
*及びq軸電流指令iq
*に追従するようにdq軸電圧指令ベクトルVdq
*を自動調整する。
座標変換部405は、推定位相角θestに応じて、dq軸電圧指令ベクトルVdq
*をdq座標から交流量の電圧指令Vuvw
*に座標変換する。
座標変換部406は、推定位相角θestに応じて、モータ314に流れる電流Iuvwを交流量からdq座標のdq軸電流ベクトルidqに座標変換する。前述のように、制御部400は、モータ314に流れる電流Iuvwについて、インバータ310から出力される3相の電流値のうち、電流検出部313a,313bで検出される2相の電流値、及び2相の電流値を用いて残りの1相の電流値を算出することによって取得することができる。
PWM信号生成部407は、座標変換部405で座標変換された電圧指令Vuvw
*に基づいてPWM信号を生成する。制御部400は、PWM信号生成部407で生成されたPWM信号をインバータ310のスイッチング素子311a~311fに出力することで、モータ314に電圧を印加する。
減算部408は、前述のq軸電流リミット値Iqlimと、q軸電流指令Iqspの絶対値との差分であるq軸電流マージンIqmarginを生成する。なお、q軸電流指令Iqspの値が正である場合には、絶対値の演算は不要である。q軸電流リミット値Iqlimは、電流制御部404に入力されるq軸電流指令iq
*に対するリミット値である。q軸電流マージンIqmarginは、q軸電流リミット値Iqlimから定電流負荷制御で必要なq軸電流指令Iqspの電流分を差し引いた残りであって、負荷脈動補償制御及び電源脈動補償制御に対して分配可能な値である。なお、減算部408は、Iqlim-|Iqsp|が速度脈動、母線電圧脈動などの影響を受けるため、式(7)のようにローパスフィルタを用いて平滑化してもよい。
式(7)において、Tはフィルタ時定数であって遮断角周波数の逆数を示し、sはラプラス変換の変数を示す。次に、制御部400は、q軸電流マージンIqmarginを負荷脈動補償制御及び電源脈動補償制御に対して分配する。
まず、分配比乗算部409は、式(8)に示すように、減算部408で生成されたq軸電流マージンIqmarginに、モータ314の振動を低減する負荷脈動補償制御及びコンデンサ210のコンデンサ電流I3を抑制する電源脈動補償制御の各補償制御に対する分配比Kmarginを乗算し、負荷脈動補償制御用の電流リミット値IqlimAVSを生成する。
ここで、分配比Kmarginは、q軸電流マージンIqmarginの分配率であって、0以上1以下の変数である。分配比Kmarginは、コンデンサ210の電力状態、モータ314の動作状態、電力変換装置1が冷凍サイクル適用機器として空気調和機に使用される場合における空気調和機の運転状態などによって設定されてもよい。このように、負荷脈動補償制御用の電流リミット値IqlimAVSは、q軸電流マージンIqmarginを用いて設定される。
負荷脈動補償制御部410は、負荷脈動補償制御用の電流リミット値IqlimAVSを用いて、負荷脈動補償q軸電流指令Iqavsを生成する。負荷脈動補償q軸電流指令Iqavsは、負荷脈動補償制御用のトルク電流指令である。具体的には、負荷脈動補償制御部410は、分配比乗算部409で生成された負荷脈動補償制御用の電流リミット値IqlimAVSの範囲内で負荷脈動補償制御を実施し、負荷脈動補償q軸電流指令Iqavsを生成する。負荷脈動補償q軸電流指令Iqavsは、式(9)のように表される。q軸電流マージンIqmargin、負荷脈動補償制御用の電流リミット値IqlimAVS、及び負荷脈動補償q軸電流指令Iqavsの大小関係は、Iqmargin≧IqlimAVS≧Iqavsとなる。
実施の形態1の制御では、負荷脈動補償制御部410は、負荷脈動補償制御用の電流リミット値IqlimAVSの全てを使い切らないようにする。この制御を受け、減算部412は、式(10)に示すように、q軸電流マージンIqmarginと負荷脈動補償q軸電流指令Iqavsとの差分から、電源脈動補償制御用のリミット値Iqlimd2vを生成する。このようにして、電源脈動補償制御用のリミット値Iqlimd2vは、q軸電流マージンIqmarginを用いて設定される。
