WO2023074731A1 - 延伸多孔性フィルムおよびその製造方法 - Google Patents

延伸多孔性フィルムおよびその製造方法 Download PDF

Info

Publication number
WO2023074731A1
WO2023074731A1 PCT/JP2022/039892 JP2022039892W WO2023074731A1 WO 2023074731 A1 WO2023074731 A1 WO 2023074731A1 JP 2022039892 W JP2022039892 W JP 2022039892W WO 2023074731 A1 WO2023074731 A1 WO 2023074731A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
density
polyethylene
porous film
resin
Prior art date
Application number
PCT/JP2022/039892
Other languages
English (en)
French (fr)
Inventor
雄太 原田
伸幸 田中
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN202280060292.0A priority Critical patent/CN117916294A/zh
Publication of WO2023074731A1 publication Critical patent/WO2023074731A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene

Definitions

  • the present invention relates to a stretched porous film and a method for producing the same.
  • a stretched porous film in which a water-repellent resin such as a polyethylene resin is formed into a film and micropores are formed therein.
  • a stretched porous film has a structure that allows passage of air and the like, but impermeability of liquids.
  • stretched porous polyolefin film is used in sanitary materials such as disposable diapers and sanitary napkins, functional packaging materials such as desiccants and disposable body warmers, simple clothing such as disposable gloves and raincoats, waterproof building materials such as house wraps, and multi-farming methods. It is widely used for agricultural applications such as compost sheets, and waste disposal applications such as compost-coated sheets.
  • Such stretched porous polyolefin films are required to have various physical properties. Printability is also important from the viewpoint of handleability in printing.
  • porous film When porous film is used for the back sheet of disposable diapers, it is necessary to print letters and characters with a high degree of design and design in order to increase the brand and added value of the product and to increase consumer willingness to purchase. applied.
  • a large variation in printing pitch causes a decrease in the yield of diapers in the production stage, so the stability of the printing pitch is required.
  • the winding shape of the roll changes during storage, and the central part of the winding of the roll becomes tight, and the beginning and end parts of the winding become loose. For this reason, it has been known that fluctuations in the printing pitch occur later.
  • Fluctuations in the printing pitch are likely to occur when the line tension applied in the longitudinal direction (film flow direction) during printing is large, and a film with little elongation is required. It is known that the printability of a film is improved by heat setting the film after stretching to suppress the thermal shrinkage of the film.
  • Patent Document 1 discloses a stretched porous polyolefin film that has high moisture permeability, excellent texture, and excellent printability.
  • a resin composition that is a special formulation with a relatively small amount of polypropylene and adopting a large draw ratio for production, it has high moisture permeability and excellent texture, and heat shrinkage A polyolefin stretched porous film that is small and has excellent printability is obtained.
  • the stretched porous polyolefin film of Patent Document 1 is excellent in printability, but in order to further improve printability and increase productivity, it was desired to lower the heat shrinkage rate.
  • the thermal shrinkage rate cannot be dramatically suppressed, and the printability is greatly affected. No improvement could be achieved.
  • an object of the present invention is to provide a stretched porous film that is excellent in breathability, texture, and printability.
  • the present inventor conducted extensive research and found that by using a polyethylene resin with a specific composition and heat-setting it under specific conditions, air permeability and texture are deteriorated.
  • the present inventors have found that a stretched porous film having a low heat shrinkage can be obtained without the need for heat shrinkage, thereby achieving the above object. That is, the present invention includes the following configurations.
  • the stretched porous film wherein the polyethylene-based resin contains 22 to 67% by mass of linear low-density polyethylene having a density of 0.901 to 0.930 g/cm 3 as the other resin.
  • the stretched porous film, wherein the inorganic filler is calcium carbonate.
  • a stretched porous film excellent in breathability, texture and printability can be obtained.
  • the stretched porous film of the present invention comprises 20-70% by weight of linear low density polyethylene with a density of 0.931-0.940 g/cm 3 and 8-70% by weight of branched low density polyethylene with a density of 0.901-0.940 g/cm 3 .
  • the stretched porous film may be made of a resin composition containing a polyethylene resin and an inorganic filler. It can be anything that exists.
  • the polyethylene-based resin in the present invention includes 20 to 70% by mass of linear low density polyethylene having a density of 0.931 to 0.940 g/cm 3 and 8 to 20% by mass of branched low density polyethylene having a density of 0.901 to 0.940 g/cm 3 . As long as it contains mass % and other resins, it can be used without particular limitation.
  • the linear low-density polyethylene having a density of 0.931 to 0.940 g/cm 3 (hereinafter sometimes referred to as first LLDPE) is a copolymer of ethylene and a small amount of ⁇ -olefin, and is a linear polyethylene. It has a main chain and short chain branches having about 2 to 6 carbon atoms.
  • the first LLDPE has a density of 0.931 g/cm 3 or more and 0.940 g/cm 3 or less, more preferably 0.932 g/cm 3 or more and 0.938 g/cm 3 or less.
  • the melt index (MI) of said first LLDPE is preferably 1.0-5.0 g/10 min, particularly preferably 1.5-5.0 g/10 min.
  • the content of the first LLDPE is 20-70% by mass, more preferably 28-65% by mass, relative to the polyethylene resin.
  • the content of the first LLDPE is 20-70% by mass, more preferably 28-65% by mass, relative to the polyethylene resin.
  • the branched low-density polyethylene (hereinafter sometimes referred to as LDPE) having a density of 0.901 to 0.940 g/cm 3 is generally called high-pressure low-density polyethylene (HP-LDPE), and polyethylene having long chain branches. is the main chain.
  • LDPE can usually be synthesized by polymerizing ethylene under high pressure in the presence of a radical polymerization catalyst.
  • the density of said LDPE is preferably 0.910-0.940 g/cm 3 , more preferably 0.915-0.930 g/cm 3 . When the density is within the above range, it becomes easy to improve the extrusion properties and moldability of the film, and to give the stretched porous film the necessary mechanical strength.
  • the LDPE preferably has a melt index of 1.0 to 5.0 g/10 minutes, particularly 2.0 to 4.5 g/10 minutes. When the melt index is within the above range, it becomes easy to improve extrusion properties, moldability and mechanical strength.
  • the content of the LDPE is 8 to 20% by mass, preferably 10 to 19% by mass, relative to the polyethylene resin.
  • the LDPE content affects the thickness uniformity of the resulting stretched porous film. If the LDPE content exceeds the above range, the frequency of appearance of pinholes in the film tends to increase. There is a tendency.
  • the polyethylene-based resin used in the resin composition of the present invention may contain resins other than the first LLDPE and the LDPE as long as the effects of the present invention are not impaired.
  • Other resins may be other polyethylenes, such as linear low-density polyethylene (hereinafter sometimes referred to as second LLDPE) having a density of 0.901 to 0.930 g/cm 3 .
  • second LLDPE linear low-density polyethylene
  • the blending amount of the second LLDPE is preferably 22 to 67% by mass, more preferably 28 to 60% by mass, based on the polyethylene resin.
  • HDPE high density polyethylene
  • the HDPE content is preferably 22 to 67% by mass, more preferably 23 to 55% by mass, relative to the polyethylene resin.
  • the origin of ethylene used as a raw material is not particularly limited, and even petroleum-derived polyethylene polymerized from petroleum-derived ethylene is polymerized from plant-derived ethylene.
  • plant-derived polyethylene can also be used, it is preferable to use plant-derived polyethylene as part or all of the polyethylene because it is excellent against the global environment such as oil depletion and global warming.
  • Petroleum-derived polyethylene and plant-derived polyethylene can be blended in an arbitrary ratio in consideration of cost, etc., without any change in the identity of polyethylene as long as the polymerization process after obtaining ethylene is exactly the same.
  • the polyethylene used in the present invention may be a resin produced using a multi-site catalyst such as a Ziegler catalyst, or a resin produced using a single-site catalyst such as a metallocene catalyst. .
  • the polyethylene-based resin used in the resin composition of the present invention includes resins other than the first LLDPE, second LLDPE, LDPE, and HDPE (e.g., ultra-low density polyethylene, polypropylene , ethylene 1-butene copolymer, etc.) may be blended, but resins with a density of 0.900 g/cm 3 or less have low crystallinity, and when blended with this, the heat shrinkage rate of the film tends to increase. However, if heat setting is performed under specific conditions described later in order to suppress heat shrinkage, the film is likely to be adversely affected. It is necessary to control to 0.5% by mass or less with respect to, and it is preferable not to substantially blend.
