WO2023077631A1 - 一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法 - Google Patents

一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法 Download PDF

Info

Publication number
WO2023077631A1
WO2023077631A1 PCT/CN2021/139583 CN2021139583W WO2023077631A1 WO 2023077631 A1 WO2023077631 A1 WO 2023077631A1 CN 2021139583 W CN2021139583 W CN 2021139583W WO 2023077631 A1 WO2023077631 A1 WO 2023077631A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
adsorbent
heavy metal
carbon nanotube
natural latex
Prior art date
Application number
PCT/CN2021/139583
Other languages
English (en)
French (fr)
Inventor
丁佳敏
陆胜勇
李建华
朱慧萍
郭轩豪
Original Assignee
浙江大学台州研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学台州研究院 filed Critical 浙江大学台州研究院
Publication of WO2023077631A1 publication Critical patent/WO2023077631A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of wastewater treatment, in particular to a method for treating heavy metal leaching wastewater with a multi-walled carbon nanotube cross-linked natural latex adsorbent.
  • the main pollutants are cadmium, lead, arsenic and polycyclic aromatic hydrocarbons.
  • the pollution sources mainly include tailings overflowing from the mining area, dust discharged into the air, and acidic mineral water entering the farmland along with the river. Once heavy metals enter the farmland, it will not only cause serious damage to the function and structure of the soil, but also have an adverse effect on the growth and development of crops, seriously leading to crop yield reduction or even failure.
  • heavy metals pollute the soil. It will remain for a long time without treatment, so it is necessary for the purification of polluted soil.
  • chemical leaching is an effective remediation method for heavy metal-contaminated soil.
  • Chemical leaching is mainly through chemical reactions, so that the reagent components in the leaching agent interact with the heavy metals in the soil to form soluble heavy metal ions or metal complexes, so as to achieve rapid and efficient removal of heavy metal components in the soil.
  • chemical leaching will produce new heavy metal wastewater, and improper treatment of heavy metal wastewater will lead to secondary pollution, and may even be toxic. Therefore, there is an urgent need for an efficient treatment method for heavy metal leaching wastewater.
  • the purpose of the present invention is to solve the deficiencies of the prior art and provide a method for treating heavy metal leaching wastewater with a multi-walled carbon nanotube cross-linked natural latex adsorbent.
  • the present invention adopts the following technical solutions:
  • a method for treating heavy metal leaching waste water with a multi-walled carbon nanotube cross-linked natural latex adsorbent comprising the steps of:
  • Step 1 leaching heavy metal-contaminated soil with a leaching agent to obtain heavy metal leaching waste liquid; wherein the leaching agent is a compound leaching agent prepared by mixing chlorides and organic acids;
  • Step 2 Take the rinsing waste liquid, and let the leaching waste liquid stand for 0-3 hours;
  • Step 3 Pipette the precipitated supernatant of the leaching waste liquid, and add an adsorbent made of multi-walled carbon nanotube cross-linked natural latex; the ratio of addition is 0.1g to 1.5g of adsorbent for every 100ml of leaching waste liquid ;
  • Step 4 Stir after adding the adsorbent, the stirring time is 5min to 60min, and after the stirring is completed, perform centrifugation through a centrifuge;
  • Step 5 Take out the supernatant after centrifugation, add the complexation agent, and stir; add the complexation agent at a ratio of 50ml, add 0.1ml ⁇ 4ml of the complexation agent; stir for 5min ⁇ 60min, complete the complexation treatment ;
  • Step 6 adjust the pH of the waste liquid after the network is broken, and adjust the pH value between 9 and 11.5;
  • Step 7 Add a precipitant to the waste liquid, the addition ratio of the precipitant is 1g-10g/L; after the precipitant is added, put it into a constant temperature oscillator for shaking, and the shaking time is 5min-40min;
  • Step 8 Add a flocculant to the waste liquid at a ratio of 1g to 25g/L; after adding the flocculant, put it into a constant temperature oscillator for shaking, and the shaking time is 5min to 40min;
  • Step 9 Centrifuge the waste liquid obtained in step 8 through a centrifuge to obtain a liquid that meets the discharge standard, and end the step.
  • the preparation of the adsorbent made of the multi-walled carbon nanotube cross-linked natural latex in the step 3 comprises the following steps:
  • Step 31 Pipette 100-200ml of deionized water, put it in a container, add 1g-3g of dispersant, and stir ultrasonically for 5min-30min at room temperature;
  • Step 32 add a total of 1 g to 3 g of multi-carbon-walled nanotubes by a small amount of multiple times, and stir ultrasonically at room temperature for 20 min to 50 min;
  • Step 33 Add a total of 30g-70g of natural latex by a small amount of multiple times, and ultrasonically stir for 10-30min at room temperature;
  • Step 34 drying to a constant weight in a constant temperature drying oven to obtain the adsorbent
  • Step 35 The dried adsorbent is placed in a muffle furnace for roasting and carbonization;
  • Step 36 The carbonized adsorbent is ground in a mortar and passed through a 100-mesh sieve.
  • the carbonization is carried out in a muffle furnace at an environment of 700° C. to 800° C. for 1 h to 3 h.
  • the complex breaking agent in the step 5 adopts 30% hydrogen peroxide.
  • the pH adjustment is performed by an alkali solution; the concentration of the alkali solution is 0.1-0.3 mol/L.
  • the precipitating agent in step 7 is sodium phosphate.