電源脈動補償制御部413は、電源脈動補償制御用のリミット値Iqlimd2vを用いて、電源脈動補償制御の電流振幅Iqd2vを生成する。電源脈動補償制御の電流振幅Iqd2vは、電源脈動補償制御用のトルク電流指令である。具体的には、電源脈動補償制御部413は、電源脈動補償制御の電流振幅Iqd2vを式(11)のように決定する。電源脈動補償制御部413は、q軸電流指令Iqspの絶対値が電源脈動補償制御用のリミット値Iqlimd2v以上の場合、電源脈動補償制御の電流振幅Iqd2vとして電源脈動補償制御用のリミット値Iqlimd2vを選択する。電源脈動補償制御部413は、q軸電流指令Iqspの絶対値が電源脈動補償制御用のリミット値Iqlimd2v未満の場合、電源脈動補償制御の電流振幅Iqd2vとしてq軸電流指令Iqspの絶対値を選択する。
q軸電流指令生成部415は、q軸電流指令Iqsp、負荷脈動補償q軸電流指令Iqavs、及び電源脈動補償制御の電流振幅Iqd2vを用いて、q軸電流指令iq
*を生成する。具体的には、q軸電流指令生成部415において、加算部411は、q軸電流指令Iqspと、負荷脈動補償q軸電流指令Iqavsとを加算する。加算部414は、加算部411の加算結果であるq軸電流指令Iqsp+負荷脈動補償q軸電流指令Iqavsと、電源脈動補償制御の電流振幅Iqd2vとを加算する。q軸電流指令生成部415は、加算部414の加算結果を、q軸電流指令iq
*として電流制御部404に出力する。
以上のことから、制御部400は、状況に応じて分配比乗算部409が適切な分配比Kmarginを設定することで、速度指令ω*に追従しつつ、電源脈動補償制御及び負荷脈動補償制御を適切に実施することが可能となる。
なお、制御部400は、図2の例では、分配比Kmarginを用いて負荷脈動補償制御用の電流リミット値IqlimAVSを生成し、q軸電流マージンIqmarginと負荷脈動補償q軸電流指令Iqavsとの差分から電源脈動補償制御用のリミット値Iqlimd2vを生成していたが、これに限定されない。制御部400は、図2において負荷脈動補償制御部410及び電源脈動補償制御部413の配置を入れ替え、分配比Kmarginを用いて電源脈動補償制御用のリミット値Iqlimd2vを生成し、q軸電流マージンIqmarginと電源脈動補償制御の電流振幅Iqd2vとの差分から負荷脈動補償制御用の電流リミット値IqlimAVSを生成してもよい。
図2の例では、分配比乗算部409は、差分であるq軸電流マージンIqmarginと分配比Kmarginとを乗算し、負荷脈動補償制御用の電流リミット値IqlimAVSを生成する。この場合、負荷脈動補償制御用の電流リミット値IqlimAVSは、差分であるq軸電流マージンIqmarginと0以上1以下の分配比Kmarginとを乗算した値である。電源脈動補償制御用のリミット値Iqlimd2vは、差分であるq軸電流マージンIqmarginから負荷脈動補償q軸電流指令Iqavsを減算した値である。電源脈動補償制御部413は、電源脈動補償制御用のリミット値Iqlimd2vがq軸電流指令Iqspの絶対値以下の場合、電源脈動補償制御の電流振幅Iqd2vとして電源脈動補償制御用のリミット値Iqlimd2vを選択する。また、電源脈動補償制御部413は、電源脈動補償制御用のリミット値Iqlimd2vがq軸電流指令Iqspの絶対値より大きい場合、電源脈動補償制御の電流振幅Iqd2vとして、q軸電流指令Iqspの絶対値を選択する。
一方、図2に対して負荷脈動補償制御部410及び電源脈動補償制御部413の配置を入れ替えた例では、分配比乗算部409は、差分であるq軸電流マージンIqmarginと分配比Kmarginとを乗算し、電源脈動補償制御用のリミット値Iqlimd2vを生成する。この場合、電源脈動補償制御用のリミット値Iqlimd2vは、差分であるq軸電流マージンIqmarginと0以上1以下の分配比Kmarginとを乗算した値である。負荷脈動補償制御用の電流リミット値IqlimAVSは、差分であるq軸電流マージンIqmarginから電源脈動補償制御の電流振幅Iqd2vを減算した値である。負荷脈動補償制御部410は、負荷脈動補償制御用の電流リミット値IqlimAVSがq軸電流指令Iqspの絶対値以下の場合、負荷脈動補償q軸電流指令Iqavsとして負荷脈動補償制御用の電流リミット値IqlimAVSを選択する。また、電源脈動補償制御部413は、負荷脈動補償制御用の電流リミット値IqlimAVSがq軸電流指令Iqspの絶対値より大きい場合、負荷脈動補償q軸電流指令Iqavsとして、q軸電流指令Iqspの絶対値を選択する。
