WO2023082508A1 - 一种缓释抗菌膜及其制备方法 - Google Patents

一种缓释抗菌膜及其制备方法 Download PDF

Info

Publication number
WO2023082508A1
WO2023082508A1 PCT/CN2022/080307 CN2022080307W WO2023082508A1 WO 2023082508 A1 WO2023082508 A1 WO 2023082508A1 CN 2022080307 W CN2022080307 W CN 2022080307W WO 2023082508 A1 WO2023082508 A1 WO 2023082508A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
mof
intermediate material
membrane
caffeic acid
Prior art date
Application number
PCT/CN2022/080307
Other languages
English (en)
French (fr)
Inventor
丁甜
沈默斐
刘东红
赵伟
冯劲松
Original Assignee
浙江大学
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 江南大学 filed Critical 浙江大学
Priority to US17/909,285 priority Critical patent/US20240199826A1/en
Publication of WO2023082508A1 publication Critical patent/WO2023082508A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the application relates to the technical field of slow-release antibacterial materials, in particular to a slow-release antibacterial film product and a preparation method thereof.
  • Metal-Organic Frameworks are porous coordination materials composed of multi-dentate organic ligands and metal ions or metal clusters, which are connected by coordination bonds or covalent bonds between metal ion centers and organic ligands. Formed infinite network structure. It has the advantages of large specific surface area, adjustable function, high porosity, etc. It is a rapidly developing new porous material with broad application prospects.
  • cyclodextrin metal-organic framework materials are used as carriers to load antibacterial substances, it is necessary to overcome the problem of easy disintegration in water.
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • This application provides a slow-release antibacterial film, which is a water-responsive slow-release antibacterial film based on CD-MOF and PDMS, which solves the problem that cyclodextrin metal-organic framework materials are easily soluble in water, and uses PDMS to protect the The problem of sudden release and disintegration of cyclodextrin metal organic framework materials in water makes it have the function of slow release in water, thus realizing slow release antibacterial.
  • This application is the first to prepare a mixed matrix membrane material in which CD-MOF and PDMS are physically blended, which can be applied to applied research in the fields of food and environment.
  • the application provides a preparation method of a slow-release antibacterial film, comprising:
  • the cyclodextrin metal organic framework material CD-MOF is blended with silver nitrate short-chain alcohol solution to prepare the cyclodextrin metal organic framework material loaded with nano silver, which is recorded as intermediate material A;
  • the short-chain alcohol in step (1) and step (2) is absolute methanol or absolute ethanol.
  • Step (1) and step (2) adopt the same short-chain alcohol, preferably dehydrated alcohol.
  • step (1) the concentration of silver nitrate short-chain alcohol solution is 0.5-10mM; the ratio of CD-MOF and silver nitrate short-chain alcohol solution is based on 100mg CD-MOF: 0.0025-0.05m mol silver nitrate ; Blending reaction time is 10 to 15 hours.
  • step (2) the concentration of caffeic acid in the caffeic acid short-chain solution is 5-10 mg/mL; the ratio of the intermediate material A to the caffeic acid short-chain solution is based on the mass ratio of the intermediate material A to caffeic acid 1: 0.5 to 1.5; the blending reaction time is 12 to 18 hours.
  • step (1) the concentration of silver nitrate short-chain alcohol solution is 5-7.5mM; the ratio of CD-MOF and silver nitrate short-chain alcohol solution is based on 100mg CD-MOF: 0.0125-0.0375m mol silver nitrate The blending reaction time is 10 ⁇ 15 hours;
  • step (2) the concentration of caffeic acid in the caffeic acid short chain solution is 5 ⁇ 10mg/mL; The proportioning of intermediate material A and caffeic acid short chain solution is based on intermediate material A The mass ratio with caffeic acid is 1:0.5-1; the blending reaction time is 12-18 hours.
  • the solvent is acetonitrile, n-hexane or n-heptane, more preferably acetonitrile;
  • the intermediate material B is dispersed in the solvent with a concentration of 5-10 mg/mL; the amount of the intermediate material B is in the range of Material B accounts for 2.5-20% of the total mass of the mixture.
  • the amount of the intermediate material B is calculated based on the intermediate material B accounting for 10-20% of the total mass of the mixed solution; further, the amount of the intermediate material B is calculated based on the intermediate material B accounting for 13-18% of the total mass of the mixed solution; Most preferably, the amount of the intermediate material B is based on the assumption that the intermediate material B accounts for 15% of the total mass of the mixed solution.
  • the polydimethylsiloxane prepolymer includes a poly(dimethyl-methylvinylsiloxane) prepolymer and a trace amount of platinum catalyst;
  • the polydimethylsiloxane crosslinking agent includes A prepolymer with a vinyl side chain and a crosslinking agent poly(dimethyl-methylhydrogenosiloxane); the mass ratio of the polydimethylsiloxane prepolymer to the polydimethylsiloxane crosslinking agent is 10:1 .
  • the polydimethylsiloxane prepolymer and polydimethylsiloxane crosslinking agent are added step by step, which is more conducive to the thorough mixing between the components.
  • the membrane support material is made of polymer materials such as polytetrafluoroethylene, PVDF polyvinylidene fluoride, and PES polyethersulfone resin; the coating thickness is 50-300 ⁇ m ;
  • the vacuum drying condition is: vacuum drying at 85-95°C for 3-5 hours.
  • both step (1) and step (2) include post-processing after the blending reaction is completed, the post-processing is: centrifuging the reaction liquid, discarding the supernatant, and vacuum drying.
  • the cyclodextrin metal organic framework material CD-MOF is prepared by the following method:
  • the aqueous solution dispersed with ⁇ -cyclodextrin and potassium hydroxide is ultrasonically mixed and then placed in a water bath for reaction. After the reaction in the water bath is completed, ultrasonication is performed again and polyethylene glycol is added to the mixed solution while ultrasonic to obtain a crude product; The crude product is washed and dried to obtain the cyclodextrin metal organic framework material CD-MOF;
  • the molar ratio of ⁇ -cyclodextrin to potassium hydroxide in the aqueous solution is 1:5-10.