  • the flocculant in step 8 is polyacrylamide.
  • the rotational speed of the centrifuge in step 4 and step 9 is 4000rpm.
  • the compound eluent in the step 1 includes 5-50 mmol/L of chloride and 20-150 mmol/L of organic acid; the chloride includes ferric chloride and calcium chloride, and the organic acid includes citric acid and malic acid and tartaric acid.
  • the process of washing heavy metal-contaminated soil specifically includes the following steps:
  • Step 11 Take the heavy metal-contaminated soil for natural air-drying, pick out the gravel and grass sticks, and then grind and pass through a 50-mesh sieve;
  • Step 12 Moisten the sieved soil with water
  • Step 13 adding a leaching agent for mixed rinsing, the volume of the leaching agent added during rinsing to the soil mass ratio is 2-3L/kg;
  • Step 14 the soil after washing is left to stand, and the supernatant is removed
  • Step 15 Repeat step 13-step 14, cycle 1 to 3 times, to obtain metal-free soil;
  • Step 16 adding distilled water to dilute the residual liquid, the volume of distilled water added during dilution to the soil mass ratio is 2-3L/kg;
  • Step 17 leave the diluted soil to stand, and remove the supernatant
  • Step 18 Repeat steps 16-17, cycle 1-3 times, and end the steps.
  • the heavy metal ions in the leaching waste liquid are adsorbed by the adsorbent, and the leaching waste liquid meets the discharge standard through the treatment of network breaking, precipitation, flocculation, etc., and will not cause secondary pollution to the surrounding environment;
  • the pH value of the rinsing waste liquid is kept between 9 and 11.5, which avoids the problem of high pH in the existing wastewater treatment technology and solves the problem of water body environmental pollution.
  • Fig. 1 is a structural block diagram of Embodiment 1 of the present invention.
  • a kind of multi-walled carbon nanotube cross-linked natural latex adsorbent process the method for heavy metal leaching wastewater, comprising the steps:
  • Step 1 leaching heavy metal-contaminated soil with a leaching agent to obtain heavy metal leaching waste liquid; wherein the leaching agent is a compound leaching agent prepared by mixing chlorides and organic acids;
  • Step 2 Take the rinsing waste liquid, and let the leaching waste liquid stand for 0-3 hours;
  • Step 3 Pipette the precipitated supernatant of the leaching waste liquid, and add an adsorbent made of multi-walled carbon nanotube cross-linked natural latex; the ratio of addition is 0.1g to 1.5g of adsorbent for every 100ml of leaching waste liquid ;
  • Step 4 Stir after adding the adsorbent, the stirring time is 5min to 60min, and after the stirring is completed, perform centrifugation through a centrifuge;
  • Step 5 Take out the supernatant after centrifugation, add the complexation agent, and stir; add the complexation agent at a ratio of 50ml, add 0.1ml ⁇ 4ml of the complexation agent; stir for 5min ⁇ 60min, complete the complexation treatment ;
  • Step 6 adjust the pH of the waste liquid after the network is broken, and adjust the pH value between 9 and 11.5;
  • Step 7 Add a precipitant to the waste liquid, the addition ratio of the precipitant is 1g-10g/L; after the precipitant is added, put it into a constant temperature oscillator for shaking, and the shaking time is 5min-40min;
  • Step 8 Add a flocculant to the waste liquid at a ratio of 1g to 25g/L; after adding the flocculant, put it into a constant temperature oscillator for shaking, and the shaking time is 5min to 40min;
  • Step 9 Centrifuge the waste liquid obtained in step 8 through a centrifuge to obtain a liquid that meets the discharge standard, and end the step.
  • the composite eluent in the step 1 includes 5-50mmol/L of chloride and 20-150mmol/L of organic acid, wherein the chloride includes ferric chloride, calcium chloride, etc., and the organic acid includes citric acid, malic acid and Tartaric acid, etc.; heavy metal-polluted soil is mainly soil containing cadmium and lead; in this example, 20mmol/L ferric chloride and 50mmol/L citric acid are used to prepare the eluent.
  • the process of leaching heavy metal-contaminated soil specifically includes the following steps:
  • Step 11 Take the heavy metal-contaminated soil for natural air-drying, pick out the gravel and grass sticks, and then grind and pass through a 50-mesh sieve;
  • Step 12 Moisten the sieved soil with water
  • Step 13 adding a leaching agent for mixed rinsing, the volume of the leaching agent added during rinsing to the soil mass ratio is 2-3L/kg;
  • Step 14 the soil after washing is left to stand, and the supernatant is removed
  • Step 15 Repeat step 13-step 14, cycle 1 to 3 times, to obtain metal-free soil;
  • Step 16 adding distilled water to dilute the residual liquid, the volume of distilled water added during dilution to the soil mass ratio is 2-3L/kg;
  • Step 17 leave the diluted soil to stand, and remove the supernatant
  • Step 18 Repeat steps 16-17, cycle 1-3 times, and end the steps.
  • step 12 the washing process is carried out at room temperature.
  • the supernatant in the step 14 and step 17 is the washing waste liquid.
  • the preferred ratio range of the amount of adsorbent is 0.5-1.5g/100ml. In this example it is 1g/100ml.