上述した制御部400の動作を、電力変換装置1から見た動作態様で説明する。図3は、実施の形態1に係る電力変換装置1の要部の動作説明に供する第1のフローチャートである。
電力変換装置1は、q軸電流リミット値Iqlimとq軸電流指令Iqspとの差分であるq軸電流マージンIqmarginを生成する(ステップS1)。電力変換装置1は、電源脈動補償制御に割り当て可能なトルク電流指令が残存するように負荷脈動補償制御用のトルク電流指令を生成する(ステップS2)。
上記のステップS1により、電力変換装置1は、モータ314の回転速度を制御する定電流負荷制御を優先して行うことができる。また、上記のステップS2により、負荷脈動補償制御と電源脈動補償制御との間でバランスをとることができ、両者の両立を図ることが可能となる。
また、上述した制御部400の動作は、図4のように表現することもできる。図4は、実施の形態1に係る電力変換装置1の要部の動作説明に供する第2のフローチャートである。
電力変換装置1は、q軸電流リミット値Iqlimとq軸電流指令Iqspとの差分であるq軸電流マージンIqmarginを生成する(ステップS11)。電力変換装置1は、負荷脈動補償制御に割り当て可能なトルク電流指令が残存するように電源脈動補償制御用のトルク電流指令を生成する(ステップS12)。
上記のステップS11により、電力変換装置1は、モータ314の回転速度を制御する定電流負荷制御を優先して行うことができる。また、上記のステップS12により、負荷脈動補償制御と電源脈動補償制御との間でバランスをとることができ、両者の両立を図ることが可能となる。
次に、実施の形態1に係る制御部400の機能を実現するためのハードウェア構成について、図5及び図6の図面を参照して説明する。図5は、実施の形態1に係る制御部400の機能を実現するハードウェア構成の一例を示すブロック図である。図6は、実施の形態1に係る制御部400の機能を実現するハードウェア構成の他の例を示すブロック図である。
制御部400の機能の一部又は全部を実現するには、図5に示すように、演算を行うプロセッサ420、プロセッサ420によって読みとられるプログラムが保存されるメモリ422、及び信号の入出力を行うインタフェース424を含む構成とすることができる。
プロセッサ420は、演算手段の例示である。プロセッサ420は、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)と称される演算手段であってもよい。また、メモリ422には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。
メモリ422には、制御部400の機能を実行するプログラムが格納されている。プロセッサ420は、インタフェース424を介して必要な情報を授受し、メモリ422に格納されたプログラムをプロセッサ420が実行し、メモリ422に格納されたデータをプロセッサ420が参照することにより、上述した処理を実行することができる。プロセッサ420による演算結果は、メモリ422に記憶することができる。
また、図5に示すプロセッサ420及びメモリ422は、図6のように処理回路423に置き換えてもよい。処理回路423は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路423に入力する情報、及び処理回路423から出力する情報は、インタフェース424を介して入手することができる。
なお、制御部400における一部の処理を処理回路423で実施し、処理回路423で実施しない処理をプロセッサ420及びメモリ422で実施してもよい。
以上説明したように、実施の形態1に係る電力変換装置によれば、制御部は、モータの回転速度を制御する定電流負荷制御を優先して行いつつ、モータの振動を低減する負荷脈動補償制御、及びコンデンサの充放電電流を抑制する電源脈動補償制御を行う。また、制御部は、電源脈動補償制御に割り当て可能なトルク電流指令が残存するように負荷脈動補償制御用のトルク電流指令を生成する。また、制御部は、負荷脈動補償制御に割り当て可能なトルク電流指令が残存するように電流脈動補償制御用のトルク電流指令を生成する。これにより、平滑用のコンデンサの劣化を抑制しつつ、装置の大型化を抑制することができる。また、負荷脈動補償制御と電源脈動補償制御との間でバランスをとることができ、両者の両立を図ることができる。
実施の形態2.