  • resins other than the first LLDPE, second LLDPE, LDPE, and HDPE e.g., ultra-low density polyethylene, polypropylene , ethylene 1-butene copolymer, etc.
  • the density of the resin in the present invention is measured by the JIS K 7112 method.
  • the melt index of the resin in the present invention is a value measured by A method at 190°C according to JIS K 7210.
  • Inorganic filler is blended to make the film porous. By stretching the resin composition containing the inorganic filler, the film can be made porous and the moisture permeability can be increased.
  • inorganic fillers can be used unlimitedly, for example, inorganic salts such as calcium carbonate, barium sulfate, calcium sulfate, barium carbonate, magnesium hydroxide and aluminum hydroxide, and inorganic oxides such as zinc oxide, magnesium oxide and silica. , silicates such as mica, vermiculite and talc, and organometallic salts.
  • inorganic salts such as calcium carbonate, barium sulfate, calcium sulfate, barium carbonate, magnesium hydroxide and aluminum hydroxide
  • inorganic oxides such as zinc oxide, magnesium oxide and silica.
  • silicates such as mica, vermiculite and talc
  • organometallic salts such as mica, vermiculite and talc
  • calcium carbonate is preferable from the viewpoint of cost performance and dissociation with polyethylene resin.
  • the mixing ratio of the inorganic filler is preferably 80 parts by mass or more and 200 parts by mass or less, and 85 parts by mass or more and 160 parts by mass or less with respect to a total of 100 parts by mass of the polyethylene resin. is more preferable.
  • the mixing ratio of the inorganic filler is 80 parts by mass or more, the frequency of occurrence of voids per unit area, which are formed due to separation between the polyethylene-based resin and the inorganic filler, can be increased. Therefore, adjacent voids are easily communicated with each other, and air permeability is improved. If the blending ratio of the inorganic filler is 200 parts by mass or less, the elongation at the time of film stretching is good and the stretching is easy.
  • the average particle size of the inorganic filler measured by a laser diffraction light scattering method is preferably 10 ⁇ m or less, more preferably 0.5 to 5.0 ⁇ m, and more preferably 0.7 to 3.0 ⁇ m. is more preferred.
  • the average particle size is within the above range, it is excellent in dispersibility, facilitates the formation of continuous pores during stretching, and makes it possible to efficiently produce a stretched porous film with less occurrence of film breakage during molding. is. If the average particle diameter of the inorganic filler exceeds the above range and is too large, pinholes are likely to occur.
  • the inorganic filler is preferably surface-treated to improve dispersibility in the polyethylene resin.
  • the surface treatment agent those capable of rendering the surface of the inorganic filler hydrophobic by coating the surface of the inorganic filler are preferable, and examples thereof include fatty acids, higher fatty acids, metal salts thereof, waxes, and the like.
  • the amount of the surface treatment agent is not particularly limited, it is preferably about 0.5 to 2.0% by mass, more preferably 1.5% by mass or less, more preferably 1.0% by mass, relative to the inorganic filler. The following are particularly preferred.
  • the resin composition of the present invention may further contain additives used in ordinary resin compositions.
  • additives include antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, neutralizers, lubricants, antifog agents, antiblocking agents, antistatic agents, slip agents, colorants, plasticizers, and the like. mentioned.
  • the plasticizer blended in the resin composition of the present invention is preferably less than 2 parts by mass, more preferably less than 1 part by mass, per 100 parts by mass of the polyethylene resin.
  • the plasticizer is a general term for compounds that improve the plasticity of the film and give the film flexibility.
  • the melt index of the resin composition increases, making it difficult to obtain low thermal shrinkage and high moisture permeability in some cases.
  • the type of plasticizer is not particularly limited, but examples thereof include fatty acids, higher fatty acids, low-molecular-weight polyethylene, epoxidized soybean oil, polyethylene glycol, and fatty acid esters.
  • the melt index of the resin composition of the present invention is preferably 1.0 g/10 minutes or more, more preferably 1.5 g/10 minutes or more and 5.0 g/10 minutes or less. /10 minutes or more and 4.0 g/10 minutes or less is more preferable. If the melt index is within the above range, it is possible to form a film more stably. If the melt index is 1.0 g/10 minutes or more, the resin pressure in the extruder during film formation can be suppressed, and adverse effects on film formation can be prevented. Further, if the melt index is 5.0 g/10 minutes or less, it is possible to further suppress neck-in during film formation with a T-die. Therefore, the required product width can be easily obtained. There is a tendency that the smaller the melt index, the larger the 5% tensile strength.
  • the melt index of the resin composition is measured by A method at 190° C. according to JIS K 7210.
  • the stretched porous film of the present invention has a moisture permeability of 2000 g/m 2 ⁇ 24h or more, preferably 2200 g/m 2 ⁇ 24h or more.
  • moisture permeability is within the above range, air permeability and moisture permeability are excellent.
  • the stretched porous film is used as the back sheet of a paper diaper, it can prevent the diaper from getting stuffy when worn.
  • the upper limit of the moisture permeability is not particularly limited, it is preferably 10000 g/m 2 ⁇ 24h or less, and 5000 g/m 2 ⁇ 24h or less from the viewpoint of mechanical properties, water resistance and liquid leakage resistance. is more preferable.
  • Moisture permeability is measured according to ASTM E96 under the conditions of 40°C, 60% relative humidity, 24 hours of measurement, and the pure water method.
  • the moisture permeability is the average value of 10 samples of 10 cm ⁇ 10 cm taken from the stretched porous film.
  • the air permeability of the stretched porous film of the present invention is preferably 200 seconds/100 mL or more and 2000 seconds/100 mL or less, more preferably 300 seconds/100 mL or more and 1600 seconds/mL or less, and 300 seconds/mL or more. More preferably, it is 100 mL or more and 1100 seconds/mL or less.
  • the smaller the air permeability the easier it is for gas to pass through. If the air permeability is within the above range, when the stretched porous film is used as the back sheet of a paper diaper, stuffiness during wearing can be prevented. Air permeability is measured by the Oken test method in accordance with JIS P 8117.
  • the stretched porous film of the present invention has a heat shrinkage rate of 1.2% or less in the longitudinal direction.
  • the heat shrinkage rate in the machine direction is set to 1.2% or less, film shrinkage (tight winding) is less likely to occur during printing, sufficient stability of the printing pitch can be obtained, and printability is improved.
  • the stretched porous film of the present invention has a longitudinal heat shrinkage of 1.0% or less.
  • the heat shrinkage in the machine direction is measured by the following method.
  • a 15 cm x 15 cm sample is taken from the stretched porous film.
  • the sample is marked with 10 cm between the marks in the longitudinal direction. After leaving this sample at 50° C. for 24 hours, it is cooled to room temperature and the length between marked lines is measured.
  • the heat shrinkage rate in the machine direction is obtained from the following formula I.
  • the basis weight (weight per unit area) of the stretched porous film of the present invention is preferably 10 g/m 2 or more and 25 g/m 2 or less, more preferably 11 g/m 2 or more and 22 g/m 2 or less. It is more preferably 12 g/m 2 or more and 20 g/m 2 or less.
  • the basis weight is within the above range, it is easy to obtain a stretched porous film excellent in air permeability, moisture permeability and mechanical strength. If the basis weight is 10 g/m 2 or more, it becomes easy to increase the mechanical strength of the film. Further, if the basis weight is 25 g/m 2 or less, it becomes easy to obtain high moisture permeability.
  • the stretched porous film of the present invention is not limited by its manufacturing method, but is composed of 20 to 70% by mass of linear low density polyethylene having a density of 0.931 to 0.940 g/cm 3 and a density of 0.901 to 0.901 g/cm 3 .
  • the resin composition can be obtained by mixing a polyethylene resin, an inorganic filler, and other additives in a predetermined ratio.
  • a mixing method is not particularly limited, and a known method can be adopted. For example, it is preferable to mix for about 5 minutes to 1 hour using a mixer such as a Henschel mixer, a super mixer, or a tumbler mixer. At this time, a plurality of resins are mixed as the polyethylene-based resin, and by making the melt index of each resin approximately the same, stable pelletization is facilitated.
  • the obtained mixture can generally be kneaded by a method such as strand cutting, hot cutting, or underwater cutting using a kneader such as a high kneading type twin-screw extruder or a tandem kneader, and pelletized.
  • a kneader such as a high kneading type twin-screw extruder or a tandem kneader
  • pelletized kneader
  • Mixing, kneading, and pelletizing in advance is preferable because uniform dispersion of the resin composition can be promoted.
  • the pellets obtained as described above are formed into a film by using an extruder.
  • the film is preferably molded using a circular die or a T-die attached to the tip of the extruder.
  • the film obtained by the molding process can be made porous by stretching it at least in the longitudinal direction.