  • the preparation of the adsorbent made of multi-walled carbon nanotube cross-linked natural latex comprises the following steps:
  • Step 31 Pipette 100-200ml of deionized water, put it in a container, add 1g-3g of dispersant, and stir ultrasonically for 5min-30min at room temperature;
  • Step 32 add a total of 1 g to 3 g of multi-carbon-walled nanotubes by a small amount of multiple times, and stir ultrasonically at room temperature for 20 min to 50 min;
  • Step 33 Add a total of 30g-70g of natural latex by a small amount of multiple times, and ultrasonically stir for 10-30min at room temperature;
  • Step 34 Drying in a constant temperature drying oven at an environment of 50°C to 100°C to a constant weight to obtain the adsorbent;
  • Step 35 The dried adsorbent is placed in a muffle furnace, and calcined and carbonized at 700°C to 800°C for 1h to 3h;
  • Step 36 The carbonized adsorbent is ground in a mortar and passed through a 100-mesh sieve.
  • the preferred volume range of deionized water is 100-150ml
  • the preferred range of dispersant mass is 1g-2g
  • the preferred duration of ultrasonic stirring is 5-20min.
  • take 135 mL of deionized water add 1.8 g of dispersant, and ultrasonically stir for 20 min at room temperature; the dispersant is one of gum arabic or sodium polyphosphate.
  • the preferred mass range of multi-carbon-walled nanotubes is 1g-2g, and the preferred duration of ultrasonic stirring is 20-40min.
  • the preferred mass range of multi-carbon-walled nanotubes is 1g-2g, and the preferred duration of ultrasonic stirring is 20-40min.
  • 1.6 g of multi-walled carbon nanotubes were taken and stirred ultrasonically for 30 min.
  • the preferred mass range of natural latex is 40g-60g.
  • the quality of the added natural latex is 50g, and ultrasonically stirred for 25min.
  • the preferred time range for firing and carbonization is 1h-2h.
  • carbonization was carried out in a muffle furnace at 750°C for 1.5 hours.
  • the stirring time after adding the adsorbent is 20min-60min.
  • the stirring time was 40 minutes, and after the stirring was completed, it was placed in a centrifuge and centrifuged at a speed of 4000 rpm for 10 minutes.
  • the decomplexing agent 30% hydrogen peroxide is used as the decomplexing agent, and the preferred range of the decomplexing agent is to add 0.5-3.5 mL of 30% hydrogen peroxide to every 50 mL of the solution, and stir for 10-50 min. In this example, it is magnetic stirring at room temperature, and the stirring time is 30 min.
  • the pH is adjusted by an alkali solution, and the concentration of the alkali solution is 0.1-0.3 mol/L.
  • the pH value of the adjusted waste liquid preferably ranges from 9.5 to 10.5.
  • Na(OH) solution is used as the alkaline solution, and the pH is adjusted to be 10.
  • the precipitating agent is sodium phosphate in this example, and the preferred ratio range of the precipitating agent addition is 2-9 g/L. In this example, the proportion of the precipitating agent is 5g/L. After adding the precipitating agent, shake for 30 minutes at 25°C.
  • the flocculant is polyacrylamide, and the flocculant is added at a ratio of 5-25 g/L.
  • the shaking environment temperature of the constant temperature oscillator is 15-30° C., and the shaking time is 10-40 minutes.
  • the proportion of flocculant is 5g/L, after adding flocculant, shake at 25°C for 15min.
  • the centrifugal speed range of the centrifuge is 2500-5000 rpm.
  • the centrifugal speed of the centrifuge is 4000rpm, and the centrifugation time is 15min.
  • the heavy metal ions in the leaching waste liquid are adsorbed by the adsorbent, and the leaching waste liquid reaches the discharge standard through the treatment of network breaking, precipitation, flocculation, etc., and will not cause secondary pollution to the surrounding environment; through natural Prepared by cross-linking latex and multi-carbon-walled nanotubes to obtain an adsorbent, which can efficiently adsorb heavy metal ions in the leaching waste liquid, fully separate the two, and ensure the treatment effect of the leaching waste liquid; through pH adjustment, the leaching waste The pH value of the liquid is between 9 and 11.5, which avoids the problem of high pH in the existing wastewater treatment technology and solves the problem of water body environmental pollution.
  • This embodiment is an improvement of Embodiment 1, wherein several parts of heavy metal-contaminated farmland soil under a mine in a certain place are taken, wherein the lead content of the soil is 812 mg/kg, and the cadmium content is 33 mg/kg.
  • the quality of each part of soil is set 200g.