図7は、実施の形態2に係る電力変換装置1Aの構成例を示す図である。図7に示す電力変換装置1Aでは、制御部400が制御部400Aに置き替えられている。電力変換装置1Aと、圧縮機315が備えるモータ314とによって、モータ駆動装置2Aが構成される。また、モータ駆動装置2Aの駆動対象である圧縮機315には、圧縮機315の振動レベルを検出する振動センサ316が追加されている。振動センサ316の検出値VBは、制御部400Aに入力される。その他の構成は、図1に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
図7は、実施の形態2に係る電力変換装置1Aの構成例を示す図である。図7に示す電力変換装置1Aでは、制御部400が制御部400Aに置き替えられている。電力変換装置1Aと、圧縮機315が備えるモータ314とによって、モータ駆動装置2Aが構成される。また、モータ駆動装置2Aの駆動対象である圧縮機315には、圧縮機315の振動レベルを検出する振動センサ316が追加されている。振動センサ316の検出値VBは、制御部400Aに入力される。その他の構成は、図1に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
図8は、実施の形態2に係る電力変換装置1Aが備える制御部400Aの構成例を示すブロック図である。図8に示す制御部400Aでは、図2に示す制御部400と比較すると、負荷脈動補償制御部410及び電源脈動補償制御部413と、q軸電流指令生成部415との間に調整部416Aが追加されている。調整部416Aには、負荷脈動補償q軸電流指令Iqavs、電源脈動補償制御の電流振幅Iqd2v及び振動センサ316の検出値VBが入力される。その他の構成は、図2に示す制御部400と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
調整部416Aは、振動センサ316の検出値VBに基づいて負荷脈動補償q軸電流指令Iqavsの値を調整する。具体的に、調整部416Aは、振動センサ316の検出値VBが閾値以下となるように負荷脈動補償q軸電流指令Iqavsの値を調整する。ここで言う閾値は、圧縮機315において、振動に起因する疲労破壊防止の観点で定められた設定値である。調整部416Aは、振動センサ316の検出値VBが閾値を超えている場合には、負荷脈動補償制御を積極的に行うべく、負荷脈動補償q軸電流指令Iqavsの値を調整する。また、調整部416Aは、負荷脈動補償q軸電流指令Iqavsの値を調整した分、電源脈動補償制御の電流振幅Iqd2vの値を調整する。q軸電流指令生成部415の加算部411には、調整後の負荷脈動補償q軸電流指令Iqavsが出力される。また、q軸電流指令生成部415の加算部414には、調整後の電源脈動補償制御の電流振幅Iqd2vが出力される。なお、振動センサ316の検出値VBが閾値以下である場合、負荷脈動補償制御部410の出力は調整部416Aの処理をスルーして加算部411にそのまま入力され、電源脈動補償制御部413の出力は調整部416Aの処理をスルーして加算部414にそのまま入力される。
上述した制御部400Aの動作を、電力変換装置1Aから見た動作態様で説明する。図9は、実施の形態2に係る電力変換装置1Aの要部の動作説明に供するフローチャートである。
電力変換装置1Aは、振動センサ316の検出値VBを取得する(ステップS21)。電力変換装置1Aは、q軸電流リミット値Iqlimとq軸電流指令Iqspとの差分であるq軸電流マージンIqmarginを生成する(ステップS22)。電力変換装置1Aは、電源脈動補償制御に割り当て可能なトルク電流指令が残存するように負荷脈動補償制御用のトルク電流指令を生成すると共に、振動センサ316の検出値VBが閾値以下となるように負荷脈動補償制御用のトルク電流指令を調整する(ステップS23)。
上記のステップS22により、電力変換装置1Aは、モータ314の回転速度を制御する定電流負荷制御を優先して行うことができる。また、上記のステップS21,S23により、負荷脈動補償制御と電源脈動補償制御との両立を図りつつ、圧縮機315が疲労破壊によって損傷する可能性を低減することができる。
以上説明したように、実施の形態2に係る電力変換装置によれば、制御部は、モータの回転速度を制御する定電流負荷制御を優先して行いつつ、モータの振動を低減する負荷脈動補償制御、及びコンデンサの充放電電流を抑制する電源脈動補償制御を行う。また、制御部は、電源脈動補償制御に割り当て可能なトルク電流指令が残存するように負荷脈動補償制御用のトルク電流指令を生成する際に、振動センサの検出値が閾値以下となるように負荷脈動補償制御用のトルク電流指令を調整する。これにより、実施の形態1の効果を享受しつつ、モータを搭載する機器が疲労破壊によって損傷する可能性を低減することができる。
実施の形態3.
