WO2021167353A1 - 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지 - Google Patents

음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2021167353A1
WO2021167353A1 PCT/KR2021/002041 KR2021002041W WO2021167353A1 WO 2021167353 A1 WO2021167353 A1 WO 2021167353A1 KR 2021002041 W KR2021002041 W KR 2021002041W WO 2021167353 A1 WO2021167353 A1 WO 2021167353A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
polymer
lithiation
thickness
Prior art date
Application number
PCT/KR2021/002041
Other languages
English (en)
French (fr)
Inventor
전서영
김예리
이수연
채오병
황승혜
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/800,025 priority Critical patent/US20230073365A1/en
Priority to CN202180015260.4A priority patent/CN115136350A/zh
Priority to EP21757427.6A priority patent/EP4099438A4/en
Publication of WO2021167353A1 publication Critical patent/WO2021167353A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an all-lithium method of a negative electrode, an all-lithiated negative electrode, and a lithium secondary battery comprising the same.
  • Electrochemical devices are receiving the most attention in this aspect, and among them, the development of rechargeable batteries that can be charged and discharged is the focus of interest. and battery design research and development.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and lead sulfate batteries that use aqueous electrolyte solutions. It is attracting attention for its long cycle life and low self-discharge rate.
  • the conventional lithium secondary battery uses a compound in which lithium is inserted, such as LiCoO 2 , LiMn 2 O 4 , as the positive electrode, the battery is manufactured in a state in which lithium is not inserted into the carbon electrode used as the negative electrode.
  • a passivation film is formed on the surface of the carbon electrode during initial charging. This film prevents the organic solvent from being inserted between the carbon lattice layers and suppresses the decomposition reaction of the organic solvent, thereby stabilizing the carbon structure and reversibility of the carbon electrode to enable use as a negative electrode for lithium secondary batteries.
  • the problem to be solved by the present invention is to provide an all-lithium method for a negative electrode, an all-lithiation negative electrode, and a lithium secondary battery including the same for sufficiently evenly charging lithium ions and forming a uniform SEI layer.
  • an all-lithium method of the negative electrode of the following embodiment there is provided an all-lithium method of the negative electrode of the following embodiment.
  • the method for prelithiation of the negative electrode is provided, wherein the thickness of the polymer pad is 60 to 90% of the thickness of the jig of the pressing member.
  • the thickness of the polymer pad may be 70 to 85% of the thickness of the jig of the pressing member.
  • the pressing member may include a jig press or jig formation equipment.
  • An area of one surface of the polymer pad facing the simple cell may be larger than an area of the metal sheet, and all four corners of the metal sheet may contact one surface of the polymer pad.
  • the polymer pad may include a polymer having a glass transition temperature of -100°C or less.
  • the polymer may include silicone (polysiloxane), polybutadiene, low density polyethylene, or two or more of these.
  • the electrolytic solution for prelithiation may include a lithium salt and a non-aqueous solvent.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4 phenyl borate, or two or more of these.
  • the electrochemical charging may be performed at 1 to 50% of the negative electrode charging capacity (based on the Li-ion charging capacity).
  • a negative electrode of the following embodiment there is provided a negative electrode of the following embodiment.
  • an all-lithiated negative electrode obtained by the method of any one of the first to ninth embodiments.
  • a lithium secondary battery of the following embodiments there is provided a lithium secondary battery of the following embodiments.
  • a lithium secondary battery including the pre-lithiated negative electrode of the tenth embodiment.
  • the all-lithium method of the negative electrode arranges a polymer pad between the jigs of the pressing member during prelithiation.
  • SEI solid electrolyte interfacial
  • additional side reaction products of the lithium source can be prevented, From this, a higher initial coulombic efficiency can be exhibited under conditions in which lithium ion intercalation is easy during charging and discharging.
  • cycle performance of a lithium secondary battery employing such a negative electrode may be improved.
  • FIG. 1 is a photograph of a simple cell for pre-lithiation used in the method for pre-lithiation of an anode according to Example 1.
  • FIG. 1 is a photograph of a simple cell for pre-lithiation used in the method for pre-lithiation of an anode according to Example 1.
  • FIG. 2 is a photograph of performing all-lithiation on the negative electrode by electrochemically charging the simple cell for all-lithiation through a charger/discharger in the method for all-lithiation of the negative electrode according to Example 1.
  • FIG. 2 is a photograph of performing all-lithiation on the negative electrode by electrochemically charging the simple cell for all-lithiation through a charger/discharger in the method for all-lithiation of the negative electrode according to Example 1.
  • the thickness of the polymer pad is 60 to 90% of the thickness of the jig of the pressing member.
  • a simple cell is prepared by interposing an anode between a metal sheet supplying lithium ions and a separator.
  • the lithium ion supply metal sheet serves as a lithium ion source doped to the negative electrode, and may include lithium, a lithium alloy, or a mixture thereof, which is a material containing lithium ions.
  • the lithium alloy may be Li-Al, Li-Cu, Li-Si, etc., but is not limited thereto.
  • the lithium ion supply metal sheet may be formed of a metal alone made of lithium, a lithium alloy, or a mixture thereof, or a substrate supporting the metal may be further attached to one surface of the metal.
  • a substrate supporting the metal may be further attached to one surface of the metal.
  • stainless steel sus
  • aluminum, nickel, titanium, calcined carbon, copper, or the like may be applied as the substrate.
  • the lithium ion supply metal sheet may have a thickness in the range of 15 to 300 ⁇ m or 20 to 100 ⁇ m.
  • a separator is disposed on one surface of the metal facing the cathode.
  • the separator may serve to prevent direct contact with the metal. This is because the doping process (lithiation) may proceed by direct contact between the metal and the cathode, making it difficult to control the doping process and the doping process may not be uniformly performed on the cathode. That is, the separator may serve to stabilize the doping process of the negative electrode. In this case, the separator may be used without limitation as long as it is a separator applied to a typical secondary battery.
  • the negative electrode may include, as a negative active material, a carbon-based material, a silicon-based material (eg, a silicon oxide of SiOx (0 ⁇ x ⁇ 2)), Si, or the like.
  • the carbon-based material is one selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, Ketjen black, super P, graphene, and fibrous carbon or more, preferably crystalline artificial graphite, and/or crystalline natural graphite.
  • the negative active material in addition to the above materials, for example, Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, elements of groups 1, 2, 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ?z?8) and the like metal complex oxides; lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; conductive polymers such as polyacetylene; Li-Co-Ni-based materials; titanium oxide; Lith
  • the negative electrode is prepared by applying a negative electrode slurry obtained by dispersing a negative electrode active material, a conductive material, and a binder in a dispersion medium on a negative electrode current collector and then drying, and, if necessary, may further include a filler in the electrode slurry.
  • the negative electrode current collector is generally made to have a thickness of 3 to 500 ⁇ m.
  • Such a negative current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the bonding force of the negative electrode active material may be strengthened by forming fine irregularities on the surface, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a non-woven body.
  • the conductive material may be added in an amount of 1 to 50 wt% based on the total weight of the mixture including the negative active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as carbon black, denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • a conductive material such as a polyphenylene derivative may be used.
  • a graphite-based material having elasticity may be used as a conductive material, and may be used together with the materials.
  • the binder is a component that assists in bonding between the active material and the conductive material and bonding to the current collector, and is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene- and propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), fluororubber, and various copolymers.
  • the dispersion medium water, alcohol such as ethanol, acetone, etc. may be used.
  • the filler is optionally used as a component for suppressing the expansion of the negative electrode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery.
  • a fibrous material such as glass fiber or carbon fiber is used.
  • a simple cell is prepared by placing the negative electrode to face the lithium ion supply metal sheet with the separator interposed therebetween.
  • the negative electrode may be prepared by cutting the uncoated area tab portion and the negative electrode active material holding portion.
  • the method for pre-lithiation of the negative electrode is performed in an electrolyte for pre-lithiation, and for this purpose, a simple cell can be prepared by interposing the prepared negative electrode between the lithium ion supply metal sheet and the separator. have.
  • a simple cell may be prepared by sequentially stacking two or more lithium ion-supplying metal sheets with a negative electrode interposed between the separator and the separator.
  • the said simple cell is immersed in the electrolyte solution for all-lithiation.
  • the electrolytic solution for prelithiation may include a lithium salt and a non-aqueous solvent.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4 phenyl borate, or two or more of these.
  • the non-aqueous solvent may be used without particular limitation as long as it is an organic solvent commonly used in the art, but a high-boiling organic solvent may be preferably used so as to minimize the consumption of the electrolyte for pre-lithiation by evaporation during pre-lithiation.
  • the non-aqueous solvent may include a carbonate-based solvent, an ester-based solvent, or two or more of them.
  • the non-aqueous solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane , diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), gamma butyrolactone (g-butyrolactone), ethyl propionate, methyl bropionate and the like may be used alone or in combination of two or more, but is not limited thereto.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • the electrolytic solution for pre-lithiation may further include an additive.
  • the additive is vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, salicylic acid, LiBF 4 , LITFSI (Lithium bis (trifluoromethanesulfonyl) imide), LiBOB (Lithium bis(oxalato)borate), LiODFB (Lithium difluoro(oxalato)borate), or two or more thereof.
  • LITFSI Lithium bis (trifluoromethanesulfonyl) imide
  • LiBOB Lithium bis(oxalato)borate
  • LiODFB Lithium difluoro(oxalato)borate
  • the simple cell may be immersed in the electrolytic solution for pre-lithiation for 1 hour to 30 hours so that the negative electrode is wetted in the electrolytic solution for pre-lithiation.
  • the immersion time satisfies this range, the negative electrode active material is sufficiently wetted by the electrolytic solution for pre-lithiation, so that pre-lithiation, which is a subsequent process, can be smoothly performed, and the immersion time is too long, so the durability of the electrode is weakened, so that the active material during the process It is possible to prevent the problem of easily falling off from the current collector.
  • lithium ions liberated from the lithium ion supply metal sheet are uniformly diffused into the negative electrode, so that prelithiation can proceed with a uniform lithium ion concentration throughout the negative electrode.
  • the reactor in which the wetting is performed may be evacuated to less than 760 mmHg.
  • the temperature of the electrolytic solution for lithiation at which wetting is performed may be in the range of 30 to 60 °C.
  • the simple cell immersed in the electrolytic solution for pre-lithiation is made of two polymers.
  • the simple cell can be electrochemically charged using a charger and discharger while being placed between the pads and applying pressure using a pressing member on the outside of the two polymer pads.
  • the intensity of the current during charging is 0.1 to 10 mA/cm 2 , or 0.5 to 3 mA/cm 2 , or 0.5 to 2 mA/cm 2 , or 0.5 to 1 mA/cm 2 , or 1 to 10 mA /cm 2 , or 1 to 3 mA/cm 2 .
  • the strength of the current during charging satisfies this range, lithium ions may react uniformly and stably to the negative electrode.
  • the electrochemical charging is 1 to 50%, or 5 to 30%, or 5 to 25%, or 7 to 20% of the negative electrode charging capacity (based on the Li-ion charging capacity).
  • the electrochemical charging is carried out in this range, it is advantageous in that the initial efficiency and cycle performance of the battery can be improved, and the problem of deterioration of stability due to excessive lithium electrodeposition can be prevented.
  • the negative charging capacity that is, the theoretical charging capacity of the loaded negative electrode active material, and by calculating the corresponding % of the charging capacity, the charge/discharger is charged to the calculated capacity and then the charge is stopped. Electrochemical charging can be carried out in this way.
  • the electrochemical charging is performed while placing a simple cell immersed in an electrolyte between two polymer pads and pressing the outside of the two polymer pads.
  • the method of pressing the simple cell may be used without any particular limitation as long as it is a method generally known in the art.
  • the method of pressing the simple cell may be performed using a pressing member such as a jig press or jig formation equipment.
  • the pressing member may include a pair of flat plate jigs, and may pressurize the simple cell by changing the distance between the pair of flat plate jigs.
  • the pressing member may be manufactured from a material that is not reactive to an organic electrolyte, for example, from a material such as polyether ether ketone (PEEK), stainless steel, or the like.
  • PEEK polyether ether ketone
  • the simple cell is placed between the two polymer pads, and a constant pressure is applied to the outside of the two polymer pads by a pair of jigs of the pressing member, respectively, so that the lithium ion supply metal sheet is formed of the negative electrode through the separator.
  • Electrochemical charging may proceed under pressure in a state opposite to the anode active material layer.
  • the lithium secondary battery employing a negative electrode formed with a uniform solid electrolyte interface (SEI) layer has excellent cycle charge and discharge performance because the lithium ion source in the electrolyte is not consumed as a side reaction product on the electrode surface and is only used to be inserted into the active material. can be improved
  • the thickness of the polymer pad is 60 to 90% of the thickness of the jig of the pressing member, and according to one embodiment of the present invention, the thickness of the polymer pad is 70 to 85% of the thickness of the jig of the jig press, or 75 to 85%.
  • the thickness of the polymer pad means the thickness of one of the two polymer pads used in the prelithiation step
  • the thickness of the jig of the pressing member is a jig on one side facing the polymer pad.
  • the thickness of the polymer pad is less than 60% of the thickness of the jig of the pressing member, there may be a problem in that the pressure is not uniformly transmitted to the assembly cell, and a greater pressure is applied to the corner of the pressing member, and the polymer If the thickness of the pad is more than 90% of the thickness of the jig of the pressing member, there may be a problem in that the intended pressure does not accurately reach the simple cell.
  • the thickness of the polymer pad and the thickness of the jig of the pressing member are stacked because the intended pressure is constantly applied in the simple cell so that the distance between the lithium ion supply metal sheet and the negative electrode is kept constant and the same polarization is applied.
  • the SEI layer is uniformly formed on the all-lithiated anode, thereby contributing to the initial coulombic efficiency as well as capacity maintenance during the charge/discharge cycle. As a result, it is very important to control the thickness of the polymer pad to be 60 to 90% of the thickness of the jig of the pressing member.
  • the polymer pad may be applied without limitation as long as it is a polymer having impact resistance, flexibility, processability, chemical resistance, and electrical insulation.