  • Stretching can be performed by a known method such as a roll stretching method or a tenter stretching method.
  • the draw ratio in the longitudinal direction is 1.8 times or more, preferably 2.0 times or more. If the draw ratio is too large, the tear strength will be low and the practicality will be lacking.
  • the upper limit is 3.5 times, preferably 3.3 times.
  • the stretching may be uniaxial stretching or biaxial stretching.
  • the stretching may be single-stage stretching or multi-stage stretching.
  • the stretching temperature is preferably in the range of room temperature or higher and lower than the softening point of the resin composition. If the stretching temperature is room temperature or higher, uneven stretching is less likely to occur, and the thickness tends to be uniform. Also, if the stretching temperature is lower than the softening point, the film can be prevented from melting. Therefore, it is possible to prevent the pores of the film from being crushed and the air permeability and moisture permeability to decrease.
  • the stretching temperature can be appropriately adjusted by combining the physical properties of the resin composition to be used and the stretching ratio.
  • the greatest feature of this production method is that the film obtained by stretching the resin composition is heat-set under specific conditions.
  • Heat setting is a heat treatment performed in an environment where the stretched film is maintained in a tensioned state due to stretching and the dimensions are not changed.
  • By heat-setting the resin composition under specific conditions specifically by heat-setting at a temperature higher than conventionally, it is possible to realize low heat shrinkage that could not be achieved conventionally.
  • by performing heat setting it is possible to suppress elastic recovery, winding tightness, and the like during storage.
  • the temperature for heat setting is higher than 95°C and lower than or equal to 120°C, preferably higher than or equal to 100°C and lower than or equal to 115°C.
  • the heat setting temperature exceeds 95° C., sufficient heat setting is performed, and the heat shrinkage of the stretched porous film can be reduced.
  • the heat setting temperature By setting the heat setting temperature to 120° C. or less, it is possible to prevent the pores of the stretched porous film from being crushed by heat, and to obtain high air permeability and moisture permeability.
  • the heat setting time is 0.2 seconds or longer, preferably 0.5 seconds or longer, and even more preferably 1.0 seconds or longer. By setting the heat setting time to 0.2 seconds or more, sufficient heat setting is performed, and the heat shrinkage of the stretched porous film can be reduced.
  • the upper limit of the heat setting time is not particularly limited, but it is preferably 20 seconds or less, more preferably 15 seconds or less. By setting the heat setting time to 20 seconds or less, it is possible to prevent the pores from being crushed due to melting of the stretched porous film, and to easily obtain high air permeability and moisture permeability.
  • a heat setting method when the roll stretching method is adopted as the stretching method there is a method of heating the stretched film with a heated roll (annealing roll).
  • a heat setting method when the tenter stretching method is adopted as the stretching method there is a method of heating the film after stretching near the exit of the tenter.
  • the heat setting time is the time during which the stretched porous film is held at the heat setting temperature.
  • the roll stretching method refers to the time during which the film is in contact with the annealing roll.
  • the number of annealing rolls is not particularly limited, but when there are two or more, the heat-setting time is the sum of the times during which the stretched porous film is in contact with each annealing roll.
  • the tenter stretching method indicates the time during which the film is heated at the heat setting temperature at the exit of the tenter and maintained. When heat setting is divided into multiple times and heated, it is the sum of each heating time.
  • the shrinkage rate in the longitudinal direction during heat setting is 3 to 20%, preferably 5 to 18%, more preferably 10 to 15%.
  • the shrinkage rate at the time of heat setting indicates the rate at which the speed of the nip roll at the location where heat setting is performed is reduced relative to the speed of the nip roll immediately before. This means that the speed of the nip roll at the point of heat setting is 10% slower than the speed of the previous nip roll (ie, 90% of the speed of the previous nip roll).
  • Stretched Porous Film Applications of the stretched porous film of the present invention are not particularly limited, and include sanitary materials such as paper diapers and sanitary napkins, functional packaging materials such as desiccants and disposable body warmers, simple clothing such as disposable gloves and raincoats, and waterproofing such as house wraps. It can be used for agricultural applications such as building materials, multi-farming sheets, and waste disposal applications such as compost-coated sheets. It is preferably used as a back sheet for napkins and the like.
  • melt index of the resin was measured according to JIS K 7210 by Method A, selecting a temperature of 190° C. and a load of 2.16 kg.
  • Air permeability was measured according to JIS P 8117 by the Oken test method.
  • A Petroleum-derived linear low-density polyethylene [manufactured by Dow Chemical Co., trade name: Dowlex 2036P, density: 0.935 g/cm 3 , MI: 2.5 g/10 minutes]
  • B Petroleum-derived linear low-density polyethylene [manufactured by Dow Chemical Co., trade name: CEFOR TM 1221P, density: 0.918 g/cm 3 , MI: 2.0 g/10 minutes]
  • C Plant-derived linear low-density polyethylene [manufactured by Braskem, trade name: SLL118, density: 0.918 g/cm 3 , MI: 1.0 g/10 minutes]
  • D Plant-derived linear low-density polyethylene [manufactured by Braskem, trade name: SLH218, density: 0.916 g/cm 3 , MI: 2.3 g/10 minutes]
  • E Plant-derived high-density polyethylene [manufactured by Braskem, trade name:
  • Example 1 54 parts by mass of polyethylene A, 30 parts by mass of polyethylene C, 16 parts by mass of polyethylene F, 147 parts by mass of inorganic filler I, and 2 parts by mass of additive K are mixed and granulated. bottom. Granulation (preparation of pellets) was performed as follows. Using a vented ⁇ 30 mm twin-screw extruder, the resin composition was extruded in a strand at a cylinder temperature of 180° C. and cooled in a water tank. After that, the extruded resin composition was cut into pieces of about 5 mm and dried to produce pellets. Then, the pellets were formed into a film using an inflation film forming machine ( ⁇ 150 mm die).
  • an inflation film forming machine ⁇ 150 mm die
  • Example 2 to 13 and Comparative Examples 1 to 8 the film was prepared in the same manner as in Example 1, except that the blending ratio of each component or the stretching conditions (stretch ratio or heat setting temperature) were changed as shown in Table 1. formed.
  • polyethylene-based resin mixing ratio (mass%)
  • mass% represents the mixing ratio of each resin with respect to 100% by mass of the polyethylene-based resin contained in the resin composition.
  • the blending ratio of calcium carbonate or barium sulfate and additives is described as a blending ratio with respect to 100 parts by mass of polyethylene-based resin.
  • stretching conditions *1 in Table 1 represent a stretching ratio of 3.0 times and a heat setting temperature of 110°C.
  • Stretching condition *2 represents a stretching ratio of 2.0 times and a heat setting temperature of 110°C.
  • Stretching condition *3 represents a stretching ratio of 3.0 times and a heat setting temperature of 100°C.
  • Stretching condition *4 represents a stretching ratio of 3.0 times and a heat setting temperature of 55°C.
  • the stretched porous films of Examples 1 to 13 all exhibited good moisture permeability of 2000 g/m 2 ⁇ 24 h or more and had good texture. In addition, the stretched porous films of Examples 1 to 13 maintained a low thermal shrinkage rate, and none of them caused printing defects due to variations in printing pitch.
  • Comparative Examples 1 and 6 did not use linear low density polyethylene with a density of 0.931-0.940 g/cm 3 . As a result, the heat shrinkage rate increased, resulting in a stretched porous film with poor printing pitch accuracy, and printing defects caused by variations in printing pitch.
  • Comparative Examples 2 and 8 since branched low-density polyethylene with a density of 0.901 to 0.940 g/cm 3 was not used, the uniformity of the thickness was deteriorated, the appearance of the film was impaired, and the stretched porosity was poor in practicality. became a film.
  • Comparative Example 8 in which linear low-density polyethylene having a density of 0.931 to 0.940 g/cm 3 was blended in an amount of more than 70% by mass, had poor texture and was not practical in this respect as well.
  • Comparative Example 5 an ethylene/1-butene copolymer having a density of 0.900 g/cm 3 or less was added to the polyethylene resin in an amount exceeding 0.5% by mass.
  • the heat setting temperature could not be higher than 95° C.
  • the heat shrinkage rate was very large
  • the stretched porous film was poor in printing pitch accuracy
  • printing defects occurred due to fluctuations in printing pitch.
  • Comparative Example 7 the same resin composition as in Example 10 was used, and a film was produced at a heat setting temperature of 55°C. As a result, the stretched porous film had a very large heat shrinkage and poor printing pitch accuracy, resulting in printing defects due to fluctuations in the printing pitch.