  • Step S1 leaching heavy metal-contaminated soil with a leaching agent to obtain heavy metal leaching waste liquid; wherein the leaching agent includes 20 mmol/L ferric chloride and 100 mmol/L citric acid;
  • Step S2 Take the rinsing waste liquid, and let the leaching waste liquid stand for 3 hours;
  • Step S3 Pipette the precipitated supernatant of the leaching waste liquid, and add an adsorbent made of multi-walled carbon nanotube cross-linked natural latex; the ratio of addition is 1.5 g of adsorbent for every 100 ml of leaching waste liquid;
  • Step S4 Stirring after adding the adsorbent, the stirring time is 40min, after the stirring is completed, centrifuge at 4000rpm for 10min;
  • Step S5 Pipette the supernatant after centrifugation, add 30% hydrogen peroxide, and stir with a magnet; stir for 30 minutes, and complete the network breaking process;
  • Step S6 adjust the pH of the waste liquid after the network is broken, and adjust the pH value to 10;
  • Step S7 Add sodium phosphate to the waste liquid, the addition ratio of sodium phosphate is 8g/L; after sodium phosphate is added, put it into a constant temperature oscillator for shaking, set the temperature at 25°C, and shake for 25 minutes;
  • Step S8 Add polyacrylamide to the waste liquid at a ratio of 10 g/L; after adding polyacrylamide, put it into a constant temperature oscillator for shaking, set the temperature at 25°C, and shake for 15 minutes;
  • Step S9 The waste liquid obtained in step S8 is centrifuged at 4000 rpm for 15 minutes by a centrifuge to obtain a liquid that meets the discharge standard, and the step ends.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soil Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,具体包括如下步骤:淋洗废水的制备、淋洗废水的沉淀、多壁碳纳米管交联天然乳胶吸附剂的制备、淋洗废水的吸附处理、淋洗废水的破络处理、pH调节、沉淀的投加、絮凝剂的投加、沉淀分离;淋洗废水是使用氯化物5~50mmol/L和有机酸20-150mmol/L的制得的复合型淋洗溶液,淋洗铅、镉等高浓度重金属污染土壤;该废水处理沉淀技术效果显著、效率高、操作简单、成本相对低廉、实用性强,对淋洗废水中铅和镉的去除率可分别高达99.94%和99.86%,且处理后的废水经pH值调节可循环利用,同时净化了水质降低了水体污染的风险。

Description

一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法 技术领域
本发明涉及废水处理领域,特别是涉及一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法。
背景技术
目前,在我国大约有548万公顷的土壤处于严重污染的状况,主要的污染物有镉、铅、砷以及多环芳烃,其中,有色金属矿区周边的土壤污染尤其严重。矿山开采和矿区金属冶炼等活动,会导致矿区附近的土壤遭受严重的重金属污染和破坏,污染源主要包括矿区溢出的尾矿、排放在空气中的粉尘以及随着河流进入农田的酸性矿水等。重金属一旦进入农田,不但会对土壤的功能和结构造成严重的破坏,同时也会对农作物的生长和发育造成不利影响,严重的会导致农作物减产甚至绝收,另一方面重金属对土壤的污染,如果不作处理会长时间留存,因此对于污染土壤的净化是有必要的。
其中化学淋洗是处理重金属污染的土壤的有效修复方法。化学淋洗主要通过化学反应,使得淋洗剂中的试剂成分与土壤中的重金属相作用,形成溶解性的重金属离子或者金属络合物,实现土壤中的重金属成分快速高效去除。但是化学淋洗会产生新的重金属废水,对于重金属废水处理不当会导致二次污染,甚至可能带有毒性。因此急需一种高效的重金属淋洗废水的处理方法。
发明内容
本发明的目的是解决现有技术的不足,提供一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法。
为了解决上述问题,本发明采用如下技术方案:
一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,包括如下步骤:
步骤1:通过淋洗剂淋洗重金属污染的土壤,获得重金属淋洗废液;其中淋洗剂为氯化物和有机酸混合制得的复合淋洗剂;
步骤2:取淋洗废液,将淋洗废液静置沉淀0~3h;
步骤3:移取淋洗废液的沉淀上清液,添加多壁碳纳米管交联天然乳胶制成的吸附剂;添加的比例为每100ml淋洗废液,添加0.1g~1.5g吸附剂;
