WO2023071449A1 - 一种镍钴锰三元前驱体包覆latp的方法 - Google Patents

一种镍钴锰三元前驱体包覆latp的方法 Download PDF

Info

Publication number
WO2023071449A1
WO2023071449A1 PCT/CN2022/113431 CN2022113431W WO2023071449A1 WO 2023071449 A1 WO2023071449 A1 WO 2023071449A1 CN 2022113431 W CN2022113431 W CN 2022113431W WO 2023071449 A1 WO2023071449 A1 WO 2023071449A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
cobalt
latp
nickel
ternary precursor
Prior art date
Application number
PCT/CN2022/113431
Other languages
English (en)
French (fr)
Inventor
许开华
张坤
李聪
杨幸
范亮姣
薛晓斐
李雪倩
贾冬鸣
吕豪
袁文芳
朱小帅
Original Assignee
荆门市格林美新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荆门市格林美新材料有限公司 filed Critical 荆门市格林美新材料有限公司
Publication of WO2023071449A1 publication Critical patent/WO2023071449A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of nickel-cobalt-manganese ternary materials, in particular to a method for coating LATP with a nickel-cobalt-manganese ternary precursor.
  • High-nickel ternary materials have become one of the development directions of lithium-ion battery cathode materials because of their high energy density. However, as the nickel content increases, the material's shortcomings are further amplified. High-nickel materials are more susceptible to electrolyte erosion during charge and discharge, and coating modification is one of the effective methods to solve this problem.
  • Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) is a solid electrolyte with Nasion structure, which has stable and fast lithium ion transport channels. The use of LATP coating can significantly improve the cycle performance of high-nickel ternary materials.
  • LATP-coated cathode materials mostly use sol-gel method or high-temperature solid-phase method. The sol-gel method uses absolute ethanol as the solvent, which is not suitable for large-scale industrialization; while the high-temperature solid-phase method has an uneven coating layer, which has a certain impact on the performance of high-nickel ternary materials.
  • the present invention provides a method for coating LATP with a nickel-cobalt-manganese ternary precursor.
  • the present invention is achieved through the following technical solutions.
  • a method for coating LATP with a nickel-cobalt-manganese ternary precursor characterized in that the method comprises:
  • the soluble lithium salt solution is a lithium sulfate solution
  • the soluble aluminum salt solution is an aluminum sulfate solution
  • the titanium salt solution is a titanium sulfate solution.
  • the Li + concentration in the mixed solution A is 0.13-1.3 mol/L
  • the Al 3+ concentration is 0.03-0.3 mol/L
  • the ammonium bicarbonate solution B is 0.monium dihydrogen phosphate solution C
  • concentrations of the salt solution D are 0.5-2mol/L, 0.3-3mol/L, and 0.17-1.7mol/L, respectively.
  • the addition amount of the nickel-cobalt-manganese ternary precursor in the step (2) is 10%-40% of the addition amount of the mixed solution A.
  • the flow rate of the ammonium bicarbonate solution B in the step (3) is 100-500 L/h.
  • the flow rates of the ammonium dihydrogen phosphate solution C and the titanium salt solution D in the step (4) are both 100-500 L/h.
  • the beneficial technical effect of the present invention is that all raw materials use inorganic compounds, and the co-precipitation method can be used to produce large-scale LATP-coated NCM precursors, and the coating layer is more uniform than the high-temperature solid-phase method.
  • Figure 1 is a scanning electron microscope image of the precursor sample before coating.
  • Figure 2 is a scanning electron microscope image of the precursor sample after coating.
  • Step 1 Dissolve lithium sulfate and aluminum sulfate octadecahydrate in water respectively to form lithium sulfate solution and aluminum sulfate solution, then mix the solutions, adjust the pH to 4.0, and prepare Li + containing 1.3mol/L and 0.3mol
  • Step 2 Add 3000L mixed solution A into the reaction kettle as the bottom liquid, start stirring to 300rpm, add 1 ton of NCM ternary precursor (NCM811 type), and raise the temperature to 80°C.
  • NCM ternary precursor NCM811 type
  • Step 3 Pump solution B into the reactor at a rate of 100 L/h, and stop after 5 hours.
  • Step 4 Pump solution C and solution D into the reactor at a rate of 200 L/h, stop feeding after 3 hours, and continue to maintain the stirring speed and temperature for 2 hours to obtain a slurry.
  • Step 5 Centrifuge the slurry, wash, dry, sieve, and remove iron to obtain a LATP-coated NCM ternary precursor material.
  • Step 2 Add 5000L of solution A to the reaction kettle as the bottom liquid, start stirring to 250rpm, add 1 ton of NCM precursor (NCM9055 type), and raise the temperature to 70°C.
  • NCM precursor NCM9055 type
  • Step 3 Pump solution B into the reactor at a rate of 500 L/h, and stop after 4 hours.
  • Step 4 Pump solution C and solution D into the reactor at a rate of 400 L/h, stop feeding after 4 hours, and continue to maintain the stirring speed and temperature for 2 hours to obtain a slurry.
  • Step 5 centrifuging the slurry, washing, drying, sieving, and removing iron to obtain the NCM precursor material coated with LATP.
  • Step 1 Dissolve lithium sulfate and aluminum sulfate octadecahydrate in water respectively to form lithium sulfate solution and aluminum sulfate solution, then mix the solutions, adjust the pH to 5, and prepare Li + containing 0.13mol/L and 0.03mol Mixed solution A of Al 3+ /L; prepare 2mol/L ammonium bicarbonate solution B; prepare 0.3mol/L ammonium dihydrogen phosphate solution C; dissolve titanium sulfate in water to prepare 0.17mol/L titanium salt solution D
  • Step 2 Add 8000L solution A to the reaction kettle as the bottom liquid, start stirring to 200rpm, add 2 tons of NCM precursor (NCM9073 type), and raise the temperature to 60°C.
  • Step 3 Pump solution B into the reactor at a rate of 200 L/h, and stop after 8 hours.
  • Step 4 Pump solution C and solution D into the reactor at a rate of 500 L/h, stop feeding after 10 hours, and continue to maintain the stirring speed and temperature for 2 hours to obtain a slurry.
  • Step 5 centrifuging the slurry, washing, drying, sieving, and removing iron to obtain the NCM precursor material coated with LATP.