  • the polymer pad may include an amorphous polymer, specifically a polymer having a glass transition temperature of -100° C. or less, or may be made of such a polymer.
  • Non-limiting examples of the polymer may include silicone (polysiloxane), polybutadiene, low density polyethylene, or two or more of these.
  • the pressure to be applied satisfies the above range, prelithiation is smoothly performed, and a problem in which the negative electrode is physically damaged can be prevented.
  • the area of one surface of the polymer pad facing the outside of the simple cell is larger than the area of the metal sheet located outside the simple cell, and the four corners of the metal sheet are the polymer It can be in contact with both sides of the pad.
  • the area of one surface of the polymer pad facing the outside of the simple cell is larger than the area of the metal sheet, and all four corners of the metal sheet located outside the simple cell are in contact with one surface of the polymer pad.
  • the pressure of the pressing member may be applied equally to the “cathode located between the lithium ion supplying metal sheet and the separator”.
  • the simple cell may be in the form of a single layer in which a negative electrode is interposed between one lithium ion supplying metal sheet and a separator, and a negative electrode is interposed between a plurality of lithium ion supplying metal sheets and a separator. Therefore, it may be in the form of a plurality of layers having a plurality of cathodes.
  • the same polarization is applied to the negative electrode in the simple cell and all-lithiated at the same voltage band, resulting in a uniform SEI layer Formation can exert a beneficial effect not only on the initial coulombic efficiency but also on the maintenance of the charge/discharge cycle capacity.
  • the negative electrode may be taken out from the electrolytic solution for pre-lithiation, washed using an organic solvent for washing, and dried.
  • organic solvent for washing dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, etc. may be used, and as a result, the sodium salt may be sufficiently dissolved and washed without damaging the negative electrode.
  • the drying may be performed in a manner conventionally performed in the art, and as a non-limiting example, may be dried in a dry room at 20° C. to 40° C. for 10 minutes to 5 hours.
  • an all-lithiation anode obtained by the all-lithiation method.
  • the all-lithiated negative electrode according to an aspect of the present invention, a current collector; an anode active material layer disposed on at least one surface of the current collector and including an anode active material; and a coating layer including Li-carbonate and Li on the surface of the anode active material layer.
  • the negative electrode includes a coating layer containing Li-carbonate and Li on the surface of the negative electrode active material layer, and this coating layer corresponds to the passivation film produced as a result of the prelithiation described above.
  • the oxidation-reduction decomposition reaction of the electrolyte component occurs at the interface as the electrolyte for pre-lithiation comes into contact with the negative electrode active material, and the decomposition product is deposited or adsorbed on these interfaces to form a new interfacial layer, a coating layer can be
  • the coating layer may include Li-carbonate (Li 2 CO 3 ) produced as a result of a reduction decomposition reaction between Li, which is reduced and deposited by lithium ions moving toward the negative electrode in the prelithiation process, and lithium ions and a carbonate compound as an organic solvent.
  • the coating layer is Li-carbonate and Li, (CH 2 OCO 2 Li) 2 , (CH 2 CH 2 OCO 2 Li) 2 , LiO(CH 2 ) 2 CO 2 (CH 2 ) 2 O CO 2 Li), etc. may further include.
  • the coating layer prevents the organic solvent from being inserted between the anode active material layers, thereby suppressing the decomposition reaction of the organic solvent, thereby improving the stabilization of the anode active material structure and the reversibility of the anode. That is, since the coating layer forming reaction pre-reacts the irreversible region of the negative electrode active material, it is possible to prevent in advance the problem of reducing the capacity of the battery due to consumption of lithium ions when the battery is driven later, thereby improving the cycle life.
  • a lithium secondary battery including the above-described pre-lithiated negative electrode, that is, the pre-lithiated negative electrode constitutes an electrode assembly together with a positive electrode including a positive electrode active material and a separator, and the electrode assembly and the electrolyte It can be accommodated in the case of the exterior material to constitute a lithium secondary battery.
  • the positive electrode active material may be dispersed in a solvent together with a binder polymer, a conductive material, and other additives to form a positive electrode mixture slurry, may be coated on at least one surface of a positive electrode current collector, and then dried and rolled to form a positive electrode.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof, and non-limiting examples of the negative electrode current collector include copper, gold, nickel, or a copper alloy or a combination thereof. There are foils and the like.
  • the binder polymer, conductive material, and other additives used in the positive electrode may be the same as or different from those used in the negative electrode.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m, and the thickness is generally 5 to 300 ⁇ m.
  • a porous polymer substrate such as a porous polymer film substrate or a porous polymer nonwoven substrate may be used alone, or a porous coating layer located on at least one surface of the porous polymer substrate and further comprising an inorganic particle and a binder polymer. may be used.
  • the porous polymer film substrate may be a porous polymer film made of polyolefin such as polyethylene or polypropylene, and in addition to polyolefins, polyethyleneterephthalate, polybutyleneterephthalate, polyester, polyacetal (polyacetal), polyamide (polyamide), polycarbonate (polycarbonate), polyimide (polyimide), polyetheretherketone (polyetheretherketone), polyethersulfone (polyethersulfone), polyphenyleneoxide (polyphenyleneoxide), polyphenylenesulfide ( Polyphenylenesulfide), polyethylenenaphthalene, etc. may be formed of a polymer alone or a mixture thereof.
  • polyolefin such as polyethylene or polypropylene
  • polyethyleneterephthalate polybutyleneterephthalate
  • polyester polyacetal (polyacetal), polyamide (polyamide), polycarbonate (polycarbonate), polyimide (polyimide), polyetherether
  • binder polymers include polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-co-hexafluoropropylene, and polyvinylidene fluoride-co-trichlorethylene.
  • the binder polymer may be divided into a dispersant binder polymer and a non-dispersant binder polymer that also serves as a dispersant.
  • the dispersant binder polymer is a polymer having at least one dispersion contributing functional group in the main chain or side chain of the polymer, and the dispersion contributing functional group may include an OH group, a CN group, and the like.
  • Examples of the dispersant binder polymer include cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, and cyanoethylpolyvinyl.
  • Alcohol cyanoethylpolyvinylalcohol
  • cyanoethylcellulose cyanoethylcellulose
  • cyanoethylsucrose cyanoethylsucrose
  • pullulan pullulan
  • carboxyl methyl cellulose carboxyl methyl cellulose and the like
  • non-dispersant binder polymer examples of the binder polymer except for the dispersant binder polymer.
  • the weight ratio of the inorganic particles to the total of the binder polymer and the crosslinked polymer is, for example, 50:50 to 99:1, specifically 70:30 to 95:5.
  • the content ratio of inorganic particles to the total of the binder polymer and the crosslinked polymer satisfies the above range, the problem of reducing the pore size and porosity of the coating layer formed due to an increase in the content of the binder polymer and the crosslinked polymer can be prevented.
  • the content of the binder polymer and the crosslinked polymer is small, the problem that the peeling resistance of the formed coating layer is weakened can also be solved.
  • Non-limiting examples of the inorganic particles include high dielectric constant inorganic particles having a dielectric constant of 5 or more, specifically 10 or more, inorganic particles having lithium ion transport ability, or a mixture thereof.
  • Non-limiting examples of inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB(Mg) 3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2, SiC, AlO(OH), Al 2 O 3 ⁇ H 2 O, or mixtures thereof.
  • the term 'inorganic particles having lithium ion transport ability' refers to inorganic particles containing lithium element but not storing lithium and having a function of moving lithium ions.
  • inorganic particles having lithium ion transport ability For example, lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium aluminum titanium phosphate (Li x Al y Ti z (LiAlTiP) x O y series such as (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 etc.
  • Li x La y TiO 3 Li 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3
  • Li 3.25 Ge 0.25 P 0.75 S lithium germanium thiophosphate such as 4 (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), lithium such as Li 3 N, etc.
  • SiS 2 based glass Li x Si y S z , 0 ⁇ x ⁇
  • nitride Li x N y , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 2
  • P 2 S 5 series glass such as LiI-Li 2 SP 2 S 5 (Li x P y S z , 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 3) , 0 ⁇ z ⁇ 7) or a mixture thereof.
  • the thickness of the porous coating layer is not particularly limited, but may be 1 to 10 ⁇ m, or 1.5 to 6 ⁇ m, and the porosity of the porous coating layer is also not particularly limited, but may be 35 to 65%.
  • the electrolyte includes conventional electrolyte components, for example, an organic solvent and an electrolyte salt.
  • An electrolyte salt that can be used is a salt having a structure such as A + B - , A + contains an ion consisting of an alkali metal cation such as Li + , Na + , K + or a combination thereof, B - is PF 6 - , BF 4 - , Cl - , Br - , I - , ClO 4 - , AsF 6 - , CH 3 CO 2 - , CF 3 SO 3 - , N(CF 3 SO 2 ) 2 - , C(CF 2 SO 2 ) It is a salt containing an ion consisting of an anion such as 3 - or a combination thereof.
  • a lithium salt is preferable.
  • the organic solvent used in the electrolytic solution is a solvent commonly known in the art, for example, a cyclic carbonate system with or without a halogen substituent; linear carbonate type; An ester-based, nitrile-based, phosphate-based solvent or a mixture thereof may be used.
  • propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, Tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), gamma butyrolactone (GBL), fluoroethylene carbonate (FEC), methyl formate, ethyl formate, propyl formate, acetic acid methyl, ethyl acetate, propyl acetate, pentyl acetate, methyl propionate, ethyl propionate, ethyl propionate and butyl propionate, or mixtures thereof and the like can be used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbon
  • the electrolyte injection may be performed at an appropriate stage during the battery manufacturing process according to the manufacturing process and required physical properties of the final product. That is, it may be applied before assembling the battery or in the final stage of assembling the battery.
  • the lithium secondary battery according to an embodiment of the present invention is not limited in its external shape or case, but may be cylindrical, prismatic, pouch type, coin type, or the like using a can.
  • the lithium secondary battery according to an embodiment of the present invention may include all conventional lithium secondary batteries, such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the prepared negative electrode slurry is coated on one side of a copper current collector having a thickness of 20 ⁇ m, dried at a temperature of 60° C., and the negative electrode mixture layer is rolled to a porosity of 25% using a roll press equipment to the target thickness.
  • the negative electrode was prepared by drying in a vacuum oven at 130° C. for 8 hours.
  • Fluoroethylene carbonate is added to a solvent in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) are mixed in a volume ratio of 3:7 in the prepared simple cell, 2 wt% of 1M LiPF 6 is dissolved at 25 ° C. It was immersed (wetting) in the electrolytic solution for pre-lithiation for 3 hours.
  • the simple cell disposed between the two silicon pads was interposed between a pair of jigs of the jig press, and electrochemically charged through a charger/discharger to prelithiate the negative electrode of the simple cell. (See Fig. 2)
  • the thickness of the silicon pad was 85% of the thickness of the jig of the jig press.
  • a simple cell in the silicon pad so that the area of one side of the silicon pad facing the simple cell is larger than the area of the lithium metal/SUS plate, and all four corners of the lithium metal/SUS plate are in contact with one side of the polymer pad It was adjusted so that it was precisely positioned and pressurized. Specifically, the simple cell was precisely positioned at an inner point of about 3 mm from the end of the silicon pad and pressurized with a pressure of 2 kPa.
  • the current strength was set to 1 mA/cm 2 , and it was charged up to 25% of the negative charge capacity (based on the Li-ion charge capacity).
  • the negative electrode was washed with ethylmethyl carbonate (EMC) and dried at room temperature to prepare a prelithiated negative electrode.
  • EMC ethylmethyl carbonate
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 As an anode, LiNi 0.8 Co 0.1 Mn 0.1 O 2 was laminated with a separator (polypropylene material, W-scope, WL20C, thickness 10 ⁇ m) between the pre-lithiated negative electrode prepared above and ethylene carbonate (EC) , 2 wt% of fluoroethylene carbonate (FEC) was added to a solvent mixed with ethylmethyl carbonate (EMC) in a volume ratio of 3:7 and an electrolyte solution in which 1M LiPF 6 was dissolved was injected to prepare a coin-type half-cell lithium secondary battery prepared.
  • a separator polypropylene material, W-scope, WL20C, thickness 10 ⁇ m
  • Example 2 In the same manner as in Example 1, except that the silicon pad thickness of Example 1 was changed to 70% of the thickness of the jig of the jig press, an all-lithium negative electrode and a coin-type half-cell lithium secondary battery including the same were prepared. .
  • a negative electrode was prepared in the same manner as in Example 1.
  • ethylene carbonate (EC), ethylmethyl carbonate (EMC) 2 wt% of fluoroethylene carbonate (FEC) was added to a solvent mixed in a volume ratio of 3:7 and 1M LiPF 6 was immersed in an electrolyte for prelithiation at 25° C. (wetting) for 3 hours, and then the electrolyte solution In this state, lithium metal was used as a counter electrode and placed on both sides of the negative electrode, and then electrochemically charged to perform pre-lithiation on the negative electrode.
  • the negative electrode was fully lithiated by charging while pressing a jig at a pressure of 2 kPa. At this time, the strength of the current during charging was set to 2mA/cm 2 , and it was charged up to 25% of the negative charge capacity (based on the Li-ion charge capacity). After prelithiation was completed, the negative electrode was washed with ethylmethyl carbonate (EMC) and dried at room temperature to prepare a prelithiated negative electrode.
  • EMC ethylmethyl carbonate
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 As an anode, LiNi 0.8 Co 0.1 Mn 0.1 O 2 was laminated with a separator (polypropylene material, W-scope, WL20C, thickness 10 ⁇ m) between the pre-lithiated negative electrode prepared above and ethylene carbonate (EC) , 2 wt% of fluoroethylene carbonate (FEC) was added to a solvent mixed with ethylmethyl carbonate (EMC) in a volume ratio of 3:7 and an electrolyte solution in which 1M LiPF 6 was dissolved was injected to prepare a coin-type half-cell lithium secondary battery prepared.
  • a separator polypropylene material, W-scope, WL20C, thickness 10 ⁇ m
  • Example 2 In the same manner as in Example 1, except that the silicon pad thickness of Example 1 was changed to 35% of the thickness of the jig of the jig press, an all-lithium negative electrode and a coin-type half-cell lithium secondary battery including the same were prepared. .
  • Example 2 In the same manner as in Example 1, except that the thickness of the silicon pad of Example 1 was changed to 120% of the thickness of the jig of the jig press, an all-lithium negative electrode and a pouch-type full-cell lithium secondary battery including the same were prepared.
  • Comparative Examples 1 and 2 since there was no silicon pad at all or the thickness was too thin during prelithiation, the contact between the active materials was not uniform, so the resistance during charging and discharging was large, resulting in poor cycle performance. The deviation of the initial coulombic efficiency was also large.
  • Comparative Example 3 if the thickness of the silicon pad is very thick during pre-lithiation, even pressure is not applied when the jig is pressed, and as it is only partially charged, lithium plating occurs on the electrode, The cycle performance of the secondary battery employing such an all-lithiated negative electrode was rather poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