步骤4:添加吸附剂后进行搅拌,搅拌时间为5min~60min,完成搅拌后通过离心机进行离心分离;
步骤5:移取离心分离后的上清液,加入破络剂,并进行搅拌;添加破络剂的比例为每50ml,添加0.1ml~4ml破络剂;搅拌5min~60min,完成破络处理;
步骤6:对破络后的废液进行pH调节,调节pH值在9~11.5之间;
步骤7:对废液添加沉淀剂,沉淀剂的添加比例为1g~10g/L;沉淀剂添加后放入恒温振荡器进行震荡,震荡时间为5min~40min;
步骤8:对废液中添加絮凝剂,添加的比例为1g~25g/L;絮凝剂添加后,放入恒温振荡器进行震荡,震荡时间为5min~40min;
步骤9:将步骤8获得的废液通过离心机进行离心分离,获得符合排放标准的液体,结束步骤。
进一步的,所述步骤3中的多壁碳纳米管交联天然乳胶制成的吸附剂的制备,包括如下步骤:
步骤31:移取100~200ml去离子水,置于容器中,添加1g~3g分散剂,在室温环境下超声搅拌5min~30min;
步骤32:通过少量多次的方法,共添加1g~3g多碳壁纳米管,室温下超声搅拌20min~50min;
步骤33:通过少量多次的方法,共添加30g~70g天然乳胶,室温下超声搅拌10~30min;
步骤34:通过恒温干燥箱,烘干至恒重,获得吸附剂;
步骤35:烘干后的吸附剂置于马弗炉内进行焙烧碳化;
步骤36:碳化后的吸附剂通过研钵研磨,过100目筛。
进一步的,所述步骤35中,在马弗炉内以700℃~800℃的环境下焙烧碳化1h~3h。
进一步的,所述步骤5中的破络剂采用30%的双氧水。
进一步的,所述步骤6中,通过碱溶液进行pH调节;碱溶液的浓度为0.1~0.3mol/L。
进一步的,所述步骤7中的沉淀剂为磷酸钠。
进一步的,所述步骤8中的絮凝剂为聚丙烯酰胺。
进一步的,所述步骤4和步骤9中的离心机转速为4000rpm。
进一步的,所述步骤1中的复合淋洗剂包括氯化物5~50mmol/L和有机酸20~150mmol/L;氯化物包括三氯化铁、氯化钙,有机酸包括柠檬酸、苹果酸以及酒石酸。
进一步的,所述淋洗重金属污染的土壤的过程具体包括如下步骤:
步骤11:取重金属污染土壤进行自然风干,挑选出其中的石砾和草木棍,随后经过研磨,过50目筛;
步骤12:将过筛的土壤用水润透;
步骤13:添加淋洗剂进行混合淋洗,淋洗时加入的淋洗剂的体积与土壤质量比为2~3L/kg;
步骤14:将淋洗后的土壤静置,去除上清液;
步骤15:重复步骤13-步骤14,循环1~3次,获得去金属的土壤;
步骤16:添加蒸馏水进行残留液的稀释,稀释时加入的蒸馏水的体积与土壤质量比为2~3L/kg;
步骤17:将稀释后的土壤静置,去除上清液;
步骤18:重复步骤16-步骤17,循环1~3次,结束步骤。
本发明的有益效果为:
通过对淋洗废液中的重金属离子由吸附剂进行吸附,并经过破络、沉淀、絮凝等处理,使淋洗废液达到排放标准,不会对周围环境产生二次污染;
通过天然乳胶和多碳壁纳米管交联制备,获得吸附剂,能够高效吸附淋洗废液中的重金属离子,使两者充分分离,保证淋洗废液的处理效果;
通过pH调节,使得淋洗废液的pH值在9~11.5之间,避免了现有的废水处理技术pH偏高问题,解决了水体环境污染问题。
附图说明
图1为本发明实施一的结构框图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观 点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一:
如图1所示,一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,包括如下步骤:
步骤1:通过淋洗剂淋洗重金属污染的土壤,获得重金属淋洗废液;其中淋洗剂为氯化物和有机酸混合制得的复合淋洗剂;
步骤2:取淋洗废液,将淋洗废液静置沉淀0~3h;
步骤3:移取淋洗废液的沉淀上清液,添加多壁碳纳米管交联天然乳胶制成的吸附剂;添加的比例为每100ml淋洗废液,添加0.1g~1.5g吸附剂;
步骤4:添加吸附剂后进行搅拌,搅拌时间为5min~60min,完成搅拌后通过离心机进行离心分离;
步骤5:移取离心分离后的上清液,加入破络剂,并进行搅拌;添加破络剂的比例为每50ml,添加0.1ml~4ml破络剂;搅拌5min~60min,完成破络处理;
步骤6:对破络后的废液进行pH调节,调节pH值在9~11.5之间;
步骤7:对废液添加沉淀剂,沉淀剂的添加比例为1g~10g/L;沉淀剂添加后放入恒温振荡器进行震荡,震荡时间为5min~40min;
步骤8:对废液中添加絮凝剂,添加的比例为1g~25g/L;絮凝剂添加后,放入恒温振荡器进行震荡,震荡时间为5min~40min;
步骤9:将步骤8获得的废液通过离心机进行离心分离,获得符合排放标准的液体,结束步骤。
所述步骤1中的复合淋洗剂包括氯化物5~50mmol/L和有机酸20~150mmol/L,其中氯化物包括三氯化铁、氯化钙等,有机酸包括柠檬酸、苹果酸以及酒石酸等;重金属污染的土壤主要为含有镉、铅的土壤;在本例中取20mmol/L的氯化铁和50mmol/L的柠檬酸制备淋洗剂。淋洗重金属污染的土壤的 过程具体包括如下步骤:
步骤11:取重金属污染土壤进行自然风干,挑选出其中的石砾和草木棍,随后经过研磨,过50目筛;
步骤12:将过筛的土壤用水润透;
步骤13:添加淋洗剂进行混合淋洗,淋洗时加入的淋洗剂的体积与土壤质量比为2~3L/kg;
步骤14:将淋洗后的土壤静置,去除上清液;
步骤15:重复步骤13-步骤14,循环1~3次,获得去金属的土壤;
步骤16:添加蒸馏水进行残留液的稀释,稀释时加入的蒸馏水的体积与土壤质量比为2~3L/kg;
步骤17:将稀释后的土壤静置,去除上清液;
步骤18:重复步骤16-步骤17,循环1~3次,结束步骤。
所述步骤12中,淋洗过程在室温中进行。
所述步骤14和步骤17中的上清液即为淋洗废液。
所述步骤3中,吸附剂用量的优选比例范围为0.5~1.5g/100ml。在本例中为1g/100ml。其中多壁碳纳米管交联天然乳胶制成的吸附剂的制备,包括如下步骤:
步骤31:移取100~200ml去离子水,置于容器中,添加1g~3g分散剂,在室温环境下超声搅拌5min~30min;
步骤32:通过少量多次的方法,共添加1g~3g多碳壁纳米管,室温下超声搅拌20min~50min;
步骤33:通过少量多次的方法,共添加30g~70g天然乳胶,室温下超声搅拌10~30min;
步骤34:通过恒温干燥箱,在50℃~100℃的环境下进行烘干至恒重,获得吸附剂;
步骤35:烘干后的吸附剂置于马弗炉内,在700℃~800℃的环境下焙烧碳化1h~3h;
步骤36:碳化后的吸附剂通过研钵研磨,过100目筛。
所述步骤31中,去离子水的优选体积范围为100~150ml,分散剂的质量优 选范围为1g~2g,超声搅拌优选时长为5~20min。在本例中,取去离子水135mL,加入分散剂1.8g,室温下超声搅拌20min;分散剂为阿拉伯胶或多聚磷酸钠中的一种。
所述步骤32中,多碳壁纳米管的优选质量范围为1g~2g,超声搅拌的优选时长为20~40min。在本例中,取多壁碳纳米管1.6g,超声搅拌30min。
所述步骤33中,天然乳胶的优选质量范围为40g~60g。在本例中,添加的天然乳胶的质量为50g,超声搅拌25min。
所述步骤35中,焙烧碳化的优选时间范围为1h~2h。在本例中,在750℃的马弗炉中焙烧碳化1.5h。
所述步骤4中,添加吸附剂后的搅拌时间为20min-60min。在本例中,搅拌时间为40min,完成搅拌后置于离心机中以4000rpm的转速离心10min。
所述步骤5中,破络剂采用30%的双氧水,破络剂的优选范围为每50mL溶液中,加入30%的双氧水0.5~3.5mL,搅拌10~50min。在本例中,为室温下的磁子搅拌,搅拌时间为30min。
所述步骤6中,通过碱溶液进行pH调节,碱溶液的浓度为0.1~0.3mol/L。调节后的废液pH值优选范围为9.5~10.5之间。在本例中,碱溶液采用Na(OH)溶液,调节pH为10。
所述步骤7中,在本例中沉淀剂为磷酸钠,沉淀剂添加量的优选比例范围为2~9g/L。在本例中沉淀剂的比例为5g/L,添加沉淀剂后在25℃环境下震荡30min。
所述步骤8中,在本例中絮凝剂为聚丙烯酰胺,絮凝剂的按5~25g/L比例进行添加,恒温振荡器的震荡环境温度为15~30℃,震荡时间为10~40min。在本例中絮凝剂的比例为5g/L,添加絮凝剂后在25℃环境下震荡15min。
所述步骤9中,离心机离心转速范围为2500~5000rpm。在本例中离心机的离心转速为4000rpm,离心时间为15min。
在实施的过程中,取某地的矿山下重金属污染农田土壤若干份,其中土壤的含铅量为661mg/kg,含镉量为13mg/kg,每份土壤的质量设定为200g。首先通过20mmol/L的氯化铁和50mmol/L的柠檬酸的400ml的复合淋洗剂完成一份土壤的一次淋洗;在步骤1-步骤9中,吸附剂10g/L、30%双氧水1mL、NaOH浓度0.2mol/L、磷酸钠按5g/L添加、聚丙烯酰胺按5g/L添加,直至完成土壤的淋洗 和淋洗废水的处理。其中,通过对淋洗废液中的重金属离子由吸附剂进行吸附,并经过破络、沉淀、絮凝等处理,使淋洗废液达到排放标准,不会对周围环境产生二次污染;通过天然乳胶和多碳壁纳米管交联制备,获得吸附剂,能够高效吸附淋洗废液中的重金属离子,使两者充分分离,保证淋洗废液的处理效果;通过pH调节,使得淋洗废液的pH值在9~11.5之间,避免了现有的废水处理技术pH偏高问题,解决了水体环境污染问题。
实施例二:
本实施例为实施例一改进获得,其中取某地的矿山下重金属污染农田土壤若干份,其中土壤的含铅量为812mg/kg,含镉量为33mg/kg,每份土壤的质量设定为200g。
步骤S1:通过淋洗剂淋洗重金属污染的土壤,获得重金属淋洗废液;其中淋洗剂包括20mmol/L的氯化铁和100mmol/L的柠檬酸;
步骤S2:取淋洗废液,将淋洗废液静置沉淀3h;
步骤S3:移取淋洗废液的沉淀上清液,添加多壁碳纳米管交联天然乳胶制成的吸附剂;添加的比例为每100ml淋洗废液,添加1.5g吸附剂;
步骤S4:添加吸附剂后进行搅拌,搅拌时间为40min,完成搅拌后通过离心机以4000rpm进行离心分离10min;
步骤S5:移取离心分离后的上清液,加入30%的双氧水,并通过磁子进行搅拌;搅拌30min,完成破络处理;
步骤S6:对破络后的废液进行pH调节,调节pH值为10;
步骤S7:对废液添加磷酸钠,磷酸钠的添加比例为8g/L;磷酸钠添加后放入恒温振荡器进行震荡,设定温度为25℃,震荡时间为25min;
步骤S8:对废液中添加聚丙烯酰胺,添加的比例为10g/L;聚丙烯酰胺添加后,放入恒温振荡器进行震荡,设定温度为25℃,震荡时间为15min;
步骤S9:将步骤S8获得的废液通过离心机以4000rpm进行离心分离15min,获得符合排放标准的液体,结束步骤。
对实施例一和实施例二中经过处理后的废液,采用电感耦合等离子体发射光
谱仪(ICP-OES Agilent 710)测定处理后溶液中Pb、Cd的含量,结果如表1所示:
表1 淋洗液重金属去除率
Figure PCTCN2021139583-appb-000001
以上描述仅是本发明的具体实例,不构成对本发明的任何限制。显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修改和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (10)

  1. 一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,包括如下步骤:
    步骤1:通过淋洗剂淋洗重金属污染的土壤,获得重金属淋洗废液;其中淋洗剂为氯化物和有机酸混合制得的复合淋洗剂;
    步骤2:取淋洗废液,将淋洗废液静置沉淀0~3h;
    步骤3:移取淋洗废液的沉淀上清液,添加多壁碳纳米管交联天然乳胶制成的吸附剂;添加的比例为每100ml淋洗废液,添加0.1g~1.5g吸附剂;
    步骤4:添加吸附剂后进行搅拌,搅拌时间为5min~60min,完成搅拌后通过离心机进行离心分离;
    步骤5:移取离心分离后的上清液,加入破络剂,并进行搅拌;添加破络剂的比例为每50ml,添加0.1ml~4ml破络剂;搅拌5min~60min,完成破络处理;
    步骤6:对破络后的废液进行pH调节,调节pH值在9~11.5之间;
    步骤7:对废液添加沉淀剂,沉淀剂的添加比例为1g~10g/L;沉淀剂添加后放入恒温振荡器进行震荡,震荡时间为5min~40min;
    步骤8:对废液中添加絮凝剂,添加的比例为1g~25g/L;絮凝剂添加后,放入恒温振荡器进行震荡,震荡时间为5min~40min;
    步骤9:将步骤8获得的废液通过离心机进行离心分离,获得符合排放标准的液体,结束步骤。
  2. 根据权利要求1所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述步骤3中的多壁碳纳米管交联天然乳胶制成的吸附剂的制备,包括如下步骤:
    步骤31:移取100~200ml去离子水,置于容器中,添加1g~3g分散剂,在室温环境下超声搅拌5min~30min;
    步骤32:通过少量多次的方法,共添加1g~3g多碳壁纳米管,室温下超声搅拌20min~50min;
    步骤33:通过少量多次的方法,共添加30g~70g天然乳胶,室温下超声搅拌10~30min;
    步骤34:通过恒温干燥箱,烘干至恒重,获得吸附剂;
    步骤35:烘干后的吸附剂置于马弗炉内进行焙烧碳化;
    步骤36:碳化后的吸附剂通过研钵研磨,过100目筛。
  3. 根据权利要求2所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述步骤35中,在马弗炉内以700℃~800℃的环境下焙烧碳化1h~3h。
  4. 根据权利要求1所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述步骤5中的破络剂采用30%的双氧水。
  5. 根据权利要求1所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述步骤6中,通过碱溶液进行pH调节;碱溶液的浓度为0.1~0.3mol/L。
  6. 根据权利要求1所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述步骤7中的沉淀剂为磷酸钠。
  7. 根据权利要求1所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述步骤8中的絮凝剂为聚丙烯酰胺。
  8. 根据权利要求1所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述步骤4和步骤9中的离心机转速为4000rpm。
  9. 根据权利要求1所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述步骤1中的复合淋洗剂包括氯化物5~50mmol/L和有机酸20~150mmol/L;氯化物包括三氯化铁、氯化钙,有机酸包括柠檬酸、苹果酸以及酒石酸。
  10. 根据权利要求9所述的一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法,其特征在于,所述淋洗重金属污染的土壤的过程具体包括如下步骤:
    步骤11:取重金属污染土壤进行自然风干,挑选出其中的石砾和草木棍,随后经过研磨,过50目筛;
    步骤12:将过筛的土壤用水润透;
    步骤13:添加淋洗剂进行混合淋洗,淋洗时加入的淋洗剂的体积与土壤质量比为2~3L/kg;
    步骤14:将淋洗后的土壤静置,去除上清液;
    步骤15:重复步骤13-步骤14,循环1~3次,获得去金属的土壤;
    步骤16:添加蒸馏水进行残留液的稀释,稀释时加入的蒸馏水的体积与土壤质量比为2~3L/kg;
    步骤17:将稀释后的土壤静置,去除上清液;
    步骤18:重复步骤16-步骤17,循环1~3次,结束步骤。
PCT/CN2021/139583 2021-11-02 2021-12-20 一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法 WO2023077631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111287442.5 2021-11-02
CN202111287442.5A CN114044584B (zh) 2021-11-02 2021-11-02 一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法

Publications (1)

Publication Number Publication Date
WO2023077631A1 true WO2023077631A1 (zh) 2023-05-11

Family

ID=80206853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139583 WO2023077631A1 (zh) 2021-11-02 2021-12-20 一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法

Country Status (2)

Country Link
CN (2) CN114044584B (zh)
WO (1) WO2023077631A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276845A (ja) * 2001-06-13 2001-10-09 Kansai Electric Power Co Inc:The 廃液の処理方法
CN105537254A (zh) * 2016-01-27 2016-05-04 南京农业大学 一种修复重金属污染土壤的化学淋洗废水的净化处理方法
CN105668856A (zh) * 2016-03-08 2016-06-15 济宁学院 一种含重金属废水的处理方法
CN107175065A (zh) * 2017-05-05 2017-09-19 陕西科技大学 一种有机无机复合污染黄土淋洗液的处理及再利用方法
CN110305375A (zh) * 2019-07-11 2019-10-08 陕西延长石油(集团)有限责任公司研究院 一种碳纳米管改性天然橡胶材料及其制备方法
CN111135792A (zh) * 2019-12-31 2020-05-12 曲阜师范大学 一种多壁碳纳米管杂化污泥基炭复合材料及其制备方法与应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1885647A1 (en) * 2005-04-22 2008-02-13 Seldon Technologies, LLC Article comprising carbon nanotubes and method of using the same for purifying fluids
CN103285821A (zh) * 2013-05-05 2013-09-11 台州学院 一种壳聚糖表面修饰的磁性石墨化碳纳米管吸附剂的制备方法
CN104874381A (zh) * 2015-04-30 2015-09-02 扬州大学 一种碳/碳纳米管复合泡沫吸附材料的制备方法
US10040698B2 (en) * 2015-05-14 2018-08-07 King Fahd University Of Petroleum And Minerals Synthesis and characterization of a new series of cross-linked (phenol, formaldehyde, alkyldiamine) terpolymers for the removal of toxic metal ions from wastewater
CN105833855B (zh) * 2016-06-16 2018-12-25 青岛盛瀚色谱技术有限公司 一种亲水性乳胶附聚型阴离子色谱填料制备方法
CN109759025A (zh) * 2019-01-28 2019-05-17 南京思宇环保科技有限公司 一种废水处理用吸附剂的制备方法
CN110449132B (zh) * 2019-09-05 2022-03-25 江西理工大学 一种改性碳纳米管吸附剂的制备方法及其应用
CN112978983B (zh) * 2021-02-05 2022-04-19 中南林业科技大学 基于铁基生物炭的重金属络合废水处理及其资源化工艺
CN112958070B (zh) * 2021-02-23 2022-01-11 浙江大学 一种球磨法制备二噁英低温降解复合催化剂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276845A (ja) * 2001-06-13 2001-10-09 Kansai Electric Power Co Inc:The 廃液の処理方法
CN105537254A (zh) * 2016-01-27 2016-05-04 南京农业大学 一种修复重金属污染土壤的化学淋洗废水的净化处理方法
CN105668856A (zh) * 2016-03-08 2016-06-15 济宁学院 一种含重金属废水的处理方法
CN107175065A (zh) * 2017-05-05 2017-09-19 陕西科技大学 一种有机无机复合污染黄土淋洗液的处理及再利用方法
CN110305375A (zh) * 2019-07-11 2019-10-08 陕西延长石油(集团)有限责任公司研究院 一种碳纳米管改性天然橡胶材料及其制备方法
CN111135792A (zh) * 2019-12-31 2020-05-12 曲阜师范大学 一种多壁碳纳米管杂化污泥基炭复合材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAIZI XIONG, LI DUOSHENG, YE YIN, LIN KUIXIN: "Progress in Synthesis and Adsorption Properties of Three-dimensional Reticulated Graphene", JOURNAL OF FUNCTIONAL MATERIALS, GAI-KAN BIANJIBU , CHONGQING, CN, vol. 51, no. 8, 31 August 2020 (2020-08-31), CN , pages 08068 - 08069, XP093063563, ISSN: 1001-9731 *

Also Published As

Publication number Publication date
CN114044584B (zh) 2022-11-04
CN114044584A (zh) 2022-02-15
CN115382511A (zh) 2022-11-25
CN115382511B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN108722349B (zh) 磁性水热炭的制备方法及其应用
Suiyi et al. A novel clinoatacamite route to effectively separate Cu for recycling Ca/Zn/Mn from hazardous smelting waterwork sludge
CN106399697B (zh) 一种土壤复合重金属污染治理及资源化方法
Shan et al. Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation
Liu et al. Simultaneous removal of lead, manganese, and copper released from the copper tailings by a novel magnetic modified biosorbent
CN117339992B (zh) 一种基于磁性材料原位去除污染土壤中稀土元素的方法
CN109811128B (zh) 一种从冶炼酸性废水回收铊及制备碘化亚铊的方法
CN109850935B (zh) 一种以冶炼厂含铊酸性废水为原料制备氯化亚铊的方法
CN110732311A (zh) 一种交联壳聚糖包覆MoS2吸附剂、制备方法及其应用
CN104645932A (zh) 一种铁锰氧化物复合改性沸石及其制备方法与应用
WO2023077631A1 (zh) 一种多壁碳纳米管交联天然乳胶吸附剂处理重金属淋洗废水的方法
CN114275868A (zh) 一种重金属靶向去除剂及其制备方法和应用
CN111228711B (zh) 一种利用石化废碱渣对含汞废盐渣进行稳定化固化的方法
CN113401995A (zh) 一种重金属污染土壤淋洗废液处理及再生回用的方法
CN102816933A (zh) 一种铬碴的处理工艺方法
CN110152614B (zh) 一种表面改性铁基汞吸附剂的制备方法
CN109304354A (zh) 一种铝和铁复合污染土壤的治理方法
CN107413823B (zh) 一种低温热脱附联合化学淋洗治理含汞危险废渣的方法
CN113562830B (zh) 一种铜冶炼污酸沉砷剂的制备方法
CN109811130B (zh) 一种从冶炼酸性废水回收铊和汞的方法
CN107555519A (zh) 一种有效处理地下水砷污染的方法
CN112279538B (zh) 一种焙烧-酸浸联用提取石膏渣中污染物的方法
Wang et al. Utilizing different types of biomass materials to modify steel slag for the preparation of composite materials used in the adsorption and solidification of Pb in solutions and soil
CN109626430B (zh) 一种从冶炼酸性废水中回收铊制备铬酸亚铊的方法
CN109012571B (zh) 一种改性电解锰废渣及其制备方法以及工业废水处理方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE