WO2023071402A1 - Profil des sucres basé sur la structure fucosylée spécifique à la salive, son procédé de détection et son application - Google Patents

Profil des sucres basé sur la structure fucosylée spécifique à la salive, son procédé de détection et son application Download PDF

Info

Publication number
WO2023071402A1
WO2023071402A1 PCT/CN2022/111996 CN2022111996W WO2023071402A1 WO 2023071402 A1 WO2023071402 A1 WO 2023071402A1 CN 2022111996 W CN2022111996 W CN 2022111996W WO 2023071402 A1 WO2023071402 A1 WO 2023071402A1
Authority
WO
WIPO (PCT)
Prior art keywords
fucose
saliva
glycan
pipette
sugar
Prior art date
Application number
PCT/CN2022/111996
Other languages
English (en)
Chinese (zh)
Inventor
杨霜
蒋军红
高子媛
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023071402A1 publication Critical patent/WO2023071402A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation

Definitions

  • the invention belongs to the technical field of biomolecular analysis reagents, and in particular relates to a sugar spectrum based on saliva-specific fucosylation structure and its detection method and application.
  • the purpose of the present invention is to provide a sugar profile based on saliva-specific fucosylation structure and its detection method and application.
  • a kind of technical scheme of the present invention is:
  • a sugar profile based on saliva-specific fucosylation structure including the following general structure:
  • F is fucose
  • G is galactose
  • M is mannose
  • N is acetylglucosamine
  • ⁇ 1,2 represents the link between carbon 2 of G monosaccharide and carbon 1 of F monosaccharide
  • ⁇ 1,3 represents the connection between carbon 3 of N monosaccharide and carbon 1 of F monosaccharide
  • ⁇ 1,6 represents that carbon 6 of the N monosaccharide is connected to carbon 1 of the F monosaccharide.
  • a detection method based on saliva-specific fucosylation structural sugar profile comprising the steps of:
  • step 1) the extraction of glycans from proteins includes:
  • filling pipette Fill the hollow pipette with nano-scale porous micro-spherical resin modified with aldehyde groups on the surface, and the hollow pipette after filling is called filling pipette;
  • N-glycosidase to the filling pipette, and use ammonium bicarbonate buffer solution to enzymatically hydrolyze N-glycan from the protein immobilized on the filling pipette resin into the ammonium bicarbonate buffer solution;
  • step (3) it also includes determining any one or more of ⁇ 1,2 fucose, ⁇ 1,3 fucose and ⁇ 1,6 fucose.
  • the determination of ⁇ 1,2 fucose comprises: adding ⁇ 1-2 fucosidase to the solid phase of the filled pipette resin to enzymatically hydrolyze ⁇ 1,2 fucose; through the enzymatic hydrolysis reaction , cleavage of ⁇ 1,2 fucose from the glycan, if the molecular weight of the obtained glycan differs by one fucose, it is inferred to contain one ⁇ 1,2 fucose, and if the molecular weight of the obtained glycan differs by two fucose, it is inferred to contain two ⁇ 1,2 fucose, and so on; if the glycan still contains fucose after ⁇ 1-2 fucosidase digestion, it is inferred that the glycan may contain ⁇ 1,3 fucose and/or core ⁇ 1, 6 fucose.
  • the determination of ⁇ 1,3 fucose includes: adding ⁇ 1-2,3,4 fucosidase to the solid phase of the filled pipette resin to enzymatically hydrolyze ⁇ 1,3 fucose; The above enzymatic hydrolysis reaction cuts ⁇ 1,3 fucose from the glycan. If the molecular weight of the obtained glycan differs by one fucose, it is inferred that it contains one ⁇ 1,3 fucose.
  • the glycan may be the core ⁇ 1,6 rock algalose.
  • the determination of ⁇ 1,6 fucose includes: adding ⁇ 1-2,4,6 fucosidase to the solid phase of the filled pipette resin to enzymatically hydrolyze ⁇ 1,6 fucose; The above enzymatic hydrolysis reaction cuts ⁇ 1,6 fucose from the glycan. If the molecular weight of the obtained glycan differs by one fucose, it is inferred that it contains a core ⁇ 1,6 fucose.
  • the molecular weight of the obtained glycan differs by two fucose, It is inferred to contain two core ⁇ 1,6 fucose, and so on; if the glycan still contains fucose after ⁇ 1-2,4,6 fucosidase digestion, it is confirmed that the glycan contains ⁇ 1,3 rock algalose.
  • the method for determining the glycan-fucose linkage includes: immobilizing the glycoprotein on the solid phase of the filled pipette resin, and enzymatically cutting the solid phase with fucosidase .
  • the present invention provides a glycan profile based on saliva-specific fucosylation structure and its detection method.
  • the fucosylated polysaccharide specific for lung cancer is identified.
  • Sugar markers are used in the diagnosis and detection of lung cancer.
  • Filling pipettes can be used to process samples on a large scale using automated liquid handling instruments.
  • filling pipettes can be set in 96-well or 384-well plates, and Agilent Bravo Automated Liquid Handling Platform can be used for 96 or 384 clinical samples at the same time to test;
  • the present invention can also analyze the glycan profile of other clinical samples, including urine, lung lavage fluid, gastric lavage fluid, blood, and brain and spinal cord.
  • Fig. 1 is a schematic structural diagram of a sugar spectrum based on saliva-specific fucosylation structure according to the present invention
  • Fig. 2 is a schematic workflow diagram of adopting pipette filling resin immobilization and enzymolytic removal of glycans in the present invention