図10は、実施の形態3に係る電力変換装置1Bの構成例を示す図である。図10に示す電力変換装置1Bでは、制御部400が制御部400Bに置き替えられている。電力変換装置1Bと、圧縮機315が備えるモータ314とによって、モータ駆動装置2Bが構成される。また、電力変換装置1Bには、コンデンサ電圧Vdcを検出する電圧検出部503が追加されている。電圧検出部503によって検出されたコンデンサ電圧Vdcの検出値は、制御部400Bに入力される。その他の構成は、図1に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
図10は、実施の形態3に係る電力変換装置1Bの構成例を示す図である。図10に示す電力変換装置1Bでは、制御部400が制御部400Bに置き替えられている。電力変換装置1Bと、圧縮機315が備えるモータ314とによって、モータ駆動装置2Bが構成される。また、電力変換装置1Bには、コンデンサ電圧Vdcを検出する電圧検出部503が追加されている。電圧検出部503によって検出されたコンデンサ電圧Vdcの検出値は、制御部400Bに入力される。その他の構成は、図1に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
図11は、実施の形態3に係る電力変換装置1Bが備える制御部400Bの構成例を示すブロック図である。図11に示す制御部400Bでは、図2に示す制御部400と比較すると、負荷脈動補償制御部410及び電源脈動補償制御部413と、q軸電流指令生成部415との間に調整部416Bが追加されている。調整部416Bには、負荷脈動補償q軸電流指令Iqavs、電源脈動補償制御の電流振幅Iqd2v及びコンデンサ電圧Vdcの検出値が入力される。その他の構成は、図2に示す制御部400と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
調整部416Bは、コンデンサ電圧Vdcの検出値及びコンデンサ210の静電容量Cに基づいて、以下の式(12)によってコンデンサ電流I3を演算する。
I3=C・(dVdc/dt) …(12)
調整部416Bは、コンデンサ電流I3の演算値に基づいて電源脈動補償制御の電流振幅Iqd2vの値を調整する。具体的に、調整部416Bは、コンデンサ電流I3の演算値が閾値以下となるように電源脈動補償制御の電流振幅Iqd2vの値を調整する。ここで言う閾値は、コンデンサ210の定格リプル電流により定められた設定値である。調整部416Bは、コンデンサ電流I3の演算値が閾値を超えている場合には、電源脈動補償制御を積極的に行うべく、電源脈動補償制御の電流振幅Iqd2vの値を調整する。また、調整部416Bは、電源脈動補償制御の電流振幅Iqd2vの値を調整した分、負荷脈動補償q軸電流指令Iqavsの値を調整する。q軸電流指令生成部415の加算部411には、調整後の負荷脈動補償q軸電流指令Iqavsが出力される。また、q軸電流指令生成部415の加算部414には、調整後の電源脈動補償制御の電流振幅Iqd2vが出力される。なお、コンデンサ電流I3の演算値が閾値以下である場合、負荷脈動補償制御部410の出力は調整部416Bの処理をスルーして加算部411にそのまま入力され、電源脈動補償制御部413の出力は調整部416Bの処理をスルーして加算部414にそのまま入力される。
上述した制御部400Bの動作を、電力変換装置1Bから見た動作態様で説明する。図12は、実施の形態3に係る電力変換装置1Bの要部の動作説明に供するフローチャートである。
電力変換装置1Bは、コンデンサ電圧Vdcの検出値を取得する(ステップS31)。電力変換装置1Bは、コンデンサ電圧Vdcの検出値及びコンデンサ210の静電容量Cに基づいてコンデンサ電流I3を演算する(ステップS32)。電力変換装置1Bは、q軸電流リミット値Iqlimとq軸電流指令Iqspとの差分であるq軸電流マージンIqmarginを生成する(ステップS33)。電力変換装置1Bは、負荷脈動補償制御に割り当て可能なトルク電流指令が残存するように電源脈動補償制御用のトルク電流指令を生成すると共に、コンデンサ電流I3の演算値が閾値以下となるように電源脈動補償制御用のトルク電流指令を調整する(ステップS34)。
上記のステップS33により、電力変換装置1Bは、モータ314の回転速度を制御する定電流負荷制御を優先して行うことができる。また、上記のステップS31,S32,S34により、負荷脈動補償制御と電源脈動補償制御との両立を図りつつ、コンデンサ210の寿命の延伸化を図ることができる。
以上説明したように、実施の形態3に係る電力変換装置によれば、制御部は、モータの回転速度を制御する定電流負荷制御を優先して行いつつ、モータの振動を低減する負荷脈動補償制御、及びコンデンサの充放電電流を抑制する電源脈動補償制御を行う。また、制御部は、負荷脈動補償制御に割り当て可能なトルク電流指令が残存するように電源脈動補償制御用のトルク電流指令を生成する際に、コンデンサ電流の演算値が閾値以下となるように電源脈動補償制御用のトルク電流指令を調整する。これにより、実施の形態1の効果を享受しつつ、コンデンサの寿命の延伸化を図ることができる。
実施の形態4.
図13は、実施の形態4に係る電力変換装置1Cの構成例を示す図である。図13に示す電力変換装置1Cでは、制御部400が制御部400Cに置き替えられている。電力変換装置1Cと、圧縮機315が備えるモータ314とによって、モータ駆動装置2Cが構成される。また、電力変換装置1Cには、コンデンサ電流I3を検出する電流検出部504が追加されている。電流検出部504によって検出されたコンデンサ電流I3の検出値は、制御部400Cに入力される。その他の構成は、図1に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
図13は、実施の形態4に係る電力変換装置1Cの構成例を示す図である。図13に示す電力変換装置1Cでは、制御部400が制御部400Cに置き替えられている。電力変換装置1Cと、圧縮機315が備えるモータ314とによって、モータ駆動装置2Cが構成される。また、電力変換装置1Cには、コンデンサ電流I3を検出する電流検出部504が追加されている。電流検出部504によって検出されたコンデンサ電流I3の検出値は、制御部400Cに入力される。その他の構成は、図1に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
図14は、実施の形態4に係る電力変換装置1Cが備える制御部400Cの構成例を示すブロック図である。図14に示す制御部400Cでは、図2に示す制御部400と比較すると、負荷脈動補償制御部410及び電源脈動補償制御部413と、q軸電流指令生成部415との間に調整部416Cが追加されている。調整部416Cには、負荷脈動補償q軸電流指令Iqavs、電源脈動補償制御の電流振幅Iqd2v及びコンデンサ電流I3の検出値が入力される。その他の構成は、図2に示す制御部400と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。
調整部416Cは、コンデンサ電流I3の検出値に基づいて電源脈動補償制御の電流振幅Iqd2vの値を調整する。具体的に、調整部416Cは、コンデンサ電流I3の検出値が閾値以下となるように電源脈動補償制御の電流振幅Iqd2vの値を調整する。ここで言う閾値は、コンデンサ210の定格リプル電流により定められた設定値である。調整部416Cは、コンデンサ電流I3の検出値が閾値を超えている場合には、電源脈動補償制御を積極的に行うべく、電源脈動補償制御の電流振幅Iqd2vの値を調整する。また、調整部416Cは、電源脈動補償制御の電流振幅Iqd2vの値を調整した分、負荷脈動補償q軸電流指令Iqavsの値を調整する。q軸電流指令生成部415の加算部411には、調整後の負荷脈動補償q軸電流指令Iqavsが出力される。また、q軸電流指令生成部415の加算部414には、調整後の電源脈動補償制御の電流振幅Iqd2vが出力される。なお、コンデンサ電流I3の演算値が閾値以下である場合、負荷脈動補償制御部410の出力は調整部416Cの処理をスルーして加算部411にそのまま入力され、電源脈動補償制御部413の出力は調整部416Cの処理をスルーして加算部414にそのまま入力される。
上述した制御部400Cの動作を、電力変換装置1Cから見た動作態様で説明する。図15は、実施の形態4に係る電力変換装置1Cの要部の動作説明に供するフローチャートである。
電力変換装置1Cは、コンデンサ電流I3の検出値を取得する(ステップS41)。電力変換装置1Cは、q軸電流リミット値Iqlimとq軸電流指令Iqspとの差分であるq軸電流マージンIqmarginを生成する(ステップS42)。電力変換装置1Cは、負荷脈動補償制御に割り当て可能なトルク電流指令が残存するように電源脈動補償制御用のトルク電流指令を生成すると共に、コンデンサ電流I3の検出値が閾値以下となるように電源脈動補償制御用のトルク電流指令を調整する(ステップS43)。
上記のステップS42により、電力変換装置1Cは、モータ314の回転速度を制御する定電流負荷制御を優先して行うことができる。また、上記のステップS41,S43により、負荷脈動補償制御と電源脈動補償制御との両立を図りつつ、コンデンサ210の寿命の延伸化を図ることができる。
以上説明したように、実施の形態4に係る電力変換装置によれば、制御部は、モータの回転速度を制御する定電流負荷制御を優先して行いつつ、モータの振動を低減する負荷脈動補償制御、及びコンデンサの充放電電流を抑制する電源脈動補償制御を行う。また、制御部は、負荷脈動補償制御に割り当て可能なトルク電流指令が残存するように電源脈動補償制御用のトルク電流指令を生成する際に、コンデンサ電流の検出値が閾値以下となるように電源脈動補償制御用のトルク電流指令を調整する。これにより、実施の形態1の効果を享受しつつ、コンデンサの寿命の延伸化を図ることができる。
実施の形態5.