  • the potassium ions in the cyclodextrin metal organic framework material CD-MOF are in the form of 8 coordination, which can make 6 ⁇ -cyclodextrins constitute the smallest building unit of CD-MOF, which is equivalent to 2 potassium ions and 1
  • a pair of ⁇ -cyclodextrins has a chemical formula of [(C 48 H 80 O 40 )(KOH) 2 ] n , and excess potassium hydroxide is beneficial for all ⁇ -cyclodextrins to participate in the reaction.
  • the polyethylene glycol has a molecular weight of 8000, and the molar ratio of the added polyethylene glycol to ⁇ -cyclodextrin is 0.06-0.07:1;
  • the temperature of the water bath reaction is 55°C-65°C.
  • the present application also provides a slow-release antibacterial film prepared by the preparation method.
  • the present application has at least one of the following beneficial effects:
  • the membrane has good water responsiveness. Under the condition of the optimal mass fraction of CA@Ag@CD-MOF (15wt%), the release of silver ions by the membrane in water for 48 hours is 50 times that in ethanol. The release of caffeic acid by the membrane in water for 48 hours was 55 times that in toluene.
  • the film has good antibacterial properties. Under the condition of the optimal mass fraction of CA@Ag@CD-MOF (15wt%), a 3cm 2 membrane material is placed in 10mL of bacterial solution, which can be achieved within 12 hours. A 7.18 log reduction in Escherichia coli 0157:H7 and a 6.59 log reduction in Staphylococcus aureus within 36 hours.
  • This application is based on CD-MOF and PDMS, and for the first time prepared a mixed matrix membrane material in which CD-MOF and PDMS are physically blended; this application also provides CA@Ag@CD-MOF prepared by the method described /PDMS, which can be applied to applied research in the fields of food and environment.
  • Fig. 1 is the physical figure of compound 2 in embodiment 1;
  • Fig. 2 is the scanning electron micrograph of compound 2 in embodiment 1;
  • Fig. 3 is based on the infrared spectrogram of the compound 2 of different mass fraction compound 1;
  • Fig. 4 is the X-ray diffraction spectrogram of compound 2 in embodiment 1;
  • Figure 5 is a graph showing the effect of the addition of different mass fractions of compound 1 on the elongation at break of compound 2;
  • Fig. 6 is a graph showing the effect of the addition of different mass fractions of compound 1 on the elastic modulus of compound 2;
  • Figure 7 is a graph showing the effect of the addition of different mass fractions of compound 1 on the swelling degree of compound 2 in water;
  • Fig. 8 is the result figure of caffeic acid concentration in the release liquid after complex 2 is released in different solvents for 48 hours in Example 1;
  • Fig. 9 is the result figure of the concentration of silver ions in the release liquid after complex 2 is released in different solvents for 48 hours in Example 1;
  • Fig. 10 is the results figure of the cumulative release rate of caffeic acid in water for complex 1 in Example 1;
  • Fig. 11 is the cumulative release rate result figure of composite 1 in water to silver ion in embodiment 1;
  • Fig. 12 is the result graph of the cumulative release rate of caffeic acid in water for complex 2 in Example 1;
  • Fig. 13 is the result figure of the cumulative release rate of silver ions in water for complex 2 in embodiment 1;
  • Fig. 14 is the scanning electron micrograph of complex 2 in embodiment 1 after soaking in water for 48 hours;
  • Fig. 15 is the bactericidal lethal curve figure of compound 2 in water to Escherichia coli O157:H7 in embodiment 1;
  • Fig. 16 is a bactericidal lethal curve of complex 2 in water to Staphylococcus aureus in Example 1.
  • This application provides a mixed matrix membrane material based on physical blending for the first time.
  • Cyclodextrin metal organic framework material is added to a short-chain alcohol solution containing silver nitrate, and subjected to light-proof oscillation treatment to obtain a nano-silver-loaded cyclopaste Refined metal-organic framework, denoted as intermediate material A; then the obtained cyclodextrin metal-organic framework loaded with nano-silver was added to a short-chain alcohol solution containing caffeic acid, and incubated with stirring in the dark, so as to obtain simultaneously loaded coffee Cyclodextrin metal-organic framework compound 1 of acid and nano-silver, denoted as intermediate material B; finally, the obtained compound 1 was placed in the acetonitrile solution of PDMS main agent and stirred, then added with PDMS auxiliary agent, and after vacuum drying, the cyclodextrin-based metal organic framework compound 1 was obtained.
  • the water-responsive slow-release antibacterial film of dextrin metal organic framework material and polydimethylsiloxane is composite 2
  • the main agent of PDMS is polydimethylsiloxane prepolymer
  • the auxiliary agent of PDMS is polydimethylsiloxane Dimethicone crosslinker.
  • the more preferable preparation conditions are: the concentration of silver nitrate in the ethanol solution of silver nitrate is 2.5 ⁇ 7.5mM , the mass molar ratio of cyclodextrin metal organic framework material to silver nitrate is 100 mg: 0.0125-0.0375 mmol; the reaction time is 10-15 hours.
  • the optimal preparation conditions are: the concentration of silver nitrate in the ethanol solution of silver nitrate is 7.5mM, and the mass molar ratio of cyclodextrin metal organic framework material to silver nitrate is 100mg:0.0375m mol ; The reaction time is 12 hours.
  • the more preferable preparation conditions are: the concentration of caffeic acid in the ethanol solution of caffeic acid is 5-10 mg/ mL; the mass ratio of cyclodextrin metal-organic framework material loaded with nano-silver, that is, intermediate material A to caffeic acid, is 1:0.5-1; the blending reaction time is 12-18 hours.
  • the concentration of caffeic acid in the ethanol solution of caffeic acid is 8 mg/mL; the mass ratio of cyclodextrin metal-organic framework material loaded with nano-silver to caffeic acid is 1:0.8; the blending reaction The time is 15 hours.
  • the compound 1 prepared under optimal conditions (the steps of loading nano silver and loading caffeic acid are both optimal conditions) is used as a raw material, and the different compound 1 in the compound 2 is investigated.
  • PDMS is a purchased commercial reagent, which is a commodity produced by Dow Corning in the United States.
  • PDMS consists of two components: prepolymer A (i.e. PDMS main agent) and crosslinker B (PDMS auxiliary agent).
  • the composition of prepolymer A is mainly poly (dimethyl-methylvinylsiloxane) prepolymer, and a small amount of platinum
  • the catalyst and crosslinking agent B are composed of a prepolymer with a vinyl side chain and a crosslinking agent poly(dimethyl-methylhydrogenosiloxane).
  • the PDMS auxiliary agent is added to make the cross-linking reaction proceed uniformly in the solution.
  • the mass ratio of main agent and auxiliary agent is 10:1.
  • the results in Figure 5 show that the addition of CD-MOF (CA@Ag@CD-MOF) basically does not affect the fracture growth rate, and the more preferable addition amount is better than the growth rate without addition.
  • the results in Figure 6 show that the addition of CD-MOF (CA@Ag@CD-MOF) can increase the elastic modulus of the film. most.
  • Cyclodextrin metal organic framework complex 1 is the intermediate material B;
  • the physical picture of the composite 2 synthesized in this example is shown in Figure 1, which has good toughness and the surface is dark brown, which is caused by the deposition of nano-silver in the composite 1.
  • the infrared spectrograms of compound 1 and compound 2 are shown in Figure 3.
  • the characteristic peaks of compound 1 at 3400cm -1 and 1640cm -1 of compound 2 gradually become stronger; and Compared with PDMS, complex 2 did not produce new characteristic peaks, indicating that there was no chemical interaction between PDMS and complex 1.
  • the powder X-ray diffraction patterns of compound 1 and compound 2 are shown in Figure 4.
  • the peak position of the XRD pattern of compound 2 is consistent with that of compound 1.
  • compound 2 has a certain The crystal characteristic peaks of , indicating the successful incorporation of complex 1.
  • the concentration of caffeic acid in the release solution of complex 2 after 48 hours in different solvents is shown in Figure 8.
  • the concentration of caffeic acid released by complex 2 in water is much higher than that in organic solvents; complex 2 is released in different solvents for 48 hours
  • the results of the concentration of silver ions in the post-release solution are shown in Figure 9.
  • the concentration of silver ions released by the compound 2 in water is much higher than that of the organic solvent, which shows that the compound 2 has a better response ability to water conditions.