Abstract

通気性、風合い、印刷性に優れた延伸多孔性フィルムを提供する。 密度0.931~0.940g/cmの線形低密度ポリエチレン20~70質量%、密度0.901~0.940g/cmの分岐状低密度ポリエチレン8~20質量%、及びその他の樹脂を含み、密度0.900g/cm以下の樹脂が0.5質量%以下である、ポリエチレン系樹脂100質量部と、無機充填剤80~200質量部とを含む樹脂組成物から成り、縦方向の熱収縮率が1.2%以下、透湿度が2000g/m・24h以上である延伸多孔性フィルム。

Description

延伸多孔性フィルムおよびその製造方法
 本発明は延伸多孔性フィルムおよびその製造方法に関する。
 従来、おむつ等の個人ケアー製品は、蒸れ等を防止するため空気および蒸気等を通過させ、液体を通過させないことが求められている。そのため、おむつ等の個人ケアー製品には通気性および耐水性が要求される。その要求に答えるため、ポリエチレン系樹脂のような撥水性を有する樹脂をフィルム状に成形し、微細な孔を形成させた延伸多孔性フィルムが利用されている。このような延伸多孔性フィルムは空気等を通過させるが、液体を通過させない構造をしている。この性質より、延伸多孔性ポリオレフィンフィルムは、紙おむつや生理用ナプキンなどの衛生材料、乾燥剤や使い捨てカイロなどの機能包装材料、使い捨て手袋や雨合羽などの簡易衣料、ハウスラップなどの防水建材、マルチ農法用シートなどの農業用途、堆肥被覆シートなどの廃棄物処理用途などに幅広く使用されている。
 このような延伸多孔性ポリオレフィンフィルムは、様々な物性が要求されており、例えば紙おむつのバックシートに用いられる場合には、透湿性、柔軟性などが使用時の重要な物性であると共に、製造工程における取り扱い性の観点から、印刷性も重要となる。
 多孔性フィルムが紙おむつのバックシートに用いられる場合、商品のブランドや付加価値を高め、さらに消費者の購買意欲の向上を図る目的で、文字やキャラクターを配置した意匠性やデザイン性の高い印刷が施される。多孔性フィルムに印刷を施す場合、印刷ピッチ(間隔)の変動が大きいと、製品化時におむつの歩留まりが悪化する原因となるため、印刷ピッチの安定性が求められる。しかし、印刷を施されたフィルムをロールとして巻取り保存しておくと、保存中にロールの巻姿が変化してロールの巻きの中央部分が締まり、巻きの始めと終りの部分が緩むようになるため、それによって印刷ピッチの変動が後発的に起こってしまうことが知られていた。印刷ピッチの変動は、印刷時に縦方向(フィルムの流れ方向)にかかるライン張力が大きいと発生しやすく、伸びの少ないフィルムを必要とされる。フィルムの印刷性は、フィルムを延伸後に熱固定してフィルムの熱収縮率を抑制することで向上することが知られている。
 従来、上記の物性に着目した検討は行われており、例えば特許文献1では、高い透湿度と優れた風合いを有し、印刷性に優れたポリオレフィン延伸多孔性フィルムが開示されている。該文献では、ポリプロピレンの量が比較的少ない特殊な配合である樹脂組成物を用い、大きな延伸倍率を採用して製造することで、高い透湿度と優れた風合いを有し、且つ熱収縮率が小さく印刷性に優れたポリオレフィン延伸多孔性フィルムを得ている。
WO2017/175878
 特許文献1のポリオレフィン延伸多孔性フィルムは印刷性に優れたものではあるが、さらに印刷性を向上させて生産性を高めるためには、より熱収縮率を低くすることが望まれた。しかしながら、本発明者らが検討を行ったところ、特許文献1のポリオレフィン延伸多孔性フィルムの製造条件を調整したとしても、熱収縮率を劇的に抑制することは出来ず、印刷性の大幅な向上を達成することは出来なかった。
 そこで、本発明は、通気性、風合い、印刷性に優れた延伸多孔性フィルムを提供することを課題とする。
 上述の課題を解決するために、本発明者が鋭意研究を行った結果、特定の組成のポリエチレン系樹脂を使用して、これを特定の条件で熱固定することで、通気性や風合いを悪化させることなく、熱収縮率が低い延伸多孔性フィルムが得られ、これにより前記課題を達成できること見出した。即ち、本発明は以下の構成を含む。
 〔1〕密度0.931~0.940g/cmの線形低密度ポリエチレン20~70質量%、密度0.901~0.940g/cmの分岐状低密度ポリエチレン8~20質量%、及びその他の樹脂を含み、密度0.900g/cm以下の樹脂が0.5質量%以下である、ポリエチレン系樹脂100質量部と、無機充填剤80~200質量部とを含む樹脂組成物から成り、縦方向の熱収縮率が1.2%以下、透湿度が2000g/m・24h以上であることを特徴とする延伸多孔性フィルム。
 〔2〕前記ポリエチレン系樹脂が、前記その他の樹脂として、密度0.901~0.930g/cmの線形低密度ポリエチレンを22~67質量%含む、上記延伸多孔性フィルム。
 〔3〕前記ポリエチレン系樹脂が、前記その他の樹脂として、密度0.941~0.975g/cmの高密度ポリエチレンを22~67質量%含む、上記延伸多孔性フィルム。
 〔4〕前記無機充填剤が炭酸カルシウムである、上記延伸多孔性フィルム。
 〔5〕密度0.931~0.940g/cmの線形低密度ポリエチレン20~70質量%、密度0.901~0.940g/cmの分岐状低密度ポリエチレン8~20質量%、及びその他の樹脂を含み、密度0.900g/cm以下の樹脂が0.5質量%以下である、ポリエチレン系樹脂100質量部と、無機充填剤80~200質量部とを含む樹脂組成物を成形したフィルムを、縦方向に1.8~3.5倍延伸し、次いで、縦方向の収縮率を3~20%に維持しながら、95℃を超えて120℃以下の温度範囲で少なくとも0.2秒間熱固定することを特徴とする、上記延伸多孔性フィルムの製造方法。
 本発明の一実施形態によれば、通気性、風合い、印刷性に優れた延伸多孔性フィルムが得られる。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。
 〔1.延伸多孔性フィルム〕
 本発明の延伸多孔性フィルムは、密度0.931~0.940g/cmの線形低密度ポリエチレン20~70質量%、密度0.901~0.940g/cmの分岐状低密度ポリエチレン8~20質量%、及びその他の樹脂を含み、密度0.900g/cm以下の樹脂が0.5質量%以下である、ポリエチレン系樹脂100質量部と、無機充填剤80~200質量部とを含む樹脂組成物から成り、縦方向の熱収縮率が1.2%以下、透湿度が2000g/m・24h以上である。これにより、優れた通気性、風合い、印刷性を兼ね備えた延伸多孔性フィルムを実現できる。
 なお、延伸多孔性フィルムは、ポリエチレン系樹脂と無機充填剤とを含む樹脂組成物からなるものであってもよいし、例えば、前記樹脂組成物の他に別の材質のシート等が積層されているものであってもよい。
 <1-1.ポリエチレン系樹脂>
 本発明におけるポリエチレン系樹脂は、密度0.931~0.940g/cmの線形低密度ポリエチレン20~70質量%、密度0.901~0.940g/cmの分岐状低密度ポリエチレン8~20質量%、及びその他の樹脂を含むものであれば特に限定されず使用することが出来る。
 前記密度0.931~0.940g/cmの線形低密度ポリエチレン(以下、第一LLDPEということがある)は、エチレンと少量のα-オレフィンとの共重合体からなり、直鎖状のポリエチレン主鎖と炭素数2~6程度の短鎖分岐とを有する。前記第一LLDPEは、密度が0.931g/cm以上、0.940g/cm以下であり、より好ましくは0.932g/cm以上、0.938g/cm以下である。密度が上記範囲であることにより、ポリエチレン系樹脂の結晶性が高くなり分子の動きが抑制されるため、延伸多孔性フィルムの熱収縮率を抑制することが可能となると推察される。また、通気性、耐液漏れ性に優れた延伸多孔性フィルムが得られやすくなる。前記第一LLDPEのメルト・インデックス(MI)は、好ましくは1.0~5.0g/10分であり、特に好ましくは1.5~5.0g/10分である。メルト・インデックスが上記範囲であることにより、熱収縮率が小さく、通気性、耐液漏れ性に優れた延伸多孔性フィルムを得ることが容易となる。
 前記第一LLDPEの含有量は、ポリエチレン系樹脂に対して20~70質量%であり、より好ましくは28~65質量%である。第一LLDPEの含有量を20質量%以上とすることにより、熱収縮率を抑制することが可能になると共に、延伸多孔性フィルムの剛軟性を高めて、フィルム加工時の伸びを抑制して取り扱い性を高めやすくなる。第一LLDPEの含有量が70質量%を超えると、風合いが悪化する場合がある。
 前記密度0.901~0.940g/cmの分岐状低密度ポリエチレン(以下、LDPEということがある)は、一般に高圧法低密度ポリエチレン(HP-LDPE)とも呼ばれ、長鎖分岐を有するポリエチレンを主鎖とするものである。LDPEは、通常、エチレンを高圧下、ラジカル重合触媒の存在下に重合させることにより合成できる。前記LDPEの密度は、好ましくは0.910~0.940g/cm、より好ましくは0.915~0.930g/cmである。密度が上記範囲であることにより、フィルムの押出特性や成形加工性を良好なものとし、そして延伸多孔性フィルムに必要な機械強度を持たせることが容易となる。前記LDPEはメルト・インデックスが1.0~5.0g/10分、特に、2.0~4.5g/10分であることが好ましい。メルト・インデックスが上記範囲であることにより、押出特性、成形加工性、機械強度を良好なものとすることが容易となる。
 前記LDPEの含有量は、ポリエチレン系樹脂に対して8~20質量%であり、10~19質量%であることが好ましい。LDPEの含有量は、得られる延伸多孔性フィルムの厚みの均一性に影響を及ぼす。LDPEの含有量が上記範囲を超えて多いと、フィルムのピンホールの出現頻度が多くなる傾向にあり、一方少ないとフィルムの厚みの均一性が悪化する上、フィルムにドローレゾナンスが発生しやすくなる傾向にある。
 本発明の樹脂組成物に使用されるポリエチレン系樹脂には、前記第一LLDPEと前記LDPE以外のその他の樹脂を、本願の発明の効果を阻害しない範囲で含んでも良い。その他の樹脂としては、その他のポリエチレンであっても良く、例えば密度0.901~0.930g/cmの線形低密度ポリエチレン(以下第二LLDPEと称することがある)が挙げられる。第二LLDPEを含むことにより、フィルムの引裂き強度を向上させることが容易となる。第二LLDPEの配合量は、ポリエチレン系樹脂に対して22~67質量%であることが好ましく、28~60質量%であることがより好ましい。
 また、その他の樹脂として、密度0.941~0.975g/cmの高密度ポリエチレン(HDPE)を挙げることもできる。HDPEの含有量は、ポリエチレン系樹脂に対して22~67質量%であることが好ましく、23~55質量%であることがより好ましい。HDPEを前記範囲で配合することにより、フィルムの寸法変化を抑制する事が容易となる。