Abstract

一种镍钴锰三元前驱体包覆LATP的方法,包括:将可溶性锂盐溶液和可溶性铝盐溶液混合,调节pH至4~5,配制成锂和铝的混合溶液A;分别配制碳酸氢铵溶液B、磷酸二氢铵溶液C、钛盐溶液D;在反应釜中加入溶液A作为底液,加入镍钴锰三元前驱体;将溶液B泵入反应釜中,将溶液C和溶液D分别泵入反应釜,分别控制加入时间后停止进料,并继续维持搅拌转速和温度2h,得到浆料;将浆料离心、洗涤、烘干、筛分、除铁得到LATP包覆的NCM三元前驱体材料。

Description

一种镍钴锰三元前驱体包覆LATP的方法 技术领域
本发明涉及镍钴锰三元材料技术领域,具体涉及一种镍钴锰三元前驱体包覆LATP的方法。
背景技术
高镍三元材料因其能量密度高已成为锂离子电池正极材料的发展方向之一。然而,随着镍含量的增加,材料的缺点会被进一步放大。高镍材料在充放电过程中更容易受到电解液的侵蚀,而包覆改性是解决这一问题的有效方法之一。Li 1.3Al 0.3Ti 1.7(PO 4) 3(LATP)是具有Nasion结构的一种固体电解质,存在稳定且快速的锂离子传输通道。采用LATP包覆能能够显著提高高镍三元材料的循环性能。LATP包覆正极材料多采用溶胶-凝胶法或高温固相法。溶胶-凝胶法采用溶剂为无水乙醇,不适用于大规模产业化;而高温固相法包覆层不均匀,对高镍三元材料的性能发挥有一定影响。
发明内容
针对上述已有技术存在的不足,本发明提供一种镍钴锰三元前驱体包覆LATP的方法。
本发明是通过以下技术方案实现的。
一种镍钴锰三元前驱体包覆LATP的方法,其特征在于,所述方法包括:
(1)将可溶性锂盐溶液和可溶性铝盐溶液混合,调节pH至4~5,配制成含锂和铝的混合溶液A;分别配制碳酸氢铵溶液B、磷酸二氢氨溶液C、钛盐溶液D;其中,混合溶液A、磷酸二氢氨溶液C、钛盐溶液D按摩尔比Li +:Al 3+:Ti 4+:PO 4 3-=1.3:0.3:1.7:3配制;
(2)在反应釜中加入混合溶液A作为底液,开启搅拌至200-300rpm,加入镍钴锰三元前驱体,升温至60-80℃;
(3)将碳酸氢铵溶液B泵入反应釜中,加入1~10h后停止;
(4)将磷酸二氢氨溶液C和钛盐溶液D分别泵入反应釜,加入3~15h后停止进料,并继续维持搅拌转速和温度2h,得到浆料;
(5)将浆料离心、洗涤、烘干、筛分、除铁得到LATP包覆的NCM三元前驱体材料。
进一步地,为减少杂质引入,所述步骤(1)可溶性锂盐溶液为硫酸锂溶液,可溶性铝盐溶液为硫酸铝溶液,钛盐溶液为硫酸钛溶液。
进一步地,所述步骤(1)混合溶液A中Li +浓度为0.13~1.3mol/L、Al 3+浓度为0.03~0.3mol/L,碳酸氢铵溶液B、磷酸二氢氨溶液C、钛盐溶液D浓度分别为0.5~2mol/L、0.3~3mol/L、0.17~1.7mol/L。
进一步地,所述步骤(2)镍钴锰三元前驱体的加入量为混合溶液A加入量的10%-40%。
进一步地,所述步骤(3)碳酸氢铵溶液B的流量100~500L/h。
进一步地,所述步骤(4)磷酸二氢氨溶液C、钛盐溶液D的流量均为100~500L/h。
本发明的有益技术效果,所有原料使用无机化合物,采用共沉淀法能够规模化生产LATP包覆的NCM前驱体,包覆层比高温固相法更加均匀。
附图说明
图1为包覆前前驱体样品电镜扫描图。