  • the cumulative release rate of caffeic acid of complex 1 in water is shown in Figure 10, and complex 1 forms a burst release of caffeic acid in about 1 minute; the cumulative release rate of complex 1 to silver ions in water is shown in Figure 11 , the complex 1 formed a burst release of silver ions in about 1 minute, which indicated that the complex 1 would disintegrate rapidly in water, causing the rapid release of the loaded substance.
  • the cumulative release rate of caffeic acid of complex 2 in water is shown in Figure 12, and complex 2 can realize the sustained release of caffeic acid within 96 hours; the cumulative release rate of complex 2 to silver ions in water is shown in Figure 13 It was shown that the complex 2 can realize the sustained release of silver ions within 96 hours, which shows that the complex 2 can protect the disintegration of the cyclodextrin metal organic framework in water and realize the sustained release of the loaded substance.
  • the bactericidal lethal curve of complex 2 to Escherichia coli O157:H7 in water is shown in Figure 15, and complex 2 can realize the lethal effect of 7 logarithms to Escherichia coli O157:H7 within 12 hours;
  • the bactericidal lethal curve of Staphylococcus aureus is shown in Figure 16.
  • Compound 2 can achieve a lethal effect of 7 logarithms on Staphylococcus aureus within 36 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本申请公开一种缓释抗菌膜及其制备方法,制备方法包括:(1)将环糊精金属有机框架材料CD-MOF与硝酸银短链醇溶液共混反应,制备负载纳米银的环糊精金属有机框架材料,记为中间材料A;(2)将所得中间材料A与咖啡酸短链醇溶液共混反应,制备得到同时负载纳米银和咖啡酸的环糊精金属有机框架材料,记为中间材料B;(3)将所得中间材料B分散于溶剂中,然后依次加入PDMS主剂和PDMS辅剂,搅拌混匀,得到铸膜液;(4)将所得铸膜液涂覆于膜支撑材料上,真空干燥后从所述膜支撑材料上剥离即得。本申请的缓释抗菌膜基于CD-MOF及PDMS,首次制备了两者物理共混的混合基质膜材料,可应用于食品、环境等领域的应用研究。

Description

一种缓释抗菌膜及其制备方法
本申请要求于2021年11月10日提交中国专利局、申请号为2021113265763、发明名称为“一种缓释抗菌膜及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及缓释抗菌材料技术领域,具体涉及一种缓释抗菌膜产品及其制备方法。
背景技术
金属有机框架材料(Metal-Organic Frameworks,MOFs)是由多齿有机配体和金属离子或金属簇组成的多孔配位材料,是通过金属离子中心与有机配体的配位键或共价键连接形成的无限网络结构。它具有比表面积大、可调功能、高孔隙率等优点,是一种快速发展的新型多孔材料,具有广阔的应用前景。
但如采用环糊精金属有机框架材料作为载体负载抗菌物质,则需要克服其在水中易崩解的问题,目前还未有采用PDMS(聚二甲基硅氧烷)保护环糊精金属有机框架以实现在水中缓释的研究,本领域迫切需要开发可实现在水中具有缓释作用的基于环糊精金属有机框架的材料。
发明内容
本申请提供一种缓释抗菌膜,该缓释抗菌膜为基于CD-MOF和PDMS的水响应缓释抗菌膜,解决了环糊精金属有机框架材料易溶于水的问题,采用PDMS保护了环糊精金属有机框架材料在水中突释、崩解问题,使其具备了在水中缓释的作用,从而实现了缓释抗菌。
本申请首次制备了CD-MOF和PDMS两者物理共混的混合基质膜材料,可应用于食品、环境等领域的应用研究。
本申请提供了一种缓释抗菌膜的制备方法,包括:
(1)将环糊精金属有机框架材料CD-MOF与硝酸银短链醇溶液共混反应,制备负载纳米银的环糊精金属有机框架材料,记为中间材料A;
(2)将所得中间材料A与咖啡酸短链醇溶液共混反应,制备得到同时负载纳米银和咖啡酸的环糊精金属有机框架材料,记为中间材料B;
(3)将所得中间材料B分散于溶剂中,然后加入聚二甲基硅氧烷预聚物,混匀后再加入聚二甲基硅氧烷交联剂,继续搅拌混合,得铸膜液;
(4)将所得铸膜液涂覆于膜支撑材料上,真空干燥后从所述膜支撑材料上剥离即得缓释抗菌膜。
可选的,步骤(1)和步骤(2)中的短链醇为无水甲醇或无水乙醇。步骤(1)和步骤(2)采用相同的短链醇,优选无水乙醇。
可选的,步骤(1)中:硝酸银短链醇溶液的浓度为0.5~10mM;CD-MOF与硝酸银短链醇溶液的配比以100mg CD-MOF:0.0025~0.05m mol硝酸银计;共混反应时间为10~15小时。
可选的,步骤(2)中:咖啡酸短链溶液中咖啡酸的浓度为5~10mg/mL;中间材料A与咖啡酸短链溶液的配比以中间材料A与咖啡酸的质量比为1:0.5~1.5计;共混反应时间为12~18小时。
进一步地,步骤(1)中:硝酸银短链醇溶液的浓度为5~7.5mM;CD-MOF与硝酸银短链醇溶液的配比以100mg CD-MOF:0.0125~0.0375m mol硝酸银计;共混反应时间为10~15小时;步骤(2)中:咖啡酸短链溶液中咖啡酸的浓度为5~10mg/mL;中间材料A与咖啡酸短链溶液的配比以中间材料A与咖啡酸的质量比为1:0.5~1计;共混反应时间为12~18小时。
可选的,步骤(3)中:所述溶剂为乙腈、正己烷或正庚烷,进一步优选为乙腈;中间材料B以浓度5~10mg/mL分散于溶剂中;中间材料B的用量以中间材料B占混合液总质量的2.5~20%计。
进一步地,中间材料B的用量以中间材料B占混合液总质量的10~20%计;更近一步地,中间材料B的用量以中间材料B占混合液总质量的13~18%计;最优选的,中间材料B的用量以中间材料B占混合液总质量的15%计。
可选的,步骤(3)中:所述聚二甲基硅氧烷预聚物包括poly(dimethyl-methylvinylsiloxane)预聚物和微量铂催化剂;所述聚二甲基硅氧烷交联剂包括带乙烯基侧链的预聚物和交联剂poly(dimethyl-methylhydrogenosiloxane);所述聚二甲基硅氧烷预聚物与聚二甲基硅氧烷交联剂的质量比为10:1。聚二甲基硅氧烷预聚物和聚二甲 基硅氧烷交联剂分步添加,更有利于各组分之间的充分混合。
可选的,步骤(3)中:加入聚二甲基硅氧烷交联剂后继续搅拌混合8~12小时。