 なお、前記第一LLDPE、第二LLDPE、LDPE、HDPEについては、原料とするエチレンの由来は特に限定されず、石油由来のエチレンから重合された石油由来ポリエチレンでも、植物由来のエチレンから重合された植物由来ポリエチレンでも使用することが可能であるが、石油枯渇や地球温暖化などの地球環境に対して優れていることから、ポリエチレンの一部または全部として、植物由来ポリエチレンを使用することが好ましい。石油由来ポリエチレンと植物由来ポリエチレンは、エチレンを得た後の重合過程が全く同じであれば、ポリエチレンの素性が何ら変わることはなく、コストなどを考慮して任意の割合で配合することが出来る。
 また、本発明に用いられるポリエチレンは、ツィーグラー触媒の如きマルチサイト触媒を用いて製造された樹脂であっても、また、メタロセン触媒の如きシングルサイト触媒を用いて製造された樹脂であってもよい。
 本発明の樹脂組成物に使用されるポリエチレン系樹脂には、本発明の効果を阻害しない範囲で、上記第一LLDPE、第二LLDPE、LDPE、HDPE以外の樹脂(例えば、超低密度ポリエチレン、ポリプロピレン、エチレン1・ブテン共重合体など)を配合しても良いが、密度が0.900g/cm以下の樹脂は結晶性が低く、これを配合するとフィルムの熱収縮率が大きくなりやすくなったり、熱収縮を抑制するために後述する特定の条件での熱固定を行うとフィルムに悪影響が発生しやすくなったりするため、密度0.900g/cm以下の樹脂の配合割合は、ポリエチレン系樹脂に対して0.5質量%以下に制御する必要があり、実質的に配合しないことが好ましい。
 なお、本発明における樹脂の密度は、JIS K 7112法により測定したものである。また、本発明における樹脂のメルト・インデックスは、JIS K 7210に準じて190℃でA法にて測定した値である。
 <1-2.無機充填剤>
 無機充填剤は、フィルムを多孔化させるために配合する。無機充填剤を配合した樹脂組成物を延伸することでフィルムを多孔化し、透湿度を高めることが出来る。
 無機充填剤は公知のものが際限なく使用でき、例えば炭酸カルシウム、硫酸バリウム、硫酸カルシウム、炭酸バリウム、水酸化マグネシウムおよび水酸化アルミニウム等の無機塩類、酸化亜鉛、酸化マグネシウムおよびシリカ等の無機酸化物、マイカ、バーミキュライトおよびタルク等のケイ酸塩類、並びに有機金属塩が挙げられる。前記無機充填剤のうち、炭酸カルシウムが、コストパフォーマンスおよびポリエチレン系樹脂との解離性の観点から好ましい。
 樹脂組成物において、無機充填剤の配合割合は、ポリエチレン系樹脂の合計100質量部に対し、80質量部以上、200質量部以下であることが好ましく、85質量部以上、160質量部以下であることがより好ましい。無機充填剤の配合割合が80質量部以上であれば、ポリエチレン系樹脂と無機充填剤とが乖離してできる、単位面積あたりのボイド発生頻度を高めることができる。よって、近接したボイド同士が連通しやすくなり、通気性が良好となる。無機充填剤の配合割合が200質量部以下であれば、フィルム延伸時の伸びが良好であり、延伸が容易である。
 無機充填剤の平均粒径はレーザー回折光散乱法により測定した平均粒子径が、10μm以下のものが好ましく、0.5~5.0μmのものがより好ましく、0.7~3.0μmのものがさらに好ましい。平均粒子径が上記範囲にあると、分散性に優れ、延伸時に連通孔の形成が容易となる上に、成形時のフィルム破れ等が発生しにくく効率よく延伸多孔性フィルムを生産することが可能である。無機充填剤の平均粒径が上記範囲を超えて大きいとピンホールの原因となりやすく、小さいと製膜時にドローレゾナンスが生じる原因となりやすい。
 上記無機充填剤としては、ポリエチレン系樹脂への分散性を向上させるために表面処理が施されているものが好ましい。表面処理剤としては、無機充填剤の表面を被覆することにより、その表面を疎水化できるものが好ましく、例えば、脂肪酸、高級脂肪酸、またはそれらの金属塩の他、ワックス等を挙げることができる。表面処理剤の量は特に限定されないが、好ましくは、無機充填剤に対し0.5~2.0質量%程度であり、1.5質量%以下であることがさらに好ましく、1.0質量%以下であることが特に好ましい。
 <1-3.その他の成分>
 本発明の樹脂組成物にはさらに、通常の樹脂組成物に用いられる添加物が含まれていてもよい。かかる添加物としては、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、防曇剤、アンチブロッキング剤、帯電防止剤、スリップ剤、着色剤、可塑剤等が挙げられる。
 本発明の樹脂組成物に配合される可塑剤は、ポリエチレン系樹脂100質量部に対して2質量部未満であることが好ましく、1質量部未満であることがより好ましい。本発明において可塑剤とは、フィルムの可塑性を改善し、フィルムに柔軟性を与える化合物の総称である。可塑剤の含有量が多くなると、樹脂組成物のメルト・インデックスが大きくなり、低熱収縮率や高い透湿性を得ることが困難となる場合がある。上記可塑剤の種類は特に限定されないが、例えば脂肪酸、高級脂肪酸、低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等が挙げられる。
 <1-4.延伸多孔性フィルムの物性>
 本発明の樹脂組成物のメルト・インデックスは、1.0g/10分以上であることが好ましく、1.5g/10分以上、5.0g/10分以下であることがより好ましく、1.5g/10分以上、4.0g/10分以下であることがさらに好ましい。メルト・インデックスが上記範囲であれば、より安定した製膜を行うことが可能である。メルト・インデックスが1.0g/10分以上であれば、製膜時押出機の樹脂圧力が抑えられ、製膜への悪影響を防ぐことができる。また、メルト・インデックスが5.0g/10分以下であれば、Tダイで製膜する際のネックインをより抑えることができる。そのため、必要とされる製品幅を容易に得ることができる。なお、メルト・インデックスが小さいほど、5%伸張強度が大きくなる傾向がある。樹脂組成物のメルト・インデックスは、JIS K 7210に準じて、190℃でA法にて測定される。
 本発明の延伸多孔性フィルムは、透湿度が2000g/m・24h以上であり、2200g/m・24h以上であることが好ましい。透湿度が上記範囲にあることにより、通気性および透湿性に優れる。例えば、延伸多孔性フィルムを紙おむつのバックシートとして用いた場合には、着用時の蒸れを防止することができる。なお、透湿度の上限は特に制限されるものではないが、機械特性、耐水性および耐液漏れ性の観点から、10000g/m・24h以下であることが好ましく、5000g/m・24h以下であることがより好ましい。
 透湿度は、ASTM E96に準じて、40℃、相対湿度60%、測定時間24時間、純水法の条件で測定される。なお、本明細書において、透湿度は、延伸多孔性フィルムから採取した10cm×10cmのサンプル10枚の平均値である。
 本発明の延伸多孔性フィルムの通気度は、200秒/100mL以上、2000秒/100mL以下であることが好ましく、300秒/100mL以上、1600秒/mL以下であることがより好ましく、300秒/100mL以上、1100秒/mL以下であることがさらに好ましい。通気度は値が小さいほど、気体を通過させやすいことを表す。通気度が上記範囲であれば、延伸多孔性フィルムを紙おむつのバックシートとして用いた場合に、着用時の蒸れを防止することができる。通気度は、JIS P 8117に準じて、王研式試験機法で測定される。
 本発明の延伸多孔性フィルムは、縦方向の熱収縮率が1.2%以下であることが重要である。縦方向の熱収縮率を1.2%以下とすることにより、印刷時にフィルムの収縮(巻き締まり)が発生しにくく、印刷ピッチの十分な安定性を得ることが出来、印刷性が向上する。本発明の延伸多孔性フィルムの縦方向の熱収縮率は、1.0%以下であることがより好ましい。
 縦方向の熱収縮率は、以下の方法によって測定される。延伸多孔性フィルムから、15cm×15cmのサンプルを採取する。縦方向に標線間が10cmとなるよう、このサンプルに標線を入れる。このサンプルを50℃で24時間放置した後、室温に冷却して標線間の長さを測定する。縦方向の熱収縮率は下記式Iより求められる。
式I:縦方向の熱収縮率(%)={(10cm-冷却後の標線間の長さ(cm))/10cm}×100
 本発明の延伸多孔性フィルムの目付(単位面積当たりの重量)は、10g/m以上、25g/m以下であることが好ましく、11g/m以上、22g/m以下であることがより好ましく、12g/m以上、20g/m以下であることがさらに好ましい。目付けが上記範囲であることにより、通気性、透湿性および機械強度に優れる延伸多孔性フィルムが得られやすい。目付が10g/m以上であれば、フィルムの機械強度を高めることが容易となる。また、目付が25g/m以下であれば、高い透湿性を得ることが容易となる。
 〔2.延伸多孔性フィルムの製造方法〕
 本発明の延伸多孔性フィルムは、その製造方法により制限されるものではないが、密度0.931~0.940g/cmの線形低密度ポリエチレン20~70質量%、密度0.901~0.940g/cmの分岐状低密度ポリエチレン8~20質量%、及びその他の樹脂を含み、密度0.900g/cm以下の樹脂が0.5質量%以下である、ポリエチレン系樹脂100質量部と、無機充填剤80~200質量部とを含む前記樹脂組成物を成形したフィルムを、縦方向に1.8~3.5倍延伸し、次いで、縦方向の収縮率を3~20%に維持しながら、95℃を超えて120℃以下の温度範囲で少なくとも0.2秒間熱固定することを特徴とする延伸多孔性フィルムの製造方法により簡便に製造することが出来る。以下、本製造方法について具体的に説明する。
 前記樹脂組成物は、ポリエチレン系樹脂と、無機充填剤と、その他添加剤とを所定の割合で混合することで得ることが出来る。混合方法は特に限定されず、公知の方法が採用できる。例えば、ヘンシェルミキサー、スーパーミキサー、またはタンブラーミキサー等の混合機を用いて5分~1時間程度混合することが好ましい。この際、ポリエチレン系樹脂として複数の樹脂を混合することとなるが、各樹脂のメルト・インデックスを略同一とすることにより安定したペレット化がしやすくなる。
 得られた混合物は一般に高混練タイプの2軸押出機、またはタンデム型混練機等の混練機を用いて、ストランドカット、ホットカット、またはアンダーウォーターカット等の方法で混練し、ペレット化できる。予め混合および混練し、ペレット化することにより、樹脂組成物の均一な分散を促すことができるため、好ましい。なお、樹脂組成物の配合によっては、前記の混合操作を行わずに直接混練機に投入し、フィルムを成形することもできる。
 前記のように得られたペレットは、押出機を使用することでフィルム状に成形する。フィルムの成形は、押出機の先端に装着したサーキュラダイまたはTダイによって行うことが好ましい。
 前記成形工程によって得られたフィルムを少なくとも縦方向に延伸することで多孔化させることが出来る。成形工程によって得られたフィルムを、延伸することにより、前記ポリエチレン系樹脂と無機充填剤との界面が剥離する。そして、剥離した界面に微小な空隙ができ、該空隙がフィルムの厚さ方向に貫通した連通孔を形成することにより延伸多孔性フィルムとなる。延伸は、ロール延伸法またはテンター延伸法等の公知の方法により行うことができる。
 縦方向の延伸倍率は、1.8倍以上であり、好ましくは2.0倍以上である。上記延伸倍率が大きすぎると、引裂強度が低くなり、実用性に欠ける。上限は、3.5倍であり、好ましくは3.3倍である。また、延伸は、一軸延伸であってもよく、二軸延伸であってもよい。前記延伸は一段延伸でも多段延伸でもよい。
 延伸温度は、常温以上、樹脂組成物の軟化点未満の温度範囲であることが好ましい。延伸温度が常温以上であれば、延伸ムラが生じ難いため、厚みが均一になりやすい。また、延伸温度が軟化点未満であれば、フィルムが融解することを防ぐことができる。よって、フィルムの孔が潰れ、通気性および透湿性が低下することを防ぐことができる。延伸温度は用いる樹脂組成物の物性と延伸倍率との組合せにより適宜調整することができる。
 本製造方法の最大の特徴は、前記樹脂組成物を延伸して得られたフィルムを特定の条件で熱固定することである。熱固定とは、延伸後のフィルムに延伸による緊張状態を維持した状態で、寸法を変化させない環境下で行う加熱処理のことである。前記樹脂組成物を特定の条件で熱固定を行うことにより、具体的には従来よりも高い温度で熱固定を行うことで、従来なしえなかった低い熱収縮を実現することが出来る。また、熱固定を行うことで、保管時の弾性回復や巻き絞まり等を抑制することもできる。
 熱固定の温度は、95℃を超え、120℃以下であり、100℃以上、115℃以下であることが好ましい。熱固定温度が95℃を超えることにより、十分な熱固定が行われ、延伸多孔性フィルムの熱収縮を低くすることが可能となる。熱固定温度が120℃以下とすることで、熱によって延伸多孔性フィルムの孔が潰れることを防止して、高い通気性および透湿性を得ることが出来る。
 熱固定の時間は、0.2秒以上であり、0.5秒以上であることがより好ましく、1.0秒以上であることがさらに好ましい。熱固定の時間を0.2秒以上とすることにより、十分な熱固定が行われ、延伸多孔性フィルムの熱収縮を低くすることが可能となる。また、熱固定の時間の上限は特に限定されないが、20秒以下であることが好ましく、15秒以下であることがより好ましい。熱固定の時間が20秒以下とすることで、延伸多孔性フィルムが融解することによって孔が潰れることを防止し、高い通気性および透湿性を得ることが容易となる。
 延伸方法としてロール延伸法を採用した場合の熱固定方法として、延伸後のフィルムを、加熱したロール(アニールロール)により加熱する方法が挙げられる。また、延伸方法としてテンター延伸法を採用した場合の熱固定方法として、延伸後のフィルムをテンター出口付近でフィルムを加熱する方法が挙げられる。
 前記熱固定の時間は、延伸多孔性フィルムが熱固定温度で保持される時間である。例えば、ロール延伸法を採用した場合、フィルムがアニールロールと接している時間をいう。アニールロールの本数は特に制限されないが、2本以上ある場合、熱固定の時間は延伸多孔性フィルムが各アニールロールに接する時間の和である。また、テンター延伸法を採用した場合、熱固定の時間はテンター出口において熱固定温度で加熱され、維持される時間を示す。熱固定を複数回に分割して加熱する場合、各々加熱された時間の和である。
 前記熱固定時の縦方向の収縮率は3~20%であり、5~18%であることが好ましく、10~15%であることがより好ましい。熱固定時の収縮率とは、熱固定を行う個所のニップロールの速度が、直前のニップロールの速度に対して低下した割合を示しており、例えば、熱固定時の収縮率が10%とは、熱固定を行う個所のニップロールの速度が、直前のニップロールの速度よりも10%遅い(すなわち、直前のニップロールの速度の90%の速度)とすることを意味する。
 〔3.延伸多孔性フィルムの用途〕
 本発明の延伸多孔性フィルムの用途は特に制限されず、紙おむつや生理用ナプキンなどの衛生材料、乾燥剤や使い捨てカイロなどの機能包装材料、使い捨て手袋や雨合羽などの簡易衣料、ハウスラップなどの防水建材、マルチ農法用シートなどの農業用途、堆肥被覆シートなどの廃棄物処理用途などに使用可能であるが、通気性、風合い、印刷性に優れていることから、衛生材料、特には紙おむつや生理用ナプキンなどのバックシートとして使用することが好ましい。
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 〔評価方法〕
 各物性値は以下に示す方法によって測定したものである。
 (1)メルト・インデックス
 樹脂のメルト・インデックスはJIS K 7210に従い、測定温度として190℃を選択し、荷重を2.16kgとしてA法で測定した。
 (2)目付
 延伸多孔性フィルムから10cm×10cmのサンプルを切り取り、天秤で質量を測定した。このサンプルの面積および質量から、目付を求めた。
 (3)透湿度
 延伸多孔性フィルムから、10cm×10cmのサンプルを10枚採取した。これらについて、ASTM E96に準じて、40℃、相対湿度60%、測定時間24時間、純水法の条件で透湿度を測定し、その平均値を求めた。
 (4)通気度
 通気度はJIS P 8117に準じて、王研式試験機法で測定した。
 (5)縦方向の熱収縮率
 延伸多孔性フィルムから、15cm×15cmのサンプルを採取した。縦方向に標線間が10cmとなるよう、このサンプルに標線を入れた。このサンプルを50℃で24時間放置した後、室温に冷却して標線間の長さを測定した。縦方向の熱収縮率を下記数式(式I)より求めた。
式I:縦方向の熱収縮率(%)={(10cm-冷却後の標線間の長さ(cm))/10cm}×100
 〔用いた成分〕
 A:石油由来線形低密度ポリエチレン[ダウケミカル(株)製、商品名:ダウレックス2036P、密度:0.935g/cm、MI:2.5g/10分]
 B:石油由来線形低密度ポリエチレン[ダウケミカル(株)製、商品名:CEFORTM1221P、密度:0.918g/cm、MI:2.0g/10分]
 C:植物由来線形低密度ポリエチレン[ブラスケム社製、商品名:SLL118、密度:0.918g/cm、MI:1.0g/10分]
 D:植物由来線形低密度ポリエチレン[ブラスケム社製、商品名:SLH218、密度:0.916g/cm、MI:2.3g/10分]
 E:植物由来高密度ポリエチレン[ブラスケム社製、商品名:SGE7252、密度:0.953g/cm、MI:2.0g/10分]
 F:分岐状低密度ポリエチレン[三井・デュポンポリケミカル(株)製、商品名:ミラソン16P、密度:0.917g/cm、MI:3.7g/10分]
 G:ポリプロピレン[(株)プライムポリマー製、商品名F-704NP、密度:0.900g/cm、MI:2.8g/10分]
 H:エチレン1・ブテン共重合体[三井化学(株)製、商品名:タフマーA-4085S、密度:0.885g/cm、MI:3.6g/10分]
 I:炭酸カルシウム[(株)カルファイン製、商品名:LAC-2000]
 J:硫酸バリウム[堺化学(株)製、商品名:バリエースB-54]
 K:添加剤[ヒンダードフェノール系熱安定剤(BASFジャパン(株)製、商品名:IRGANOX3114)40質量%と、リン系熱安定剤(BASFジャパン(株)製、商品名:IRGAFOS168)60質量%との混合物]
 〔実施例1〕
 ポリエチレンAを54質量部と、ポリエチレンCを30質量部と、ポリエチレンFを16質量部と、無機充填剤Iを147質量部と、添加剤Kを2質量部とを混合し、これを造粒した。
 造粒(ペレットの作製)は、以下のように行った。ベント付φ30mm二軸押出機を用いて、シリンダー温度180℃で前記樹脂組成物をストランド状に押し出し、水槽で冷却した。その後、押し出された樹脂組成物を約5mmにカットし、乾燥してペレットを作製した。
 次いで、上記ペレットをインフレ成膜機(φ150mmダイ)にて、フィルム成形を行った。リップクリアランス=1.1mm、ダイ温度=170℃、ブローアップ比=2.1、引取速度=12m/minの条件で製膜した。さらに、60℃に設定したロール延伸機で縦方向に3.0倍延伸した。次いで110℃に設定した熱セットロールで熱固定した(熱固定温度110℃、熱固定時間2.5秒)。その熱固定時の縦方向の収縮率は12%であった。
 〔実施例2~13および比較例1~8〕
 実施例2~13および比較例1~8においては、各成分の配合割合または延伸条件(延伸倍率もしくは熱固定温度)を表1に記載のように変更した以外は、実施例1と同様にフィルムを形成した。
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、「ポリエチレン系樹脂:配合割合(質量%)」は樹脂組成物に含まれるポリエチレン系樹脂100質量%に対する各樹脂の配合割合を表す。炭酸カルシウムもしくは硫酸バリウムおよび添加剤の配合割合は、ポリエチレン系樹脂100質量部に対する配合割合として記載されている。
 また、表1中の延伸条件※1は延伸倍率3.0倍、熱固定温度110℃を表す。延伸条件※2は延伸倍率2.0倍、熱固定温度110℃を表す。延伸条件※3は延伸倍率3.0倍、熱固定温度100℃を表す。延伸条件※4は延伸倍率3.0倍、熱固定温度55℃を表す。
 〔結果〕
 実施例1~13および比較例1~8で得られた延伸多孔性フィルムの目付、透湿度、通気度および熱収縮率の測定を行い、表2に示した。
Figure JPOXMLDOC01-appb-T000002
 実施例1~13の延伸多孔性フィルムは、いずれも2000g/m・24h以上の良好な透湿度を示すとともに、良好な風合いを有していた。また、実施例1~13の延伸多孔性フィルムは、熱収縮率について低い値を保持しており、いずれも印刷ピッチの変動に起因する印刷不良は発生しなかった。
 比較例1、6では、密度0.931~0.940g/cmの線形低密度ポリエチレンを用いなかった。その結果、熱収縮率が高くなり、印刷ピッチ精度の乏しい延伸多孔性フィルムとなり、印刷ピッチの変動に起因する印刷不良が発生した。
 比較例2、8では、密度0.901~0.940g/cmの分岐状低密度ポリエチレンを用いなかったため、厚みの均一性が悪化しフィルムの外観が損なわれ、実用性に乏しい延伸多孔性フィルムとなった。加えて、密度0.931~0.940g/cmの線形低密度ポリエチレンを、70質量%を超えて配合した比較例8は、風合いが悪く、この点でも実用性が乏しかった。
 比較例3、4では、密度0.900g/cm以下のポリプロピレンをポリエチレン系樹脂中に0.5質量%を超えて配合した。その結果、熱収縮率が高くなり、印刷ピッチ精度の乏しい延伸多孔性フィルムとなり、印刷ピッチの変動に起因する印刷不良が発生した。
 比較例5では、密度0.900g/cm以下のエチレン・1ブテン共重合体をポリエチレン系樹脂中に0.5質量%を超えて配合した。その結果、熱固定温度を95℃超で行うことができず、熱収縮率が非常に大きく、印刷ピッチ精度の乏しい延伸多孔性フィルムとなり、印刷ピッチの変動に起因する印刷不良が発生した。
 比較例7では、実施例10と同一の樹脂組成物を使用し、熱固定温度を55℃の条件でフィルムを製造した。その結果、熱収縮率が非常に大きく、印刷ピッチ精度の乏しい延伸多孔性フィルムとなり、印刷ピッチの変動に起因する印刷不良が発生した。

