WO2023075514A1 - 전극 조립체 및 이를 포함하는 이차 전지 - Google Patents

전극 조립체 및 이를 포함하는 이차 전지 Download PDF

Info

Publication number
WO2023075514A1
WO2023075514A1 PCT/KR2022/016730 KR2022016730W WO2023075514A1 WO 2023075514 A1 WO2023075514 A1 WO 2023075514A1 KR 2022016730 W KR2022016730 W KR 2022016730W WO 2023075514 A1 WO2023075514 A1 WO 2023075514A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
separators
electrode
separator
temperature
Prior art date
Application number
PCT/KR2022/016730
Other languages
English (en)
French (fr)
Inventor
배동훈
김지은
신환호
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280034839.XA priority Critical patent/CN117296182A/zh
Priority to CA3219607A priority patent/CA3219607A1/en
Priority to JP2023566824A priority patent/JP2024515386A/ja
Priority to EP22887709.8A priority patent/EP4318723A1/en
Publication of WO2023075514A1 publication Critical patent/WO2023075514A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly including a plurality of separators and a secondary battery including the same.
  • a secondary battery is formed in a structure that seals an electrode assembly and an electrolyte inside a battery case, and is largely classified into a cylindrical battery, a prismatic battery, a pouch-type battery, etc. depending on the appearance, and a lithium ion battery, a lithium ion battery They are also classified as polymer batteries and lithium polymer batteries. Due to the recent trend towards miniaturization of mobile devices, demand for thin prismatic batteries and pouch-type batteries is increasing.
  • the electrode assembly accommodated in the battery case may be classified into a jelly-roll type (winding type), a stack type (lamination type), a stack and folding type (composite type), or a stack and lamination type structure according to its shape. .
  • a secondary battery is manufactured by assembling an electrode assembly in a form embedded in a battery case together with an electrolyte solution and then going through an activation process.
  • the activation process stabilizes the battery structure and makes it usable through processes of charging, aging, and discharging the assembled battery.
  • the negative electrode expands.
  • a defect in which the electrodes and the separator are not well adhered widens, and a bending phenomenon in which the electrode assembly is bent in one direction or randomly may occur. This bending phenomenon has a problem that appears more prominently in the stack type electrode assembly and the stack and lamination type electrode assembly.
  • the present invention is to solve the above problems, an electrode assembly developed to suppress the occurrence of a bending phenomenon by disposing separators having different adhesive properties on the center and surface of the electrode assembly, and a secondary battery including the same want to provide
  • the present invention is an electrode assembly including two or more types of separators in which positive electrodes and negative electrodes are alternately laminated with a separator interposed therebetween and have different temperatures at which the adhesive strength is maximized, and the adhesive strength of the separators located in the center of the electrode assembly to the electrode is maximized. It is characterized by an electrode assembly and a secondary battery including the same where the temperature is lower than the temperature at which the adhesion of the separators located in the remaining region to the electrode is maximized.
  • the present invention by disposing separators having different adhesive properties on the center and surface (outside) of the electrode assembly, it is possible to suppress the bending phenomenon of the electrode assembly caused by temperature non-uniformity inside the electrode assembly during the activation process.
  • a hot press process that is, a pressurized pre-heating process, in which a certain pressure and heat is applied to the secondary battery in order to increase the adhesive strength between the electrode and the separator before or during initial charging can proceed
  • a temperature difference between the surface portion and the center portion occurs due to the thickness of the electrode assembly.
  • the separators located in the central region do not reach a temperature sufficient for adhesive strength, and as a result, the adhesive force of the separators located in the surface region to the electrode is higher than that of the central region. It rises.
  • Separators located on the surface part have higher adhesion and stretch together when the attached electrode expands due to initial charging, and the bending phenomenon in which the electrode assembly is bent due to the difference in the degree of expansion or stretching of the separators for the center and surface part Occurs.
  • the separators located in the surface region are placed at a temperature with low adhesive strength, and as a result, the adhesive force of the separators located in the surface region to the electrode is weaker than that of the central region. will lose Due to the difference in adhesive strength, a difference in the degree of expansion or elongation of the separators occurs between the center and the surface, resulting in a bending phenomenon in which the electrode assembly is bent.
  • the separator having maximum adhesive strength at a relatively low temperature in the center of the electrode assembly and when a separator having maximum adhesion at a relatively high temperature is disposed on the surface, the difference in adhesion due to the temperature difference between the center and the surface of the electrode assembly is alleviated during the activation process, thereby suppressing the bending phenomenon.
  • Example 1 is a schematic diagram of an electrode assembly manufactured in Example 1;
  • Example 2 is a result of bending evaluation of the secondary battery manufactured in Example 1;
  • the present applicant has found that during an activation process, particularly during a pressurized pre-heating process, a temperature difference occurs between the surface portion and the center portion of the electrode assembly due to the thickness of the secondary battery, resulting in bending of the electrode assembly.
  • the applicant of the present invention relates to a bending phenomenon due to a difference in adhesive strength between a separator located on the surface of the electrode assembly and a separator located in the center due to a temperature difference due to a difference in heat transfer inside the electrode assembly during the heating and pressing process. It has been found that, it is intended to provide an electrode assembly capable of preventing such a bending shape and a secondary battery including the same.
  • the positive electrode and the negative electrode are alternately stacked with a separator interposed therebetween, and the sum of the positive electrode, the negative electrode and the separator is at least 20 to 50, preferably 20 to 45, more preferably It may be 30 to 45 at most.
  • the sum of the positive electrode, the negative electrode, and the separator included in the electrode assembly is less than the above range, it is difficult to implement high capacity, and when it is greater than the above range, the process is complicated and it is difficult to suppress the bending phenomenon.
  • the material and type of the positive electrode, negative electrode and separator are not particularly limited, and various positive electrodes, negative electrodes and separators known in the art may be used.
  • the electrode assembly of the present invention is characterized by disposing separators having different adhesive properties, specifically, temperatures at which maximum adhesive force is realized, on the center and surface of the electrode assembly.
  • the electrode assembly of the present invention is an electrode assembly including two or more types of separators in which positive electrodes and negative electrodes are alternately stacked with separators interposed therebetween and have different temperatures at which adhesion is maximized, and the electrodes of the separators located in the center of the electrode assembly.
  • the temperature at which the adhesion to the electrode is maximized may be lower than the temperature at which the adhesion to the electrodes of the separators located in the remaining regions is maximized.
  • the center of the electrode assembly may refer to a region in which the distance from the outermost surface is D/2 - kD to D/2 + kD, and the remaining region excluding the region may refer to the surface of the electrode assembly.
  • the k may be a constant that satisfies the range of 0.1 ⁇ k ⁇ 0.3, preferably satisfies the range of 0.1 ⁇ k ⁇ 0.25, and most preferably may satisfy the range of 0.1 ⁇ k ⁇ 0.2.
  • the difference between the temperature at which the adhesive force of the separators located in the center to the electrode is maximized and the temperature at which the adhesive force of the separators located in the remaining region (surface portion) to the electrode is maximum is 1 ° C. to 15°C or less, preferably 1°C or more and 10°C or less, more preferably 3°C or more and 8°C or less.
  • the central portion of the electrode assembly exhibits a lower temperature than the surface portion because the amount of heat transferred in the heating and pressing process is smaller than that of the surface portion.
  • the temperature difference between the central and surface regions varies depending on the thickness or material of the electrode assembly, but is generally in the range of 1 to 15 °C.
  • the temperature at which the adhesive force of the separators located in the center is maximized may be less than 70 ° C, preferably 50 ° C or more and less than 70 ° C, more preferably 55 ° C or more and 68 ° C or less.
  • the temperature at which the adhesive strength of the separators located in the surface region is maximum may be 70 ° C or more and 80 ° C or less, preferably 70 ° C or more and 75 ° C or less, more preferably 70 ° C or more and 72 ° C or less.
  • the ratio of the number of separators located in the region where the distance from the outermost surface of the electrode assembly is D / 2 - kD to D / 2 + kD to the number of separators included in the entire electrode assembly It may be 1:1 to 1:4, preferably 1:1 to 1:3, and more preferably 1:1.25 to 1:1.50.
  • the separator serves to block internal short circuit between electrodes and to impregnate the electrolyte.
  • the temperature at which the adhesive force of the separator is maximized can be measured using a universal testing machine (UTM), specifically, (1) sampling the anode and the separator to 2 cm X 6 cm, (2 ) Stacking the sampled anode and separator, (3) injecting electrolyte after putting the stacked sample in a pouch sealed on three sides, (4) sealing the pouch completely and heating and pressurizing for 5 minutes through Jig Formation Progress, (5) After opening the pouch, it can be calculated by connecting the positive electrode and the separator part of the separator laminate to UTM tongs, and then measuring it through a peel off test at an angle of 90 degrees.
  • UTM universal testing machine
  • the separator according to the present invention is a commonly used porous polymer resin, for example, a polyolefin polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • the prepared porous polymer resin may be used alone or in combination thereof, or conventional porous nonwoven fabrics such as high melting point glass fibers and polyethylene terephthalate fibers may be used, but the present invention is not limited thereto.
  • the pore diameter of the porous separator is generally 0.01 ⁇ m to 50 ⁇ m, and the porosity may be 5% to 95%.
  • Separators included in the electrode assembly of the present invention may include a coating layer or a binder coating layer containing inorganic particles or polymer materials.
  • the separator included in the electrode assembly of the present invention may be a safety reinforced separator (SRS) separator formed with a coating layer containing inorganic particles or polymer materials made of ceramic components to secure heat resistance or mechanical strength.
  • SRS safety reinforced separator
  • the separators included in the electrode assembly of the present invention include a porous separator substrate and a porous coating layer entirely coated on one or both surfaces of the separator substrate, and the coating layer includes metal oxides, metalloid oxides, metal fluorides, It may include a mixture of inorganic particles selected from metal hydroxide and combinations thereof and a binder polymer that connects and fixes the inorganic particles to each other.
  • the coating layer may include at least one selected from Al 2 O 3 and AlOOH as inorganic particles.
  • the inorganic particles can improve the thermal stability of the separation membrane. That is, the inorganic particles can prevent the separator from shrinking at high temperatures.
  • the binder polymer can improve the mechanical stability of the separator by fixing the inorganic particles.
  • the coating layer is polyethylene, polyvinylidene fluoride, polyvinylidene fluoride-tetrafluoroethylene, polyvinylidene fluoride-chlorotrifluoroethylene, and polyvinylidene fluoride-hexafluoropropylene as a binder polymer. It may include one or more selected from.
  • the binder polymer may adhere the electrode to the separator. Since the binder polymer is distributed throughout the coating layer, unlike the above-described adhesive, adhesion can occur completely on the entire adhesive surface. Therefore, when such a separator is used, the electrode can be more stably fixed to the separator.
  • the temperature at which the adhesion of the separators is maximized may be adjusted by changing the type of binder included in the coating layer or adjusting humidification conditions during coating, but is not limited thereto.
  • the thickness of the separator according to the present invention may generally range from 7 ⁇ m to 22 ⁇ m, preferably from 9 ⁇ m to 15 ⁇ m.
  • the thickness of the separator is within the above range, the number of layers of the anode, the separator, and the cathode can be increased, thereby increasing energy density.
  • the positive electrode included in the electrode assembly of the present invention may be prepared by coating a positive electrode mixture slurry including a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector.
  • the cathode current collector is not particularly limited as long as it does not cause chemical change in the battery and has conductivity.
  • the cathode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel, or aluminum.
  • the lithium metal oxide is a lithium-manganese-based oxide (eg, LiMnO 2 , LiMn 2 O 4 , etc.), a lithium-cobalt-based oxide (eg, LiCoO 2 , etc.), a lithium-nickel-based oxide ( For example, LiNiO 2 , etc.), lithium-nickel-manganese-based oxide (eg, LiNi 1-Y Mn Y O 2 (where 0 ⁇ Y ⁇ 1), LiMn 2-Z Ni Z O 4 (here) , 0 ⁇ Z ⁇ 2), etc.), lithium-nickel-cobalt-based oxides (eg, LiNi 1-Y1 Co Y1 O 2 (where 0 ⁇ Y1 ⁇ 1), etc.),
  • the lithium metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li(Ni 1/3 Mn 1/3 Co 1/ 3 ) O 2 , Li(Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 and Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 , etc.), or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , etc.), and considering the remarkable effect of improvement by controlling the type and content ratio of the constituent elements forming the lithium composite metal oxide, the lithium composite metal oxide is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 ,
  • the positive electrode active material may be included in an amount of 60 to 99% by weight, preferably 70 to 99% by weight, and more preferably 80 to 98% by weight based on the total weight of the solid content in the positive electrode mixture slurry.
  • the binder is a component that assists in the binding between the active material and the conductive material and the binding to the current collector.
  • binders examples include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene (PE), poly propylene, ethylene-propylene-diene, sulfonated ethylene-propylene-diene, styrene-butadiene rubber, fluororubber, various copolymers, and the like.
  • the binder may be included in an amount of 1 to 20 wt%, preferably 1 to 15 wt%, and more preferably 1 to 10 wt%, based on the total weight of the solid content in the positive electrode mixture slurry.
  • the conductive material is a component for further improving the conductivity of the cathode active material.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20% by weight based on the total weight of solids in the negative electrode slurry.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change to the battery. For example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, or thermal black.
  • carbon powder such as natural graphite, artificial graphite, or graphite
  • conductive fibers such as carbon fibers, carbon nanotubes, and metal fibers
  • Fluorinated carbon powder such as aluminum powder and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be included in an amount of 1 to 20 wt%, preferably 1 to 15 wt%, and more preferably 1 to 10 wt% based on the total weight of the solid content in the positive electrode mixture slurry.
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that provides a desired viscosity when the cathode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content including the positive electrode active material and, optionally, the binder and the conductive material may be included so that the concentration is 50 to 95% by weight, preferably 70 to 95% by weight, and more preferably 70 to 90% by weight. .
  • the thickness of the anode according to the present invention may generally range from 120 ⁇ m to 180 ⁇ m, preferably from 140 ⁇ m to 160 ⁇ m.
  • the thickness of the anode is within the above range, there is an advantage in that energy density can be increased because many anodes can be stacked in a laminate having the same thickness.
  • the negative electrode included in the electrode assembly of the present invention is prepared, for example, by coating a negative electrode mixture slurry including a negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, or a graphite electrode made of carbon (C) or The metal itself can be used as the cathode.
  • the negative electrode current collector when manufacturing a negative electrode by coating the negative electrode mixture slurry on the negative electrode current collector, the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • it is made of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel.
  • a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • fine irregularities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the anode active material is a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal composite oxide, and a lithium dope and undope. It may include at least one selected from the group consisting of materials and transition metal oxides.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used without particular limitation, and typical examples thereof include crystalline carbon, Amorphous carbon or a combination thereof may be used.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake-like, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon). or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • Examples of the above metals or alloys of these metals and lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al And a metal selected from the group consisting of Sn or an alloy of these metals and lithium may be used.
  • metal composite oxide examples include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1) and Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, Groups 1, 2, and 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) A selection from can be used.
  • Materials capable of doping and undoping the lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si—Y alloys (Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, It is an element selected from the group consisting of rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn—Y (Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, and a rare earth element). It is an element selected from the group consisting of elements and combinations thereof, but not Sn), and the like, and at least one of these and SiO 2 may be mixed and used.
  • the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, It may be selected from the group consisting of Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative electrode active material may be included in an amount of 60 to 99% by weight, preferably 70 to 99% by weight, and more preferably 80 to 98% by weight based on the total weight of the solid content in the negative electrode mixture slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector.
  • binders are polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetra and fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene, sulfonated ethylene-propylene-diene, styrene-butadiene rubber, fluororubber, and various copolymers thereof.
  • the binder may be included in an amount of 1 to 20% by weight, preferably 1 to 15% by weight, and more preferably 1 to 10% by weight based on the total weight of the solid content in the negative electrode mixture slurry.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20% by weight based on the total weight of the solid content in the negative electrode slurry.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change to the battery. For example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, or thermal black.
  • carbon powder such as natural graphite, artificial graphite, or graphite
  • conductive fibers such as carbon nanotubes, carbon fibers, or metal fibers
  • Fluorinated carbon powder such as aluminum powder and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be included in an amount of 1 to 20% by weight, preferably 1 to 15% by weight, and more preferably 1 to 10% by weight based on the total weight of the solid content in the negative electrode mixture slurry.
  • the solvent may include water or an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that provides a desired viscosity when including the negative electrode active material, and optionally a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the solid content including the negative electrode active material and, optionally, the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • a metal itself in the case of using a metal itself as the cathode, it may be manufactured by physically bonding, rolling, or depositing a metal on the metal thin film itself or the anode current collector.
  • a metal As the deposition method, an electrical deposition method or a chemical vapor deposition method may be used for the metal.
  • the metal thin film itself or the metal bonded/rolled/deposited on the anode current collector is a group consisting of lithium (Li), nickel (Ni), tin (Sn), copper (Cu), and indium (In). It may include an alloy of one type of metal or two types of metals selected from.
  • the thickness of the negative electrode according to the present invention may generally range from 180 ⁇ m to 240 ⁇ m, preferably from 200 ⁇ m to 220 ⁇ m. When the thickness of the negative electrode is within the above range, it is possible to stack many negative electrodes in a laminate having the same thickness, thereby increasing energy density.
  • the electrode assembly according to the present invention shows the most remarkable effect, especially in the case of a stacked or stacked and lamination type structure.
  • the electrode assembly of the present invention may be manufactured by a conventional method known in the art.
  • the stacked electrode assembly may be manufactured by sequentially stacking a positive electrode and a negative electrode with a separator interposed therebetween, and the stack-and-lamination electrode assembly sequentially laminates a positive electrode, a separator, a negative electrode, and a separator. It may be manufactured by a method of manufacturing a base unit by doing so, repeatedly laminating the base unit, and then applying heat and pressure to lamination.
  • a secondary battery according to the present invention includes an electrode assembly including the positive electrode, the negative electrode, and the separator; and an electrolyte.
  • electrolyte used in the present invention examples include, but are not limited to, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of secondary batteries. .
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, PC) and other carbonate-based solvents; alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a straight-chain, branched or cyclic hydrocarbon group having 2
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonates eg, ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate is more preferable.
  • any compound capable of providing lithium ions used in a secondary battery may be used without particular limitation.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 may be used.
  • concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M.
  • the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • the electrolyte may include, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides for the purpose of improving battery life characteristics, suppressing battery capacity decrease, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides
  • Ethylphosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the secondary battery as described above may be manufactured by accommodating an electrode assembly in a battery case, injecting electrolyte to assemble the secondary battery, and performing an activation process.
  • the activation process may include a process of heating the secondary battery while applying pressure, that is, a pressurized pre-heating process, before charging, aging, and discharging the assembled battery.
  • the heating and pressing process may be performed together with initial charging.
  • the binder included in the active material layer or the binder included in the coating layer formed on the surface of the separator becomes soft and has flexibility.
  • the coating layer containing the binder formed on the surface of the separator has an appropriate surface shape along the shape of the surface of the positive electrode or negative electrode can be transformed
  • the surface shape of the coating layer is deformed along the shape of the surface of the anode or cathode, a space between the interface between the coating layer and the anode and/or cathode is effectively removed, and they may come into contact with each other.
  • the coating layer when the coating layer is in close contact with the positive electrode and/or the negative electrode, it may exhibit adhesive force to the positive electrode and/or the negative electrode.
  • a heating temperature for the secondary battery may be 45°C to 80°C, specifically 55°C to 75°C, and more specifically 65°C to 72°C. At this time, when the temperature is in the above range, there is a great effect on the adhesive strength to the positive electrode and / or negative electrode.
  • the gap between the separator and the electrode is reduced, that is, the gas generated through the reaction of the electrode and the electrolyte during the activation process and existing between the separator and the electrode is pushed out of the interface and can be removed.
  • the pressure applied to the secondary battery may be pressure applied to the secondary battery using a separate pressurizing means from the outside of the secondary battery. That is, according to an example of the method for manufacturing a secondary battery according to the present invention, in the activation process for the secondary battery, by applying pressure to the secondary battery using a separate pressurizing means from the outside of the secondary battery, the activation process It is possible to more efficiently remove gas generated at the time of use from the battery cell of the secondary battery, and it is possible to bring the separator and the electrode into close contact.
  • the pressure applied to the secondary battery in the activation process may be 0.2 to 20 kgf/cm 2 , specifically 0.2 to 10 kgf/cm 2 , and more specifically 0.2 to 5 kgf/cm 2 . At this time, when the pressure exceeds 20 kgf/cm 2 , the battery may be damaged by excessive pressure.
  • the secondary battery including the electrode assembly according to the present invention has less bending of the electrode assembly after the activation process. Specifically, when the degree of bending is measured for a fully charged electrode assembly after an activation process is performed on the secondary battery according to the present invention, when the thickness of the entire electrode assembly is D, the height of the center and both ends in the electric field direction in the electrode assembly The difference may be 0.03D or less, preferably 0.001D to 0.02D or less.
  • An anode having a thickness of 158 ⁇ m, a cathode having a thickness of 211 ⁇ m, and a separator A and a separator B having a coating layer formed on a substrate were prepared.
  • the separator A is polyvinylidene fluoride-tetrafluoroethylene (PVdF-TFE, TFE substitution rate 20%, weight average molecular weight 300,000 g / mol), polyvinylidene fluoride-chlorotrifluoroethylene (PVDF-CTFE, CTFE substitution rate of 20%) and average particle diameter (D 50 ) of 500 nm alumina (Al 2 O 3 ) was added to N-methyl pyrrolidone (NMP) solvent in a weight ratio of 15: 5: 80 to form a slurry, which was submerged separation method was coated on a polyolefin substrate.
  • PVdF-TFE polyvinylidene fluoride-tetrafluoroethylene
  • PVDF-CTFE polyvinylidene fluoride-chlorotrifluoroethylene
  • D 50 average particle diameter
  • the separator B is polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP, HFP substitution rate 8%, weight average molecular weight 350,000 g / mol), polyvinylidene fluoride-chlorotrifluoroethylene (PVDF-CTFE, CTFE Alumina (Al 2 O 3 ) having a substitution rate of 20%) and an average particle diameter (D 50 ) of 500 nm was added to an acetone solvent in a weight ratio of 15:5:80 to form a slurry, which was coated on a polyolefin substrate by a humid phase separation method.
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene
  • PVDF-CTFE polyvinylidene fluoride-chlorotrifluoroethylene
  • CTFE Alumina Al 2 O 3
  • D 50 average particle diameter
  • the thickness of the separation membrane A was 15 ⁇ m
  • the thickness of the separation membrane B was 15 ⁇ m.
  • an electrode assembly was manufactured as shown in FIG. 1 by alternately stacking the positive electrode, the separator, the negative electrode, and the separator.
  • 12 separators A (20a) are stacked to be positioned between the positive electrode (10) and the negative electrode (30), and 12 separators B (20b) are stacked thereon to be positioned between the positive electrode (10) and the negative electrode (30). Then, 12 separators A (20a) were stacked thereon so as to be positioned between the positive electrode (10) and the negative electrode (30). That is, the separation membranes B are located in the center of the electrode assembly, and the separation membrane A is located on the surface of the electrode assembly.
  • Assembling the secondary battery was completed by accommodating the prepared electrode assembly in a pouch exterior and injecting an electrolyte solution.
  • An anode having a thickness of 158 ⁇ m, a cathode having a thickness of 211 ⁇ m, and a separator A and a separator C having a coating layer formed on a substrate were prepared.
  • the separator A is polyvinylidene fluoride-tetrafluoroethylene (PVdF-TFE, TFE substitution rate 20%, weight average molecular weight 300,000 g / mol), polyvinylidene fluoride-chlorotrifluoroethylene (PVDF-CTFE, CTFE substitution rate of 20%) and average particle diameter (D 50 ) of 500 nm alumina (Al 2 O 3 ) was added to N-methyl pyrrolidone (NMP) solvent in a weight ratio of 15: 5: 80 to form a slurry, which was submerged separation method was coated on a polyolefin substrate.
  • PVdF-TFE polyvinylidene fluoride-tetrafluoroethylene
  • PVDF-CTFE polyvinylidene fluoride-chlorotrifluoroethylene
  • D 50 average particle diameter
  • the separator C is polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP, HFP substitution rate 15%, weight average molecular weight 300,000 g / mol), polyvinylidene fluoride-chlorotrifluoroethylene (PVDF-CTFE, CTFE Alumina (Al 2 O 3 ) having a substitution rate of 20%) and an average particle diameter (D 50 ) of 500 nm was added to an acetone solvent in a weight ratio of 15:5:80 to form a slurry, which was coated on a polyolefin substrate by a humid phase separation method.
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene
  • PVDF-CTFE polyvinylidene fluoride-chlorotrifluoroethylene
  • CTFE Alumina Al 2 O 3
  • D 50 average particle diameter
  • the thickness of the separation membrane A was 15 ⁇ m
  • the thickness of the separation membrane C was 15 ⁇ m.
  • separators A were stacked to be positioned between the positive and negative electrodes, 12 separators C were laminated thereon to be positioned between the positive and negative electrodes, and 12 separators A were stacked on top of them to be positioned between the positive and negative electrodes. That is, separation membranes C were disposed in the center, and separation membranes A were disposed in the surface portion.
  • a secondary battery was manufactured in the same manner as in Example 1 except for changing the type of the separator.
  • a secondary battery was prepared in the same manner as in Example 1 except that 36 separators A were used and the same separator was used for the entire electrode assembly. did
  • Pressurized pre-heating was performed on each of the lithium secondary batteries prepared in Examples 1 to 4 and Comparative Example 1 in a Jig Formation equipment. Specifically, the heating and pressing process was performed by pressing at 70 °C for 2 minutes at a pressure of 0.2 kgf/cm 2 and at 70 °C for 3 minutes at a pressure of 3 kgf/cm 2 . After that, the first activation process was performed in the jig. Specifically, the first activation process was performed by charging up to 60% SOC (State of Charge) with a 1C constant current and heating at 55° C. under a pressure of 5 kgf/cm 2 . After that, a second activation process was performed.
  • SOC State of Charge
  • the secondary activation process was performed by fully charging up to 4.25V with a constant current of 0.33C in a chamber of 25° C. without equipment for a jig formation. Then, the presence or absence of bending of the electrode assembly was observed with the naked eye, and evaluated as follows.
  • FIG. 2 is a photograph of the lithium secondary battery of Example 1 after completion of the activation process
  • FIG. 3 is a photograph of the lithium secondary battery of Comparative Example 1 after completion of the activation process.
  • bending was not observed in Example 1 in which the arrangement of the separator in the center and the outer portion was adjusted.
  • FIG. 3 in the case of Comparative Example 1, bending of the electrode assembly was observed.
  • the height difference between the center and both ends in the entire length direction was measured as 0.031D with respect to the thickness D of the electrode assembly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 양극 및 음극이 분리막을 개재하여 교대로 적층되어 있고 접착력이 최대가 되는 온도가 상이한 2종 이상의 분리막을 포함하는 전극 조립체이며, 전극 조립체의 중심부에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도가 나머지 영역에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도보다 낮은 전극 조립체 및 이를 포함하는 이차 전지를 제공한다.

Description

전극 조립체 및 이를 포함하는 이차 전지
[관련 출원과의 상호 인용]
본 출원은 2021년 10월 28일에 출원된 한국특허출원 제10-2021-0145991호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 복수의 분리막을 포함하는 전극 조립체 및 이를 포함하는 이차 전지에 관한 것이다.
일반적으로 이차 전지는 전지 케이스 내부에 전극조립체와 전해질을 밀봉하는 구조로 형성되며, 외형에 따라 크게 원통형 전지, 각형 전지, 파우치형 전지 등으로 분류되고, 전해액의 형태에 따라 리튬이온 전지, 리튬 이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되기도 한다. 모바일 기기의 소형화에 대한 최근의 경향으로 인해, 두께가 얇은 각형 전지, 파우치형 전지에 대한 수요가 증가하고 있으며, 특히, 형태의 변형이 용이하고 중량이 작은 파우치형 전지에 대한 관심이 높아지고 있다.
한편, 전지 케이스에 수납되는 전극조립체는 그 형태에 따라, 젤리-롤형(권취형), 스택형(적층형), 스택 앤 폴딩형(복합형), 또는 스택 앤 라미네이션형의 구조로 구분될 수 있다.
일반적으로, 이차 전지는 전극조립체가 전해액과 함께 전지케이스에 내장되는 형태로 조립된 후 활성화 공정을 거쳐 제조된다. 활성화 공정은 조립된 전지를 충전, 에이징 및 방전하는 과정을 통해 전지 구조를 안정화시키고 사용 가능한 상태가 되도록 한다. 활성화 공정 중 충전시에는 음극이 팽창하게 되는데, 이때 전극들과 분리막이 잘 접착되지 않은 결함부가 벌어져 전극조립체가 일 방향 또는 랜덤하게 휘어지게 되는 벤딩(Bending) 현상이 나타날 수 있다. 이 같은 벤딩 현상은 스택형 전극 조립체 및 스택 앤 라미네이션형 전극조립체에서 더욱 두드러지게 나타나는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 전극 조립체의 중심부와 표면부에 접착 특성이 상이한 분리막을 배치하여 벤딩 현상이 발생하는 것을 억제할 수 있도록 개발된 전극 조립체 및 이를 포함하는 이차 전지를 제공하고자 한다.
본 발명은 양극 및 음극이 분리막을 개재하여 교대로 적층되어 있고 접착력이 최대가 되는 온도가 상이한 2종 이상의 분리막을 포함하는 전극 조립체이며, 전극 조립체의 중심부에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도가 나머지 영역에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도보다 낮은 전극 조립체 및 이를 포함하는 이차 전지인 것을 특징으로 한다.
본 발명은 전극 조립체의 중심부와 표면부(외곽부)에 접착 특성이 상이한 분리막을 배치함으로써, 활성화 공정 시에 전극 조립체 내부의 온도 불균일로 인해 발생하는 전극 조립체의 벤딩 현상을 억제할 수 있도록 하였다.
활성화 공정에서는 초기 충전을 하기 이전 또는 초기 충전 중에 전극과 분리막 사이의 접착력을 높이기 위하여 이차전지에 일정 압력 및 열을 가하는 핫프레스(hot press) 공정, 즉, 가열 가압 공정(Pressurized pre-heating)을 진행할 수 있다. 이 때, 전극 조립체 전체에 걸쳐 동일한 분리막을 사용하는 경우, 전극 조립체의 두께 때문에 표면부와 중심부의 온도 차이가 발생하게 된다.
만약, 전극 조립체의 표면부에 맞추어 가열 가압 조건을 설정하는 경우, 중심부 영역에 위치하는 분리막들은 접착력이 충분한 온도에 이르지 못하게 되고, 이로 인해 표면부에 위치하는 분리막들의 전극에 대한 접착력이 중심부에 비해 높아지게 된다. 표면부에 위치하는 분리막들은 부착된 전극이 초기 충전에 의해 팽창할 때 더 높은 접착력을 가지고 함께 늘어나게 되며, 중심부와 표면부에 위한 분리막들의 팽창 또는 늘어남의 정도 차이로 인해 전극 조립체가 휘는 벤딩 현상이 발생한다.
반대로, 전극 조립체의 중심부에 맞추어 가열 가압 조건을 설정하는 경우, 표면부 영역에 위치하는 분리막들은 접착력이 낮은 온도에 놓이게 되고, 이로 인해 표면부에 위치하는 분리막들의 전극에 대한 접착력이 중심부에 비해 약해지게 된다. 접착력 편차로 인해 중심부와 표면부에 분리막들의 팽창 또는 늘어남의 정도 차이가 발생하여 전극 조립체가 휘는 벤딩 현상이 발생한다.그러나 본 발명과 같이 전극 조립체의 중심부에 상대적으로 낮은 온도에서 최대 접착력을 갖는 분리막을 배치하고, 표면부에 상대적으로 높은 온도에서 최대 접착력을 갖는 분리막을 배치할 경우, 활성화 공정 시에 전극 조립체의 중심부와 표면부의 온도 차이로 인한 접착력 차이가 완화되어 벤딩 현상을 억제할 수 있다.
또한, 벤딩 현상이 적은 전극 조립체를 포함하는 이차 전지의 경우 내구성 및 안정성 등이 증대되는 효과가 있다.
도 1 은 실시예 1 에서 제조한 전극 조립체의 모식도이다.
도 2 는 실시예 1 에서 제조한 이차 전지에 대해 벤딩 평가를 한 결과이다.
도 3 은 비교예 1 에서 제조한 이차 전지에 대해 벤딩 평가를 한 결과이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에서 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 출원인은 활성화 공정 중, 특히 가열 가압 공정(Pressurized pre-heating)에서 이차 전지의 두께로 인해 전극 조립체의 표면부와 중심부에서 온도 차가 발생하여 전극 조립체의 휘어짐이 발생하는 것을 발견하였다. 구체적으로, 본 출원인은 가열 가압 공정 시에 전극 조립체 내부의 열 전달 차이로 인한 온도 편차로 인해 전극 조립체의 표면부에 위치한 분리막과 중심부에 위치하는 분리막의 접착력의 차이가 발생하여 벤딩 현상이 발생하는 것을 알아내었으며, 이와 같은 벤딩 형상을 막을 수 있는 전극 조립체 및 이를 포함하는 이차 전지를 제공하고자 한다.
전극 조립체
본 발명에 따른 전극 조립체는 양극과 음극이 분리막을 개재하여 교대로 적층된 형태로, 상기 양극, 음극 및 분리막을 합한 개수가 적어도 20개 내지 50개, 바람직하게는 20개 내지 45개, 더욱 바람직하게는 30개 내지 45개일 수 있다. 전극 조립체에 포함되는 양극, 음극 및 분리막을 합한 개수가 상기 범위보다 적은 경우 고용량 구현이 어려운 단점이 있고, 상기 범위보다 많은 경우 공정이 복잡하고 벤딩 현상의 억제가 어려운 단점이 있다.
이때, 상기 양극, 음극 및 분리막은, 그 재질 및 종류가 특별히 한정되지 않으며, 당해 기술 분야에 알려진 다양한 양극, 음극 및 분리막들이 사용될 수 있다.
한편, 본 발명의 전극 조립체는, 전극 조립체의 중심부와 표면부에 접착 특성, 구체적으로는 최대 접착력이 구현되는 온도가 상이한 분리막을 배치하는 것을 특징으로 한다.
구체적으로, 본 발명의 전극 조립체는 양극 및 음극이 분리막을 개재하여 교대로 적층되어 있고 접착력이 최대가 되는 온도가 상이한 2종 이상의 분리막을 포함하는 전극 조립체이며, 전극 조립체의 중심부에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도가 나머지 영역에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도보다 낮을 수 있다.
이때, 전극 조립체의 중심부는 최외각 표면으로부터의 거리가 D/2 - kD 내지 D/2 + kD인 영역을 의미하고, 상기 영역을 제외한 나머지 영역은 전극 조립체의 표면부를 의미할 수 있다. 상기 k는 0.1≤k≤0.3의 범위를 만족하는 상수일 수 있고, 바람직하게는 0.1≤k≤0.25 의 범위를 만족하며, 가장 바람직하게는 0.1≤k≤0.2의 범위를 만족할 수 있다. k가 상기 범위를 만족하는 경우, 활성화 공정 시에 표면부에 위치하는 분리막과 중심부에 위치하는 분리막의 접착력 차이가 적게 되어 벤딩 현상이 억제되는 효과가 있다.
구체적으로는, 본 발명의 전극 조립체는 중심부에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도와 그 나머지 영역(표면부)에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도의 차이가 1℃ 내지 15℃ 이하, 바람직하게는 1℃ 이상 10℃ 이하, 더욱 바람직하게는 3℃ 이상 8℃ 이하일 수 있다. 전극 조립체 중심부는 표면부에 비해 가열 가압 공정에서 전달되는 열의 양이 적기 때문에 표면부보다 낮은 온도를 나타낸다. 활성화 공정에서 중심부와 표면부 영역의 온도 차이는 전극 조립체의 두께나 재질 등에 따라 달라지지만 대체로 1 ~ 15 ℃ 수준이다. 따라서, 중심부의 분리막과 표면부 영역의 분리막의 최대 접착력 도달 온도 차이를 상기 수준으로 제어할 경우, 중심부의 분리막과 표면부 영역의 분리막의 접착력 편차가 적어지고, 이로 인해 접착력 편차에 의한 벤딩 발생을 억제할 수 있다.
더 구체적으로는, 중심부에 위치한 분리막들의 접착력이 최대가 되는 온도는 70℃ 미만일 수 있고, 바람직하게는 50℃ 이상 70℃ 미만, 더욱 바람직하게는 55℃ 이상 68℃ 이하일 수 있다. 또한, 표면부 영역에 위치한 분리막들의 접착력이 최대가 되는 온도가 70℃ 이상 80℃ 이하일 수 있고, 바람직하게는 70℃ 이상 75℃ 이하, 더욱 바람직하게는 70℃ 이상 72℃ 이하일 수 있다.
한편, 본 발명의 전극 조립체는, 전극 조립체의 최외각 표면으로부터의 거리가 D/2 - kD 내지 D/2 + kD인 영역에 위치한 분리막들의 개수와 전극 조립체 전체에 포함되는 분리막들의 개수의 비율이 1:1 내지 1:4일 수 있고, 바람직하게는 1:1 내지 1:3, 더욱 바람직하게는 1:1.25 내지 1:1.50일 수 있다. 전극 조립체의 최외각 표면으로부터의 거리가 D/2 - kD 내지 D/2 + kD인 영역에 위치한 분리막들의 개수와 전극 조립체 전체에 포함되는 분리막들의 개수의 비율이 상기 범위를 만족하는 경우 충분한 개수의 양, 음극을 적층할 수 있어 셀의 에너지 밀도를 확보하면서도 온도 편차에 의한 셀의 두께 증가를 최소화할 수 있는 이점이 있다.
이하, 전극 조립체 내의 각 구성요소에 대해 구체적으로 설명한다.
분리막
전극 조립체에서 분리막은 전극 사이의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것이다.
본 발명에 있어서, 분리막의 접착력이 최대가 되는 온도는 만능시험기(Universal Testing Machine; UTM)를 사용하여 측정될 수 있으며, 구체적으로, (1) 양극과 분리막을 각각 2cm X 6cm으로 샘플링, (2) 샘플링 된 양극과 분리막을 적층, (3) 3면이 실링된 파우치에 적층된 샘플을 넣은 후 전해액을 주액, (4) 파우치를 완전히 실링하고 지그 포메이션(Jig Formation)을 통해 5분 동안 가온 가압 진행, (5) 파우치 개봉 후 양극과 분리막 적층체 중 분리막 부분을 UTM 집게에 연결 후 90˚의 각도로 peel off test를 통해 측정함으로써 산출될 수 있다.
본 발명에 따른 분리막은 통상적으로 사용되는 다공성 고분자 수지, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 수지를 단독으로 또는 이들을 혼합하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01㎛ 내지 50㎛이고, 기공도는 5% 내지 95%일 수 있다.
본 발명의 전극 조립체에 포함되는 분리막들은 무기물 입자 또는 고분자 물질이 포함된 코팅층 또는 바인더 코팅층을 포함할 수 있다.
구체적으로, 본 발명의 전극 조립체에 포함되는 분리막들은 내열성 또는 기계적 강도 확보를 위해 세라믹 성분으로 이루어지는 무기물 입자 또는 고분자 물질이 포함된 코팅층이 형성된 SRS(safety reinforced separator) 분리막이 사용될 수 있다.
구체적으로, 본 발명의 전극 조립체에 포함되는 분리막들은 다공성의 분리막 기재, 및 상기 분리막 기재의 일면 또는 양면에 전체적으로 코팅되는 다공성의 코팅층을 포함하고, 상기 코팅층은 금속 산화물, 준금속 산화물, 금속 불화물, 금속 수산화물 및 이들의 조합 중에서 선택되는 무기물 입자들과 상기 무기물 입자들을 서로 연결 및 고정하는 바인더 고분자의 혼합물을 포함하는 것일 수 있다.
상기 코팅층은 무기물 입자로서 Al2O3 및 AlOOH에서 선택되는 1종 이상을 포함하는 것일 수 있다. 여기서 무기물 입자는 분리막의 열적 안정성을 향상시킬 수 있다. 즉, 무기물 입자는 고온에서 분리막이 수축되는 것을 방지할 수 있다. 그리고 바인더 고분자는 무기물 입자를 고정시켜 분리막의 기계적 안정성도 향상시킬 수 있다.
또한, 상기 코팅층은 바인더 고분자로서 폴리에틸렌, 폴리비닐리덴플루오라이드, 폴리비닐리덴플로라이드-테트라플루오로에틸렌, 폴리비닐리덴플로라이드-클로로트리플루오로에틸렌, 및 폴리비닐리덴플로라이드- 헥사플루오로프로필렌에서 선택되는 1종 이상을 포함할 수 있다. 바인더 고분자는 전극을 분리막에 접착시킬 수 있다. 바인더 고분자는 코팅층에 전체적으로 분포하므로, 전술한 접착제와 다르게 접착면의 전체에서 빈틈없이 접착이 일어날 수 있다. 따라서 이와 같은 분리막을 이용하면 전극을 보다 안정적으로 분리막에 고정시킬 수 있다.
본 발명에 있어서 상기 분리막들의 접착력이 최대가 되는 온도는 코팅층에 포함되는 바인더 종류 변경하거나, 코팅시에 가습 조건 조절하는 등의 방법으로 조절될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 분리막의 두께는 일반적으로 7㎛ 내지 22㎛, 바람직하게는 9㎛ 내지 15㎛ 범위일 수 있다. 분리막의 두께가 상기 범위인 경우, 양극, 분리막, 음극의 적층수를 늘릴 수 있어 에너지 밀도가 증가하는 이점이 있다.
양극
본 발명의 전극 조립체에 포함되는 양극은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 합제 슬러리를 코팅하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-ZNiZO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-Z1CoZ1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr)O2(여기에서, 0<p<1, 0<q<1, 0<r<1, p+q+r=1) 또는 Li(Nip1Coq1Mnr1)O4(여기에서, 0<p1<2, 0<q1<2, 0<r1<2, p1+q1+r1=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr2Ms2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r2 및 s2는 각각 자립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r2<1, 0<s2<1, p2+q2+r2+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극 합제 슬러리 내 고형분 전체 중량을 기준으로 60 내지 99 중량%, 바람직하게는 70 내지 99 중량%, 보다 바람직하게는 80 내지 98 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이다.
이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌(PE), 폴리프로필렌, 에틸렌-프로필렌-디엔, 술폰화 에틸렌-프로필렌-디엔, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
통상적으로 상기 바인더는 양극 합제 슬러리 내 고형분 전체 중량을 기준으로 1 내지 20 중량%, 바람직하게는 1 내지 15 중량%, 보다 바람직하게는 1 내지 10 중량%로 포함될 수 있다.
상기 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분이다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유, 탄소나노튜브, 금속 섬유 등의 도전성 섬유; 불화 카본 분말; 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
통상적으로 상기 도전재는, 양극 합제 슬러리 내 고형분 전체 중량을 기준으로 1 내지 20 중량%, 바람직하게는 1 내지 15 중량%, 보다 바람직하게는 1 내지 10 중량%로 포함될 수 있다.
상기 용매는 NMP(N-메틸-2-피롤리돈) 등의 유기 용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 내지 95 중량%, 바람직하게는 70 내지 95 중량%, 보다 바람직하게는 70 내지 90 중량%가 되도록 포함될 수 있다.
본 발명에 따른 양극의 두께는 일반적으로 120㎛ 내지 180㎛, 바람직하게는 140㎛ 내지 160㎛ 범위일 수 있다. 양극의 두께가 상기 범위인 경우, 동일한 두께의 적층체 내에서 양극을 많이 적층할 수 있어 에너지 밀도를 높일 수 있는 이점이 있다.
음극
본 발명의 전극 조립체에 포함되는 음극은 예를 들어, 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 합제 슬러리를 코팅하여 제조하거나, 탄소(C)로 이루어진 흑연 전극 또는 금속 자체를 음극으로 사용할 수 있다.
예를 들어, 상기 음극 집전체 상에 음극 합제 슬러리를 코팅하여 음극을 제조하는 경우, 상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1) 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 합제 슬러리 내 고형분 전체 중량을 기준으로 60 내지 99 중량%, 바람직하게는 70 내지 99 중량%, 보다 바람직하게는 80 내지 98 중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분이다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔, 술폰화 에틸렌-프로필렌-디엔, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
통상적으로 상기 바인더는, 음극 합제 슬러리 내 고형분 전체 중량을 기준으로 1 내지 20 중량%, 바람직하게는 1 내지 15 중량%, 보다 바람직하게는 1 내지 10 중량%로 포함될 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 내 고형분 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 나노 튜브, 탄소 섬유 또는 금속 섬유 등의 도전성 섬유; 불화 카본 분말; 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 음극 합제 슬러리 내 고형분 전체 중량을 기준으로 1 내지 20 중량%, 바람직하게는 1 내지 15 중량%, 보다 바람직하게는 1 내지 10 중량%로 포함될 수 있다.
상기 용매는 물 또는 NMP(N-메틸-2-피롤리돈) 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
상기 음극으로서, 금속 자체를 사용하는 경우, 금속 박막 자체 또는 상기 음극 집전체 상에 금속을 물리적으로 접합, 압연 또는 증착 등을 시키는 방법으로 제조할 수 있다. 상기 증착하는 방식은 금속을 전기적 증착법 또는 화학적 증착법(chemical vapor deposition)을 사용할 수 있다.
예를 들어, 상기 금속 박막 자체 또는 상기 음극 집전체 상에 접합/압연/증착되는 금속은 리튬(Li), 니켈(Ni), 주석(Sn), 구리(Cu) 및 인듐(In)으로 이루어진 군에서 선택되는 1종의 금속 또는 2종의 금속의 합금 등을 포함할 수 있다.
본 발명에 따른 음극의 두께는 일반적으로 180㎛ 내지 240㎛, 바람직하게는 200㎛ 내지 220㎛ 범위일 수 있다. 음극의 두께가 상기 범위인 경우 동일한 두께의 적층체 내에서 음극을 많이 적층할 수 있어 에너지 밀도를 높일 수 있는 이점이 있다.
전극 조립체 제조 방법
본 발명에 따른 전극 조립체는 특히 스택형 또는 스택 앤 라미네이션형 의 구조일 경우에 가장 두드러진 효과를 나타낸다.
본 발명의 전극 조립체는 당해 기술분야에 알려진 통상의 방법에 의해 제조될 수 있다.
예를 들면, 상기 스택형 전극 조립체는, 양극과 음극을 분리막을 개재하여 순차적으로 적층하는 방법으로 제조될 수 있으며, 상기 스택 앤 라미네이션형 전극 조립체는, 양극, 분리막, 음극, 분리막을 순차적으로 적층하여 기본 단위체를 제조하고, 상기 기본 단위체를 반복적으로 적층한 후, 열과 압력을 가하여 라미네이션하는 방법으로 제조될 수 있다.
이차 전지
다음으로, 본 발명에 따른 이차 전지에 대해 설명한다. 본 발명에 따른 이차 전지는 상기 양극, 음극, 분리막을 포함하는 전극 조립체; 및 전해질을 포함할 수 있다.
전극 조립체에 대해서는 상술하였으므로, 구체적인 설명은 생략하고, 나머지 구성요소들에 대해서만 설명하기로 한다.
본 발명에서 사용되는 전해질로는 이차 전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
한편, 상기와 같은 이차 전지는 전지 케이스에 전극 조립체를 수납한 후, 전해액을 주입하여 이차 전지를 조립하고, 활성화 공정을 수행하는 방법으로 제조될 수 있다.
상기 활성화 공정은 조립된 전지를 충전, 에이징, 및 방전하는 과정 이전에 이차 전지에 압력을 가하면서 가열하는 공정, 즉 가열 가압 공정(Pressurized pre-heating)을 포함할 수 있다. 상기 가열 가압 공정은 초기 충전과 함께 진행될 수도 있다.
상기 이차 전지에 가열 공정을 통하여 활물질층에 포함된 바인더나 분리막의 표면에 형성되어 있는 코팅층에 포함되는 바인더는 부드러워지면서 유연성을 갖게 된다. 예를 들어 상기 이차 전지에 압력을 가하는 과정을 통해 상기 양극 또는 음극과 서로 접하게 되었을 때, 분리막의 표면에 형성되어 있는 바인더를 포함하는 코팅층은 상기 양극 또는 음극 표면의 형상을 따라 적절히 그 표면 형상이 변형될 수 있다. 상기 코팅층의 표면 형상이 상기 양극 또는 음극 표면의 형상을 따라 변형되면 상기 코팅층과 상기 양극 및/또는 음극 사이의 계면 사이의 공간이 효과적으로 제거되며 서로 접하게 될 수 있다. 또한, 상기 코팅층이 상기 양극 및/또는 음극과 밀착될 때, 상기 양극 및/또는 음극에 대해 접착력을 발휘할 수 있다.
상기 이차 전지에 대한 가열 온도는 45℃ 내지 80℃, 구체적으로 55℃ 내지 75℃, 보다 구체적으로 65℃ 내지 72℃일 수 있다. 이때, 온도를 상기 범위로 하는 경우 양극 및/또는 음극에 대해 접착력이 큰 효과가 있다.
상기 이차 전지에 압력을 가하는 과정을 통하여, 상기 분리막 및 전극 사이의 간격이 줄어들게 되며, 즉 활성화 공정 중 전극과 전해액의 반응을 통하여 발생되어 상기 분리막 및 전극 사이에 존재하는 가스는 상기 계면의 밖으로 밀려나와 제거될 수 있다.
이때, 상기 이차 전지에 가해지는 압력은 상기 이차 전지의 외부로부터 별도의 가압 수단을 이용하여 이차 전지에 가해지는 압력일 수 있다. 즉, 본 발명에 따른 이차 전지의 제조방법의 일례에 따르면, 상기 이차 전지에 대한 활성화 공정 시, 상기 이차 전지의 외부로부터 별도의 가압 수단을 이용하여 상기 이차 전지에 압력을 가함으로써, 상기 활성화 공정 시에 발생하는 가스를 상기 이차 전지의 전지 셀에서 보다 효율적으로 제거할 수 있으며, 분리막과 전극이 밀착되도록 할 수 있다.
상기 활성화 과정에서 상기 이차 전지에 가해지는 압력은 0.2 내지 20 kgf/cm2, 구체적으로 0.2 내지 10kgf/cm2, 보다 구체적으로 0.2 내지 5 kgf/cm2일 수 있다. 이때, 상기 압력이 20 kgf/cm2를 초과하는 경우에는, 과도한 압력에 의해 전지가 손상될 가능성이 있다.
본 발명에 따른 전극 조립체를 포함하는 이차 전지는 활성화 공정 이후에 전극 조립체의 벤딩이 적다. 구체적으로는, 본 발명에 따른 이차 전지에 대해 활성화 공정을 진행한 후 만충전된 전극 조립체에 대해 벤딩 정도를 측정하면, 전극 조립체 전체의 두께가 D일때 전극 조립체에서 전장 방향의 중심과 양단의 높이 차이가 0.03D 이하, 바람직하게는 0.001D 내지 0.02D 이하일 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
실시예 1
두께 158㎛의 양극, 두께 211 ㎛의 음극, 기재상에 코팅층이 형성된 분리막 A와 분리막 B를 준비하였다.
상기 분리막 A는 폴리비닐리덴플로라이드-테트라플루오로에틸렌(PVdF-TFE, TFE 치환율 20%, 중량평균분자량 300,000g/mol), 폴리비닐리덴플로라이드-클로로트리플루오로에틸렌(PVDF-CTFE, CTFE 치환율 20%) 및 평균입경(D50) 500nm의 알루미나(Al2O3)를 15 : 5 : 80 중량비로 N-메틸 피롤리돈(NMP) 용매에 첨가하여 슬러리를 형성하고 이를 침지상 분리 방식으로 폴리올레핀 기재상에 코팅하였다.
상기 분리막 B는 폴리비닐리덴플로라이드- 헥사플루오로프로필렌 (PVdF-HFP, HFP 치환율 8%, 중량평균분자량 350,000g/mol), 폴리비닐리덴플로라이드-클로로트리플루오로에틸렌(PVDF-CTFE, CTFE 치환율 20%) 및 평균입경(D50) 500nm의 알루미나(Al2O3)를 15 : 5 : 80 중량비로 아세톤 용매에 첨가하여 슬러리를 형성하고 이를 가습상 분리 방식으로 폴리올레핀 기재상에 코팅하였다.
상기 분리막 A 의 전극에 대한 접착력이 최대가 되는 온도를 측정한 결과 70℃였고, 상기 분리막 B 의 전극에 대한 접착력이 최대가 되는 온도를 측정한 결과 65℃였다. 또한, 상기 분리막 A 의 두께는 15㎛, 분리막 B의 두께는 15㎛였다.
다음으로, 상기 양극, 상기 분리막, 상기 음극, 상기 분리막을 번갈아 적층하여 전극 조립체를 도 1 과 같이 제조하였다.
우선, 분리막 A(20a) 12개를 양극(10) 및 음극(30) 사이에 위치하도록 적층하고, 그 위에 분리막 B(20b) 12개를 양극(10) 및 음극(30) 사이에 위치하도록 적층하고, 그 위에 다시 분리막 A(20a) 12개를 양극(10) 및 음극(30) 사이에 위치하도록 적층하였다. 즉, 전극 조립체의 중심부에 분리막 B 들이 위치하고, 전극 조립체의 표면부에 분리막 A 가 위치하도록 배치하였다.
상기 제조된 전극 조립체를 파우치 외장재 내에 수납하고 전해액을 주입하여 이차 전지의 조립을 완료하였다.
실시예 2
두께 158㎛의 양극, 두께 211 ㎛의 음극, 기재상에 코팅층이 형성된 분리막 A와 분리막 C를 준비하였다.
상기 분리막 A는 폴리비닐리덴플로라이드-테트라플루오로에틸렌(PVdF-TFE, TFE 치환율 20%, 중량평균분자량 300,000g/mol), 폴리비닐리덴플로라이드-클로로트리플루오로에틸렌(PVDF-CTFE, CTFE 치환율 20%) 및 평균입경(D50) 500nm의 알루미나(Al2O3)를 15 : 5 : 80 중량비로 N-메틸 피롤리돈(NMP) 용매에 첨가하여 슬러리를 형성하고 이를 침지상 분리 방식으로 폴리올레핀 기재상에 코팅하였다.
상기 분리막 C는 폴리비닐리덴플로라이드- 헥사플루오로프로필렌 (PVdF-HFP, HFP 치환율 15%, 중량평균분자량 300,000g/mol), 폴리비닐리덴플로라이드-클로로트리플루오로에틸렌(PVDF-CTFE, CTFE 치환율 20%) 및 평균입경(D50) 500nm의 알루미나(Al2O3)를 15 : 5 : 80 중량비로 아세톤 용매에 첨가하여 슬러리를 형성하고 이를 가습상 분리 방식으로 폴리올레핀 기재상에 코팅하였다.
상기 분리막 A 의 전극에 대한 접착력이 최대가 되는 온도를 측정한 결과 70℃였고, 상기 분리막 C 의 전극에 대한 접착력이 최대가 되는 온도를 측정한 결과 60℃였다. 또한, 상기 분리막 A 의 두께는 15㎛, 분리막 C의 두께는 15㎛였다.
분리막 A 12개를 양극 및 음극 사이에 위치하도록 적층하고, 그 위에 분리막 C 12개를 양극 및 음극 사이에 위치하도록 적층하고, 그 위에 다시 분리막 A 12개를 양극 및 음극 사이에 위치하도록 적층하였다. 즉, 중심부에 분리막 C 들이 배치하고, 표면부에 분리막 A 들을 배치하였다. 상기 분리막의 종류를 변경한 것이 이외에는 실시예 1 과 동일한 방법으로 이차 전지를 제조하였다.
실시예 3
상기 양극, 상기 분리막, 상기 음극, 상기 분리막을 번갈아 적층하여 전극 조립체를 제조 시, 순서대로 분리막 A 6개, 분리막 B 12개, 분리막 A 6개를 사용한 것을 제외하고는 실시예 1 와 동일한 방법으로 이차 전지를 제조하였다.
실시예 4
상기 양극, 상기 분리막, 상기 음극, 상기 분리막을 번갈아 적층하여 전극 조립체를 제조 시, 순서대로 분리막 A 12개, 분리막 B 6개, 분리막 A 12개를 사용한 것을 제외하고는 실시예 1 와 동일한 방법으로 이차 전지를 제조하였다.
비교예 1
상기 양극, 상기 분리막, 상기 음극, 상기 분리막을 번갈아 적층하여 전극 조립체를 제조시 분리막 A 36개를 사용하여 전극 조립체 전체에 동일한 분리막을 사용한 것을 제외하고는 실시예 1 와 동일한 방법으로 이차 전지를 제조하였다.
실험예 - 전극 조립체 벤딩 평가
상기 실시예 1 내지 4 및 비교예 1 에서 제조된 리튬 이차 전지 각각에 대해 지그 포메이션(Jig Formation) 장비에서 가열 가압 공정(Pressurized pre-heating)을 진행하였다. 구체적으로 가열 가압 공정은 70℃에서 0.2kgf/cm2의 압력으로 2분, 70℃에서 3kgf/cm2의 압력으로 3분동안 가압하여 가열 가압 공정을 진행하였다. 그 후 지그에서 1차 활성화 공정을 진행하였다. 구체적으로, 1C 정전류로 SOC(State of Charge) 60%까지 충전하고 5kgf/cm2 압력에서 55℃로 가열하여 1차 활성화 공정을 수행하였다. 이후 2차 활성화 공정을 진행하였다. 구체적으로, 지그 포메이션(Jig Formation) 장비 없이 챔버 25℃ 환경에서 0.33C 정전류로 4.25V까지 만충전하여 2차 활성화 공정을 수행하였다. 그런 다음, 육안으로 전극 조립체의 벤딩 발생 유무를 관찰하고, 하기와 같이 평가하였다.
O : 벤딩 발생하지 않음.
X : 벤딩 발생함.
벤딩 평가
실시예 1 O
실시예 2 O
실시예 3 O
실시예 4 O
비교예 1 X
도 2는 실시예 1의 리튬 이차 전지의 활성화 공정 완료 후 상태를 촬영한 사진이고, 도 3은 비교예 1의 리튬 이차 전지의 활성화 공정 완료 후 상태를 촬영한 사진이다. 도 2에 도시된 바와 같이, 중심부와 외곽부의 분리막 배치를 조정한 실시예 1 의 경우 벤딩이 관측되지 않았다. 반면, 도 3에 도시된 바와 같이, 비교예 1 의 경우 전극 조립체의 벤딩이 관측되었다. 비교예 1 의 전극 조립체의 벤딩은 전장 방향의 중심부와 양단의 높이 차이가 전극 조립체의 두께 D에 대해 0.031D로 측정되었다.
[부호의 설명]
10 : 양극
20a : 분리막 A
20b : 분리막 B
30 : 음극
D : 전극 조립체 전체의 두께

Claims (12)

  1. 양극 및 음극이 분리막을 개재하여 교대로 적층되어 있고 접착력이 최대가 되는 온도가 상이한 2종 이상의 분리막을 포함하는 전극 조립체이며,
    전극 조립체의 중심부에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도가 나머지 영역에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도보다 낮은 전극 조립체.
  2. 청구항 1에 있어서,
    상기 중심부는 상기 전극 조립체 전체의 두께를 D라 할 때, 상기 전극 조립체의 최외각 표면으로부터의 거리가 D/2 - kD 내지 D/2 + kD인 영역(여기서, 0.1≤k≤0.3)인 것인 전극 조립체.
  3. 청구항 1에 있어서,
    전극 조립체 내에 포함되는 분리막의 개수가 20 내지 50 개인 전극 조립체.
  4. 청구항 1에 있어서,
    상기 전극 조립체의 중심부에 위치한 분리막들의 접착력이 최대가 되는 온도가 70℃ 미만인 전극 조립체.
  5. 청구항 1에 있어서,
    상기 나머지 영역에 위치한 분리막들의 접착력이 최대가 되는 온도가 70℃ 이상 80℃ 이하인 전극 조립체.
  6. 청구항 1에 있어서,
    중심부에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도와 나머지 영역에 위치한 분리막들의 전극에 대한 접착력이 최대가 되는 온도의 차이가 0℃ 초과 15℃ 이하인 전극 조립체.
  7. 청구항 2에 있어서,
    상기 전극 조립체의 최외각 표면으로부터의 거리가 D/2 - kD 내지 D/2 + kD인 영역에 위치한 분리막들의 개수와 전극 조립체 전체에 포함되는 분리막들의 개수의 비율이 1:1 내지 1:4인 전극 조립체.
  8. 청구항 1에 있어서,
    상기 전극 조립체에 포함되는 분리막들은 다공성의 분리막 기재, 및 상기 분리막 기재의 일면 또는 양면에 전체적으로 코팅되는 다공성의 코팅층을 포함하고, 상기 코팅층은 금속 산화물, 준금속 산화물, 금속 불화물, 금속 수산화물 및 이들의 조합 중에서 선택되는 무기물 입자들과 상기 무기물 입자들을 서로 연결 및 고정하는 바인더 고분자의 혼합물을 포함하는 것인 전극 조립체.
  9. 청구항 8에 있어서,
    상기 코팅층은 무기물 입자로서 Al2O3 및 AlOOH에서 선택되는 1종 이상을 포함하는 전극 조립체.
  10. 청구항 8에 있어서,
    상기 코팅층은 바인더 고분자로서 폴리에틸렌, 폴리비닐리덴플루오라이드, 폴리비닐리덴플로라이드-테트라플루오로에틸렌, 폴리비닐리덴플로라이드-클로로트리플루오로에틸렌, 및 폴리비닐리덴플로라이드- 헥사플루오로프로필렌에서 선택되는 1종 이상을 포함하는 전극 조립체.
  11. 청구항 1 내지 청구항 10 중 어느 하나의 전극 조립체를 포함하는 이차 전지.
  12. 청구항 11에 있어서,
    상기 전극 조립체는 전장 방향의 중심과 양단의 높이 차이가 0.03D 이하인 이차 전지.
PCT/KR2022/016730 2021-10-28 2022-10-28 전극 조립체 및 이를 포함하는 이차 전지 WO2023075514A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280034839.XA CN117296182A (zh) 2021-10-28 2022-10-28 电极组件和包括该电极组件的二次电池
CA3219607A CA3219607A1 (en) 2021-10-28 2022-10-28 Electrode assembly and secondary battery including the same
JP2023566824A JP2024515386A (ja) 2021-10-28 2022-10-28 電極組立体およびこれを含む二次電池
EP22887709.8A EP4318723A1 (en) 2021-10-28 2022-10-28 Electrode assembly and secondary battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0145991 2021-10-28
KR20210145991 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023075514A1 true WO2023075514A1 (ko) 2023-05-04

Family

ID=86159634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016730 WO2023075514A1 (ko) 2021-10-28 2022-10-28 전극 조립체 및 이를 포함하는 이차 전지

Country Status (6)

Country Link
EP (1) EP4318723A1 (ko)
JP (1) JP2024515386A (ko)
KR (1) KR20230061285A (ko)
CN (1) CN117296182A (ko)
CA (1) CA3219607A1 (ko)
WO (1) WO2023075514A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054502A (ja) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd リチウム二次電池およびその製造方法
KR20130105448A (ko) * 2012-03-13 2013-09-25 닛산 지도우샤 가부시키가이샤 적층 구조 전지
JP2016103376A (ja) * 2014-11-27 2016-06-02 Necエナジーデバイス株式会社 電池
KR20170030796A (ko) * 2015-09-10 2017-03-20 에스케이이노베이션 주식회사 리튬 이차 전지
JP2021514523A (ja) * 2018-12-24 2021-06-10 エルジー・ケム・リミテッド 曲げ現象が改善されたスタック型の電極組立体及びその製造方法
KR20210145991A (ko) 2020-05-26 2021-12-03 한국전력공사 인입소주의 접지장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054502A (ja) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd リチウム二次電池およびその製造方法
KR20130105448A (ko) * 2012-03-13 2013-09-25 닛산 지도우샤 가부시키가이샤 적층 구조 전지
JP2016103376A (ja) * 2014-11-27 2016-06-02 Necエナジーデバイス株式会社 電池
KR20170030796A (ko) * 2015-09-10 2017-03-20 에스케이이노베이션 주식회사 리튬 이차 전지
JP2021514523A (ja) * 2018-12-24 2021-06-10 エルジー・ケム・リミテッド 曲げ現象が改善されたスタック型の電極組立体及びその製造方法
KR20210145991A (ko) 2020-05-26 2021-12-03 한국전력공사 인입소주의 접지장치

Also Published As

Publication number Publication date
CA3219607A1 (en) 2023-05-04
CN117296182A (zh) 2023-12-26
KR20230061285A (ko) 2023-05-08
JP2024515386A (ja) 2024-04-09
EP4318723A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2019151833A1 (ko) 리튬 이차전지용 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021080052A1 (ko) 리튬 메탈 음극 구조체, 이를 포함하는 전기화학소자, 및 상기 리튬 메탈 음극 구조체의 제조방법
WO2019093836A1 (ko) 원통형 젤리롤에 사용되는 스트립형 전극 및 그를 포함하는 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2019135640A1 (ko) 절연 코팅층이 구비된 전극탭을 포함하는 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2020235969A1 (ko) 리튬 이차 전지용 분리막 적층체, 이를 포함하는 전극 조립체 및 리튬 이차 전지
WO2020159202A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2019182242A1 (ko) 리튬 이차 전지의 제조방법 및 이에 의해 제조된 리튬 이차 전지
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020116939A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2021045581A1 (ko) 음극 전극의 전리튬-전소듐화 방법, 전리튬-전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2019225939A1 (ko) 이차 전지용 양극 및 이를 포함하는 이차 전지
WO2022203434A1 (ko) 양극 활물질의 제조방법
WO2022114538A1 (ko) 리튬 이차전지의 제조 방법 및 이에 의하여 제조된 리튬 이차전지
WO2023075514A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2021167353A1 (ko) 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지
WO2021060803A1 (ko) 전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887709

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566824

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022887709

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3219607

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022887709

Country of ref document: EP

Effective date: 20231102

WWE Wipo information: entry into national phase

Ref document number: 202280034839.X

Country of ref document: CN