可选的,步骤(4)中:所述膜支撑材料为聚四氟乙烯、PVDF聚偏氟乙烯,PES聚醚砜树脂等高分子材料制成的制成材料;涂覆厚度为50~300μm;真空干燥条件为:85~95℃条件下真空干燥3~5小时。可选的,步骤(1)和步骤(2)中均包括共混反应结束后的后处理,所述后处理为:将反应液离心,弃上清液后进行真空干燥。
可选的,所述环糊精金属有机框架材料CD-MOF由如下方法制备:
将同时分散有γ-环糊精和氢氧化钾的水溶液超声混合后置于水浴中反应,水浴反应结束后再次超声并在超声同时向混合液中加入聚乙二醇,得粗产物;将所得粗产物经洗涤、干燥后即得所述环糊精金属有机框架材料CD-MOF;
可选的,所述水溶液中γ-环糊精和氢氧化钾的摩尔比为1:5~10。通常情况下,环糊精金属有机框架材料CD-MOF中的钾离子为8配位形式,可以使6个γ-环糊精组成CD-MOF的最小构筑单元,相当于2个钾离子与1个γ-环糊精配对,化学式为[(C 48H 80O 40)(KOH) 2] n,而过量氢氧化钾有利于γ-环糊精全部参与反应。
可选的,所述聚乙二醇的分子量8000,加入的聚乙二醇与γ-环糊精的摩尔比为0.06~0.07:1;
可选的,所述水浴反应的温度为55℃~65℃。
本申请还提供一种如所述制备方法制备得到的缓释抗菌膜。
与现有技术相比,本申请至少具有如下有益效果之一:
(1)该膜具有良好的水响应能力,在CA@Ag@CD-MOF最优添加质量分数条件下(15wt%),该膜在水中48小时对银离子的释放是乙醇中的50倍,该膜在水中48小时对咖啡酸的释放是甲苯中的55倍。
(2)该膜具有良好抗菌性能,在CA@Ag@CD-MOF最优添加质量分数条件下(15wt%),采用3cm 2的膜材料置于10mL菌液中,分别可在12小时内实现对大肠杆菌0157:H7减少7.18个对数值的杀菌效果,以及在36小时内实现对金黄色葡萄球菌减少6.59个对数值的杀菌效果。
(3)本申请基于CD-MOF及PDMS,首次制备了CD-MOF和PDMS两者物理共混的混合基质膜材料;本申请还提供了所述的方法制备得到的CA@Ag@CD-MOF/PDMS,可应用于食品、环境等领域的应用研究。
附图说明
图1为实施例1中复合物2的实物图;
图2为实施例1中复合物2的扫描电子显微镜图;
图3基于不同质量分数复合物1的复合物2的红外光谱图;
图4为实施例1中复合物2的X射线衍射谱图;
图5为不同质量分数复合物1的添加对复合物2的断裂伸长率影响结果图;
图6为不同质量分数复合物1的添加对复合物2的弹性模量影响结果图;
图7为不同质量分数复合物1的添加对复合物2在水中的溶胀度影响结果图;
图8为实施例1中复合物2在不同溶剂中释放48小时后释放液中的咖啡酸浓度结果图;
图9为实施例1中复合物2在不同溶剂中释放48小时后释放液中的银离子浓度结果图;
图10为实施例1中复合物1在水中对咖啡酸的累计释放率结果图;
图11为实施例1中复合物1在水中对银离子的累计释放率结果图;
图12为实施例1中复合物2在水中对咖啡酸的累计释放率结果图;
图13为实施例1中复合物2在水中对银离子的累计释放率结果图;
图14为实施例1中复合物2在水中浸泡48小时后的扫描电镜图;
图15为实施例1中复合物2在水中对大肠杆菌O157:H7的杀菌致死曲线图;
图16为实施例1中复合物2在水中对金黄色葡萄球菌的杀菌致死曲线图。
具体实施方式
下面将结合实施例对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于 本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请首次提供一种基于物理共混的混合基质膜材料,将环糊精金属有机框架材料添加至含硝酸银的短链醇溶液中,进行避光振荡处理,从而获得载纳米银的环糊精金属有机框架,记为中间材料A;再将所述获得载纳米银的环糊精金属有机框架添加至含咖啡酸的短链醇溶液中,进行避光搅拌孵育处理,从而获得同时负载咖啡酸及纳米银的环糊精金属有机框架复合物1,记为中间材料B;最后将所得复合物1置于PDMS主剂的乙腈溶液中搅拌后加入PDMS辅剂,真空干燥后可得基于环糊精金属有机框架材料和聚二甲基硅氧烷的水响应缓释抗菌膜即复合物2,所述PDMS主剂为聚二甲基硅氧烷预聚物,所述PDMS辅剂为聚二甲基硅氧烷交联剂。
一种实施方式中,在负载银的制备过程中,通过对不同反应条件对纳米银负载量的影响对比,发现比较优选的制备条件为:硝酸银的乙醇溶液中硝酸银浓度为2.5~7.5mM,环糊精金属有机框架材料与硝酸银的质量摩尔比为100mg:0.0125~0.0375m mol;反应时间为10~15小时。
综合考虑,在负载纳米银的步骤中,最优制备条件为:硝酸银的乙醇溶液中硝酸银浓度为7.5mM,环糊精金属有机框架材料与硝酸银的质量摩尔比为100mg:0.0375m mol;反应时间为12小时。
一种实施方式中,在负载咖啡酸的制备步骤中,通过不同反应条件对咖啡酸负载量的影响对比,发现比较优选的制备条件为:咖啡酸乙醇溶液中咖啡酸的浓度为5~10mg/mL;负载纳米银的环糊精金属有机框架材料即中间材料A与咖啡酸的质量比为1:0.5~1;共混反应时间为12~18小时。
综合考虑,该步骤最优选的条件为:咖啡酸乙醇溶液中咖啡酸的浓度为8mg/mL;负载纳米银的环糊精金属有机框架材料与咖啡酸的质量比为1:0.8;共混反应时间为15小时。
一种实施方式中,以最优条件(负载纳米银和负载咖啡酸的步骤均为 最优条件)下制备得到的复合物1即中间材料B为原料,考察复合物2中不同复合物1即中间材料B含量条件下所得复合物2的机械性能(断裂伸长率、弹性模量)以及在水中的溶胀度影响:添加不同质量分数的同时负载纳米银及咖啡酸的CD-MOF(CA@Ag@CD-MOF)于含有PDMS基质(PDMS主剂和PDMS辅剂)的乙腈、正己烷或正庚烷溶液(复合物1即中间材料B的添加量占反应液总质量的比例分别为2.5,5,10,15,20wt%),搅拌若干小时后,过夜干燥并抽真空后,置于90℃真空反应若干小时后,即得一种混合基质膜(CA@Ag@CD-MOF/PDMS)。
该具体的实施方案中,PDMS采用购买的商业用试剂,为美国道康宁生产的商品。PDMS包括两个组分:预聚物A(即PDMS主剂)和交联剂B(PDMS辅剂),预聚物A的成分主要是poly(dimethyl-methylvinylsiloxane)预聚物,还有微量铂催化剂,交联剂B的成分是带乙烯基侧链的预聚物及交联剂poly(dimethyl-methylhydrogenosiloxane)。PDMS主剂先在溶液中分散均匀后,再加PDMS辅剂使得交联反应在溶液中均匀进行。主剂和辅剂的质量比为10:1。
不同质量分数的CD-MOF(CA@Ag@CD-MOF)参与下制备得到的混合基质膜的断裂伸长率如图5所示、弹性模量如图6所示、在水中的溶胀度如图7所示。
图5的结果显示,CD-MOF(CA@Ag@CD-MOF)的添加基本不影响断裂生长率,较优选的添加量下更优于不添加的生长率。图6的结果显示,CD-MOF(CA@Ag@CD-MOF)的添加可增加膜的弹性模量,10~20%之间弹性模量的增加比较理想,15%时增加的弹性模量最多。
图7的结果显示,CD-MOF(CA@Ag@CD-MOF)的添加可显著增加膜的溶胀率,随着CD-MOF(CA@Ag@CD-MOF)的添加量的增加,膜的溶胀率逐步提升,到15%时,溶胀率达到40%左右。
以下以最优反应条件为例进行举例说明:
实施例1
(1)在烧杯内加入γ-环糊精(648mg,0.5mmol)、氢氧化钾(256mg,4.56mmol)和超纯水(20mL),室温下搅拌并用0.45μm的水系滤膜过 滤得到溶液1;