Claims (5)

  1.  密度0.931~0.940g/cmの線形低密度ポリエチレン20~70質量%、密度0.901~0.940g/cmの分岐状低密度ポリエチレン8~20質量%、及びその他の樹脂を含み、密度0.900g/cm以下の樹脂が0.5質量%以下である、ポリエチレン系樹脂100質量部と、無機充填剤80~200質量部とを含む樹脂組成物から成り、縦方向の熱収縮率が1.2%以下、透湿度が2000g/m・24h以上であることを特徴とする延伸多孔性フィルム。
  2.  前記ポリエチレン系樹脂が、前記その他の樹脂として、密度0.901~0.930g/cmの線形低密度ポリエチレンを22~67質量%含む、請求項1記載の延伸多孔性フィルム。
  3.  前記ポリエチレン系樹脂が、前記その他の樹脂として、密度0.941~0.975g/cmの高密度ポリエチレンを22~67質量%含む、請求項1記載の延伸多孔性フィルム。
  4.  前記無機充填剤が炭酸カルシウムである、請求項1~3いずれか一項に記載の延伸多孔性フィルム。
  5.  密度0.931~0.940g/cmの線形低密度ポリエチレン20~70質量%、密度0.901~0.940g/cmの分岐状低密度ポリエチレン8~20質量%、及びその他の樹脂を含み、密度0.900g/cm以下の樹脂が0.5質量%以下である、ポリエチレン系樹脂100質量部と、無機充填剤80~200質量部とを含む樹脂組成物を成形したフィルムを、縦方向に1.8~3.5倍延伸し、次いで、縦方向の収縮率を3~20%に維持しながら、95℃を超えて120℃以下の温度範囲で少なくとも0.2秒間熱固定することを特徴とする、請求項1~4いずれか一項記載の延伸多孔性フィルムの製造方法。
PCT/JP2022/039892 2021-10-29 2022-10-26 延伸多孔性フィルムおよびその製造方法 WO2023074731A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280060292.0A CN117916294A (zh) 2021-10-29 2022-10-26 拉伸多孔性薄膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177135 2021-10-29
JP2021-177135 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074731A1 true WO2023074731A1 (ja) 2023-05-04