리튬 이온 공급 금속시트와 분리막 사이에 음극을 개재시켜 간이 셀을 준비하는 단계; 상기 간이 셀을 전리튬화용 전해액에 침지하는 단계; 및 상기 전리튬화용 전해액에 침지된 간이 셀을 2개의 폴리머 패드 사이에 배치하고, 상기 2개의 폴리머 패드의 외측에 가압을 하면서 전기화학 충전을 시켜 상기 음극을 전리튬화하는 단계;를 포함하고, 상기 폴리머 패드의 두깨가 상기 가압 부재의 지그의 두께의 60 내지 90%인 음극의 전리튬화 방법, 전리튬화 음극, 상기 전리튬화 음극을 포함하는 리튬 이차전지가 제시된다.

Description

음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지
본 발명은 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2020년 2월 17일에 출원된 한국출원 제10-2020-0019310호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크고, 사이클 수명이 길며, 자기방전율이 낮다는 장점으로 각광을 받고 있다.
종래의 리튬 이차전지는 양극으로 LiCoO 2, LiMn 2O 4 등 리튬이 삽입되어 있는 화합물을 사용하기 때문에 음극으로 사용되는 탄소 전극에 리튬이 삽입되어 있지 않는 상태로 전지가 제조되고 있다. 탄소 전극인 경우는 초기 충전시 카본 전극 표면상에 부동태 피막이 형성되는데, 이 피막은 탄소 격자층 사이로 유기용매가 삽입되지 않도록 방해하여 유기용매의 분해반응을 억제함으로써 탄소 구조의 안정화 및 탄소 전극의 가역성을 향상시켜 리튬 이차전지용 음극으로의 사용을 가능케 한다.
그러나 이러한 피막형성 반응은 비가역적 반응이기 때문에 리튬 이온의 소모를 가져와 전지의 용량을 감소시키는 역효과도 있다. 또한 탄소 전극 및 양극은 충방전 효율이 완전히 100%가 아니기 때문에 사이클 수가 진행됨에 따라 리튬 이온의 소모가 발생하게 되어 전극용량의 감소시키고, 결국 사이클 수명을 저하시키는 문제가 발생할 수 있다.
이를 해결하고자 하는 여러 연구 결과, 전리튬화된 탄소 전극을 음극으로 사용하면 초기 충전시 나타나는 피막형성 반응을 미리 시켰기 때문에 용량의 저하 없이 고용량의 리튬 이차전지를 제조할 수 있을 뿐만 아니라 사이클 수가 증가함에 따라서 나타나는 리튬 이온의 소모를 보충해 주기 때문에 사이클 수명을 대폭 향상시킬 수 있다는 점이 확인되었다.
이 후, 상기 탄소 전극 등의 음극을 전리튬화하는 연구가 활발해지고 있는 바, 대표적으로, 카본 활물질을 물리화학적 방법에 의해 리튬화 시킨 후 전극을 제조하는 방법 및 카본 전극을 전기화학적으로 전리튬화 시키는 방법 등이 고려되고 있다.
이 중에서, 지그 가압을 통해 전기화학 충전법으로 전리튬화 시키는 방법의 경우, 음극에 리튬이온이 균일하게 충전되지 않아 저항이 커지고 사이클 충방전 성능이 감소하는 문제가 있다.
따라서 본 발명이 해결하고자 하는 과제는, 리튬이온을 충분히 고르게 충전시키고 균일한 SEI층을 형성시키는 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 음극의 전리튬 방법이 제공된다.
제1 구현예에 따르면,
리튬 이온 공급 금속시트와 분리막 사이에 음극을 개재시켜 간이 셀을 준비하는 단계;
상기 간이 셀을 전리튬화용 전해액에 침지하는 단계; 및
상기 전리튬화용 전해액에 침지된 간이 셀을 2개의 폴리머 패드 사이에 배치하고, 상기 2개의 폴리머 패드의 외측에 가압을 하면서 전기화학 충전을 시켜 상기 음극을 전리튬화하는 단계;를 포함하고,
상기 폴리머 패드의 두깨가 상기 가압 부재의 지그의 두께의 60 내지 90%인 음극의 전리튬화 방법이 제공된다.
제2 구현예에 따르면, 제1 구현예에 있어서,
상기 폴리머 패드의 두깨가 상기 가압 부재의 지그의 두께의 70 내지 85%일 수 있다.
제3 구현예에 따르면, 제1 구현예 또는 제2 구현예에 있어서,
상기 가압 부재가 지그 가압기 또는 지그 포메이션 장비를 포함할 수 있다.
제4 구현예에 따르면, 제1 구현예 내지 제3 구현예 중 어느 한 구현예에 있어서,
상기 간이 셀과 대면하는 상기 폴리머 패드의 일면의 면적이 상기 금속시트의 면적보다 크고, 상기 금속시트의 4개의 모서리가 상기 폴리머 패드의 일면과 모두 접촉할 수 있다.
제5 구현예에 따르면, 제1 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 폴리머 패드가 유리전이온도 -100℃ 이하의 폴리머를 포함할 수 있다.
제6 구현예에 따르면, 제1 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 폴리머가 실리콘(폴리실록산), 폴리부타디엔, 저밀도 폴리에틸렌, 또는 이들 중 2 이상을 포함할 수 있다.
제7 구현예에 따르면, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 전리튬화용 전해액이 리튬염 및 비수계 용매를 포함할 수 있다.
제8 구현예에 따르면, 제7 구현예에 있어서,
상기 리튬염이 LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10Cl 10, LiPF 6, LiCF 3SO 3, LiCF 3CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3SO 3Li, CF 3SO 3Li, (CF 3SO 2) 2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 또는 이들 중 2 이상을 포함할 수 있다.
제9 구현예에 따르면, 제1 구현예 내지 제8 구현예 중 어느 한 구현예에 있어서,
상기 전기화학 충전이 상기 음극 충전용량 (Li-ion 충전용량 기준)의 1 내지 50%까지로 실시될 수 있다.
본 발명의 일 측면에 따르면, 하기 구현예의 음극이 제공된다.
제10 구현예에 따르면, 제1 구현예 내지 제9 구현예 중 어느 한 구현예의 방법으로 얻어진 전리튬화 음극이 제공된다.
본 발명의 일 측면에 따르면, 하기 구현예의 리튬 이차전지가 제공된다.
제11 구현예에 따르면, 제10 구현예의 전리튬화 음극을 포함하는 리튬 이차전지가 제공된다.
종래의 지그 가압을 통해 전기화학 충전법으로 음극을 전리튬화하는 방법에 비하여, 본 발명의 일 구현예에 따른 음극의 전리튬 방법은, 전리튬화시 폴리머 패드를 가압 부재의 지그 사이에 배치하고 가압을 하며 전기화학 충전 전리튬화를 실시함에 따라, 음극에 리튬이온이 충분히 고르게 충전되고 균일한 고체전해질계면(SEI)층의 형성으로 인해, 추가적인 리튬 소스의 부반응 생성물을 방지할 수 있고, 이로부터 충방전시 리튬 이온 삽입(intercalation)이 용이한 조건으로 보다 높은 초기 쿨롱 효율을 발휘할 수 있다. 또한, 이러한 음극을 채용한 리튬 이차전지의 사이클 성능이 향상될 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 실시예 1에 따른 음극의 전리튬화 방법에 사용되는 전리튬화용 간이 셀의 사진이다.
도 2는 실시예 1에 따른 음극의 전리튬화 방법에서 전리튬화용 간이 셀에 충방전기를 통해 전기화학 충전을 시켜 음극에 전리튬화를 실시하는 사진이다.
도 3은 실시예 1과 2, 비교예 1 내지 3에서 제조한 리튬 이차전지의 사이클 충방전 실험을 위해서 사용되는 음극이 전리튬화된 음극의 1 ~ 4 위치에서 타발하여 제조되는 것을 보여주는 사진이다.
도 4는 실시예 1과 2, 비교예 1 내지 3에서 제조한 리튬 이차전지의 사이클 충방전 실험 결과를 나타낸 그래프이다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 측면에 따른 음극의 전리튬화 방법은,
리튬 이온 공급 금속시트와 분리막 사이에 음극을 개재시켜 간이 셀을 준비하는 단계;
상기 간이 셀을 전리튬화용 전해액에 침지하는 단계; 및
상기 전리튬화용 전해액에 침지된 간이 셀을 2개의 폴리머 패드 사이에 배치하고, 상기 2개의 폴리머 패드의 외측에 가압을 하면서 전기화학 충전을 시켜 상기 음극을 전리튬화하는 단계;를 포함하고,
상기 폴리머 패드의 두깨가 상기 가압 부재의 지그의 두께의 60 내지 90%이다.
이하, 각 단계에 대해서 살펴보겠다.
먼저, 리튬 이온을 공급하는 금속시트와 분리막 사이에 음극을 개재시켜 간이 셀을 준비한다.
상기 리튬 이온 공급 금속시트는 음극에 도핑되는 리튬 이온 공급원의 역할을 하며, 리튬 이온을 함유하고 있는 재질인 리튬, 리튬 합금, 또는 이들의 혼합물을 포함할 수 있다. 상기 리튬 합금은 Li-Al, Li-Cu, Li-Si 등 일 수 있으며, 여기에 제한되지는 않는다.
상기 리튬 이온 공급 금속시트는 리튬, 리튬 합금, 또는 이들의 혼합물로 이루어진 금속 단독으로 형성될 수도 있고, 상기 금속의 일면에 금속을 지지하는 기재가 더 부착된 형태일 수 있다. 상기 기재로는 스테인레스 스틸(sus), 알루미늄, 니켈, 티탄, 소성 탄소, 구리 등이 적용될 수 있다.
상기 리튬 이온 공급 금속시트는 15 내지 300 ㎛ 또는 20 내지 100 ㎛ 범위의 두께를 갖는 것일 수 있다.
상기 음극과 대향된 금속의 일면에 분리막이 배치된다. 상기 분리막은 금속과 직접적으로 접촉하는 것을 방지하는 역할을 할 수 있다. 이는, 금속과 음극의 직접적인 접촉에 의해 도핑 공정(리튬화)이 진행될 수 있어, 도핑 공정의 제어가 어려워지고 음극에 균일한 도핑 공정이 진행될 수 없기 때문이다. 즉, 상기 분리막은 음극의 도핑 공정을 안정화시키는 역할을 할 수 있다. 이때, 상기 분리막은 통상의 이차전지에 적용되는 분리막이라면 제한 없이 사용될 수 있다.
본 발명의 일 구현예에서, 상기 음극은 음극 활물질로서, 탄소계 물질, 규소계 물질 (예를 들어, SiOx(0<x<2)의 규소산화물), Si 등을 포함할 수 있다.
상기 탄소계 물질은 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼 P, 그래핀 (graphene), 및 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 바람직하게는 결정질 인조 흑연, 및/또는 결정질 천연 흑연일 수 있다.
상기 음극 활물질은, 상기 물질들 외에, 예를 들어, Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe' yO z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4, and Bi 2O 5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있고, 상세하게는 탄소계 물질 및/또는 Si을 포함할 수 있다.
일반적으로, 상기 음극은 음극 집전체 상에 음극 활물질, 도전재 및 바인더를 분산매에 분산시켜 얻은 음극 슬러리를 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 전극 슬러리에 충진제를 더 포함할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 도전재는 통상적으로 음극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 덴카블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
한편, 탄성을 갖는 흑연계 물질이 도전재로 사용될 수 있고, 상기 물질들과 함께 사용될 수도 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔러버(EPDM), 술폰화 EPDM, 스티렌부타디엔 고무(styrene-butadiene rubber, SBR), 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 분산매는 물, 에탄올 등의 알코올, 아세톤 등을 사용할 수 있다.
상기 충진제는 음극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극을 분리막을 사이에 두고 리튬 이온 공급 금속시트와 대면시켜서 간이 셀을 준비한다. 이때, 상기 음극은 무지부 탭부분과 음극 활물질 유지부를 구비하도록 절단하여 준비할 수 있다.
본 발명의 일 구현에에 따르면, 상기 음극의 전리튬화 방법은, 전리튬화용 전해액 중에서 수행되며, 이를 위해, 리튬 이온 공급 금속시트와 분리막 사이에 상기 준비된 음극을 개재시켜 간이 셀을 준비할 수 있다. 또한, 2 이상의 리튬 이온 공급 금속시트와 분리막 사이에 음극을 각각 개재시켜서 순차적으로 적층하여 간이 셀을 준비할 수 있다.
다음으로, 상기 간이 셀을 전리튬화용 전해액에 침지한다.
상기 전리튬화용 전해액은 리튬염 및 비수계 용매를 포함할 수 있다.
상기 리튬염은 LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10Cl 10, LiPF 6, LiCF 3SO 3, LiCF 3CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3SO 3Li, CF 3SO 3Li, (CF 3SO 2) 2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 또는 이들 중 2 이상을 포함할 수 있다.
상기 비수계 용매는 당업계에서 통상적으로 사용되는 유기용매라면 특별한 제한없이 사용될 수 있으나, 전리튬화 동안 증발에 의한 전리튬화용 전해액 소모가 최소화되도록 고비점 유기용매가 바람직하게 사용될 수 있다
상기 비수계 용매로는 카보네이트계 용매, 에스테르계 용매, 또는 이들 중 2 이상을 포함할 수 있다. 상기 비수계 용매의 예로는, 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤), 에틸 프로피오네이트, 메틸 브로피오네이트 등을 단독 또는 2 이상을 혼합하여 사용할 수 있으나, 여기에 제한되지 않는다.
또한, 상기 전리튬화용 전해액은 첨가제를 더 포함할 수 있다.
상기 첨가제는 비닐렌 카보네이트(vinylene carbonate), 비닐 에틸렌 카보네이트(vinylethylene carbonate), 플루오로에틸렌 카보네이트(fluoroethylene carbonate), 살리실릭산(salicylic acid), LiBF 4, LITFSI(Lithium bis(trifluoromethanesulfonyl)imide), LiBOB(Lithium bis(oxalato)borate), LiODFB(Lithium difluoro(oxalato)borate), 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 구현예에 따르면, 상기 간이 셀을 전리튬화용 전해액에 1 시간 내지 30 시간 동안 침지시켜 음극이 전리튬화용 전해액에 웨팅되도록 할 수 있다. 상기 침지 시간이 이러한 범위를 만족하는 경우에, 상기 음극 활물질이 전리튬화용 전해액에 의해 충분히 웨팅되어 후속 공정인 전리튬화가 원활하게 이루어질 수 있고, 침지 시간이 너무 길어서 전극의 내구성이 약해져 공정시 활물질이 집전체에서 쉽게 떨어지게 되는 문제를 방지할 수 있다. 상기 웨팅을 통해 음극에 균일하게 전리튬화용 전해액이 침투되면 리튬 이온 공급 금속시트로부터 유리된 리튬 이온이 음극에 균일하게 확산되어 음극 전체에 균일한 리튬 이온 농도로 전리튬화가 진행될 수 있다.
상기 간이 셀이 전리튬화용 전해액에 침지되어 웨팅이 잘 이루어지도록 하기 위해 웨팅이 이루어지는 반응기를 760 mmHg 미만으로 진공화할 수 있다. 이 때, 웨팅이 이루어지는 전리튬화용 전해액 온도는 30 내지 60 ℃ 범위일 수 있다.
이후, 상기 전리튬화용 전해액에 침지된 간이 셀을 2개의 폴리머 패드 사이에 배치하고, 가압 부재를 이용하여 상기 2개의 폴리머 패드의 외측에 가압을 하면서 전기화학 충전을 시켜 상기 음극을 전리튬화한다.
본 발명의 일 구현예에 따르면, 상기 전리튬화용 전해액에 간이 셀을 침지하여 상기 간이 셀의 내부까지 전리튬화용 전해액이 충분히 웨팅된 이후에 상기 전리튬화용 전해액에 침지된 간이 셀을 2개의 폴리머 패드 사이에 배치하고, 상기 2개의 폴리머 패드의 외측에 가압 부재를 이용하여 가압을 하면서 충방전기를 이용하여 간이 셀을 전기화학 충전시킬 수 있다.
이때, 상기 충전시의 전류의 세기는 0.1 내지 10 mA/cm 2, 또는 0.5 내지 3 mA/cm 2, 또는 0.5 내지 2 mA/cm 2, 또는 0.5 내지 1 mA/cm 2, 또는 1 내지 10 mA/cm 2, 또는 1 내지 3 mA/cm 2 일 수 있다. 상기 충전시의 전류의 세기가 이러한 범위를 만족하는 경우에 리튬 이온이 음극에 균일하고 안정적으로 반응할 수 있다.
본 발명의 일 구현예에 따르면, 상기 전기화학 충전은 상기 음극 충전용량 (Li-ion 충전용량 기준)의 1 내지 50%, 또는 5 내지 30%, 또는 5 내지 25%, 또는 7 내지 20%로 실시될 수 있다. 상기 전기화학 충전이 이러한 범위로 실시되는 경우에 전지의 초기 효율 및 사이클 성능이 개선 될 수 있고, 지나치게 리튬 전착이 발생하여 안정성이 저하되는 문제가 방지될 수 있다는 점에서 유리하다. 이때, 상기 음극 충전용량, 즉 로딩된 음극활물질의 이론 충전용량으로서 확인할 수 있고, 그 충전용량의 해당 %를 계산하여, 충방전기에 그 계산된 용량까지 충전된 후 충전을 중지라는 조건을 걸어주는 방식으로 전기화학 충전을 실시할 수 있다.
상기 전기화학 충전은 전해액에 침지된 간이 셀을 2개의 폴리머 패드 사이에 배치하고, 상기 2개의 폴리머 패드의 외측에 가압을 하면서 실시된다.
상기 간이 셀에 가압하는 방법은 당업계에 일반적으로 알려진 방법이라면 특별한 제한없이 이용될 수 있다. 예컨대, 상기 간이 셀에 가압하는 방법은 지그 가압기 또는 지그 포메이션 장비와 같은 가압 부재를 이용하여 실시될 수 있다. 구체적으로 상기 가압 부재는 한 쌍의 평판 지그를 구비할 수 있고, 상기 한 쌍의 평판 지그 간 의 거리를 변경시키는 방법으로 상기 간이 셀에 대한 가압을 실시할 수 있다.
상기 가압 부재는 유기 전해액에 반응성이 없는 재질로부터 제조될 수 있으며, 예컨대, 폴리에테르에테르케톤(PEEK), 스테인레스 스틸 등의 재질로부터 제조될 수 있다.
상기 간이 셀을 2개의 폴리머 패드 사이에 배치하고, 상기 2개의 폴리머 패드의 외측에 각각 가압 부재의 한 쌍의 지그에 의해 일정한 압력이 가해짐으로써 리튬 이온 공급 금속시트가 분리막을 매개로 하여 음극의 음극 활물질층과 대향한 상태로 가압 하에서 전기화학 충전이 진행될 수 있다.
종래에 음극에 직접 지그 가압기와 같은 가압 부재를 접촉시켜 전기화학 충전법으로 음극을 전리튬화하게 되면 음극에 리튬이온이 균일하게 충전되지 않아 저항이 커지고 사이클 충방전 성능이 감소하게 되었다.
하지만 본 발명의 일 구현예와 같이 음극의 전리튬화시 간이 셀의 음극과 가압 부재의 지그 사이에 폴리머 패드를 삽입하고 가압을 하면서 전기화학 충전 전리튬화를 실시하게 되면 가압 차에 의한 리튬 메탈/SUS판과 전극간의 간격 및 저항의 차이가 발생하지 않으므로, 분극이 일정하게 되므로 음극에 리튬이온이 충분히 고르게 충전되고 균일한 고체전해질계면(SEI)층의 형성될 수 있다. 그 결과, 균일한 고체전해질계면(SEI)층의 형성된 음극을 채용한 리튬 이차전지는 전해액 내 리튬 이온 소스가 전극 표면에서 부반응 생성물 등으로 소모되지 않고 활물질로 삽입되는데만 사용되므로 사이클 충방전 성능이 향상될 수 있다.
상기 폴리머 패드의 두깨는 상기 가압 부재의 지그의 두께의 60 내지 90%이고, 본 발명의 일 구현예에 따르면, 상기 폴리머 패드의 두깨가 상기 지그 가압기의 지그의 두께의 70 내지 85%, 또는 75 내지 85%일 수 있다.
이때, 상기 폴리머 패드의 두깨는 상기 전리튬화하는 단계에서 사용되는 2개의 폴리머 패드 중 1개의 폴리머 패드의 두께를 의미하고, 상기 가압 부재의 지그의 두께는 상기 폴리머 패드와 대면하는 일 측의 지그의 두께를 의미한다.
상기 폴리머 패드의 두깨가 상기 가압 부재의 지그의 두께의 60% 미만인 경우에는 조립 셀에 압력이 일정하게 전달되지 않고, 가압 부재의 모서리 부분에 더 큰 압력이 가해지는 문제가 있을 수 있고, 상기 폴리머 패드의 두깨가 상기 가압 부재의 지그의 두께의 90% 초과인 경우에는 의도한 압력이 정확히 간이 셀까지 도달하지 못하는 문제가 있을 수 있다.
상기 폴리머 패드의 두깨와 상기 가압 부재의 지그의 두께는 의도한 압력이 간이 셀 내 일정하게 가해져서 리튬 이온 공급 금속시트와 음극 간 거리가 일정하게 유지되어 같은 분극이 적용되므로, 스택된(stacked) 전리튬화 음극에 SEI층이 균일하게 현성되어 초기 쿨롱 효율은 물론이고 충방전 사이클시 용량 유지에 기여할 수 있다. 그 결과, 상기 폴리머 패드의 두깨를 상기 가압 부재의 지그의 두께의 60 내지 90%으로 제어하는 것이 매우 중요하다.
상기 폴리머 패드는 내충격성, 유연성, 가공성, 내화학성, 전기절연성을 구비하는 폴리머라면 제한 없이 적용할 수 있다. 본 발명의 일 구현예에 따르면, 상기 폴리머 패드는 비정질 폴리머, 구체적으로 유리전이온도 -100℃ 이하의 폴리머를 포함하거나, 이러한 폴리머로 이루어질 수 있다.
상기 폴리머로의 비제한적인 예로는 실리콘(폴리실록산), 폴리부타디엔, 저밀도 폴리에틸렌, 또는 이들 중 2 이상을 포함할 수 있다.
상기 가압 부재에 의해 리튬 이온 공급 금속시트를 예를 들어 0.01 kPa 내지 10 kPa, 또는 0.05 kPa 내지 5 kPa, 또는 0.1 kPa 내지 3 kPa, 또는 0.5 kPa 내지 2 kPa, 또는 1 kPa 내지 3 kPa, 또는 2 kPa 내지 3 kPa의 압력으로 음극 활물질층을 향해 가압할 수 있다. 가압되는 압력이 상기 범위를 만족하는 경우에, 전리튬화가 원활하게 이루어지고, 음극이 물리적으로 손상이 일어나는 문제를 방지할 수 있다.
본 발명의 일 구현예에 따르면, 상기 간이 셀의 외측과 대면하는 상기 폴리머 패드의 일면의 면적이 상기 간이 셀의 외측에 위치한 상기 금속시트의 면적보다 크고, 상기 금속시트의 4개의 모서리가 상기 폴리머 패드의 일면과 모두 접촉할 수 있다.
이와 같이, 상기 간이 셀의 외측과 대면하는 상기 폴리머 패드의 일면의 면적이 상기 금속시트의 면적보다 크고, 상기 간이 셀의 외측에 위치한 상기 금속시트의 4개의 모서리가 상기 폴리머 패드의 일면과 모두 접촉하게 되면, 상기 가압 부재의 압력이 "리튬 이온 공급 금속시트와 분리막 사이에 위치한 음극"까지 동일하게 가해질 수 있다.
본 발명의 일 구현예에 따르면, 상기 간이 셀은 1개의 리튬 이온 공급 금속시트와 분리막 사이에 음극을 개재시킨 단일층 형태일 수도 있고, 복수 개의 리튬 이온 공급 금속시트와 분리막 사이에 음극을 개재시킬 수 있으므로, 복수 개의 음극을 구비하는 복수층 형태일 수도 있다.
그 결과, 상기 간이 셀이 1개의 음극을 구비하거나, 또는 복수의 음극을 구비하는 경우 모두, 상기 간이 셀 내의 음극에 동일한 분극이 걸려서 같은 전압대에서 전리튬화되고, 그 결과 균일한 SEI층의 형성으로 초기 쿨롱 효율 뿐만 아니라 충방전 사이클 용량 유지에도 유리한 효과를 발휘할 수 있다.
이후, 본 발명의 일 구현예에 따르면, 상기 전리튬화용 전해액으로부터 음극을 꺼내고 세척용 유기 용매를 이용하여 세척하고 건조시킬 수 있다. 상기 세척용 유기 용매로는 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트 등을 사용할 수 있으며, 그 결과 음극을 손상시키지 않으면서 소듐염이 충분히 용해시켜서 세척할 수 있다.
상기 건조는 당업계에서 통상적으로 이루어지는 방식으로 이루어질 수 있으며, 비제한적인 예로 20 ℃ 내지 40 ℃의 드라이 룸에서 10분 내지 5시간동안 건조될 수 있다.
본 발명의 일 측면에 따르면, 상기 전리튬화 방법으로 얻어진 전리튬화 음극이 제공된다.
또한, 본 발명의 일 측면에 따른 전리튬화 음극은, 집전체; 상기 집전체의 적어도 일면 상에 위치하고, 음극활물질을 포함하는 음극활물질층; 및 상기 음극활물질층의 표면에 Li-카보네이트 및 Li를 포함하는 코팅층을 구비한다.
상기 음극은, 상기 음극활물질층의 표면에 Li-카보네이트 및 Li를 포함하는 코팅층을 구비하고, 이러한 코팅층은 전술한 전리튬화 결과 생성된 부동태 피막에 해당된다.
상기 음극의 전리튬화 과정에서 전리튬화용 전해액이 음극활물질과 접촉함으로써 계면에서 전해질 성분의 산화-환원 분해반응이 발생하게 되고, 이들 계면에 분해 생성물이 침착 또는 흡착되어 새로운 계면층인 코팅층이 형성될 수 있다.
상기 코팅층은 전리튬화 과정에서 리튬 이온이 음극 쪽으로 이동하여 환원 침착된 Li, 리튬 이온과 유기용매인 카보네이트 화합물과의 환원 분해 반응의 결과로 생성된 Li-카보네이트(Li 2CO 3)을 포함할 수 있다. 또한 상기 코팅층은 Li-카보네이트 및 Li 외에, (CH 2OCO 2Li) 2, (CH 2CH 2OCO 2Li) 2, LiO(CH 2) 2CO 2(CH 2) 2O CO 2Li) 등을 더 포함할 수 있다.
상기 코팅층은 음극 활물질층 사이로 유기용매가 삽입되지 않도록 방해하여 유기용매의 분해반응을 억제함으로써 음극활물질 구조의 안정화 및 음극의 가역성을 향상시킬 수 있다. 즉, 상기 코팅층 형성 반응은 음극 활물질의 비가역 영역을 미리 반응시키는 것이므로, 추후 전지 구동시 리튬 이온의 소모를 가져와 전지의 용량을 감소시키는 문제를 미리 방지할 수 있어, 사이클 수명을 개선시킬 수 있다.
본 발명의 일 측면에 따르면, 전술한 전리튬화 음극을 포함하는 리튬 이차전지, 즉, 상기 전리튬화 음극은 양극 활물질을 포함하는 양극, 분리막과 함께 전극조립체를 구성하고, 상기 전극조립체와 전해질이 외장재 케이스에 수납되어 리튬 이차전지를 구성할 수 있다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO 2), 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+yMn 2-yO 4 (여기서, y 는 0 ~ 0.33임), LiMnO 3, LiMn 2O 3, LiMnO 2 등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2); LiV 3O 8, LiFe 3O 4, V 2O 5, Cu 2V 2O 7 등의 바나듐 산화물; 화학식 LiNi 1-yM yO 2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, y = 0.01 - 0.3임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn 2-yM yO 2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, y = 0.01 - 0.1임) 또는 Li 2Mn 3MO 8(여기서, M = Fe, Co, Ni, Cu 또는 Zn임)으로 표현되는 삼성분계 리튬 망간복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4; 디설파이드 화합물; Fe 2(MoO 4) 3, Li(Ni aCo bMn c)O 2(0<a<1, 0<b<1, 0<c<1, a+b+c=1)인 삼성분계 리튬 전이금속 복합산화물 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 양극 활물질은 바인더 고분자, 도전재 및 기타 첨가제와 함께 용매에 분산되어 양극합제 슬러리를 형성할 수 있으며, 양극 집전체의 적어도 일면에 코팅된 후에 건조 및 압연되어 양극으로 형성될 수 있다.
상기 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
상기 양극에 사용되는 바인더 고분자, 도전재 및 기타 첨가제는 음극에서 사용된 것과 동일하거나 상이할 수 있다. 바인더 고분자 및 도전재에 대해서는 음극 관련하여 기재된 사항을 참조한다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 내지 10 ㎛이고, 두께는 일반적으로 5 내지 300 ㎛이다. 이러한 분리막으로는, 다공성 고분자 필름 기재 또는 다공성 고분자 부직포 기재 등의 다공성 고분자 기재 단독으로 사용되거나, 상기 다공성 고분자 기재의 적어도 일면상에 위치하고 무기물 입자와 바인더 고분자를 포함하는 다공성 코팅층을 더 구비하는 형태로 사용될 수도 있다. 상기 다공성 고분자 필름 기재로는 폴리에틸렌, 폴리프로필렌과 같은 폴리올레핀으로 이루어진 다공성 고분자 필름일 수 있으며, 폴리올레핀계 외에 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성될 수 있다.
이러한 바인더 고분자의 비제한적인 예로는 폴리비닐리덴풀루라이드, 폴리비닐리덴풀루라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴풀루라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리부닐메타아크릴레이트 (polybutylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)등을 들 수 있으며, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 바인더 고분자는 분산제 역할도 같이 하는 분산제 바인더 고분자와 비분산제 바인더 고분자로 구분될 수 있다. 상기 분산제 바인더 고분자는 고분자의 주쇄 또는 측쇄에 적어도 1 이상의 분산 기여 관능기를 갖는 고분자이며, 상기 분산 기여 관능기로는 OH기, CN기 등이 있을 수 있다. 이러한 분산제 바인더 고분자의 예로는, 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 등이 있을 수 있다. 비분산제 바인더 고분자는 상기 바인더 고분자 중 분산제 바인더 고분자를 제외한 예들이 해당될 수 있다.
상기 무기물 입자와, 바인더 고분자 및 가교 고분자의 총합의 중량비는 예를 들어 50:50 내지 99:1, 상세하게는 70:30 내지 95:5이다. 바인더 고분자 및 가교 고분자의 총합에 대한 무기물 입자의 함량비가 상기 범위를 만족하는 경우, 바인더 고분자와 가교 고분자의 함량이 많아지게 되어 형성되는 코팅층의 기공 크기 및 기공도가 감소되는 문제가 방지될 수 있고, 바인더 고분자와 가교 고분자의 함량이 적기 때문에 형성되는 코팅층의 내필링성이 약화되는 문제도 해소될 수 있다.
상기 무기물 입자의 비제한적인 예로는 유전율 상수가 5 이상 상세하게는 10 이상인 고유전율 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물을 들 수 있다.
상기 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO 3, Pb(Zr,Ti)O 3(PZT), Pb 1-xLa xZr 1-yTi yO 3(PLZT), PB(Mg 3Nb 2/3)O 3-PbTiO 3(PMN-PT), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, Y 2O 3, Al 2O 3, TiO 2, SiC, AlO(OH), Al 2O 3ㅇH 2O, 또는 이들의 혼합물 등이 있다.
본원 명세서에서 '리튬 이온 전달 능력을 갖는 무기물 입자'는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li 3PO 4), 리튬티타늄포스페이트(Li xTi y(PO 4) 3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(Li xAl yTi z(PO 4) 3, 0 <x<2, 0<y<1, 0<z<3), 14Li 2O-9Al 2O 3-38TiO 2-39P 2O 5 등과 같은 (LiAlTiP) xO y 계열 글래스(glass) (0<x<4, 0<y<13), 리튬란탄티타네이트(Li xLa yTiO 3, 0<x<2, 0<y<3), Li 3.25Ge 0.25P 0.75S 4 등과 같은 리튬게르마니움티오포스페이트(Li xGe yP zS w, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li 3N 등과 같은 리튬나이트라이드(Li xN y, 0<x<4, 0<y<2), Li 3PO 4-Li 2S-SiS 2 등과 같은 SiS 2 계열 glass(Li xSi yS z, 0<x<3, 0<y<2, 0<z<4), LiI-Li 2S-P 2S 5 등과 같은 P 2S 5 계열 glass(Li xP yS z, 0<x<3, 0<y<3, 0<z<7) 또는 이들의 혼합물 등이 있다.
상기 다공성 코팅층의 두께는 특별히 제한되지 않으나, 1 내지 10 ㎛, 또는 1.5 내지 6 ㎛일 수 있고, 상기 다공성 코팅층의 기공도 역시 특별히 제한되지 않으나 35 내지 65%일 수 있다.
상기 전해액은 통상적인 전해질 성분, 예를 들면 유기용매 및 전해질 염을 포함한다. 사용 가능한 전해질 염은 A +B -와 같은 구조의 염으로서, A +는 Li +, Na +, K +와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고, B -는 PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3CO 2 -, CF 3SO 3 -, N(CF 3SO 2) 2 -, C(CF 2SO 2) 3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이다. 특히, 리튬염이 바람직하다. 예를 들면, LiClO 4, LiCF 3SO 3, LiPF 6, LiAsF 6, LiN(CF 3SO 2) 2 또는 이들의 혼합물 등을 사용할 수 있다.
상기 전해액에 사용되는 유기용매는 당업계에 통상적으로 알려진 용매, 예컨대 할로겐 치환체를 포함하거나 또는 포함하지 않는 환형 카보네이트계; 선형 카보네이트계; 에스테르계, 니트릴계, 인산염계 용매 또는 이들의 혼합물 등을 사용할 수 있다. 예를 들면 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤(GBL), 플루오로에틸렌 카보네이트(FEC), 포름산 메틸, 포름산 에틸, 포름산 프로필, 아세트산 메틸, 아세트산 에틸, 아세트산 프로필, 아세트산 펜틸, 프로피온산 메틸, 프로피온산 에틸, 프로피온산 에틸 및 프로피온산 부틸 또는 이들의 혼합물 등을 사용할 수 있다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
본 발명의 일 구현예에 따른 리튬 이차전지는 그 외형 또는 케이스에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
또한, 본 발명의 일 구현예에 따른 리튬 이차전지는 리튬금속 이차전지, 리튬이온 이차전지, 리튬폴리머 이차전지 또는 리튬이온폴리머 이차전지 등, 통상적인 리튬 이차전지들을 모두 포함할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
<음극의 제조>
음극 활물질로서 인조 흑연 92 중량부, 도전재로서 덴카 블랙(Denka black) 3 중량부, 바인더로서 스티렌-부타디엔 러버(SBR) 3.5 중량부, 및 바인더 겸 증점제로서 카르복시메틸셀룰로오스(CMC) 1.5 중량부를 분산매인 물에 첨가하여 음극 슬러리를 제조하였다.
집전체로 20㎛ 두께의 구리 집전체의 한 면에 상기 제조된 음극 슬러리를 코팅하고, 온도 60℃로 건조하고, 롤 프레스 장비를 이용하여 기공도 25%에 맞추어 음극 합제층을 압연하여 타겟 두께를 맞추었다. 다음으로 130℃ 진공 오븐에서 8시간 동안 건조하여서 음극을 제조하였다.
<실리콘 패드 압착한 가압 전기화학 충전 전리튬화>
상기에서 제조한 음극을 무지부 탭부분을 제외한 음극 활물질 유지부만의 영역이 34mm X 50mm 크기가 되도록 절단할 수 있는 타발기를 통해 절단한 후, 6개의 음극과 7개의 리튬금속/SUS판의 사이에 분리막을 개재하고, 최외각 양측에도 분리막을 배치하는 순서로 적층하여 파우치에 넣은 전리튬화 간이 셀을 준비를 하였다. 이때, 상기 리튬금속/SUS판은 리튬 이온 공급 금속시트로 사용되었고, 구체적으로 리튬금속 일면에 SUS 플레이트가 부착된 형태였다.
상기 준비된 간이 셀을 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC)를 3:7의 부피비로 혼합한 용매에 플루오로에틸렌 카보네이트(FEC)가 2 중량% 첨가되고 1M LiPF 6가 용해된 25℃의 전리튬화용 전해액에 3시간 침지(웨팅, wetting)시켰다.
이 후, 폴리머 패드로서 두께 5mm 실리콘(폴리실록산) 패드 2개를 상기 전리튬화용 전해액에 침지된 간이 셀의 상측과 하측에 배치하였다. (도 1 참조)
이어서, 상기 2개의 실리콘 패드 사이에 배치된 간이 셀을 지그 가압기의 한쌍의 지그 사이에 개재시키고, 충방전기를 통해 전기화학 충전을 시켜 상기 간이 셀의 음극을 전리튬화하였다. (도 2 참조)
상기 실리콘 패드의 두께는 상기 지그 가압기의 지그의 두께의 85% 이었다. 상기 간이 셀과 대면하는 상기 실리콘 패드의 일면의 면적이 상기 리튬금속/SUS판의 면적보다 크고, 상기 리튬금속/SUS판의 4개의 모서리가 상기 폴리머 패드의 일면과 모두 접촉하도록 실리콘 패드 내에 간이 셀이 정확히 위치하도록 조절하여 가압하였다. 구체적으로, 상기 실리콘 패드 단부에서 약 3 mm의 안쪽 지점에 간이 셀이 정확히 위치하도록 조절하여 2 kPa의 압력으로 가압하였다.
이때 전류의 세기는 1 mA/cm 2으로 설정하였고, 음극 충전용량 (Li-ion 충전용량 기준)의 25%까지 충전해주었다. 전리튬화를 마친 음극은 에틸메틸카보네이트(EMC)를 이용하여 세척한 후 상온에서 건조시켜 전리튬화 음극을 제조하였다.
<리튬 이차전지의 제조>
상기에서 제조한 전리튬화 음극과 분리막(polypropylene 재질, W-scope사, WL20C, 두께 10㎛)을 사이에 두고 양극으로 LiNi 0.8Co 0.1Mn 0.1O 2를 사용하여 적층한 후 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC)를 3:7의 부피비로 혼합한 용매에 플루오루에틸렌 카보네이트(FEC)가 2 중량% 첨가되고 1M LiPF 6가 용해된 전해액을 주입하여 코인형 하프셀의 리튬 이차전지를 제조하였다.
실시예 2
상기 실시예 1의 실리콘 패드 두께를 지그 가압기의 지그의 두께의 70%로 변경한 것을 제외하고 실시예 1과 동일한 방법으로, 전리튬 음극 및 이를 포함하는 코인형 하프셀의 리튬 이차전지를 제조하였다.
비교예 1
<음극의 제조>
실시예 1과 동일한 방법으로 음극을 제조하였다.
<전기화학 충전 전리튬화>
상기에서 제조한 음극을 무지부 탭부분을 제외한 음극 활물질 유지부만의 영역이 34mm X 50mm 크기가 되도록 절단할 수 있는 타발기를 통해 절단한 후, 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC)를 3:7의 부피비로 혼합한 용매에 플루오루에틸렌 카보네이트(FEC)가 2 중량% 첨가되고 1M LiPF 6가 용해된 25℃의 전리튬화용 전해액에 3시간 침지(웨팅, wetting) 시킨 후, 전해액이 있는 상태에서 대극으로 리튬금속을 사용하여 음극의 양면에 배치시킨 후 전기화학 충전을 시켜 음극에 전리튬화(pre-lithiation)을 실시하였다. 이때 음극과 리튬금속 사이에는 분리막이 존재하지 않으며 3cm의 간격으로 이격 시켜주었고, 실리콘 패드가 존재하지 않은 상태에서 2 kPa의 압력으로 지그 가압하면서 충전을 시켜 음극의 전리튬화를 실시하였다. 이때 충전시 전류의 세기는 2mA/cm 2로 설정하였고, 음극 충전용량 (Li-ion 충전용량 기준)의 25%까지 충전해주었다. 전리튬화를 마친 음극은 에틸메틸카보네이트(EMC)를 이용하여 세척한 후 상온에서 건조시켜 전리튬화 음극을 제조하였다.
<리튬 이차전지의 제조>
상기에서 제조한 전리튬화 음극과 분리막(polypropylene 재질, W-scope사, WL20C, 두께 10㎛)을 사이에 두고 양극으로 LiNi 0.8Co 0.1Mn 0.1O 2를 사용하여 적층한 후 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC)를 3:7의 부피비로 혼합한 용매에 플루오루에틸렌 카보네이트(FEC)가 2 중량% 첨가되고 1M LiPF 6가 용해된 전해액을 주입하여 코인형 하프셀의 리튬 이차전지를 제조하였다.
비교예 2
상기 실시예 1의 실리콘 패드 두께를 지그 가압기의 지그의 두께의 35%로 변경한 것을 제외하고 실시예 1과 동일한 방법으로, 전리튬 음극 및 이를 포함하는 코인형 하프셀의 리튬 이차전지를 제조하였다.
비교예 3
상기 실시예 1의 실리콘 패드 두께를 지그 가압기의 지그의 두께의 120%로 변경한 것을 제외하고 실시예 1과 동일한 방법으로, 전리튬 음극 및 이를 포함하는 파우치형 풀셀의 리튬 이차전지를 제조하였다.
<사이클 충방전 실험>
실시예 1과 2, 비교예 1 내지 3에서 제조한 코인형 하프셀의 리튬 이차전지를 도 3과 같이 한 장의 음극 전극에서 위치 1 ~ 4까지 총 네 개를 타발하여 전기화학 충방전기를 이용하여 충방전 가역성 테스트를 하였다. 충전시 4.2 V (vs. Li/Li+) 의 전압까지 0.1C-rate의 전류밀도로 전류를 가하여 충전해 주었고, 방전시 같은 전류밀도로 2.5 V의 전압까지 방전을 실시해 주었다. 위치 1 ~ 4 에 대하여 하기 식으로 각각의 초기 쿨롱효율(%)을 계산하고, 그 평균을 하기 표 1 및 도 4에 나타내었다.
초기 쿨롱효율(%) = [(첫번째 사이클 방전용량)/(첫번째 사이클 충전용량)] X 100
위치 실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
1 초기 쿨롱 효율(%) 92.4 90.1 78.2 87.7 82.2
2 초기 쿨롱 효율(%) 92.2 90.0 79.3 87.6 83.3
3 초기 쿨롱 효율(%) 92.5 90.4 80.1 87.3 83.0
4 초기 쿨롱 효율(%) 92.6 90.2 78.0 86.9 83.6
평균 초기 쿨롱 효율(%) 92.425 90.175 78.9 87.375 83.025
상기 표 1 및 도 4를 참조하면, 실시예 1 내지 2의 경우 적절한 두께의 실리콘 패드를 압착하여 가압한 상태에서 전기화학 충전을 통해 전리튬화를 시켜주었기 때문에 음극에 리튬이온이 충분히 고르게 충전되고 균일한 SEI층의 형성으로 인해, 이러한 전리튬화 음극을 채용한 이차전지의 사이클 충방전 성능이 향상되고, 타발 위치에 따른 초기 쿨롱효율의 최대값과 최소값의 차이도 0.4%로 리튬이온이 매우 균일하게 충전되었음을 확인할 수 있었다.반면, 비교예 1 내지 2의 경우 전리튬화시 실리콘 패드가 아예 없거나 두께가 너무 얇기 때문에 활물질간 접촉이 균일하지 않아 충방전시 저항이 크게 걸려 사이클 성능이 떨어지게 되었고 초기 쿨롱 효율의 편차도 컸다. 또한, 비교예 3의 경우와 같이 전리튬화시 실리콘 패드 두께를 매우 두껍게 하여 실시하게 되면 지그 가압 시 고른 압력이 가해지지 않아 부분적으로만 충전됨에 따라 전극에 리튬 플레이팅(plating)이 발생하여, 이러한 전리튬화 음극을 채용한 이차전지의 사이클 성능이 오히려 떨어졌다.
이상과 같이, 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (11)

  1. 리튬 이온 공급 금속시트와 분리막 사이에 음극을 개재시켜 간이 셀을 준비하는 단계;
    상기 간이 셀을 전리튬화용 전해액에 침지하는 단계; 및
    상기 전리튬화용 전해액에 침지된 간이 셀을 2개의 폴리머 패드 사이에 배치하고, 한 쌍의 지그를 구비한 가압 부재를 이용하여 상기 2개의 폴리머 패드의 외측에 가압을 하면서 전기화학 충전을 시켜 상기 음극을 전리튬화하는 단계;를 포함하고,
    상기 폴리머 패드의 두깨가 상기 가압 부재의 지그의 두께의 60 내지 90%인 음극의 전리튬화 방법.
  2. 제1항에 있어서,
    상기 폴리머 패드의 두깨가 상기 가압 부재의 지그의 두께의 70 내지 85%인 것을 특징으로 하는 음극의 전리튬화 방법.
  3. 제1항에 있어서,
    상기 가압 부재가 지그 가압기 또는 지그 포메이션 장비를 포함하는 것을 특징으로 하는 음극의 전리튬화 방법.
  4. 제1항에 있어서,
    상기 간이 셀과 대면하는 상기 폴리머 패드의 일면의 면적이 상기 금속시트의 면적보다 크고, 상기 금속시트의 4개의 모서리가 상기 폴리머 패드의 일면과 모두 접촉하는 것을 특징으로 하는 음극의 전리튬화 방법.
  5. 제1항에 있어서,
    상기 폴리머 패드가 유리전이온도 -100℃ 이하의 폴리머를 포함하는 것을 특징으로 하는 음극의 전리튬화 방법.
  6. 제1항에 있어서,
    상기 폴리머가 실리콘, 폴리부타디엔, 저밀도 폴리에틸렌, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 음극의 전리튬화 방법.
  7. 제1항에 있어서,
    상기 전리튬화용 전해액이 리튬염 및 비수계 용매를 포함하는 것을 특징으로 하는 음극의 전리튬화 방법.
  8. 제7항에 있어서,
    상기 리튬염이 LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10Cl 10, LiPF 6, LiCF 3SO 3, LiCF 3CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3SO 3Li, CF 3SO 3Li, (CF 3SO 2) 2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 음극의 전리튬화 방법.
  9. 제1항에 있어서,
    상기 전기화학 충전이 상기 음극 충전용량 (Li-ion 충전용량 기준)의 1 내지 50%까지로 실시되는 것을 특징으로 하는 음극의 전리튬화 방법.
  10. 제1항 내지 제9항 중 어느 한 방법으로 얻어진 전리튬화 음극.
  11. 제10항의 전리튬화 음극을 포함하는 리튬 이차전지.
PCT/KR2021/002041 2020-02-17 2021-02-17 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지 WO2021167353A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/800,025 US20230073365A1 (en) 2020-02-17 2021-02-17 Method for pre-lithiation of negative electrode, pre-lithiated negative electrode and lithium secondary battery including the same
CN202180015260.4A CN115136350A (zh) 2020-02-17 2021-02-17 负极的预锂化方法、经预锂化的负极及包含其的锂二次电池
EP21757427.6A EP4099438A4 (en) 2020-02-17 2021-02-17 METHOD FOR PRE-LITHIATION OF A NEGATIVE ELECTRODE, PRE-LITHIED NEGATIVE ELECTRODE AND LITHIUM SECONDARY BATTERY THEREFROM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200019310 2020-02-17
KR10-2020-0019310 2020-02-17

Publications (1)

Publication Number Publication Date
WO2021167353A1 true WO2021167353A1 (ko) 2021-08-26

Family

ID=77392179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002041 WO2021167353A1 (ko) 2020-02-17 2021-02-17 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (1) US20230073365A1 (ko)
EP (1) EP4099438A4 (ko)
KR (1) KR20210104605A (ko)
CN (1) CN115136350A (ko)
WO (1) WO2021167353A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178790A1 (zh) * 2022-03-24 2023-09-28 天津中能锂业有限公司 一种电池预锂化工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990086308A (ko) * 1998-05-27 1999-12-15 박호군 카본 전극의 전리튬화 방법과 이를 이용한리튬 이차전지 제조방법
JP2001297798A (ja) * 2000-04-14 2001-10-26 Nec Corp 扁平型電池の製造方法
KR20150014877A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 음극 전극의 전리튬화 방법
KR20150089966A (ko) * 2014-01-27 2015-08-05 한양대학교 산학협력단 리튬화된 비정질 규소산화물 전극의 제조방법, 이에 의하여 제조된 리튬화된 비정질 규소산화물 전극 및 이를 포함하는 리튬황전지
KR20190017149A (ko) * 2017-08-10 2019-02-20 주식회사 엘지화학 이차전지용 음극의 전리튬화 방법
KR20200019310A (ko) 2018-08-14 2020-02-24 조규상 화장품 얼굴 매칭 프로그램을 이용한 일회용 화장품 자판기

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6541774B2 (ja) * 2014-05-15 2019-07-10 エムエスエムエイチ,エルエルシー リチウムによってインターカレートされたナノ結晶系アノード

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990086308A (ko) * 1998-05-27 1999-12-15 박호군 카본 전극의 전리튬화 방법과 이를 이용한리튬 이차전지 제조방법
JP2001297798A (ja) * 2000-04-14 2001-10-26 Nec Corp 扁平型電池の製造方法
KR20150014877A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 음극 전극의 전리튬화 방법
KR20150089966A (ko) * 2014-01-27 2015-08-05 한양대학교 산학협력단 리튬화된 비정질 규소산화물 전극의 제조방법, 이에 의하여 제조된 리튬화된 비정질 규소산화물 전극 및 이를 포함하는 리튬황전지
KR20190017149A (ko) * 2017-08-10 2019-02-20 주식회사 엘지화학 이차전지용 음극의 전리튬화 방법
KR20200019310A (ko) 2018-08-14 2020-02-24 조규상 화장품 얼굴 매칭 프로그램을 이용한 일회용 화장품 자판기

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178790A1 (zh) * 2022-03-24 2023-09-28 天津中能锂业有限公司 一种电池预锂化工艺

Also Published As

Publication number Publication date
CN115136350A (zh) 2022-09-30
KR20210104605A (ko) 2021-08-25
EP4099438A4 (en) 2023-09-13
EP4099438A1 (en) 2022-12-07
US20230073365A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2018212481A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020159236A1 (ko) 이차전지용 음극의 전리튬화 방법
WO2015016554A1 (ko) 상이한 전극재 층들을 포함하는 전극 및 리튬 이차전지
WO2015005694A1 (ko) 전지 수명을 향상시키는 전극 및 이를 포함하는 리튬 이차전지
WO2020105974A1 (ko) 이차 전지의 활성화 방법
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2021080052A1 (ko) 리튬 메탈 음극 구조체, 이를 포함하는 전기화학소자, 및 상기 리튬 메탈 음극 구조체의 제조방법
WO2020076091A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2018048126A1 (ko) 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018164402A1 (ko) 전극 조립체 및 이를 포함하는 리튬 전지
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
WO2022039449A1 (ko) 음극의 전리튬화 장치 및 음극의 전리튬화 방법
WO2019147082A1 (ko) 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021045580A1 (ko) 음극 전극의 전소듐화 방법, 전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2021045581A1 (ko) 음극 전극의 전리튬-전소듐화 방법, 전리튬-전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018182195A1 (ko) 고로딩 전극의 제조 방법
WO2021167353A1 (ko) 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지
WO2020116939A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2019182361A1 (ko) 음극의 제조방법 및 이로부터 제조된 음극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021757427

Country of ref document: EP

Effective date: 20220901

NENP Non-entry into the national phase

Ref country code: DE