图2为包覆后前驱体样品电镜扫描图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
实施例1
步骤1、将硫酸锂和十八水硫酸铝分别溶于水中,分别形成硫酸锂溶液和硫酸铝溶液,然后将溶液混合,调节pH至4.0,配制成含1.3mol/L的Li +和0.3mol/L的Al 3+的混合溶液A;配制1mol/L的碳铵溶液B;配制3mol/L的磷酸二氢氨溶液C;将硫酸钛溶于水配制1.7mol/L的钛盐溶液D,其中,混合溶液A、磷酸二氢氨溶液C、钛盐溶液D按摩尔比Li +:Al 3+:Ti 4+:PO 4 3-=1.3:0.3:1.7:3配制。
步骤2、在反应釜中加入3000L混合溶液A作为底液,开启搅拌至300rpm,加入1吨NCM三元前驱体(NCM811型),升温至80℃。
步骤3、将溶液B以100L/h的速度泵入反应釜中,5h后停止。
步骤4、将溶液C和溶液D分别以200L/h的速度泵入反应釜,3h后停止进料,并继续维持搅拌转速和温度2h,得到浆料。
步骤5、将浆料离心、洗涤、烘干、筛分、除铁得到LATP包覆的NCM三元前驱体材料。
实施例2
步骤1、将硫酸锂和十八水硫酸铝分别溶于水中,分别形成硫酸锂溶液和硫酸铝溶液,然后将溶液混合,调节pH至4.5,配制成含0.65mol/L的Li +和0.15mol/L的Al 3+的混合溶液A;配制0.5mol/L的碳铵溶液B;配制1.5mol/L的磷酸二氢氨溶液C;将硫酸钛溶于水配制0.85mol/L的钛盐溶液D;其中,混合溶液A、磷酸二氢氨溶液C、钛盐溶液D按摩尔比 Li +:Al 3+:Ti 4+:PO 4 3-=1.3:0.3:1.7:3配制。
步骤2、在反应釜中加入5000L溶液A作为底液,开启搅拌至250rpm,加入1吨NCM前驱体(NCM9055型),升温至70℃。
步骤3、将溶液B以500L/h的速度泵入反应釜中,4h后停止。
步骤4、将溶液C和溶液D分别以400L/h的速度泵入反应釜,4h后停止进料,并继续维持搅拌转速和温度2h,得到浆料。
步骤5、将浆料离心、洗涤、烘干、筛分、除铁得到LATP包覆的NCM前驱体材料。
实施例3
步骤1、将硫酸锂和十八水硫酸铝分别溶于水中,分别形成硫酸锂溶液和硫酸铝溶液,然后将溶液混合,调节pH至5,配制成含0.13mol/L的Li +和0.03mol/L的Al 3+的混合溶液A;配制2mol/L的碳铵溶液B;配制0.3mol/L的磷酸二氢氨溶液C;将硫酸钛溶于水配制0.17mol/L的钛盐溶液D;其中,混合溶液A、磷酸二氢氨溶液C、钛盐溶液D按摩尔比Li +:Al 3+:Ti 4+:PO 4 3-=1.3:0.3:1.7:3配制。
步骤2、在反应釜中加入8000L溶液A作为底液,开启搅拌至200rpm,加入2吨NCM前驱体(NCM9073型),升温至60℃。
步骤3、将溶液B以200L/h的速度泵入反应釜中,8h后停止。
步骤4、将溶液C和溶液D分别以500L/h的速度泵入反应釜,10h后停止进料,并继续维持搅拌转速和温度2h,得到浆料。
步骤5、将浆料离心、洗涤、烘干、筛分、除铁得到LATP包覆的NCM前驱体材料。
以上所述的仅是本发明的较佳实施例,并不局限发明。应当指出对于本领域的普通技术人员来说,在本发明所提供的技术启示下,还可以做出其它等同改进,均可以实现本发明的目的,都应视为本发明的保护范围。