  • Fig. 3 is a schematic diagram of the determination of glycan-fucose-linked fucosidase analysis in the present invention
  • Figure 4 is a schematic diagram of the analysis of the structure and abundance of saliva-specific fucose in the present invention.
  • Fig. 5 is a comparison chart of the composition and abundance of sialoglycan in lung cancer patients, non-lung cancer and healthy people in the present invention.
  • the invention discloses a detection method based on saliva-specific fucosylation structure sugar spectrum.
  • human saliva samples are collected, then proteins are extracted from saliva, and then glycans are hydrolyzed and enriched from glycoproteins, and then mass spectrometry is used to Analyze the glycan structure and quantitatively analyze the abundance, and finally determine the glycan spectrum in the sample.
  • mass spectrometry is used to Analyze the glycan structure and quantitatively analyze the abundance, and finally determine the glycan spectrum in the sample.
  • mass spectrometry is used to Analyze the glycan structure and quantitatively analyze the abundance, and finally determine the glycan spectrum in the sample.
  • mass spectrometry is used to Analyze the glycan structure and quantitatively analyze the abundance, and finally determine the glycan spectrum in the sample.
  • the sugar profile of high-abundance core fucose and branched chain fucose is identified, which can be used for clinical screening of lung cancer. This method
  • one embodiment or “embodiment” referred to herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present invention. "In one embodiment” appearing in different places in this specification does not all refer to the same embodiment, nor is it a separate or selective embodiment that is mutually exclusive with other embodiments.
  • a sugar profile based on saliva-specific fucosylation structure including the following general structure:
  • F is fucose
  • G is galactose
  • M is mannose
  • N is acetylglucosamine
  • ⁇ 1,2 represents the link between carbon 2 of G monosaccharide and carbon 1 of F monosaccharide
  • ⁇ 1,3 represents the connection between carbon 3 of N monosaccharide and carbon 1 of F monosaccharide
  • ⁇ 1,6 represents that carbon 6 of N monosaccharide is connected with carbon 1 of F monosaccharide;
  • FIG. 1 is a schematic structural diagram of a sugar profile based on saliva-specific fucosylation structure according to the present invention.
  • FIG. 2 is a schematic workflow diagram of using a pipette to fill resin to immobilize and enzymatically remove glycans in the present invention. as shown in picture 2,
  • Adjusting the pH of the sample to pH 10 accelerates the binding of the protein to the aldehyde groups of the solid-phase resin in the filled pipette by adding a buffer solution of sodium citrate and sodium acetate to a final concentration of 100 mM sodium citrate , 50 millimolar sodium acetate, react at room temperature for 2-3 hours, the protein N-terminal and/or lysine react with the aldehyde group on the solid phase resin;
  • N-glycosidase PNGase F New England BioLabs, USA
  • FIG. 3 is a schematic diagram of fucosidase analysis for determination of glycan-fucose-linked fucosidase in the present invention.
  • the glycoprotein was immobilized on the solid phase of the filled pipette resin by the method of Example 1, and the glycan structure was (H 5 N 4 F3 or H 5 N 4 F(1,3)F(1 ,2 ) F(1,6)) was digested with fucosidase on the solid phase, where the solid circles represent mannose, the hollow circles represent galactose, and the squares represent N-acetylglucosamine or N-acetylgalactosamine , the triangle represents fucose.
  • the following steps (1), (2) and (3) are carried out before the preparation of N-glycans in step 3 of Example 1, and these 3 steps can be carried out in parallel;
  • This reaction enzymatically cleaves ⁇ 1,2 fucose from the glycan. If the molecular weight of the resulting glycan differs by one fucose, it is inferred to contain one ⁇ 1,2 fucose.
  • the molecular weight of the obtained glycan differs by two fucose, it is inferred Contains two ⁇ 1,2 fucose, and so on, the principle of the above reaction is: ⁇ 1,2 fucose is enzymatically cleaved from the glycan, and the resulting glycan has a molecular weight difference of 146.0-146.4Da, that is, it contains one ⁇ 1,2 fucose algalose, the resulting glycan has a molecular weight difference of 292.0-292.8Da, which means it contains two ⁇ 1,2 fucose, and so on;
  • the sugar may contain ⁇ 1,3 fucose and/or core ⁇ 1,6 fucose.
  • This reaction enzymatically cleaves ⁇ 1,3 fucose from the glycan. If the molecular weight of the resulting glycan differs by one fucose, it is inferred to contain one ⁇ 1,3 fucose, and if the molecular weight of the resulting glycan differs by two fucose, it is inferred to contain Two ⁇ 1,3 fucose, and so on, the principle of the above reaction is: ⁇ 1,3 fucose is enzymatically cleaved from the glycan, and the resulting glycan has a molecular weight difference of 146.0-146.4Da, which means that there is one ⁇ 1,3 fucose Sugar, the molecular weight difference of the obtained glycan is 292.0-292.8Da, that is, it contains two ⁇ 1,3 fucose, and so on; if the polysaccharide still contains fucose after ⁇ 1-2,3,4 fucosidase digestion
  • This reaction enzymatically cleaves ⁇ 1,6 fucose from the glycan. If the molecular weight of the resulting glycan differs by one fucose, it is inferred to contain a core ⁇ 1,6 fucose.
  • the molecular weight of the resulting glycan differs by two fucose molecular weights, it is inferred Contains two core ⁇ 1,6 fucose, and so on, the principle of the above reaction is: ⁇ 1,6 fucose is digested from the glycan, and the molecular weight difference of the obtained glycan is 146.0-146.4Da, which confirms that it contains a core ⁇ 1 ,6 fucose, the molecular weight difference of the obtained glycan is 292.0-292.8Da, that is, it is confirmed that it contains two core ⁇ 1,6 fucose, and so on; If fucose is still contained, it is confirmed that the glycan contains ⁇ 1,3 fucose.
  • Fig. 4 is a schematic diagram of the analysis of the structure and abundance of saliva-specific fucose in the present invention.
  • F2 ⁇ 1,2 fucosidase
  • FIG. 4 is a schematic diagram of the analysis of the structure and abundance of saliva-specific fucose in the present invention.
  • (a) use ⁇ 1,2 fucosidase (F2) to determine the result of ⁇ 1,2 fucose, accompanied by the increase of other fucose glycans, in the figure for H 5 N 4 F 4 and H 5 N 4
  • the two fucose glycans of F3 were analyzed by enzymatic hydrolysis of F2, and the structures of these two glycans were confirmed.
  • the structure contains four fucose, namely two ⁇ 1,2, one ⁇ 1,3 and one core ⁇ 1,6;
  • Mass spectrometry identified that H 5 N 4 F(1,2) 2 (1,6) decreased, H 5 N 4 F(1,2)(1,6) increased, and H 5 N 4 F(1,6) increased at the same time, It is determined that saliva contains the core ⁇ 1,6 structure; if saliva contains H 5 N 4 F(1,2) 2 (1,3)(1,6), after ⁇ 1-2,4,6 fucosidase (F234 ) digestion, H 5 N 4 F(1,2) 2 (1,6), H 5 N 4 F(1,2)(1,6) and H 5 N 4 F(1,6) all increased, determine the glycan structure and abundance;
  • Saliva-specific fucosylation structure sugar profile has different characteristics in lung cancer patients and non-lung cancer and healthy people
  • Figure 5 is the structure of sialoglycans of the present invention in lung cancer patients and non-lung cancer and healthy people Composition and abundance comparison.
  • sugar 6 and sugar 10 were highly expressed, and the abundance of other glycans was low or not detected; in non-cancer people, the abundance of glycans 9, 12, 14 and 16 was However, other glycans were less abundant or not detected; in lung cancer patients, fucose glycans were highly abundant, and the most prominent glycans were 1, 2, 3, 4, 7, 8, 11, 12, 13 , 14, 16, 17 and 19.
  • glycans all contain ⁇ 1,6 core fucose, and the high molecular weight ammoglycans contain one or more ⁇ 1,2 and ⁇ 1,3. It can be concluded that there are specific high-fucosylated glycans in the saliva of cancer patients, and the abundance is much higher than that of other groups.
  • the glycoprotein glycans in 500 grams of saliva were enriched and extracted, and the structure and abundance of the glycans were analyzed by mass spectrometry, measured using 1/10 of the extracted glycans, and the mass-to-charge ratio test range was from 1200Da to 3000Da.
  • the mass-to-charge ratios of healthy people, non-cancer (or other diseases) and lung cancer patients are aligned, and the coordinates of glycan abundance are adjusted to be consistent (10 4 ).
  • Each peak represents a component of glycan, and the height represents the relative content of glycan.
  • the specific glycans contained in lung cancer saliva include: sugar 1, sugar 2, sugar 3, sugar 4, sugar 5, sugar 7, sugar 10, sugar 11, sugar 13, sugar 15, sugar 16, sugar 17, sugar 19, Sugar 20, sugar 21; healthy people high-abundance glycans include: sugar 6, sugar 10, sugar 14.
  • the sialoglycans of non-cancer population include: sugar 9, sugar 12, sugar 14, sugar 16, sugar 20.
  • the specific fucose structure sugar profile of lung cancer saliva is obtained by analyzing clinical samples, and the glycan structure and abundance are prepared and analyzed for lung cancer patients, non-lung cancer patients and healthy people according to the method described in the present invention. Please refer to Table 1, Table 1 is the human saliva samples detected by the present invention.
  • the clinical samples included healthy people (10), non-cancer patients (20), and lung cancer patients (21).
  • the average age of these three groups is 44, 56 and 69, covering the age range from 20 to 84 years old, and includes male and female patients.
  • the number of smokers is healthy (3), non-cancer patient (11) and lung cancer patient (13).
  • the glycan profile of glycans is shown in Figure 5.
  • the glycan profiles of all samples have similar composition and abundance composition, and the hourly error of statistical analysis is 10-15%.
  • the saliva of patients with lung cancer contains glycan structures sugar 4, sugar 7, sugar 8, sugar 11, sugar 13, sugar 15, sugar 16, sugar 17, and sugar 19.
  • Non-cancer patients contain sugar 9 and sugar 12, and compared with healthy people, the content of sugar 6 and sugar 10 is extremely low.
  • the beneficial effects of the present invention are: the present invention provides a sugar profile based on saliva-specific fucosylation structure and its detection method and application, which is convenient for early diagnosis, easy to collect samples, and There is no harm to patients and has excellent application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

L'invention concerne un profil des sucres basé sur la structure fucosylée spécifique à la salive, son procédé de détection, et son application. Le procédé comprend : tout d'abord la collecte d'un échantillon de salive humaine ; puis l'extraction de protéines à partir de la salive ; puis la réalisation d'une enzymolyse et d'un enrichissement en glycanes à partir des glycoprotéines ; et la réalisation d'une analyse de structure et d'une analyse quantitative de l'abondance sur les glycanes à l'aide de la spectrométrie de masse pour finalement déterminer un profil des glycanes dans l'échantillon. En analysant la salive saine, la salive non cancéreuse et la salive du cancer du poumon, des profils des sucres de fucose de noyau et de fucose ramifié à haute abondance sont identifiés. Le procédé peut être appliqué au dépistage clinique du cancer du poumon. Le profil des sucres basé sur la structure fucosylée spécifique à la salive et son procédé de détection facilitent un diagnostic précoce, caractérisent des échantillons faciles à collecter, et ne sont pas nocifs pour un patient, et ont ainsi une excellente perspective d'application et une importance significative dans les aspects du dépistage précoce et du traitement du cancer du poumon à forte morbidité et à taux de mortalité élevé.
PCT/CN2022/111996 2021-10-28 2022-08-12 Profil des sucres basé sur la structure fucosylée spécifique à la salive, son procédé de détection et son application WO2023071402A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111259337.0 2021-10-28
CN202111259337.0A CN113960232B (zh) 2021-10-28 2021-10-28 一种基于唾液特异性岩藻糖基化结构糖谱及其检测方法和应用