(2)甲醇(12mL)预先置于超声管后,将溶液1置于超声管,形成乳白色的溶液2,将超声管放入温度为60℃的水浴锅内,静置15min得到澄清透明溶液3;
(3)溶液3进行超声处理,并于超声处理开始后迅速加入聚乙二醇(8000)(256mg),反应结束后得到粗产物;
(4)将粗产物从超声管转移到烧杯,并静置1h,将沉淀物用甲醇离心洗涤3次,离心分离后,再将沉淀物分散于甲醇中;
(5)将离心分离后的产物放入真空干燥箱中,在真空条件下50℃干燥12h,冷却至室温后,得到环糊精金属有机框架材料;
(6)将100mg环糊精金属有机框架材料至于5mL浓度为7.5mM的硝酸银乙醇溶液中,采用摇床振荡方式在37℃保持转速180rpm,并持续孵育12小时,期间保持避光状态;
(7)将孵育后的溶液在5000rpm条件下离心两次,弃去上清液后采用滤纸吸干残余溶剂,将沉淀至于50℃条件下真空干燥5小时后,得到负载纳米银的环糊精金属有机框架;
(8)将50mg负载纳米银的环糊精金属有机框架至于50mL浓度为8mg/mL的咖啡酸乙醇溶液中,采用磁力搅拌方式在室温条件下保持转速180rpm,并持续孵育15小时,期间保持避光状态;
(7)将孵育结束后的溶液在5000rpm条件下离心,弃去上清液后采用滤纸吸干残余溶剂,将沉淀至于50℃条件下真空干燥5小时后,得到同时负载咖啡酸及纳米银的环糊精金属有机框架复合物1即中间材料B;
(8)取533mg复合物1置于75mL乙腈中搅拌均匀,再向其中加入0.3mL的PDMS主剂(反应体系中复合物1即中间材料B的质量分数为15wt%),再次搅拌均匀后加入0.03mL的PDMS辅剂。将上述溶液搅拌混匀10小时左右后,倾注于直径为12mm的聚四氟乙烯培养皿上,混合液的流平后置于室温干燥过夜。
(9)将聚四氟乙烯培养皿置于90℃条件下真空干燥4小时后,用刮刀轻轻将制备得到产物刮下,采用乙醇洗涤烘干后得到复合物2。
本实施例合成的复合物2的实物图如图1所示,具有良好的韧性,表 面呈暗棕色,为复合物1中纳米银沉积所致。复合物1及复合物2的红外光谱图如图3所示,随着复合物1的添加量增加,复合物2在3400cm -1及1640cm -1处复合物1的特征峰逐渐变强;与PDMS相比,复合物2未产生新的特征峰,说明PDMS与复合物1间不产生化学作用。复合物1及复合物2的粉末X射线衍射图谱如图4所示,复合物2的XRD图谱出峰位置与复合物1相吻合,与PDMS的无定形谱图相比,复合物2具有一定的晶体特征峰,说明了复合物1的成功掺入。
复合物2在不同溶剂中释放48小时后释放液中的咖啡酸浓度结果如图8所示,复合物2在水中释放的咖啡酸浓度远大于有机溶剂;复合物2在不同溶剂中释放48小时后释放液中的银离子浓度结果如图9所示,复合物2在水中释放的银离子浓度远大于有机溶剂,所说明了复合物2对水条件有更好的响应能力。
复合物1在水中对咖啡酸的累计释放率如图10所示,复合物1在1分钟左右形成对咖啡酸的突释;复合物1在水中对银离子的累计释放率如图11所示,复合物1在1分钟左右形成对银离子的突释,说明了复合物1在水中会迅速崩解,引起负载物质的迅速释放。复合物2在水中对咖啡酸的累计释放率如图12所示,复合物2可在96小时内实现对咖啡酸的缓释;复合物2在水中对银离子的累计释放率如图13所示,复合物2可在96小时内实现对银离子的缓释,说明了复合物2在水中可保护环糊精金属有机框架的崩解,实现对负载物质缓释作用。
复合物2在水中对大肠杆菌O157:H7的杀菌致死曲线如图15所示,复合物2可在12小时内对大肠杆菌O157:H7实现7个对数值的致死效果;复合物2在水中对金黄色葡萄球菌的杀菌致死曲线如图16所示,复合物2可在36小时内对金黄色葡萄球菌实现7个对数值的致死效果。
本实施例合成的复合物2横截面的扫描电子显微镜如图2所示,可清晰看出复合物1嵌入膜内部;复合物2在水中浸泡48小时后横截面的扫描电子显微镜如图14所示,可清晰看出经水浸泡后,复合物1从膜中脱落崩解后形成的孔隙,说明了复合物2可在水中实现释放功能。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和 详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种缓释抗菌膜的制备方法,其特征在于,包括:
    (1)将环糊精金属有机框架材料CD-MOF与硝酸银短链醇溶液共混反应,制备负载纳米银的环糊精金属有机框架材料,记为中间材料A;
    (2)将所得中间材料A与咖啡酸短链醇溶液共混反应,制备得到同时负载纳米银和咖啡酸的环糊精金属有机框架材料,记为中间材料B;
    (3)将所得中间材料B分散于溶剂中,然后加入聚二甲基硅氧烷预聚物,混匀后再加入聚二甲基硅氧烷交联剂,继续搅拌混合,得铸膜液;
    (4)将所得铸膜液涂覆于膜支撑材料上,真空干燥后从所述膜支撑材料上剥离即得缓释抗菌膜。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中:硝酸银短链醇溶液的浓度为0.5~10mM;CD-MOF与硝酸银短链醇溶液的配比以100mg CD-MOF:0.0025~0.05mmol硝酸银计;共混反应时间为10~15小时。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中:咖啡酸短链醇溶液中咖啡酸的浓度为5~10mg/mL;中间材料A与咖啡酸短链醇溶液的配比以中间材料A与咖啡酸的质量比为1:0.5~1.5计;共混反应时间为12~18小时。
  4. 根据权利要求1、2或3所述的制备方法,其特征在于,所述步骤(1)和步骤(2)中的短链醇为无水甲醇或无水乙醇。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中:所述溶剂为乙腈、正己烷或正庚烷;中间材料B以浓度5~10mg/mL分散于溶剂中;中间材料B的用量以中间材料B占混合液总质量的2.5~20%计。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中:所述聚二甲基硅氧烷预聚物包括poly(dimethyl-methylvinylsiloxane)预聚物和微量铂催化剂;所述聚二甲基硅氧烷交联剂包括带乙烯基侧链的预聚物和交联剂poly(dimethyl-methylhydrogenosiloxane);所述聚二甲基硅氧烷预聚物与聚二甲基硅氧烷交联剂的质量比为10:1。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中:加入聚二甲基硅氧烷交联剂后继续搅拌混合8~12小时。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中:所述膜支撑材料为聚四氟乙烯、聚偏氟乙烯或聚醚砜树脂制成的支撑材料;涂覆厚度为50~300μm;真空干燥条件为:85~95℃条件下真空干燥3~5小时。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤(1)和步骤(2)中均包括共混反应结束后的后处理,所述后处理为:将反应液离心,弃上清液后进行真空干燥。
  10. 根据权利要求1所述的制备方法,其特征在于,所述环糊精金属有机框架材料CD-MOF由如下方法制备:
    将同时分散有γ-环糊精和氢氧化钾的水溶液超声混合后置于水浴中反应,水浴反应结束后再次超声并在超声同时向混合液中加入聚乙二醇,得粗产物;将所得粗产物经洗涤、干燥后即得所述环糊精金属有机框架材料CD-MOF;