Family

ID=86157970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039892 WO2023074731A1 (ja) 2021-10-29 2022-10-26 延伸多孔性フィルムおよびその製造方法

Country Status (3)

Country Link
CN (1) CN117916294A (ja)
TW (1) TW202337976A (ja)
WO (1) WO2023074731A1 (ja)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118446A (ja) * 1984-11-13 1986-06-05 Mitsubishi Chem Ind Ltd ポリエチレン樹脂組成物
JPH02309969A (ja) * 1989-05-24 1990-12-25 Mitsubishi Kasei Corp 通気性脱臭又は芳香フィルム
JPH10168200A (ja) * 1996-12-06 1998-06-23 Sumitomo Chem Co Ltd ラベルテープ用フィルム
JP2001200114A (ja) * 2000-01-17 2001-07-24 Japan Polyolefins Co Ltd ラミネート用樹脂組成物および積層体並びにその製造方法
JP2002030169A (ja) * 2000-07-17 2002-01-31 Mitsui Chemicals Inc 多孔性フィルム
JP2002307627A (ja) * 2001-04-10 2002-10-23 Mitsui Chemicals Inc 通気性積層シートの製造方法
JP2004099665A (ja) * 2002-09-05 2004-04-02 Kao Corp 透湿シート
WO2005115738A1 (ja) * 2004-05-31 2005-12-08 Mitsui Chemicals, Inc. 親水性多孔性フィルム及びそれからなる多層フィルム
KR20070024541A (ko) * 2006-11-27 2007-03-02 미쯔이카가쿠 가부시기가이샤 친수성 다공성 필름 및 그것으로 이루어지는 다층 필름
JP2007161970A (ja) * 2005-12-16 2007-06-28 Nippon Polyethylene Kk 多孔フィルムとその製造方法
WO2008148693A1 (en) * 2007-06-08 2008-12-11 Borealis Technology Oy Polymer composition with high impact resistance and high melt strength
JP2017031292A (ja) * 2015-07-30 2017-02-09 三菱樹脂株式会社 通気性フィルム
WO2017175878A1 (ja) * 2016-04-08 2017-10-12 株式会社トクヤマ 延伸多孔性フィルム及びその製造方法
WO2019107555A1 (ja) * 2017-11-30 2019-06-06 株式会社トクヤマ 延伸多孔性フィルムおよびその製造方法
WO2019130990A1 (ja) * 2017-12-26 2019-07-04 株式会社トクヤマ 延伸多孔性フィルムおよびその製造方法
US20210260849A1 (en) * 2018-07-26 2021-08-26 Exxonmobil Chemical Patents Inc. Multilayer Foam Films and Methods for Making the Same
WO2021172345A1 (ja) * 2020-02-27 2021-09-02 三菱ケミカル株式会社 延伸多孔フィルムロール

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118446A (ja) * 1984-11-13 1986-06-05 Mitsubishi Chem Ind Ltd ポリエチレン樹脂組成物
JPH02309969A (ja) * 1989-05-24 1990-12-25 Mitsubishi Kasei Corp 通気性脱臭又は芳香フィルム
JPH10168200A (ja) * 1996-12-06 1998-06-23 Sumitomo Chem Co Ltd ラベルテープ用フィルム
JP2001200114A (ja) * 2000-01-17 2001-07-24 Japan Polyolefins Co Ltd ラミネート用樹脂組成物および積層体並びにその製造方法
JP2002030169A (ja) * 2000-07-17 2002-01-31 Mitsui Chemicals Inc 多孔性フィルム
JP2002307627A (ja) * 2001-04-10 2002-10-23 Mitsui Chemicals Inc 通気性積層シートの製造方法
JP2004099665A (ja) * 2002-09-05 2004-04-02 Kao Corp 透湿シート
WO2005115738A1 (ja) * 2004-05-31 2005-12-08 Mitsui Chemicals, Inc. 親水性多孔性フィルム及びそれからなる多層フィルム
JP2007161970A (ja) * 2005-12-16 2007-06-28 Nippon Polyethylene Kk 多孔フィルムとその製造方法
KR20070024541A (ko) * 2006-11-27 2007-03-02 미쯔이카가쿠 가부시기가이샤 친수성 다공성 필름 및 그것으로 이루어지는 다층 필름
WO2008148693A1 (en) * 2007-06-08 2008-12-11 Borealis Technology Oy Polymer composition with high impact resistance and high melt strength
JP2017031292A (ja) * 2015-07-30 2017-02-09 三菱樹脂株式会社 通気性フィルム
WO2017175878A1 (ja) * 2016-04-08 2017-10-12 株式会社トクヤマ 延伸多孔性フィルム及びその製造方法
WO2019107555A1 (ja) * 2017-11-30 2019-06-06 株式会社トクヤマ 延伸多孔性フィルムおよびその製造方法
WO2019130990A1 (ja) * 2017-12-26 2019-07-04 株式会社トクヤマ 延伸多孔性フィルムおよびその製造方法
US20210260849A1 (en) * 2018-07-26 2021-08-26 Exxonmobil Chemical Patents Inc. Multilayer Foam Films and Methods for Making the Same
WO2021172345A1 (ja) * 2020-02-27 2021-09-02 三菱ケミカル株式会社 延伸多孔フィルムロール

Also Published As

Publication number Publication date
TW202337976A (zh) 2023-10-01
CN117916294A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
JP6859324B2 (ja) 延伸多孔性フィルム及びその製造方法
JPH02127445A (ja) 通気性微孔質フィルムとその製造方法
CN111417676B (zh) 延伸多孔性膜及其制造方法
JPH0362738B2 (ja)
JPWO2014088065A1 (ja) 透湿性フィルムおよびその製造方法
CN112778600A (zh) 一种聚烯烃透气膜专用料及其制备方法和应用
US5853638A (en) Process for producing stretched porous film
JP6350222B2 (ja) 透湿性フィルムおよび透湿性フィルム積層体
JPH10292059A (ja) 通気性フィルムの製造方法
JP3499652B2 (ja) 透湿性フィルム
JP7112430B2 (ja) 延伸多孔性フィルムおよびその製造方法
WO2015186808A1 (ja) 透湿性フィルム
WO2023074731A1 (ja) 延伸多孔性フィルムおよびその製造方法
JPH11116714A (ja) 多孔性フィルム
JP4540858B2 (ja) 多孔性フィルム及びその製造方法
JP2017031293A (ja) 通気性フィルム
JP2006241276A (ja) ポリエチレン系多孔質フィルム
JP6902358B2 (ja) マスターバッチ
Choklob et al. PLA blend/RHA permeable composite films for fruit packaging.
KR101357454B1 (ko) 난연 통기성 필름용 컴파운드 조성물 및 이를 이용한필름의 제조방법
JP2001294717A (ja) ポリオレフィン系樹脂組成物及び該組成物から得られるポリオレフィンフィルム
KR20170068046A (ko) 생분해성 나노입자계 수지조성물 및 이를 이용한 박막 통기성 필름
KR100867931B1 (ko) 내수압성이 우수한 통기성 필름용 컴파운드 조성물 및 이를이용한 통기성 필름
JP2005146184A (ja) ポリオレフィン樹脂組成物及びポリオレフィン樹脂フィルム
Filiz Production of microporous polypropylene breathable films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556594

Country of ref document: JP