図16は、実施の形態5に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態5に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置1を備える。実施の形態5に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図16において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
図16は、実施の形態5に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態5に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置1を備える。実施の形態5に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図16において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
冷凍サイクル適用機器900は、実施の形態1におけるモータ314を内蔵した圧縮機315と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。
圧縮機315の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させるモータ314とが設けられている。
冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御されるモータ314によって駆動される。
暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。
冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。
暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。
なお、実施の形態5に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置1を備えるものとして説明したが、これに限定されない。図7に示す電力変換装置1Aを備えていてもよいし、図10に示す電力変換装置1Bを備えていてもよいし、図13に示す電力変換装置1Cを備えていてもよい。また、実施の形態1~4の制御手法を適用できるものであれば、電力変換装置1,1A,1B,1C以外の電力変換装置でもよい。
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,1A,1B,1C 電力変換装置、2,2A,2B,2C モータ駆動装置、110 商用電源、120 リアクトル、130 整流部、131~134 整流素子、200 平滑部、210 コンデンサ、310 インバータ、311a~311f スイッチング素子、312a~312f 還流ダイオード、313a,313b,501,502,504 電流検出部、314 モータ、315 圧縮機、316 振動センサ、400,400A,400B,400C 制御部、401 回転子位置推定部、402 速度制御部、403 弱め磁束制御部、404 電流制御部、405,406 座標変換部、407 PWM信号生成部、408,412 減算部、409 分配比乗算部、410 負荷脈動補償制御部、411,414 加算部、413 電源脈動補償制御部、415 q軸電流指令生成部、416A,416B,416C 調整部、420 プロセッサ、422 メモリ、423 処理回路、424 インタフェース、503 電圧検出部、900 冷凍サイクル適用機器、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管。
Claims (7)
- 商用電源から供給される第1の交流電力を整流する整流部と、
前記整流部の出力端に接続されるコンデンサと、
前記コンデンサの両端に接続され、第2の交流電力を生成してモータに出力するインバータと、
前記コンデンサの電力状態に応じた脈動が前記モータの駆動パターンに重畳されるように前記インバータの動作を制御し、前記コンデンサの充放電電流を抑制する制御部と、
を備え、
前記制御部は、前記モータの回転速度を制御する定電流負荷制御を優先して行いつつ、前記モータの振動を低減する負荷脈動補償制御、及び前記コンデンサの充放電電流を抑制する電源脈動補償制御を行い、前記電源脈動補償制御に割り当て可能なトルク電流指令が残存するように前記負荷脈動補償制御用のトルク電流指令を生成する
電力変換装置。 - 前記モータが搭載された機器の振動を検出する振動センサを備え、
前記制御部は、前記振動センサの検出値が閾値以下となるように前記負荷脈動補償制御用のトルク電流指令を調整する
請求項1に記載の電力変換装置。 - 商用電源から供給される第1の交流電力を整流する整流部と、
前記整流部の出力端に接続されるコンデンサと、
前記コンデンサの両端に接続され、第2の交流電力を生成してモータに出力するインバータと、
前記コンデンサの電力状態に応じた脈動が前記モータの駆動パターンに重畳されるように前記インバータの動作を制御し、前記コンデンサの充放電電流を抑制する制御部と、
を備え、
前記制御部は、前記モータの回転速度を制御する定電流負荷制御を優先して行いつつ、前記モータの振動を低減する負荷脈動補償制御、及び前記コンデンサの充放電電流を抑制する電源脈動補償制御を行い、前記負荷脈動補償制御に割り当て可能なトルク電流指令が残存するように前記電源脈動補償制御用のトルク電流指令を生成する
電力変換装置。 - 前記コンデンサの電圧であるコンデンサ電圧を検出する電圧検出部を備え、
前記制御部は、前記コンデンサ電圧の検出値及び前記コンデンサの静電容量に基づいて前記コンデンサの充放電電流であるコンデンサ電流を演算で求めると共に、前記コンデンサ電流の演算値が閾値以下となるように前記電源脈動補償制御用のトルク電流指令を調整する
請求項3に記載の電力変換装置。 - 前記コンデンサの充放電電流であるコンデンサ電流を検出する電流検出部を備え、
前記制御部は、前記コンデンサ電流の検出値が閾値以下となるように前記電源脈動補償制御用のトルク電流指令を調整する
請求項3に記載の電力変換装置。 - 請求項1から5の何れか1項に記載の電力変換装置を備えるモータ駆動装置。
- 請求項1から5の何れか1項に記載の電力変換装置を備える冷凍サイクル適用機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/041185 WO2023084600A1 (ja) | 2021-11-09 | 2021-11-09 | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 |
JP2023559232A JPWO2023084600A1 (ja) | 2021-11-09 | 2021-11-09 | |
CN202180103821.6A CN118266161A (zh) | 2021-11-09 | 2021-11-09 | 电力转换装置、马达驱动装置以及制冷循环应用设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/041185 WO2023084600A1 (ja) | 2021-11-09 | 2021-11-09 | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023084600A1 true WO2023084600A1 (ja) | 2023-05-19 |
Family
ID=86335319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/041185 WO2023084600A1 (ja) | 2021-11-09 | 2021-11-09 | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023084600A1 (ja) |
CN (1) | CN118266161A (ja) |
WO (1) | WO2023084600A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11299290A (ja) * | 1998-04-17 | 1999-10-29 | Hitachi Ltd | 交流電動機駆動システム |
JP2002189064A (ja) * | 2000-12-20 | 2002-07-05 | Ko Gijutsu Kenkyusho:Kk | 電気機器設備の異常診断方法 |
WO2004070402A1 (ja) * | 2003-02-07 | 2004-08-19 | Atec Co., Ltd. | 電気設備の高調波診断方法 |
JP2016192854A (ja) * | 2015-03-31 | 2016-11-10 | 東芝エレベータ株式会社 | エレベータの制御装置 |
-
2021
- 2021-11-09 JP JP2023559232A patent/JPWO2023084600A1/ja active Pending
- 2021-11-09 CN CN202180103821.6A patent/CN118266161A/zh active Pending
- 2021-11-09 WO PCT/JP2021/041185 patent/WO2023084600A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11299290A (ja) * | 1998-04-17 | 1999-10-29 | Hitachi Ltd | 交流電動機駆動システム |
JP2002189064A (ja) * | 2000-12-20 | 2002-07-05 | Ko Gijutsu Kenkyusho:Kk | 電気機器設備の異常診断方法 |
WO2004070402A1 (ja) * | 2003-02-07 | 2004-08-19 | Atec Co., Ltd. | 電気設備の高調波診断方法 |
JP2016192854A (ja) * | 2015-03-31 | 2016-11-10 | 東芝エレベータ株式会社 | エレベータの制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023084600A1 (ja) | 2023-05-19 |
CN118266161A (zh) | 2024-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004095684A1 (ja) | モータ制御装置、圧縮機、空気調和機、及び冷蔵庫 | |
JP2002247876A (ja) | インバータ装置、圧縮機制御装置、冷凍・空調装置の制御装置、モータの制御方法、圧縮機、冷凍・空調装置 | |
JP4575704B2 (ja) | モータ制御装置、圧縮機、空気調和機、及び冷蔵庫 | |
JP7166468B2 (ja) | 電動機駆動装置および冷凍サイクル適用機器 | |
WO2023084600A1 (ja) | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 | |
JP7330401B2 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
JP7325671B2 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
JP2019170119A (ja) | 冷凍サイクル装置 | |
WO2023105570A1 (ja) | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 | |
WO2023100321A1 (ja) | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 | |
WO2023105676A1 (ja) | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 | |
WO2023162106A1 (ja) | モータ駆動装置及び冷凍サイクル装置 | |
JP7499887B2 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
JP7466794B2 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
WO2024142324A1 (ja) | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 | |
WO2023073870A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
WO2023067774A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
JP7566174B2 (ja) | 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器 | |
WO2024075210A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
WO2023105761A1 (ja) | 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器 | |
WO2024069705A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
WO2023100359A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
WO2023067810A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
WO2024075163A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
JP7361948B2 (ja) | 電動機駆動装置、冷凍サイクル装置、及び空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21963963 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023559232 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180103821.6 Country of ref document: CN |