    所述水溶液中γ-环糊精和氢氧化钾的摩尔比为1:5~10;
    所述聚乙二醇的分子量8000,加入的聚乙二醇与γ-环糊精的摩尔比为0.06~0.07:1;
    所述水浴反应的温度为55℃~65℃。
  11. 如权利要求1~10任一项权利要求所述制备方法制备得到的缓释抗菌膜。
  12. 权利要求11所述的缓释抗菌膜在食品、环境领域的应用。
PCT/CN2022/080307 2021-11-10 2022-03-11 一种缓释抗菌膜及其制备方法 WO2023082508A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/909,285 US20240199826A1 (en) 2021-11-10 2022-03-11 Sustained-release antibacterial film and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111326576.3 2021-11-10
CN202111326576.3A CN114163817B (zh) 2021-11-10 2021-11-10 一种缓释抗菌膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2023082508A1 true WO2023082508A1 (zh) 2023-05-19

Family

ID=80478570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080307 WO2023082508A1 (zh) 2021-11-10 2022-03-11 一种缓释抗菌膜及其制备方法

Country Status (3)

Country Link
US (1) US20240199826A1 (zh)
CN (1) CN114163817B (zh)
WO (1) WO2023082508A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117736461A (zh) * 2024-02-20 2024-03-22 江苏新视界先进功能纤维创新中心有限公司 一种Zn-MOFs材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114190373B (zh) * 2021-11-10 2022-11-22 浙江大学 一种金属有机框架复合材料及制备方法和应用
CN114887494B (zh) * 2022-06-14 2024-02-13 西北农林科技大学 一种无金属离子浸出的可响应释放型mil-53修饰膜的制备方法和应用
CN116328544B (zh) * 2023-03-29 2023-11-21 山东中盛药化设备有限公司 含有环糊精材料的混合基质膜及其制备方法与应用
CN117085638B (zh) * 2023-09-14 2024-03-19 山东环瑞生态科技有限公司 一种适用于锂电废水的高效除氟药剂及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107042067A (zh) * 2017-05-24 2017-08-15 天津大学 聚硅氧烷‑金属有机框架材料杂化渗透蒸发复合膜及其制备与应用
CN107151329A (zh) * 2016-03-04 2017-09-12 中国科学院上海药物研究所 环糊精-金属有机骨架材料的快速合成方法
CN109806770A (zh) * 2017-11-21 2019-05-28 泉州师范学院 一种mof负载银抗菌阻垢超滤膜的制备方法及其应用
CN109820000A (zh) * 2019-02-19 2019-05-31 太原理工大学 一种MOFs载纳米银抗菌材料及其制备方法
CN111440325A (zh) * 2020-02-25 2020-07-24 浙江大学 环糊精金属有机骨架材料及其制备
KR20200117879A (ko) * 2019-04-05 2020-10-14 숙명여자대학교산학협력단 사이클로덱스트린(cyclodextrin)을 이용한 경피투여용 금속유기 골격체 및 이의 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101564400A (zh) * 2009-05-31 2009-10-28 中山大学 一种抗菌性超分子水凝胶及其制备方法和应用
CN107837401B (zh) * 2016-09-19 2022-04-08 中国科学院上海药物研究所 环糊精-金属有机骨架材料复合微球及其制备方法
CN106823833B (zh) * 2017-01-25 2019-05-17 厦门大学 一种抗菌纳滤膜的制备方法及其应用
CN107353615A (zh) * 2017-06-21 2017-11-17 芜湖蓝天工程塑胶有限公司 纳米银抗菌聚碳酸酯保鲜盒及其制备方法
CN109867734A (zh) * 2017-12-05 2019-06-11 天津工业大学 一类咖啡酸修饰的环糊精衍生物及其制备方法
CN110746845A (zh) * 2018-07-24 2020-02-04 滨州学院 一种自修复地网导电涂料的制备方法
CN109096905B (zh) * 2018-08-21 2020-11-03 青岛科技大学 一种持久抗菌型改性聚氨酯及其制备方法
JP7127702B2 (ja) * 2018-12-18 2022-08-30 信越化学工業株式会社 付加硬化性シリコーンゴム組成物及びその製造方法
CN110025592B (zh) * 2018-12-21 2021-05-11 中山大学 环糊精-金属有机骨架材料复合微球及其制备方法
KR20210053935A (ko) * 2018-12-29 2021-05-12 와커 헤미 아게 친수성 사이클로덱스트린-함유 실리콘 젤
CN110124739B (zh) * 2019-06-03 2020-07-03 江南大学 一种负载纳米光催化剂的交联型cd-mof复合材料及其制备方法
CN110124059B (zh) * 2019-06-25 2021-11-23 常州大学 一种缓释抑菌剂的制备方法
KR20210097272A (ko) * 2020-01-29 2021-08-09 숙명여자대학교산학협력단 사이클로덱스트린(cyclodextrin)을 이용한 서방출형 금속유기 골격체 및 이의 제조방법
CN113750968B (zh) * 2021-08-02 2022-11-11 东华大学 一种不溶于水的环糊精基金属有机骨架材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151329A (zh) * 2016-03-04 2017-09-12 中国科学院上海药物研究所 环糊精-金属有机骨架材料的快速合成方法
CN107042067A (zh) * 2017-05-24 2017-08-15 天津大学 聚硅氧烷‑金属有机框架材料杂化渗透蒸发复合膜及其制备与应用
CN109806770A (zh) * 2017-11-21 2019-05-28 泉州师范学院 一种mof负载银抗菌阻垢超滤膜的制备方法及其应用
CN109820000A (zh) * 2019-02-19 2019-05-31 太原理工大学 一种MOFs载纳米银抗菌材料及其制备方法