Publications (1)

Publication Number Publication Date
WO2023071402A1 true WO2023071402A1 (fr) 2023-05-04

Family

ID=79467693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111996 WO2023071402A1 (fr) 2021-10-28 2022-08-12 Profil des sucres basé sur la structure fucosylée spécifique à la salive, son procédé de détection et son application

Country Status (2)

Country Link
CN (1) CN113960232B (fr)
WO (1) WO2023071402A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960232B (zh) * 2021-10-28 2024-02-20 苏州大学 一种基于唾液特异性岩藻糖基化结构糖谱及其检测方法和应用
CN114839280A (zh) * 2022-03-23 2022-08-02 苏州大学 一种基于固相岩藻糖糖蛋白富集及岩藻糖糖基化酶切分析的方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117106A1 (en) * 2005-07-20 2009-05-07 Glykos Finland Oy Cancer Specific Glycans and Use Thereof
WO2009117666A1 (fr) * 2008-03-21 2009-09-24 Indiana University Research And Technology Corporation Marqueurs glycaniques du carcinome hépatocellulaire
US20140242608A1 (en) * 2013-02-28 2014-08-28 Seoul National University R&Db Foundation Composition for diagnosis of lung cancer and diagnosis kit for lung cancer
WO2016200099A2 (fr) * 2015-06-11 2016-12-15 충남대학교산학협력단 Procédé pour examiner la salive humaine au moyen de chaînes de sucre spécifiques à la salive humaine
CN106661562A (zh) * 2014-05-27 2017-05-10 中央研究院 得自类杆菌属的岩藻糖苷酶及其用途
CN108982856A (zh) * 2018-07-18 2018-12-11 西北大学 基于唾液特异糖蛋白糖链结构的肝癌相关筛查/评估的产品及应用
CN108982737A (zh) * 2018-08-07 2018-12-11 中国人民解放军军事科学院军事医学研究院 一种规模化的核心岩藻糖基化修饰位点占有率定量方法
CN109715819A (zh) * 2016-08-10 2019-05-03 马里兰大学帕克分校 设计者α1,6-岩藻糖苷酶突变体实现完整N-糖肽和N-糖蛋白的直接核心岩藻糖基化
EP3521443A1 (fr) * 2015-07-01 2019-08-07 Romano, Pietrina Test salivaires pour la détection précoce du cancer
WO2020035745A1 (fr) * 2018-08-17 2020-02-20 PANDYA, Shashank J. Procédé de détection de genèse et de surveillance de l'état pathologique d'un cancer chez un patient
CN110988224A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的乳腺疾病筛查、评估的产品及应用
CN110988222A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的超早期胃癌筛查、评估的产品及应用
CN110988220A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的良性乳腺肿瘤筛查、评估的产品及应用
CN110988218A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的乳腺癌i/ii期筛查、评估的产品及应用
CN110988225A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的胃癌筛查、评估的产品及应用
CN110988221A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的食管癌筛查、评估的产品及应用
CN110988219A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的乳腺癌ii期筛查、评估的产品及应用
CN111220695A (zh) * 2020-01-19 2020-06-02 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肺鳞癌筛查、评估的产品及应用
CN111239396A (zh) * 2020-01-19 2020-06-05 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的超早期肝癌筛查、评估的产品及应用
CN111239397A (zh) * 2020-01-19 2020-06-05 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肺腺癌筛查、评估的产品及应用
CN111239407A (zh) * 2020-01-19 2020-06-05 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肝纤维化筛查、评估的产品及应用
CN111366632A (zh) * 2020-01-19 2020-07-03 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肺小细胞癌筛查、评估的产品及应用
CN111366633A (zh) * 2020-01-19 2020-07-03 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肺部良性疾病筛查、评估的产品及应用
CN113960232A (zh) * 2021-10-28 2022-01-21 苏州大学 一种基于唾液特异性岩藻糖基化结构糖谱及其检测方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK42594A3 (en) * 1991-10-15 1994-10-05 Scripps Research Inst Method of production of fucosylated carbohydrates
US5750508A (en) * 1993-06-16 1998-05-12 Glycomed Incorporated Sialic acid/fucose based medicaments
US8431355B2 (en) * 2004-02-04 2013-04-30 Universite De Provence Aix-Marseille 1 Process for screening glycoform-specific antibodies
JP5552421B2 (ja) * 2007-04-16 2014-07-16 モメンタ ファーマシューティカルズ インコーポレイテッド エキソグリコシダーゼを用いるn−グリカンの特性決定法
KR101675901B1 (ko) * 2008-07-22 2016-11-15 제이-오일 밀스, 인코포레이티드 L-푸코스 α1→6 특이적 렉틴
CA2835989A1 (fr) * 2011-05-13 2012-11-22 Glycom A/S Diversification d'oligosaccharides du lait humain (hmo) ou de leurs precurseurs
CN104220603B (zh) * 2012-02-10 2017-06-06 马里兰大学,巴尔的摩 抗体及其Fc片段的化学酶法糖基化工程
CN108531467A (zh) * 2017-03-03 2018-09-14 复旦大学 一种核心岩藻糖苷酶及其制备和应用
EP3382014A1 (fr) * 2017-03-29 2018-10-03 CEVEC Pharmaceuticals GmbH Glycoprotéines recombinées avec une fucosylation antennulaire réduite
CN107192771B (zh) * 2017-05-04 2019-07-02 中国农业科学院农产品加工研究所 母乳低聚糖快速定性定量的方法
JP6966047B2 (ja) * 2017-06-29 2021-11-10 国立大学法人群馬大学 糖タンパク質におけるフコシル糖鎖の量を測定する方法およびキット
US11459380B2 (en) * 2017-06-29 2022-10-04 University Of Maryland, College Park Transglycosylation of endo-S and endo-S mutants for antibody glycosylation remodeling
KR101864161B1 (ko) * 2017-10-31 2018-06-04 충남대학교산학협력단 인간 타액을 확인하는 방법
KR20200135781A (ko) * 2018-03-26 2020-12-03 암젠 인크 세포 배양에서 생산된 항체의 총 비푸코실화 당형태
CA3175618A1 (fr) * 2020-03-20 2021-09-23 Phase Scientific International, Ltd. Compositions et methodes d'extraction d'acide ribonucleique

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117106A1 (en) * 2005-07-20 2009-05-07 Glykos Finland Oy Cancer Specific Glycans and Use Thereof
WO2009117666A1 (fr) * 2008-03-21 2009-09-24 Indiana University Research And Technology Corporation Marqueurs glycaniques du carcinome hépatocellulaire
US20140242608A1 (en) * 2013-02-28 2014-08-28 Seoul National University R&Db Foundation Composition for diagnosis of lung cancer and diagnosis kit for lung cancer
CN106661562A (zh) * 2014-05-27 2017-05-10 中央研究院 得自类杆菌属的岩藻糖苷酶及其用途
WO2016200099A2 (fr) * 2015-06-11 2016-12-15 충남대학교산학협력단 Procédé pour examiner la salive humaine au moyen de chaînes de sucre spécifiques à la salive humaine
EP3521443A1 (fr) * 2015-07-01 2019-08-07 Romano, Pietrina Test salivaires pour la détection précoce du cancer
CN109715819A (zh) * 2016-08-10 2019-05-03 马里兰大学帕克分校 设计者α1,6-岩藻糖苷酶突变体实现完整N-糖肽和N-糖蛋白的直接核心岩藻糖基化
CN108982856A (zh) * 2018-07-18 2018-12-11 西北大学 基于唾液特异糖蛋白糖链结构的肝癌相关筛查/评估的产品及应用
CN108982737A (zh) * 2018-08-07 2018-12-11 中国人民解放军军事科学院军事医学研究院 一种规模化的核心岩藻糖基化修饰位点占有率定量方法
WO2020035745A1 (fr) * 2018-08-17 2020-02-20 PANDYA, Shashank J. Procédé de détection de genèse et de surveillance de l'état pathologique d'un cancer chez un patient
CN110988220A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的良性乳腺肿瘤筛查、评估的产品及应用
CN110988222A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的超早期胃癌筛查、评估的产品及应用
CN110988224A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的乳腺疾病筛查、评估的产品及应用
CN110988218A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的乳腺癌i/ii期筛查、评估的产品及应用
CN110988225A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的胃癌筛查、评估的产品及应用
CN110988221A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的食管癌筛查、评估的产品及应用
CN110988219A (zh) * 2019-12-29 2020-04-10 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的乳腺癌ii期筛查、评估的产品及应用
CN111220695A (zh) * 2020-01-19 2020-06-02 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肺鳞癌筛查、评估的产品及应用
CN111239396A (zh) * 2020-01-19 2020-06-05 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的超早期肝癌筛查、评估的产品及应用
CN111239397A (zh) * 2020-01-19 2020-06-05 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肺腺癌筛查、评估的产品及应用
CN111239407A (zh) * 2020-01-19 2020-06-05 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肝纤维化筛查、评估的产品及应用
CN111366632A (zh) * 2020-01-19 2020-07-03 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肺小细胞癌筛查、评估的产品及应用
CN111366633A (zh) * 2020-01-19 2020-07-03 深圳格道糖生物技术有限公司 基于唾液特异糖蛋白糖链结构的肺部良性疾病筛查、评估的产品及应用
CN113960232A (zh) * 2021-10-28 2022-01-21 苏州大学 一种基于唾液特异性岩藻糖基化结构糖谱及其检测方法和应用

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 May 2018, CHINESE PEOPLE'S LIBERATION ARMY NAVAL MEDICAL UNIVERSITY, CN, article WANG, MENGMENG: "Analysis of Glycosylation on Serum Glycoproteins and Application on the Diagnosis of Primary Liver Cancer", pages: 1 - 123, XP009545596 *
CALDERON ANGIE D., LIU YUNPENG, LI XU, WANG XUAN, CHEN XI, LI LEI, WANG PENG G.: "Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 14, no. 17, 1 January 2016 (2016-01-01), pages 4027 - 4031, XP093062581, ISSN: 1477-0520, DOI: 10.1039/C6OB00586A *
CHANDLER KEVIN BROWN, ALAMOUD KHALID A., STAHL VANESSA L., NGUYEN BACH-CUC, KARTHA VINAY K., BAIS MANISH V., NOMOTO KENICHI, OWA T: "β-Catenin/CBP inhibition alters epidermal growth factor receptor fucosylation status in oral squamous cell carcinoma", MOLECULAR OMICS, vol. 16, no. 3, 15 June 2020 (2020-06-15), pages 195 - 209, XP093062583, DOI: 10.1039/D0MO00009D *
CHEN, JIHUA ET AL.: "IMMUNOHISTOCHEMICAL STUDY OF THE EXPRESSION OF FUCOSYLATED GLYCOCONJUGATES IN HUMAN LUNG CARCINOMA", ACTA BIOLOGIAE EXPERIMENTALIS SINICA, vol. 32, no. 1, 31 March 1999 (1999-03-31), pages 7 - 13, XP009545319 *
HU YINGWEI, PAN JIANBO, SHAH PUNIT, AO MINGHUI, THOMAS STEFANI N., LIU YANG, CHEN LIJUN, SCHNAUBELT MICHAEL, CLARK DAVID J., RODRI: "Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma", CELL REPORTS, vol. 33, no. 3, 1 October 2020 (2020-10-01), US , pages 108276, XP093062578, ISSN: 2211-1247, DOI: 10.1016/j.celrep.2020.108276 *
JIN, WEIHUA ET AL.: "Structural analysis of a novel sulfated galacto-fuco-xylo-glucuronomannan from Sargassum fusiforme and its anti-lung cancer activity", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 149, 28 January 2020 (2020-01-28), XP086081729, DOI: 10.1016/j.ijbiomac.2020.01.275 *
MA TIANRAN, WANG YAN, JIA LIYUAN, SHU JIAN, YU HANJIE, DU HAOQI, YANG JIAJUN, LIANG YIQIAN, CHEN MINGWEI, LI ZHENG: "Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma", RSC ADVANCES, vol. 9, no. 38, 16 July 2019 (2019-07-16), pages 22064 - 22073, XP093062582, DOI: 10.1039/C9RA04341A *
RAGUSA ANDREA, ROMANO PIETRINA, LENUCCI MARCELLO SALVATORE, CIVINO EMANUELA, VERGARA DANIELE, PITOTTI ELENA, NEGLIA COSIMO, DISTAN: "Differential Glycosylation Levels in Saliva from Patients with Lung or Breast Cancer: A Preliminary Assessment for Early Diagnostic Purposes", METABOLITES, vol. 11, no. 9, pages 566, XP093062569, DOI: 10.3390/metabo11090566 *
SHAH PUNIT, XIANGCHUN WANG, WEIMING YANG, SHADI TOGHI ESHGHI, SHISHENG SUN, NASERUDDIN HOTI, LIJUN CHEN, SHUANG YANG, JERED PASAY,: "Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation", MOL CELL PROTEOMICS ., vol. 14, no. 10, 1 October 2015 (2015-10-01), pages 2753 - 2763, XP093062574, DOI: 10.1074/mcp.M115.047928 *
TAKO MASAKUNI, TAKETO NAKADA, FUJIYA HONGOU: "Chemical Characterization of Fucoidan from Commercially Cultured Nemacystus decipiens (Itomozuku) ", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 63, no. 10, 1 January 1999 (1999-01-01), pages 1813 - 1815, XP093062564, DOI: 10.1271/bbb.63.1813 *
WANG, NIAN ET AL.: "Membrane Protein Glycanprofiling of Hepatocellular Carcinoma Cell With Different Metastastic Potential by Lectin Microarray", PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, vol. 36, no. 10, 31 December 2009 (2009-12-31), XP009545320 *
WANG, YING ET AL.: "A Heterozygosaccharomyces, L-Fuco-D-MANO -1,6-alpha-D-Gaagctan Extract from Grifola Frondosa and Antiangiogenic Activity of Its Sulfoderivatives", CARBOHYDRATE POLYMERS, vol. 101, 30 January 2014 (2014-01-30), XP028790604 *

Also Published As

Publication number Publication date
CN113960232A (zh) 2022-01-21
CN113960232B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2023071402A1 (fr) Profil des sucres basé sur la structure fucosylée spécifique à la salive, son procédé de détection et son application
US10196694B2 (en) Method for analyzing PSA, and a method for distinguishing prostate cancer from prostatic hypertrophy using that method for analyzing PSA
JP5116837B2 (ja) グリカンを評価するためのms法
WO2015103743A1 (fr) Puce de leptine pour identifier une série de maladies hépatiques sur base de la chaîne de sucre de glycoprotéine salivaire et application correspondante
CN106645757A (zh) 一种诊断早发糖尿病mody的血清蛋白标志物组及其应用
CN113702482A (zh) 一种IgG N-糖链特征组合及其应用
CN110028539B (zh) 同位素标记仿生糖或糖组、其制备方法及应用
CN114540491B (zh) 一种基于岩藻糖基化细胞外囊泡中差异化表达miRNA的肝癌预测模型建立及应用
CN108660215A (zh) 检测circMAN1A2和circRNF13试剂的应用及试剂盒
JP5334742B2 (ja) 水溶性アンモニウムポリマーを含有する検体前処理試薬、および検体前処理方法
Li et al. An in-depth Comparison of the Pediatric and Adult Urinary N-glycomes
JP6254585B2 (ja) Maldi−tof質量分析による侵襲性真菌感染症の体外診断法
US20070087440A1 (en) Rapid serum sugar biomarker assay of rheumatoid arthritis
WO2023178911A1 (fr) Procédé d'analyse de digestion enzymatique basé sur l'enrichissement en glycoprotéine fucose en phase solide et la fucosylation
CN110988225A (zh) 基于唾液特异糖蛋白糖链结构的胃癌筛查、评估的产品及应用
CN110408706A (zh) 一种评估鼻咽癌复发的生物标志物及其应用
KR101456096B1 (ko) 인간 혈청 당쇄 지도 및 이를 이용하여 혈청 시료를 검증하는 방법
JP5979452B2 (ja) 多能性幹細胞の選別方法
CN111220695A (zh) 基于唾液特异糖蛋白糖链结构的肺鳞癌筛查、评估的产品及应用
CN111366632A (zh) 基于唾液特异糖蛋白糖链结构的肺小细胞癌筛查、评估的产品及应用
CN111239397A (zh) 基于唾液特异糖蛋白糖链结构的肺腺癌筛查、评估的产品及应用
CN111366633A (zh) 基于唾液特异糖蛋白糖链结构的肺部良性疾病筛查、评估的产品及应用
CN111239407A (zh) 基于唾液特异糖蛋白糖链结构的肝纤维化筛查、评估的产品及应用
CN110988219A (zh) 基于唾液特异糖蛋白糖链结构的乳腺癌ii期筛查、评估的产品及应用
KR20110076389A (ko) 단백질의 비정상적인 당쇄화를 이용하는 암진단 마커

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885302

Country of ref document: EP

Kind code of ref document: A1