Claims (6)

  1. 一种镍钴锰三元前驱体包覆LATP的方法,其特征在于,所述方法包括:
    (1)将可溶性锂盐溶液和可溶性铝盐溶液混合,调节pH至4~5,配制成含锂和铝的混合溶液A;分别配制碳酸氢铵溶液B、磷酸二氢氨溶液C、钛盐溶液D;其中,混合溶液A、磷酸二氢氨溶液C、钛盐溶液D按摩尔比Li +:Al 3+:Ti 4+:PO 4 3-=1.3:0.3:1.7:3配制;
    (2)在反应釜中加入混合溶液A作为底液,开启搅拌至200-300rpm,加入镍钴锰三元前驱体,升温至60-80℃;
    (3)将碳酸氢铵溶液B泵入反应釜中,加入1~10h后停止;
    (4)将磷酸二氢氨溶液C和钛盐溶液D分别泵入反应釜,加入3~15h后停止进料,并继续维持搅拌转速和温度2h,得到浆料;
    (5)将浆料离心、洗涤、烘干、筛分、除铁得到LATP包覆的NCM三元前驱体材料。
  2. 根据权利要求1所述的一种镍钴锰三元前驱体包覆LATP的方法,其特征在于,所述步骤(1)可溶性锂盐溶液为硫酸锂溶液,可溶性铝盐溶液为硫酸铝溶液,钛盐溶液为硫酸钛溶液。
  3. 根据权利要求1所述的一种镍钴锰三元前驱体包覆LATP的方法,其特征在于,所述步骤(1)混合溶液A中Li +浓度为0.13~1.3mol/L、Al 3+浓度为0.03~0.3mol/L,碳酸氢铵溶液B、磷酸二氢氨溶液C、钛盐溶液D浓度分别为0.5~2mol/L、0.3~3mol/L、0.17~1.7mol/L。
  4. 根据权利要求1所述的一种镍钴锰三元前驱体包覆LATP的方法,其特征在于,所述步骤(2)镍钴锰三元前驱体的加入量为混合溶液A加入量的10%-40%。
  5. 根据权利要求1所述的一种镍钴锰三元前驱体包覆LATP的方法,其特征在于,所述步骤(3)碳酸氢铵溶液B的流量100~500L/h。
  6. 根据权利要求1所述的一种镍钴锰三元前驱体包覆LATP的方法,其特征在于,所述步骤(4)磷酸二氢氨溶液C、钛盐溶液D的流量均为100~500L/h。
PCT/CN2022/113431 2021-10-27 2022-08-18 一种镍钴锰三元前驱体包覆latp的方法 WO2023071449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111255837.7A CN114057235A (zh) 2021-10-27 2021-10-27 一种镍钴锰三元前驱体包覆latp的方法
CN202111255837.7 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023071449A1 true WO2023071449A1 (zh) 2023-05-04

Family

ID=80235593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113431 WO2023071449A1 (zh) 2021-10-27 2022-08-18 一种镍钴锰三元前驱体包覆latp的方法

Country Status (2)

Country Link
CN (1) CN114057235A (zh)
WO (1) WO2023071449A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057235A (zh) * 2021-10-27 2022-02-18 荆门市格林美新材料有限公司 一种镍钴锰三元前驱体包覆latp的方法
CN115425202A (zh) * 2022-09-20 2022-12-02 江苏财经职业技术学院 一种包覆改性富镍锂离子三元正极材料的制备方法及其产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233237A (zh) * 2018-03-06 2019-09-13 中信国安盟固利动力科技有限公司 一种全固态锂离子电池的复合电极及其制备方法
CN110858643A (zh) * 2018-08-24 2020-03-03 湖南杉杉新能源有限公司 一种快离子导体改性锂离子电池正极材料及其制备方法
CN110931774A (zh) * 2019-11-21 2020-03-27 广东邦普循环科技有限公司 一种复合包覆Ni65型镍钴锰三元正极材料及其制备方法与应用
CN111755698A (zh) * 2020-07-06 2020-10-09 上海汽车集团股份有限公司 一种氧化物固态电解质包覆的正极材料及其制备方法
CN112164790A (zh) * 2020-08-27 2021-01-01 荆门市格林美新材料有限公司 包覆型锂电池用前驱体、锂电池正极材料及其制备方法
CN114057235A (zh) * 2021-10-27 2022-02-18 荆门市格林美新材料有限公司 一种镍钴锰三元前驱体包覆latp的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075122A (zh) * 2017-12-14 2018-05-25 电子科技大学 一种锂离子电池复合正极材料的制备方法
CN111628149A (zh) * 2020-06-02 2020-09-04 格林美股份有限公司 一种梯度掺杂的高镍三元正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233237A (zh) * 2018-03-06 2019-09-13 中信国安盟固利动力科技有限公司 一种全固态锂离子电池的复合电极及其制备方法
CN110858643A (zh) * 2018-08-24 2020-03-03 湖南杉杉新能源有限公司 一种快离子导体改性锂离子电池正极材料及其制备方法
CN110931774A (zh) * 2019-11-21 2020-03-27 广东邦普循环科技有限公司 一种复合包覆Ni65型镍钴锰三元正极材料及其制备方法与应用
CN111755698A (zh) * 2020-07-06 2020-10-09 上海汽车集团股份有限公司 一种氧化物固态电解质包覆的正极材料及其制备方法
CN112164790A (zh) * 2020-08-27 2021-01-01 荆门市格林美新材料有限公司 包覆型锂电池用前驱体、锂电池正极材料及其制备方法
CN114057235A (zh) * 2021-10-27 2022-02-18 荆门市格林美新材料有限公司 一种镍钴锰三元前驱体包覆latp的方法

Also Published As

Publication number Publication date
CN114057235A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2023071449A1 (zh) 一种镍钴锰三元前驱体包覆latp的方法
CN111634958A (zh) 一种锂电池用前驱体、锂电池正极材料及其制备方法
CN107331862B (zh) 一种利于生成4bs的深循环电池铅膏的和制方法
CN111180724B (zh) 一种三元单晶正极材料的制备方法
CN109301189B (zh) 一种类单晶型高镍多元材料的制备方法
CN113603153B (zh) 一种钨掺杂高镍无钴前驱体及其制备方法
CN105870438A (zh) 一种锂二次电池富锂正极复合材料及其制备方法
WO2023168977A1 (zh) 氮掺杂中空四氧化三钴及其制备方法和应用
CN112838205B (zh) 一种锂离子电池正极材料细粉的回收方法
CN103515611B (zh) 一种纳米氧化铝膜包覆的锂离子正极材料及其制备方法
CN114883522A (zh) 一种类高熵多元层状过渡金属氧化物正极材料及其制备方法与应用
WO2023001213A1 (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
WO2023179247A1 (zh) 一种超高镍三元前驱体及其制备方法
WO2023202204A1 (zh) 硬碳负极材料的制备方法及其应用
CN108565455A (zh) 一种非含氮络合剂辅助制备球形镍钴锰三元前驱体的方法
CN112133902A (zh) 一种钠金属负极沉积基质及其制备方法和应用
CN109686967A (zh) 一种富锂锰基正极材料及其制备方法
CN105655144B (zh) 一种锂离子超级电容器富锂复合正极材料制备方法
CN110534731A (zh) 一种梯度三元正极材料的制备方法
CN114684865B (zh) 一种掺铝碳酸钴颗粒的制备方法
CN108695512B (zh) 酸洗铁红作为负极材料的用途
WO2024060557A1 (zh) 一种掺铝碳酸钴及其制备方法
CN111661879B (zh) 镍钴钨氧化物、其制备方法和锂离子电池
WO2024060504A1 (zh) 一种铝镍共掺碳酸钴前驱体及其制备方法与应用
CN104201365A (zh) 一种锂离子电池用中空铁锰复合氧化物材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885349

Country of ref document: EP

Kind code of ref document: A1