KR20200117879A (ko) * 2019-04-05 2020-10-14 숙명여자대학교산학협력단 사이클로덱스트린(cyclodextrin)을 이용한 경피투여용 금속유기 골격체 및 이의 제조방법
CN111440325A (zh) * 2020-02-25 2020-07-24 浙江大学 环糊精金属有机骨架材料及其制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO, TING ET AL.: "Co-delivery of superfine nano-silver and solubilized sulfadiazine for enhanced antibacterial functions", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 584, 7 May 2020 (2020-05-07), XP086181208, DOI: 10.1016/j.ijpharm.2020.119407 *
YANG, XIAONING ET AL.: "Optimization of the Preparation Technology of Ferulic Acid/K/β-CD/Metal Organic Framework Inclusion", CHINA PHARMACY, vol. 27, no. 7, 10 March 2016 (2016-03-10), XP093065659 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117736461A (zh) * 2024-02-20 2024-03-22 江苏新视界先进功能纤维创新中心有限公司 一种Zn-MOFs材料的制备方法
CN117736461B (zh) * 2024-02-20 2024-04-26 江苏新视界先进功能纤维创新中心有限公司 一种Zn-MOFs材料的制备方法

Also Published As

Publication number Publication date
US20240199826A1 (en) 2024-06-20
CN114163817A (zh) 2022-03-11
CN114163817B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023082508A1 (zh) 一种缓释抗菌膜及其制备方法
Chen et al. Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles
Pan et al. Au3+‐Functionalized UiO‐67 Metal‐Organic Framework Nanoparticles: O2•− and• OH Generating Nanozymes and Their Antibacterial Functions
EP2753180A1 (en) Antimicrobial composite material
CN105457504A (zh) 一种新型二氧化钛纳米颗粒/聚合物杂化膜及其制备方法
CN107753949B (zh) 黑磷纳米片、复合水凝胶及其制备方法与应用
Errokh et al. Hybrid nanocellulose decorated with silver nanoparticles as reinforcing filler with antibacterial properties
CN114128710B (zh) 一种基于咖啡酸的复合材料及其制备方法
CZ2016555A3 (cs) Materiál na bázi biocharu a způsob jeho přípravy
CN106589390A (zh) 一种纳米纤维素晶体疏水接枝的改性方法
CN106317386A (zh) 一种抗菌聚乳酸材料的制备方法
Santiago-Castillo et al. Effect on the processability, structure and mechanical properties of highly dispersed in situ ZnO: CS nanoparticles into PVA electrospun fibers
Deng et al. The effect of dopamine modified titanium dioxide nanoparticles on the performance of Poly (vinyl alcohol)/titanium dioxide composites
CN114591542B (zh) 一种添加irmof-3/香芹酚的海藻酸钠基抗氧化抗菌生物活性复合膜及其制备方法
Zhang et al. Strengthened cellulosic gels by the chemical gelation of cellulose via crosslinking with TEOS
Yang et al. Fabricating a ZIF‐8@ Polydimethylsiloxane (PDMS)/PVDF mixed matrix composite membrane for separation of ethanol from aqueous solution via vapor permeation
CN113512160B (zh) 一种有机-无机杂化粒子接枝润滑油制备防污表面的方法
Chen et al. Red wine-inspired tannic acid–KH561 copolymer: its adhesive properties and its application in wound healing
Hu et al. Highly antibacterial hydrogels prepared from amino cellulose, dialdehyde xylan, and Ag nanoparticles by a green reduction method
Xu et al. Preparation of silver nanoparticles anchored oxidized regenerated cellulose microfibers for anti-microorganism by aldehyde group mediated in situ reduction
CN111995787B (zh) 氟化PVA/SiO2超疏水膜及其制备方法
CN109369964A (zh) 复合抗菌薄膜及其制备方法和应用
CN109675096A (zh) 一种壳聚糖纤维水凝胶敷料的制备方法
CN106317714B (zh) 纳米三氧化二铝低温等离子体改性处理方法
Cha et al. Fabrication of amino acid based silver nanocomposite hydrogels from PVA-poly (acrylamide-co-acryloyl phenylalanine) and their antimicrobial studies

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17909285

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE