WO2023079854A1 - 水性エマルション防湿コート剤、紙及び紙の製造方法 - Google Patents

水性エマルション防湿コート剤、紙及び紙の製造方法 Download PDF

Info

Publication number
WO2023079854A1
WO2023079854A1 PCT/JP2022/035313 JP2022035313W WO2023079854A1 WO 2023079854 A1 WO2023079854 A1 WO 2023079854A1 JP 2022035313 W JP2022035313 W JP 2022035313W WO 2023079854 A1 WO2023079854 A1 WO 2023079854A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
coating agent
paper
proof coating
water
Prior art date
Application number
PCT/JP2022/035313
Other languages
English (en)
French (fr)
Inventor
直陶 岩城
健 佐藤
Original Assignee
星光Pmc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 星光Pmc株式会社 filed Critical 星光Pmc株式会社
Priority to JP2023512082A priority Critical patent/JP7284928B1/ja
Publication of WO2023079854A1 publication Critical patent/WO2023079854A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D193/00Coating compositions based on natural resins; Coating compositions based on derivatives thereof
    • C09D193/04Rosin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/46Non-macromolecular organic compounds

Definitions

  • the present invention provides a water-based emulsion moisture-proof coating agent, which has enhanced carbon neutrality by using rosins, which are biological components instead of fossil fuel-derived components, as main components, a method for producing moisture-proof paper using the same, and
  • the present invention relates to paper having a moisture-proof coating agent as a coating layer.
  • Laminated paper laminated with a polyolefin resin such as polyethylene has conventionally been widely used for paper and paperboard required to be moisture-proof because of its excellent moisture-proofness and low cost.
  • laminated paper has a problem of low recyclability, there has been an increasing trend in recent years to provide moisture-proof performance by coating paper and paperboard with a resin as a method of improving this recyclability.
  • Carboxyl group-containing styrene-acrylic copolymer as a moisture-proof resin composition that improves recyclability (disaggregation) by resin coating, increases biodegradability by coating consisting of biological components, and reduces environmental load.
  • Patent Document 1 styrene-butadiene synthetic rubber latex
  • Patent Document 2 a resin composition containing cellulose ester, shellac, rosin or cellulose ester, wax, and rosin.
  • Patent Document 3 a paper straw using paper as a base material and rosin as a waterproof layer.
  • a highly carbon-neutral resin composition and resin-coated barrier paper are also known that use rosins known as plant-derived materials and combine them with inorganic compounds.
  • a paper sheet forming a biodegradable resin layer such as rosin mixed with a layered silicate compound (Patent Document 4), a cyclic olefin resin, an acid-modified low molecular weight compound such as an acid-modified rosin, and an interlayer ion.
  • a barrier resin composition comprising an organic-inorganic composite in which an organic onium compound is intercalated in a layered silicate compound (Patent Document 5) is disclosed.
  • JP-A-11-247094 Japanese Patent Publication No. 2016-504465 JP 2020-138014 A Japanese Patent Application Laid-Open No. 2003-13391 JP 2017-43691 A
  • Patent Document 1 Although rosin, which is a biologically derived component, is contained in the composition solid content at a maximum of 30% by weight, the remaining 70% by weight or more is from a fossil fuel-derived component such as a styrene-acrylic copolymer. Become. As the resin layer is finely crushed, the possibility of large pieces being made into paper is reduced, and the recyclability of used paper is improved. It is discharged out of the papermaking system together with the waste water, and most of it is incinerated as paper sludge. Since 70% by mass or more of this resin layer is composed of fossil fuel-derived components, the carbon neutrality is still unsatisfactory.
  • a fossil fuel-derived component such as a styrene-acrylic copolymer.
  • Patent Document 2 compounds such as cellulose ester, shellac, and rosin, which are biological components, are used, but organic solvents, which are components derived from fossil fuels, are added to about 75% to about 80% of the coating liquid. It was dissolved by use, and the carbon neutrality as a coating liquid remained low.
  • Patent Document 3 by impregnating or coating paper with rosin as an organic solvent solution, water resistance is improved while reducing the environmental load at the time of disposal of paper straws. It is used at 50 to 75% by mass in the coating liquid, and its carbon neutrality remains low. Moreover, the moisture resistance of paper is not studied at all.
  • Patent Document 4 a thin film of inorganic oxide is provided on the biodegradable resin layer in order to improve gas barrier properties, which is not preferable from the viewpoint of recyclability.
  • Patent Literature 5 relates to a melt-kneaded molded body, and does not mention water-based resin coating on paper.
  • the present invention provides a water-based emulsion moisture-proof coating agent that is excellent in moisture resistance and carbon neutrality by minimizing the use of fossil fuel-derived components and using rosins, which are biological components, as the main component.
  • the task is to provide
  • a moisture-proof coating agent that is water-based and yet maintains moisture-proofness, is highly carbon-neutral, and has a low environmental impact because it is mainly composed of rosins, which are plant-derived components.
  • the moisture-proof coating agent of the present invention contains rosins (a), a dispersant having an anionic group (b), a flat layered silicate mineral (c), a cationic resin (d), and water.
  • Rosins (a) refer to raw rosins obtained from plants and/or rosins partially or wholly chemically modified by acid modification, esterification, or the like. Furthermore, those obtained by neutralizing some or all of the acid groups contained therein with an alkaline compound are included.
  • rosins (a) include raw rosins such as gum rosin, wood rosin and tall oil rosin, hydrogenated rosins obtained by adding hydrogen to raw rosins, and ⁇ , ⁇ -unsaturated rosins such as maleic acid and fumaric acid. Acid-modified rosins obtained by addition reaction of dicarboxylic acids, and esterified rosins obtained by esterifying these rosins with hydroxy group-containing compounds such as ethanediol and pentaerythritol are exemplified.
  • the production area of the raw material rosin is not particularly limited, and examples thereof include China, Vietnam, Indonesia, and Brazil.
  • gum rosin, its acid-modified rosin, and esterified rosin are preferred.
  • alkaline compounds used for neutralization include ammonia, alkylolamines such as ethanolamine and triethanolamine, alkylalkylolamines such as dimethylethanolamine and methyldiethanolamine, sodium hydroxide and potassium hydroxide.
  • Alkali metal hydroxides are mentioned.
  • ammonia is preferred. Ammonia easily evaporates from the acid group when the coating film is dried, and increases the hydrophobicity of the rosin, resulting in excellent moisture resistance of the coating film after drying.
  • the mass ratio of the rosin (a) contained in the moisture-proof coating agent of the present invention preferably satisfies the following formula. Rosins (a) / (total amount of organic compounds in moisture-proof coating agent) ⁇ 100 ⁇ 70 (%) Within this range, even when disposed by incineration, etc., the concentration of carbon dioxide in the atmosphere is reduced compared to conventional technology due to carbon neutrality due to the fact that rosin, which is a plant-derived component, is the main component. and can contribute to curbing the rate of global warming. More preferably, the mass ratio is 80% or more.
  • the organic compound refers to, among carbon compounds, simple carbon such as graphite and diamond, carbides such as silicon carbide and calcium carbide, oxides such as carbon monoxide and carbon dioxide, carbon disulfide and carbonyl sulfide, and the like.
  • sulfides such as carbon nitride, carbonates such as sodium carbonate and calcium carbonate, hydrogen carbonates such as sodium hydrogen carbonate and calcium hydrogen carbonate, hydrogen cyanide, cyanates such as sodium cyanide and potassium cyanide, thiocyanic acid, Compounds excluding thiocyanates such as sodium thiocyanate and potassium thiocyanate, halides such as phosgene and carbon tetrachloride, metal carbonyls such as nickel carbonyl and cobalt carbonyl, and metal cyano complexes such as zinc cyano complexes and copper cyano complexes Point.
  • Dispersant (b) having anionic group is used to stably disperse the rosin (a) in the water-based emulsion moisture-proof coating agent.
  • the dispersant (b) containing an anionic group is roughly classified into an anionic dispersant and an amphoteric dispersant. Furthermore, each of them includes a synthetic dispersant such as a synthetic low-molecular-weight dispersant, a synthetic high-molecular-weight dispersant, a natural low-molecular-weight dispersant, a natural high-molecular-weight dispersant, and a modified natural high-molecular-weight dispersant. It is classified as a drug.
  • anionic dispersants include anionic synthetic low-molecular-weight dispersants such as sodium alkylbenzenesulfonate, ammonium alkylsulfate or sodium dialkylsulfosuccinate, and anionic synthetic polymer dispersants such as styrene/acrylic polymer dispersants.
  • anionic natural low-molecular dispersants such as surfactin or sophorolipid; and anionic modified natural high-molecular dispersants such as carboxymethylcellulose, octenylsuccinic anhydride-modified starch, and hydroxypropylxanthan gum.
  • amphoteric dispersants include amphoteric synthetic low-molecular dispersants such as betaine alkyldimethylaminoacetate and monosodium alkylaminodiacetate, amphoteric natural polymer dispersants such as casein, lecithin (hydrogenated products, water including oxides) and amphoteric natural low-molecular-weight dispersants.
  • an alkali compound such as ammonia
  • synthetic polymer dispersants and/or natural polymer dispersants are preferable from the standpoint of availability and cost, and at least one selected from styrene/acrylic polymer dispersants, casein and lecithin. It is more preferable to have Casein is most preferable from the viewpoints of emulsifiability of rosins, dispersion stability of emulsions, and moisture resistance of coating films after drying.
  • a preferred ratio of the dispersant (b) contained in the moisture-proof coating agent is 1 to 20% by mass relative to the rosin (a), and 1 to 10% by mass for a synthetic polymer dispersant, natural If it is a polymer dispersant, it is 3 to 20% by mass.
  • the styrene-acrylic polymer dispersant in the present invention is a monomer having an anionic functional group, styrene, and acrylate as constituent units, as long as they contain 50% by mass or more of the constituent units of the polymer. It is preferable to have 70% by mass or more of a monomer having an anionic functional group, styrene, and acrylate as structural units of the polymer.
  • the flat layered silicate mineral (c) is a layered silicate mineral that is a clay mineral and has an aspect ratio (ratio of diameter to thickness) exceeding 1.
  • layered silicate minerals include kaolin, talc, pyrophyllite, hectorite, montmorillonite, saponite, vermiculite, mica, and synthetic mica.
  • kaolin, montmorillonite, mica, or synthetic mica are preferred from the viewpoint of moisture resistance.
  • synthetic mica is particularly preferable because it has fluorine atoms in its crystal structure and has a high aspect ratio, which works advantageously for improving moisture resistance.
  • One or more of these can be used in combination.
  • a flat layered silicate mineral having an average particle size of 5 ⁇ m or more and an aspect ratio of 50 or more is more preferable. Within this range, the moisture resistance of the coating film after drying is excellent.
  • the flat layered silicate mineral (c) is contained in a ratio of 3 to 100 parts by mass with respect to 100 parts of the total mass of the rosin (a) and the dispersant (b) having an anionic group. It is preferable in expressing the performance.
  • the cationic resin (d) is not particularly limited as long as it improves the dispersibility of the flat layered silicate mineral (c). Suitable for this application are those that, when mixed with the silicate mineral (c), do not cause excessive agglomeration or thickening to a level that makes coating difficult.
  • Examples of the cationic resin (d) include polyamine resins, polyamide resins, polyamidepolyamine resins and derivatives thereof, polyallylamine resins, polydiallylamine resins, dicyandiamide condensates, and polyethyleneimine resins.
  • a polyamide polyamine resin or the like may be reacted with epichlorohydrin, urea, glyoxal, formaldehyde or the like.
  • the cationic resin (d) is preferably polyamide polyamine resins and derivatives thereof.
  • Polyamide polyamine resin is a reaction product of polycarboxylic acid and / or polycarboxylic acid derivative and polyamipolyamine, for example, aliphatic dibasic carboxylic acid and / or derivative such as acid anhydride and polyalkylene polyamine are polymerized
  • Polyamidepolyamine resin can be obtained by reacting the polyamidopolyamine resin with epihalohydrin to obtain polyamidopolyamine-epichlorohydrin resin, which is a derivative of polyamidopolyamine resin.
  • a derivative of a polyamidepolyamine resin which is a derivative of a polyamidepolyamine resin
  • a derivative of a polyamidepolyamine resin can be obtained by polymerizing a derivative such as an aliphatic dibasic carboxylic acid and/or an acid anhydride and then reacting it with urea.
  • Aliphatic dibasic carboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc. Industrially, adipic acid is preferred.
  • derivatives of aliphatic dibasic carboxylic acids include acid anhydrides of the above acids and lower alcohol (methyl, ethyl, propyl) esters of the above acids.
  • Esters, adipate methyl ester are preferred.
  • Polyalkylenepolyamines include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine and the like, but industrially, diethylenetriamine is preferred.
  • the cationic resin (d) preferably has a degree of cationization at pH 3 of at least 0.5 meq/g ⁇ solids to 5.0 meq/g ⁇ solids. Within this range, when mixed with rosins (a), dispersants having anionic groups (b), and flat layered silicate minerals (c), there is no aggregation or extreme thickening, and high moisture resistance is achieved. Obtainable.
  • the degree of cationization can be measured by a colloid titration method (titration with polyvinyl potassium sulfate (PVSK)).
  • the cationic resin (d) has a weight-average molecular weight of 500 to 50,000, and is mixed with the rosins (a), the dispersant having an anionic group (b), and the flat layered silicate mineral (c). It is preferable because aggregation and thickening at the time are suppressed.
  • the weight average molecular weight of the cationic resin (d) can be measured by the GPC-MALS method using a multi-angle light scattering detector connected to GPC under the following measurement conditions.
  • GPC body Agilent Technologies LC1100 series Column: SHODEX SB806M HQ manufactured by Showa Denko K.K. Eluent: N/15 phosphate buffer containing N/10 sodium nitrate (pH 3)
  • Detector 1 Wyatt Technology's multi-angle light scattering detector DAWN
  • Detector 2 Suggestive refractive index detector RI-101 manufactured by Showa Denko Co., Ltd.
  • the content of the cationic resin (d) is 1 to 25 parts by mass per 100 parts of the total mass of the rosin (a) and the dispersant (b) having an anionic group, and the flat layered silicate mineral (c) 10 to 50 parts by mass is preferable for 100 parts by mass.
  • the rosins (a) dispersants having anionic groups (b), and flat layered silicate minerals (c)
  • aggregation and intense thickening are unlikely to occur, and stable moisture-proof performance is achieved. It is preferable for performance.
  • the water-based coating agent of the present invention can be appropriately used together with a film-forming aid (e) in order to improve moisture-proof performance by improving the film-forming property of the rosin (a).
  • the film-forming aid (e) has a solubility in water at 25° C. of 1 g/100 g or more, a boiling point at 1 atm of higher than 100° C., and a hydroxy group, an ether group or an ester group in one molecule.
  • alcohols such as 1-butanol (boiling point: 117° C., solubility: 7 g/100 g), benzyl alcohol (boiling point: 205° C., solubility: 4
  • Glycols diethylene glycol monoethyl ether (boiling point: 196 ° C., solubility: optional), dipropylene glycol monomethyl ether (boiling point: 190 ° C., solubility: optional), 3-methoxy-1-butanol (boiling point: 161 ° C., solubility: optional) and other glycol monoethers; diethylene glycol dimethyl ether (boiling point: 162 ° C., solubility: optional), diethylene glycol diethyl ether (boiling point: 188 ° C., solubility: optional), dipropylene glycol dimethyl ether (boiling point: 175 ° C., solubility: 53 g / 100 g) and other glycol diethers; , 4-diacetoxybutane (boiling point: 232 ° C., solubility: 4 g/100 g) and other glycol diesters; diethylene glyco
  • glycol ether esters such as propylene glycol monomethyl ether propionate (boiling point: 161° C., solubility: 5 g/100 g); e
  • the film-forming aid (e) is concentrated during drying and then evaporated, and the film-forming effect of the film-forming aid (e) is enhanced. Since it is easy to express, the moisture resistance of the coating film after drying is excellent.
  • glycol diesters carboxylic acid esters, and glycerin esters are preferable, and from the viewpoint of practicality, Substances.
  • At least one selected from triethyl citrate, 1,2-diacetoxypropane, or glyceryl triacetate that is certified as an indirect food additive as a Generally Recognized as Safe substance or as a component of paper and paperboard that comes in contact with food is more preferred.
  • the film-forming aid (e) is in the range of 0 to 20 parts by mass with respect to 100 total parts by mass of the rosin (a) and the dispersant (b) having an anionic group. Higher moisture-proof performance can be exhibited, and it is more preferably within the range of 3 to 10 parts by weight.
  • the moisture-proof coating agent includes, in addition to the above components (a) to (e), a viscosity modifier, an antifoaming agent, an antiseptic, a surface modifier, a dye, and a surface tension adjuster, as long as the effect is not impaired.
  • a viscosity modifier such as agents, lubricants, antiblocking agents, antioxidants and UV absorbers, can be used.
  • known waxes can be used as lubricants, antiblocking agents, and the like.
  • the mass ratio of the rosin (a), the anionic group-containing dispersant (b), the flat layered silicate mineral (c), and the cationic resin (d) is preferably 10% or less.
  • the wax is preferably biodegradable by microorganisms.
  • plant waxes such as wax wax, Urushi wax, carnauba wax, rice bran wax, montan wax, or candelilla wax
  • animal waxes such as beeswax, shellac wax, or lanolin
  • mineral waxes such as montan wax or ozokerite
  • paraffin wax Petroleum wax
  • Petroleum wax such as microcrystalline wax, Fischer-Tropsch wax, fatty acid ester wax, or synthetic wax such as fatty acid amide
  • plant waxes or animal waxes derived from organisms are preferred.
  • the method for producing the moisture-proof coating agent of the present invention is not limited, and each component constituting the moisture-proof coating agent described above may be mixed together or sequentially mixed.
  • a method of mixing an emulsified liquid obtained by emulsifying with a dispersant (b) having an anionic group and a dispersion liquid in which the flat layered silicate mineral (c) is uniformly dispersed in water can be used.
  • the cationic resin (d) and optional film-forming aid (e) can be added at any stage, and an emulsion obtained by emulsifying rosins (a) with a dispersant (b) having an anionic group.
  • a dispersion of a flat layered silicate mineral (c), or an emulsion obtained by emulsifying a rosin (a) with a dispersant (b) having an anionic group and a flat layered silicate mineral (c ) may be added after mixing.
  • the flat layered silicate mineral (c) may undergo secondary agglomeration in the dispersion.
  • a method of performing a mechanical forced dispersion treatment using a device such as a homomixer, jet mill, kneader, sand mill, ball mill, three rolls, or the like, which is subjected to shear stress, is preferably used.
  • a representative application form of the water-based emulsion moisture-proof coating agent of the present invention is coating on paper.
  • the paper used in this mode of use means paper and/or paperboard, and general paper or paperboard containing biodegradable pulp as a main component can be used without particular limitation. Specific examples include woodfree paper, pure white roll paper, unbleached or bleached kraft paper, glassine paper, coated paper, liner base paper, paper tube base paper, white board, chip board, and the like.
  • the coating amount of the aqueous emulsion moisture-proof coating agent is preferably such that the solid content of the coating layer is 0.1 to 15 g/m 2 , more preferably 1 to 10 g/m 2 .
  • a coating layer for liquid absorption control, a coating layer for smoothing the surface of the paper, etc. may be provided.
  • Any known method for drying the wet coating film can be used without limitation. Examples thereof include cylinder heating, steam heating, hot air heating, infrared heating, and high frequency heating.
  • the paper coated with the moisture-proof coating agent of the present invention is suitable as a packaging material for foods, medical products, electronic parts, etc. as it is, laminated with various resins, laminated with various films, aluminum foil, etc. can be used.
  • Example of dissolution of hydroxylated lecithin 400 parts of 50% hydroxylated lecithin (trade name: NIKKOL Recinol SH50, manufactured by Nikko Chemicals Co., Ltd.) and 600 parts of water are added to a four-necked separable flask equipped with a heating device, a stirrer, a condenser, and a thermometer. Then, it was dissolved at room temperature for 20 minutes to obtain a hydroxylated lecithin solution with a concentration of 20% (hereinafter sometimes abbreviated as 20% lecithin solution).
  • Emsification example 1 1000 parts of the M rosin obtained in Production Example 1 of acid-modified rosin was added to a four-necked separable flask equipped with a heating device, a stirrer, a condenser, and a thermometer, and the temperature was raised to 150° C. to melt. With vigorous stirring, 29 parts of a 70% bis(2-ethylhexyl) sodium sulfosuccinate aqueous solution, which is the dispersant (b) having an anionic group, was gradually added, followed by the dispersant (b) having an anionic group.
  • Flat layered silicate mineral dispersion (c-1) was prepared in the same manner as for the flat layered silicate mineral dispersion (c-1), except that the type and charge amount of the flat layered silicate mineral (c) were changed as shown in Table 2, and the flat layered silicate was prepared. Salt mineral dispersions (c-2) to (c-4) were obtained.
  • a cationic resin aqueous solution (d-2) containing an epichloro-modified polyamide polyamine resin with a concentration of 25%, a viscosity of 25 mPa s and a pH of 3.3. rice field.
  • the resulting cationic resin aqueous solution (d-2) had a degree of cationization at pH 3 of 3.7 meq/g ⁇ solids and a weight average molecular weight of 25,000.
  • a cationic resin aqueous solution (d-3) containing a urea-modified polyamidepolyamine resin with a concentration of 60%, a pH of 8.5 and a viscosity of 110 mPa ⁇ s.
  • the resulting cationic resin aqueous solution (d-3) had a degree of cationization at pH 3 of 1.1 meq/g ⁇ solids and a weight average molecular weight of 1,500.
  • Moisture-proof coating agents 2 to 25 were obtained in the same manner as moisture-proof coating agent 1 except that the types and amounts of the components were changed as shown in Table 3.
  • the moisture-proof coating agent coating conditions and the measurement method or evaluation method for each evaluation item were in accordance with the following methods.
  • (Coating base paper) Single gloss bleached kraft paper: Basis weight 50 g/m 2
  • Each moisture-proof coating agent was applied to the non-glossy surface of the base paper using a bar coater (Bar No. 20) and dried at 100° C. for 30 seconds using a warm air dryer. After that, humidity conditioning was performed at 23° C. and 50% RH for 24 hours.
  • moisture permeability It was measured according to JIS Z0208 moisture permeability test method for moisture-proof packaging materials (cup method). Temperature and humidity conditions: B method (40°C/90%RH/24 hours) Orientation of test piece: coated side outside
  • Example 1 Moisture-proof coating agent 1 was applied to one-glazed bleached kraft paper under the above conditions and dried to obtain moisture-proof coating agent-coated paper in which the solid content of moisture-proof coating agent 1 was 8 g/m 2 . After humidity conditioning, a circle with a diameter of 70 mm was cut out, and the moisture permeability was calculated by the moisture permeable cup method. The results are shown in Table 4.
  • Example 1 (Examples 17 and 18, Comparative Example 7) Example 1 except that the moisture-proof coating agent was changed as shown in Table 4, and the bar number of the bar coater at the time of coating was changed from 20 to 14 to set the solid content coating amount of the moisture-proof coating agent to 12 g / m 2 .
  • a moisture-proof coating agent-coated paper was obtained in the same manner as above. Furthermore, the moisture permeability was evaluated in the same manner as in Example 1. These results are shown in Table 4.
  • Comparative Examples 1 and 3 Compared to Examples 1 and 6, Comparative Examples 1 and 3, in which the flat layered silicate mineral (c) and cationic resin (d) were not used, are inferior in moisture resistance of the paper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)

Abstract

【課題】本発明は、化石燃料由来成分ではなく、生物由来成分であるロジン類を主たる成分として使用することにより、防湿性、カーボンニュートラル性に優れる、水性エマルション防湿コート剤を提供することを課題とする。 【解決手段】 ロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)、カチオン性樹脂(d)、 および水を含有することを特徴とする水性エマルション防湿コート剤。好ましくは、質量比で((a)+(b))/(c)=100/3~100、(c)/(d)=100/10~50の比率で含む。

Description

水性エマルション防湿コート剤、紙及び紙の製造方法
 本発明は、化石燃料由来成分ではなく、生物由来成分であるロジン類を主たる成分として使用することでカーボンニュートラル性を高めた、水性エマルション防湿コート剤、これを用いた防湿紙の製造方法、および防湿コート剤を塗工層として有する紙に関する。
従来、防湿性が要求される紙、板紙においては、ポリエチレン等のポリオレフィン系樹脂がラミネートされたラミネート紙が、防湿性に優れており、かつ安価であるため、多用されている。しかしながら、ラミネート紙はリサイクル性が低いとの問題があるため、このリサイクル性を改善する方法として、紙、板紙に樹脂コーティングを行うことで防湿性能を付与する動きが近年増えてきている。
樹脂コーティングによりリサイクル性(離解性)を改善、生物由来成分からなるコーティングにより生分解性を高めて環境負荷を低減する防湿用樹脂組成物として、(a)カルボキシル基含有スチレン・アクリル系共重合体に多価金属錯塩を配合してなる水性分散液、(b)スチレン・ブタジエン系合成ゴムラテックス、(c)アルカリ可溶性アクリル系共重合体の水溶液、(d)ロジン系、テルペン系、石油系樹脂から選ばれた樹脂、および(e)パラフィンワックスを乳化して得られたワックスエマルションからなる樹脂組成物(特許文献1)や、セルロースエステル、セラック、ロジンあるいはセルロースエステル、ワックス、ロジンを含む樹脂組成物(特許文献2)、基材に紙、防水層にロジンを使用した紙製ストロー(特許文献3)が開示されている。
植物由来素材として知られるロジン類を用い、無機化合物と組み合わせたカーボンニュートラル性の高い樹脂組成物や樹脂塗工バリア紙も知られている。例えば、層状ケイ酸塩化合物が混合されたロジンなどの生分解性樹脂層を形成する紙シート(特許文献4)、環状オレフィン系樹脂、酸変性ロジン類などの酸変性低分子量化合物、層間イオンを有する層状ケイ酸塩化合物に有機オニウム化合物が層間挿入された有機-無機複合体からなるバリア性樹脂組成物(特許文献5)が開示されている。
特開平11-247094号公報 特表2016-504465号公報 特開2020-138014号公報 特開2003-13391号公報 特開2017-43691号公報
 しかしながら、特許文献1においては、生物由来成分であるロジンを組成物固形分中に最大で30重量%含まれるものの、残りの70重量%以上はスチレン・アクリル系共重合体等化石燃料由来成分からなる。樹脂層が細かく砕かれることで大きな断片が紙に抄きこまれる可能性が低下し、古紙のリサイクル性は高まったものの、逆に紙に抄きこまれなかった微小サイズの樹脂片は、最終的に排水とともに抄紙系外へと排出され、大部分はペーパースラッジとして焼却される。この樹脂層の70質量%以上は化石燃料由来成分のためにカーボンニュートラル性はいまだ満足いくものではなかった。また、特許文献2においては、生物由来成分であるセルロースエステル、セラック、およびロジンといった化合物を使用しているが、化石燃料由来成分である有機溶媒を塗工液の約75%~約80%に使用することで溶液化しており、塗工液としてのカーボンニュートラル性は低いままであった。特許文献3においては、ロジンを有機溶媒溶液として紙に含浸あるいは塗工することにより、紙ストロー廃棄時の環境負荷を低減しつつ耐水性を高めているが、化石燃料由来成分である有機溶媒を塗工液中50~75質量%に使用しており、そのカーボンニュートラル性は低いままである。また、紙の防湿性については全く検討されていない。
特許文献4においては、生分解性樹脂層の上にガスバリア性を高めるために無機酸化物の薄膜を設けており、リサイクル性の観点では好ましくない。特許文献5は溶融混錬を行った成形体に関するものであり、紙への水性樹脂塗工については言及されていない。
上記事情に鑑み、本発明は、化石燃料由来成分の使用を極力抑え、生物由来成分であるロジン類を主たる成分として使用することにより、防湿性、カーボンニュートラル性に優れる、水性エマルション防湿コート剤を提供することを課題とする。
 すなわち、本発明は、
<1>ロジン類(a)  、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)、カチオン性樹脂(d)および水を含有することを特徴とする水性エマルション防湿コート剤、
<2>ロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)、カチオン性樹脂(d)及び水を含有し、質量比で((a)+(b))/(c)=100/3~100、(c)/(d)=100/10~50の比率で含むことを特徴とする前記<1>に記載の水性エマルション防湿コート剤、
<3>カチオン性樹脂(d)が、ポリアミドポリアミン樹脂及びその誘導体から選ばれる少なくとも1種から選ばれることを特徴とする前記<1>に記載の水性エマルション防湿コート剤、
<4>アニオン性基を有する分散剤(b)が、少なくともカゼインを含むことを特徴とする前記<1>に記載の水性エマルション防湿コート剤、
<5>前記<1>~<4>のいずれか1項に記載の水性エマルション防湿コート剤を塗工することを特徴とする紙の製造方法、
<6>前記<1>~<4>のいずれか1項に記載の水性エマルション防湿コート剤を含む塗工層を有する紙、である。
 本発明によれば、水性でありながら防湿性を保ちつつ、植物由来成分であるロジン類を主体とするためにカーボンニュートラル性が高く、環境負荷の低い防湿コート剤を得ることができる。
 以下、本発明の実施形態を具体的に説明する。なお、本実施形態は本発明を実施するための一形態であり、本発明はそのような実施形態に限定されるものではない。本明細書において、部や%を使用するがこれらは質量基準である。また、「~」を用いて表される数値範囲はその前後に記載される数値を含む。
 本発明の防湿コート剤はロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)、カチオン性樹脂(d)、 および水を含有する。
<ロジン類(a)>
 ロジン類(a)は、植物から得られたままの生ロジン、および/または、それに酸変性、エステル化等一部又は全部を化学変性したものを指す。さらにそれらをアルカリ性化合物によって、含有する酸基の一部または全部を中和したものを含む。
 ロジン類(a)の具体例としては、ガムロジン、ウッドロジン、トール油ロジンといった生ロジン、生ロジンに水素を添加した水添ロジン、あるいは、それらにマレイン酸やフマル酸等のα、β-不飽和ジカルボン酸を付加反応させた酸変性ロジン、さらに、これらのロジン類にエタンジオール、ペンタエリスリトール等のヒドロキシ基含有化合物でエステル化したエステル化ロジンが挙げられる。また、上記原料ロジンの産地も特に限定されず、中国、ベトナム、インドネシア、ブラジル等が例示される。これらの中でもガムロジンおよびその酸変性ロジン、エステル化ロジンが好ましい。これらの中の1種あるいは複数を組み合わせて使用することができる。中和に用いるアルカリ性化合物の具体例としては、アンモニア、エタノールアミンやトリエタノールアミン等のアルキロールアミン類、ジメチルエタノールアミンやメチルジエタノールアミン等のアルキルアルキロールアミン類、水酸化ナトリウムや水酸化カリウム等の水酸化アルカリ金属類が挙げられる。これらの中でも、アンモニアが好ましい。アンモニアであると、塗膜の乾燥時に酸基から揮発しやすく、ロジン類の疎水性が高まることで、乾燥後の塗膜の防湿性に優れる。
 また、本発明の防湿コート剤に含まれるロジン類(a)の質量比は、下式を満たすことが好ましい。
ロジン類(a)/(防湿コート剤中の有機化合物の総量)×100≧70(%)
 この範囲であると、焼却処分等により廃棄された場合においても植物由来成分であるロジン類が主たる成分であることによるカーボンニュートラル性のために、従来技術に比べて大気中の二酸化炭素濃度の低減および地球温暖化速度の抑制に貢献できる。該質量比は80%以上であることがより好ましい。
 なお、本発明において有機化合物とは、炭素化合物のうち、グラファイトやダイヤモンド等の炭素単体、炭化ケイ素や炭化カルシウム等の炭化物、一酸化炭素や二酸化炭素等の酸化物、二硫化炭素や硫化カルボニル等の硫化物、窒化炭素等の窒化物、炭酸ナトリウムや炭酸カルシウム等の炭酸塩、炭酸水素ナトリウムや炭酸水素カルシウム等の炭酸水素塩、シアン化水素、シアン化ナトリウムやシアン化カリウム等のシアン酸塩、チオシアン酸、チオシアン酸ナトリウムやチオシアン酸カリウム等のチオシアン酸塩、ホスゲンや四塩化炭素等のハロゲン化物、ニッケルカルボニルやコバルトカルボニル等の金属カルボニル、亜鉛シアノ錯体や銅シアノ錯体等の金属シアノ錯体を除外した化合物を指す。
<アニオン性基を有する分散剤(b)>
 アニオン性基を有する分散剤(b)は、ロジン類(a)を水性エマルション防湿コート剤中に安定分散させるために用いる。
 アニオン性基を含有する分散剤(b)は、アニオン性分散剤と両性分散剤とに大別される。さらにそれぞれは、合成系低分子分散剤、合成系高分子分散剤などの合成系分散剤、天然系低分子分散剤、天然系高分子分散剤、変性天然系高分子分散剤などの天然系分散剤に分類される。アニオン性分散剤の具体例としては、アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸アンモニウムまたはジアルキルスルホコハク酸ナトリウム等のアニオン性合成系低分子分散剤、スチレン・アクリル系高分子分散剤等のアニオン性合成系高分子分散剤、サーファクチンまたはソホロリピッド等のアニオン性天然系低分子分散剤、カルボキシメチルセルロース、オクテニル無水コハク酸変性でんぷん、ヒドロキシプロピルキサンタンガム等のアニオン性変性天然系高分子分散剤が挙げられる。両性分散剤の具体例としては、アルキルジメチルアミノ酢酸ベタイン、またはアルキルアミノジ酢酸モノナトリウム等の両性合成系低分子分散剤、カゼイン等の両性天然系高分子分散剤、レシチン(水添物、水酸化物を含む)等の両性天然系低分子分散剤が挙げられる。
 これらの中の1種あるいは複数を組み合わせて使用することができる。これらは、ロジン類(a)の乳化時に使用することが好ましく、防湿コート剤の水性エマルションの安定性向上目的で、乳化後においても添加することができる。また、そのままの形では水への溶解度が低い場合には、アンモニア等のアルカリ化合物を加えることで可溶化したり、溶解性を高めるために分散剤を含む液を加熱したりしてもよい。
 これらの中でも、入手の容易さやコスト面から、合成系高分子分散剤及び/又は天然系分散剤であることが好ましく、スチレン・アクリル系高分子分散剤、カゼインおよびレシチンから選ばれる少なくとも1種であることがより好ましい。ロジン類の乳化性、エマルションの分散安定性、および、乾燥後の塗膜の防湿性の観点からは、カゼインが最も好ましい。防湿コート剤に含まれる分散剤(b)の好ましい割合は、ロジン類(a)に対して、1~20質量%であり、合成系高分子分散剤であれば1~10質量%、天然系高分子分散剤であれば3~20質量%である。
本発明におけるスチレン・アクリル系高分子分散剤とは、アニオン性の官能基を有するモノマー、スチレン及びアクリレートを高分子の構成単位の50質量%以上を有するものであれば他のモノマーを構成単位として有していてもよく、アニオン性の官能基を有するモノマー、スチレン及びアクリレートを高分子の構成単位として70質量%以上有していることが好ましい。
<扁平層状ケイ酸塩鉱物(c)>
 扁平層状ケイ酸塩鉱物(c)は、粘土鉱物である層状ケイ酸塩鉱物であり、アスペクト比(厚みに対する直径の比率)が1を超えるものをいう。層状ケイ酸塩鉱物の例としては、カオリン、タルク、パイロフィライト、ヘクトライト、モンモリロナイト、サポナイト、バーミキュライト、雲母、合成雲母等が挙げられる。これらの中でも防湿性の面から、カオリン、モンモリロナイト、雲母または合成雲母が好ましい。これらの中でも、特に合成雲母は結晶構造内にフッ素原子を有すること、および高いアスペクト比を有することから防湿性向上に有利に働くため、好ましい。これらの中の1種あるいは複数を組み合わせて使用することができる。さらに、層状ケイ酸塩鉱物の積層構造を剥がしたり、特定の大きさの粒子を分級、除去することで、大粒径かつ高アスペクト比(アスペクト比:扁平粒子の厚みに対する直径の比)に揃えた、平均粒子径5μm以上かつアスペクト比が50より大である扁平層状ケイ酸塩鉱物がより好ましい。この範囲であると、乾燥後の塗膜の防湿性に優れる。アスペクト比は、扁平層状ケイ酸塩鉱物の平面方向および断面方向を走査型電子顕微鏡あるいは透過型電子顕微鏡で撮影、その直径と厚みを計測し、式「アスペクト比=直径/厚み」により算出することができる。
 また、扁平層状ケイ酸塩鉱物(c)は、ロジン類(a)およびアニオン性基を有する分散剤(b)の総質量100部に対し、3~100質量部の比率で含むことが高い防湿性能を発現する上で好ましい。
<カチオン性樹脂(d)>
カチオン性樹脂(d)としては、扁平層状ケイ酸塩鉱物(c)の分散性を向上させるものであればよく、またロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)と混合した際に、過度の凝集や塗工を困難にするレベルの増粘を引き起こさないものが本用途に適している。
カチオン性樹脂(d)としては、たとえば、ポリアミン樹脂、ポリアミド樹脂、ポリアミドポリアミン樹脂およびこれらの誘導体、ポリアリルアミン樹脂、ポリジアリルアミン系樹脂、ジシアンジアミド縮合物、ポリエチレンイミン樹脂等が挙げられる。ポリアミドポリアミン樹脂などを誘導体とするには、エピクロルヒドリン、尿素、グリオキザール、ホルムアルデヒドなどと反応させれはよい。
これらの中でも、カチオン性樹脂(d)は、ポリアミドポリアミン樹脂及びその誘導体であることが好ましい。ポリアミドポリアミン樹脂は、ポリカルボン酸及び/又はポリカルボン酸誘導体とポリアミポリアミンの反応物であって、例えば、脂肪族二塩基性カルボン酸及び/又は酸無水物などの誘導体とポリアルキレンポリアミンとを重合させてポリアミドポリアミン樹脂を得ることができ、ついで該ポリアミドポリアミンをエピハロヒドリンと反応させて、ポリアミドポリアミン樹脂の誘導体であるポリアミドポリアミン-エピクロルヒドリン樹脂とすることができる。また、例えば、脂肪族二塩基性カルボン酸および/または酸無水物などの誘導体を重合させた後に尿素を反応させてポリアミドポリアミン樹脂の誘導体であるポリアミドポリアミン樹脂の誘導体を得ることもできる。脂肪族二塩基性カルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などが挙げられるが、工業的にはアジピン酸が好ましい。また、脂肪族二塩基性カルボン酸の誘導体としては、上記各酸の酸無水物、あるいは、上記各酸の低級アルコール(メチル、エチル、プロピル)エステルが挙げられるが、工業的にはグルタル酸メチルエステル、アジピン酸メチルエステルが好ましい。ポリアルキレンポリアミンとしては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミンなどが挙げられるが、工業的には、ジエチレントリアミンが好ましい。
カチオン性樹脂(d)はpH3におけるカチオン化度が少なくとも0.5meq/g・solidsから5.0meq/g・solidsであることが好ましい。この範囲にあることでロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)と混合した際に凝集や極端な増粘がなく、高い防湿性を得ることができる。
カチオン化度は、コロイド滴定法(ポリビニル硫酸カリウム(PVSK)による滴定)により測定することができる。
カチオン性樹脂(d)の重量平均分子量は、500~5万であることが、ロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)と混合した際の凝集や増粘が抑制されるために好ましい。
カチオン性樹脂(d)の重量平均分子量は、GPCに多角度光散乱検出器を接続したGPC-MALS法により以下の測定条件によって測定することができる。
GPC本体:アジレント・テクノロジー社製
LC1100シリーズカラム:昭和電工(株)製  SHODEX  SB806M  HQ
溶離液:N/10硝酸ナトリウムを含むN/15リン酸緩衝液  (pH3)
検出器1:ワイアットテクノロジー社製多角度光散乱検出器DAWN
検出器2:昭和電工(株)製示唆屈折率検出器RI-101
カチオン性樹脂(d)の含有量は、ロジン類(a)およびアニオン性基を有する分散剤(b)の総質量100部に対し、1~25質量部かつ扁平層状ケイ酸塩鉱物(c)100質量部に対して、10~50質量部が好ましい。この範囲内では、ロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)と混合した際に凝集や激しい増粘が生じにくく、安定した防湿性能を発揮する上で好ましい。
本発明の水性コート剤にはロジン類(a)の造膜性向上による防湿性能向上のため、適宜造膜助剤(e)を併用することができる。
<造膜助剤(e)>
 造膜助剤(e)は、25℃での水への溶解度が1g/100g以上を有し、1気圧での沸点が100℃よりも高く、1分子中にヒドロキシ基、エーテル基またはエステル基から選ばれる官能基を一つ以上含有する化合物である。例えば、1-ブタノール(沸点:117℃、溶解度:7g/100g)、ベンジルアルコール(沸点:205℃、溶解度:4g/100g)、シクロヘキサノール(沸点:161℃、溶解度:4g/100g)等のアルコール類;1,2-プロピレングリコール(沸点:188℃、溶解度:任意)、1,3-ブチレングリコール(沸点:208℃、溶解度:任意)、ジプロピレングリコール(沸点:230℃、溶解度:任意)等のグリコール類;ジエチレングリコールモノエチルエーテル(沸点:196℃、溶解度:任意)、ジプロピレングリコールモノメチルエーテル(沸点:190℃、溶解度:任意)、3-メトキシ-1-ブタノール(沸点:161℃、溶解度:任意)等のグリコールモノエーテル類;ジエチレングリコールジメチルエーテル(沸点:162℃、溶解度:任意)、ジエチレングリコールジエチルエーテル(沸点:188℃、溶解度:任意)、ジプロピレングリコールジメチルエーテル(沸点:175℃、溶解度:53g/100g)等のグリコールジエーテル類;1,2-ジアセトキシエタン(沸点:190℃、溶解度:18g/100g)、1,2-ジアセトキシプロパン(沸点:186℃、溶解度:8g/100g)、1,4-ジアセトキシブタン(沸点:232℃、溶解度:4g/100g)等のグリコールジエステル類;ジエチレングリコールモノエチルエーテルアセテート(沸点:219℃、溶解度:任意)、プロピレングリコールモノメチルエーテルアセテート(沸点:146℃、溶解度:19g/100g)、プロピレングリコールモノメチルエーテルプロピオネート(沸点:161℃、溶解度:5g/100g)等のグリコールエーテルエステル類;酪酸エチル(沸点:121℃、溶解度:1g/100g)、乳酸ブチル(沸点:185℃、溶解度:4g/100g)、クエン酸トリエチル(沸点:294℃、溶解度:6g/100g)等のカルボン酸エステル類;三酢酸グリセリル(沸点:258℃、溶解度:7g/100g)等のグリセリンエステル等が挙げられる。これらの中の1種あるいは複数を組み合わせて使用することができる。上記化合物であると、100℃よりも高い沸点を有するため、乾燥途中で造膜助剤(e)が濃縮されたのちに蒸発することとなり、造膜助剤(e)の造膜効果がより発現しやすいので、乾燥後の塗膜の防湿性に優れる。
 これらの中でも、グリコールジエステル類、カルボン酸エステル類、グリセリンエステル類が好ましく、実用性から、アメリカ食品医薬品局のSubstances. Generally Recognized as Safe物質あるいは食品と接触する紙及び板紙の成分としての間接食品添加物に認証されているクエン酸トリエチル、1,2-ジアセトキシプロパンまたは三酢酸グリセリルから選ばれる、少なくとも1種であることがさらに好ましい。
 造膜助剤(e)は、ロジン類(a)とアニオン性基を有する分散剤(b)の 総質量部100に対して、0~20質量部の範囲内であることがより高い防湿性能を発揮することができる上で好ましく、3~10重量部の範囲内であることが更に好ましい。
<その他の添加剤>
 本発明において、防湿コート剤には、上記(a)~(e)成分以外に、その効果を損なわない範囲で、粘度調整剤、消泡剤、防腐剤、表面調整剤、染料、表面張力調整剤、滑剤、ブロッキング防止剤、酸化防止剤、紫外線吸収剤等の塗料に一般的に使用される各種添加剤を使用することができる。
 また、滑剤やブロッキング防止剤用途等で公知のワックス類を使用することができる。従来から知られている様にワックス類の使用により同時に防湿性が向上するメリットがあるが、リコート性、貼合性が大幅に低下するため、ワックス類の使用量は最小限であることが好ましい。ロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)、カチオン性樹脂(d)の総量に対して、質量比で10%以下が好ましい。
 ワックス類は、微生物による生分解性を有するものが好ましい。具体的には、ハゼロウ、ウルシロウ、カルナウバロウ、米ぬかロウ、モンタンロウ、またはカンデリラロウ等の植物系ワックス、ミツロウ、セラックロウ、または、ラノリン等の動物系ワックス、モンタンワックスまたはオゾケライト等の鉱物系ワックス、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス、フィッシャー・トロプシュワックス、脂肪酸エステル系ワックス、または、脂肪酸アミド等の合成系ワックスが挙げられる。これらの中の1種あるいは複数を組み合わせて使用することができる。これらの中でも、生物由来である植物系ワックスまたは動物系ワックスが好ましい。
<防湿コート剤の製造方法>
本発明の防湿コート剤の製造方法は限定されず、前記した防湿コート剤を構成する各成分を一括して混合、あるいは順に混合して得ても良いが、通常はロジン類(a)を、アニオン性基を有する分散剤(b)で乳化して得た乳化液と、扁平層状ケイ酸塩鉱物(c)を水に均一に分散させた分散液を混合する方法を用いることができる。カチオン性樹脂(d)および任意成分の造膜助剤(e)は任意の段階に添加でき、ロジン類(a)を、アニオン性基を有する分散剤(b)で乳化して得た乳化液あるいは扁平層状ケイ酸塩鉱物(c)の分散液、さらにはロジン類(a)を、アニオン性基を有する分散剤(b)で乳化して得た乳化液と扁平層状ケイ酸塩鉱物(c)の分散液を混合後に添加してもよい。特に扁平層状ケイ酸塩鉱物(c)は、分散液中で二次凝集している可能性があるために、当該扁平層状ケイ酸塩鉱物(c)を水に分散させた後に、せん断力、ずり応力のかかるホモミキサー、ジェットミル、ニーダー、サンドミル、ボールミル、3本ロール等の装置を用いて機械的な強制分散処理を行う方法が好ましく用いられる。
 本発明の水性エマルション防湿コート剤の代表的な利用形態としては、紙への塗工が挙げられる。
<紙>
 本利用形態に用いられる紙は、紙及び/又は板紙を意味し、生分解性を有するパルプを主成分とした一般的な紙あるいは板紙であれば特に制限なく使用することができる。具体的には、上質紙、純白ロール紙、未晒または晒クラフト紙、グラシン紙、コート紙、ライナー原紙、紙管原紙、白ボール、チップボール等が例示できる。
水性エマルション防湿コート剤の塗工量としては塗工層の固形分が0.1~15g/mとすることが好ましく、1~10g/mとすることがさらに好ましい。
 紙と防湿コート層の間には、吸液コントロールのための塗工層や、紙表面の凹凸を埋めて平滑にするための塗工層等を設けても良い。
<塗工・乾燥方法>
 塗工方法は、公知の手法であれば制限なく用いることができる。例えば、バーコート、ブレードコート、ダイコート、カーテンコート、エアナイフコート、スプレーコート、グラビアコート、フレキソコート、サイズプレスコート等が挙げられる。
 ウエット塗膜の乾燥方法は、公知の手法であれば制限なく用いることができる。例えば、シリンダー加熱、蒸気加熱、熱風加熱、赤外線加熱、高周波加熱等が挙げられる。
本発明の防湿コート剤を塗工した紙は、そのまま、または各種樹脂と積層する、各種フイルム、アルミ箔と貼合するなどして、食品、医療品、電子部品等の包装用材料として好適に用いることができる。
 以下、本発明の実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下、%、部は特にことわりがないかぎり、各々、質量%、質量部を示す。
<ロジン類(a)の調製>
(酸変性ロジンの製造例1)
 加熱装置、撹拌装置、温度計、窒素導入管を具備した四つ口セパラブルフラスコに、窒素雰囲気下ガムロジン90部を投入し加熱溶融した。次いで無水マレイン酸(純正化学(株)製)10部を加えた後200℃になるまで加熱撹拌し、さらに温度を保持したまま4時間反応させることにより、マレイン酸変性ロジン(以下、Mロジンと略することがある)を得た。
(酸変性ロジンの製造例2)
 加熱装置、撹拌装置、温度計、窒素導入管を具備した四つ口セパラブルフラスコに、窒素雰囲気下ガムロジン88部を投入し加熱溶融した。次いでフマル酸(純正化学(株)製)12部を加えた後200℃になるまで加熱撹拌し、さらに温度を保持したまま4時間反応させることにより、フマル酸変性ロジン(以下、Fロジンと略することがある)を得た。
(エステル化ロジンの製造例)
 加熱装置、撹拌装置、温度計、窒素導入管を具備した四つ口セパラブルフラスコに、窒素雰囲気下ガムロジン90部を投入し加熱溶融した。次いでフマル酸5部を加えた後200℃になるまで加熱撹拌し、さらに温度を保持したまま3時間反応させた。その後180℃まで冷却し、さらにエタンジオール(関東化学(株)製)を11部添加し、250℃で8時間反応させて、酸変性ロジンのエステル化物(以下、Eロジンと略することがある)を得た。
<アニオン性基を有する分散剤(b)の調整>
(カゼインの溶解例)
 加熱装置、撹拌装置、冷却管、温度計を具備した四つ口セパラブルフラスコに、カゼイン(富士フイルム和光純薬(株)製)200部、28%アンモニア水71部、水729部を投入して、撹拌下85℃まで昇温し、温度を保持したまま20分間かけて溶解することで濃度20%のカゼイン溶液を得た(以下、20%カゼイン液と略すことがある)。
(水酸化レシチンの溶解例)
 加熱装置、撹拌装置、冷却管、温度計を具備した四つ口セパラブルフラスコに、50%水酸化レシチン(商品名:NIKKOL レシノール SH50、日光ケミカルズ(株)製)400部、水600部を投入して、室温で20分間かけて溶解することで濃度20%の水酸化レシチン溶液を得た(以下、20%レシチン液と略すことがある)。
(高分子分散剤の合成例)
 加熱装置、撹拌装置、冷却管、温度計、窒素導入管を具備した四つ口セパラブルフラスコに、窒素雰囲気下スチレン33.9部、ブチルメタクリレート33.9部、50%アクリルアミド135.6部、80%メタクリル酸42.4部、4-メチル-2,4-ジフェニル-1-ペンテン4.6部、ドデシルメルカプタン3.9部、ドデシルベンゼンスルホン酸ナトリウム0.4部、過硫酸アンモニウム10.9部、水635.6部を加えて攪拌混合し、90℃で3時間加熱した。ついで70℃まで冷却し、メタクリル酸のアニオン当量に対して1.0当量となり、高分子分散剤の濃度が20%となるよう25%水酸化ナトリウム水溶液78.3部および水20.6部を徐々に滴下し、30分間攪拌した後室温まで冷却することにより、濃度20%のスチレン・アクリル系高分子分散剤(以下、PS─1と略すことがある)を得た。なお、濃度は、直径5cmのアルミカップに分散液を1gとり、強制対流式電気乾燥機により150℃、20分間乾燥した重量から算出することで得られる。
<ロジン類(a)のアニオン性基を有する分散剤(b)を用いた乳化>
(乳化例1)
 加熱装置、撹拌装置、冷却管、温度計を具備した四つ口セパラブルフラスコに、酸変性ロジンの製造例1で得られたMロジン1000部を投入し、150℃に昇温、溶融した。
 激しく攪拌しながら、アニオン性基を有する分散剤(b)である70%スルホコハク酸ビス(2-エチルヘキシル)ナトリウム水溶液29部を徐々に添加し、続いてアニオン性基を有する分散剤(b)であるカゼイン液400部を徐々に添加混合して油中水型エマルジョンとし、これに更に90℃の水1321部を徐々に添加して安定な水中油型エマルションとした後、冷却して内温を30℃以下とし、濃度40%のロジンエマルションを得た(ロジン類(a)とアニオン性基を有する分散剤(b)を含有する乳化液a-1)。
(乳化例2~6)
 ロジン類(a)の種類、アニオン性基を有する分散剤(b)の種類と添加部数を表1の様に変えた以外は、乳化例1と同様にして、濃度40%のロジンエマルションを得た(ロジン類(a)とアニオン性基を有する分散剤(b)を含有する乳化液a-2~a-6)。
Figure JPOXMLDOC01-appb-T000001
表1中の略号の説明
B2EHSC-Na : スルホコハク酸ビス(2-エチルヘキシル)ナトリウム
<扁平層状ケイ酸塩鉱物分散液(c-1)の調製>
 ステンレス容器に合成雲母(平均粒子径約10μm、アスペクト比約330)10部、水115部をとり、超高速乳化分散試験装置(商品名:ラボ・リューション、プライミクス(株)製)を用い、3000rpmで10分間撹拌することにより分散液を得た(扁平層状ケイ酸塩鉱物分散液(c-1))。
(扁平層状ケイ酸塩鉱物分散液(c-2)~(c-4)の調整)
 扁平層状ケイ酸塩鉱物(c)の種類、仕込み量を表2に記したように変更した以外は、扁平層状ケイ酸塩鉱物分散液(c-1)の調整と同様にし、扁平層状ケイ酸塩鉱物分散液(c-2)~(c-4)を得た。
Figure JPOXMLDOC01-appb-T000002
<カチオン性樹脂水溶液(d-1)の製造例> 
温度計、リービッヒ冷却器、 および撹拌棒を備えた四つ口フラスコにジエチレントリアミン206.3g(2.0モル)を仕込み、攪拌しながらアジピン酸321.5g(2.2モル)を加え、生成する水を除去しながら昇温し、150℃で3時間反応させた。これに水を加えて濃度50%、粘度230mPa・s、pH9.5のポリアミドポリアミン樹脂を含有するカチオン性樹脂水溶液(d-1)を得た。得られたカチオン性樹脂水溶液(d-1)のpH3におけるカチオン化度は3.7meq/g・solids、重量平均分子量は5000であった。
<カチオン性樹脂水溶液(d-2)の製造例>
温度計、リービッヒ冷却器、 および撹拌棒を備えた四つ口フラスコにカチオン性樹脂d-1を500g(アミノ基として0.892モル)と水214.3gを仕込み、次いで、30℃でエピクロロヒドリン24.8g(0.268モル)を1時間かけて滴下した。次いで、98%硫酸4.5g(0.045モル)および水187.1gを加えて濃度30%としたのち、55℃で1時間反応した。これに水および98%硫酸を加えて、濃度、pHを調整し、濃度25%、粘度25mPa・s、pH3.3のエピクロロ変性ポリアミドポリアミン樹脂を含有するカチオン性樹脂水溶液(d-2)を得た。得られたカチオン性樹脂水溶液(d-2)のpH3におけるカチオン化度は3.7meq/g・solids、重量平均分子量は25000であった。
<カチオン性樹脂水溶液(d-3)の製造例>
温度計、リービッヒ冷却器、および撹拌棒を備えた四つ口フラスコにトリエチレンテトラミン219.3g(1.5モル)、テトラヒドロ無水フタル酸152.1g(1モル)を加えて、170℃で2時間縮合反応を行った。続いて、リービッヒ冷却器を還流冷却器に交換し、尿素168.2g(2.8モル)、水80.5gを加えて110℃で5時間尿素変性を行った。これに水および98%硫酸を加えて濃度、pHを調整し、濃度60%、pH8.5、粘度110mPa・sの尿素変性ポリアミドポリアミン樹脂を含有するカチオン性樹脂水溶液(d-3)を得た。得られたカチオン性樹脂水溶液(d-3)のpH3におけるカチオン化度は1.1meq/g・solids、重量平均分子量は1500であった。
<水性エマルション防湿コート剤の調製>
(防湿コート剤1)
 撹拌装置を具備した四つ口セパラブルフラスコに、ロジン類(a)とアニオン性基を有する分散剤(b)を含有する乳化液(a-1) 50部を入れ、攪拌下、そこに扁平層状ケイ酸塩鉱物分散液(c-1) 30部、次いで造膜助剤(e)として1,2-ジアセトキシプロパン (e-1) 1.4部を徐々に添加した。次いで、イオン交換水40部、カチオン性樹脂水溶液(d-1) 1.6部を投入し、その後撹拌状態を5分間保持して液が均一になった後取り出し、濃度20%の防湿コート剤1を得た。
(防湿コート剤2~25)
 部材の種類や添加量を表3に記載の様に変えた以外は防湿コート剤1の場合と同様にして、防湿コート剤2~25を得た。
Figure JPOXMLDOC01-appb-T000003
表3中の略号の説明
GTA:三酢酸グリセリル
TEC:クエン酸トリエチル
 <防湿コート剤の塗工>
 防湿コート剤塗工条件、および、各評価項目における、測定方法または評価方法は以下の方法に従った。
(塗工原紙)
 片艶晒クラフト紙: 坪量50g/m
(塗工)
 各防湿コート剤を原紙にバーコーター(バーNo.20)を用いて非艶面に塗工し、温風乾燥機を用いて100℃で30秒間乾燥した。その後、23℃、50%RHにおいて24時間調湿を行った。
(透湿度)
 JIS Z0208防湿包装材料の透湿度試験方法(カップ法)に準じて測定した。
 温湿度条件:B法(40℃/90%RH・24時間)
 試験片の向き:コート面を外側
(実施例1)
 片艶晒クラフト紙に対して防湿コート剤1を前記条件により塗工、乾燥し、防湿コート剤1の固形分8g/mを塗工した防湿コート剤塗工紙を得た。調湿後、直径70mmの円形に切り出し、前記透湿カップ法により、透湿度を算出した。この結果を表4に示す。
(実施例2~~16および比較例1~3,5,6)
 表4のように防湿コート剤を変えた以外は実施例1と同様にして、防湿コート剤塗工紙を得た。さらに、実施例1と同様にして、透湿度を評価した。これらの結果を表4に示す。
(実施例17,18、比較例7)
 表4のように防湿コート剤を変え、さらに塗工時のバーコーターのバーNo.を20から14に変えて防湿コート剤の固形分塗工量を12g/mとした以外は実施例1と同様にして、防湿コート剤塗工紙を得た。さらに、実施例1と同様にして、透湿度を評価した。これらの結果を表4に示す。
(比較例4)
 防湿コート剤22が凝集し、固形物が析出したため塗工評価することはできなかった。
Figure JPOXMLDOC01-appb-T000004
本発明の条件を満足する実施例1~18と、本発明の条件を満たさない比較例1~7を比較すると、実施例1~18で得られた水性エマルション防湿コート剤を塗工した場合に紙の防湿性が優れる(透湿度の値が低くなる)ことが分かる。
実施例1に対して扁平層状ケイ酸塩鉱物(c)を不使用とした比較例4は塗工液が凝集して塗工評価をすることができなかった。
実施例1および15~18に対してカチオン性樹脂(d)を不使用とした比較例2、5、6、7は紙の防湿性が劣ることが分かる。
実施例1および6に対して扁平層状ケイ酸塩鉱物(c)およびカチオン性樹脂(d)を不使用とした比較例1および3は紙の防湿性が劣ることが分かる。

Claims (6)

  1.  ロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)、カチオン性樹脂(d)および水を含有することを特徴とする水性エマルション防湿コート剤。
  2.  ロジン類(a)、アニオン性基を有する分散剤(b)、扁平層状ケイ酸塩鉱物(c)、カチオン性樹脂(d)及び水を含有し、
    質量比で((a)+(b))/(c)=100/3~100、(c)/(d)=100/10~50の比率で含むことを特徴とする請求項1に記載の水性エマルション防湿コート剤。
  3. カチオン性樹脂(d)が、ポリアミドポリアミン樹脂及びその誘導体から選ばれる少なくとも1種から選ばれることを特徴とする請求項1に記載の水性エマルション防湿コート剤。
  4. アニオン性基を有する分散剤(b)が、少なくともカゼインを含むことを特徴とする請求項1に記載の水性エマルション防湿コート剤。
  5.  請求項1~4のいずれか1項に記載の水性エマルション防湿コート剤を塗工することを特徴とする紙の製造方法。
  6.  請求項1~4のいずれか1項に記載の水性エマルション防湿コート剤を含む塗工層を有する紙。
PCT/JP2022/035313 2021-11-08 2022-09-22 水性エマルション防湿コート剤、紙及び紙の製造方法 WO2023079854A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023512082A JP7284928B1 (ja) 2021-11-08 2022-09-22 水性エマルション防湿コート剤、紙及び紙の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021181903 2021-11-08
JP2021-181903 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023079854A1 true WO2023079854A1 (ja) 2023-05-11

Family

ID=86241298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035313 WO2023079854A1 (ja) 2021-11-08 2022-09-22 水性エマルション防湿コート剤、紙及び紙の製造方法

Country Status (2)

Country Link
JP (1) JP7284928B1 (ja)
WO (1) WO2023079854A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967795A (ja) * 1995-09-01 1997-03-11 Oji Paper Co Ltd 防湿性紙
JPH11293590A (ja) * 1998-04-10 1999-10-26 Takeda Chem Ind Ltd 紙塗工用防湿性組成物
JP2020196259A (ja) * 2019-05-28 2020-12-10 王子ホールディングス株式会社 バリア性積層体およびその製造方法
JP2021046626A (ja) * 2019-09-18 2021-03-25 王子ホールディングス株式会社 バリア性積層体
JP2022126387A (ja) * 2021-02-18 2022-08-30 星光Pmc株式会社 水性エマルション防湿コート剤及び該水性エマルション防湿コート剤を塗工した紙または板紙の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967795A (ja) * 1995-09-01 1997-03-11 Oji Paper Co Ltd 防湿性紙
JPH11293590A (ja) * 1998-04-10 1999-10-26 Takeda Chem Ind Ltd 紙塗工用防湿性組成物
JP2020196259A (ja) * 2019-05-28 2020-12-10 王子ホールディングス株式会社 バリア性積層体およびその製造方法
JP2021046626A (ja) * 2019-09-18 2021-03-25 王子ホールディングス株式会社 バリア性積層体
JP2022126387A (ja) * 2021-02-18 2022-08-30 星光Pmc株式会社 水性エマルション防湿コート剤及び該水性エマルション防湿コート剤を塗工した紙または板紙の製造方法

Also Published As

Publication number Publication date
JP7284928B1 (ja) 2023-06-01
JPWO2023079854A1 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
US11352519B2 (en) Stable aqueous dispersions comprising complexed starch
JP6525397B2 (ja) ロジン系エマルジョンサイズ剤及び該サイズ剤を用いて得られる紙
KR101737135B1 (ko) 종이 코팅 용도에서의 알루미늄 포스페이트, 폴리포스페이트 및 메타포스페이트 입자의 용도
KR20120053514A (ko) 수성계 장벽 코팅을 위한 신규한 처리된 무기 안료
JPH03227481A (ja) 製紙用サイズ剤組成物およびサイジング方法
WO2009048178A1 (ja) 塗工紙の製造方法
JP2013185288A (ja) ロジン系エマルジョン型サイズ剤、その製造方法及び紙
AU2015226378B2 (en) Mineral oil barrier
Ovaska et al. Heat-Induced changes in oil and grease resistant hydroxypropylated-starch-based barrier coatings Sami-Seppo
JP7284928B1 (ja) 水性エマルション防湿コート剤、紙及び紙の製造方法
WO2013188630A2 (en) Additives for papermaking
JP2022126387A (ja) 水性エマルション防湿コート剤及び該水性エマルション防湿コート剤を塗工した紙または板紙の製造方法
Vähä-Nissi et al. Aqueous dispersions from biodegradable/renewable polymers
JP5376198B2 (ja) ロジン系エマルジョン型サイズ剤および紙
JP3751253B2 (ja) 印刷用紙
JP7311848B1 (ja) 水性エマルション耐油コート剤、紙の製造方法及び水性エマルション耐油コート剤を含む塗工層を有する紙
JP5464309B2 (ja) 撥水剤用下塗り剤及び紙の製造方法
JP2004027421A (ja) 表面サイズ剤、その製造方法及び新聞用紙
WO2023153195A1 (ja) 水性エマルション耐油コート剤、紙の製造方法及び水性エマルション耐油コート剤を含む塗工層を有する紙
JP2002256150A (ja) ロジン系エマルション組成物、紙のサイジング方法及び紙
JP2016188440A (ja) 溶液ロジンサイズ剤及び紙
JP2009174106A (ja) ロジン系エマルジョン型サイズ剤および紙
JP4941010B2 (ja) 撥水剤用下塗り塗工液、撥水紙およびその製造方法
JP3617209B2 (ja) 防湿性紙
JP4252442B2 (ja) 紙質向上剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023512082

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889678

Country of ref document: EP

Kind code of ref document: A1