WO2023071226A1 - 稀土离子掺杂的软磁合金、软磁复合材料及其制备方法 - Google Patents

稀土离子掺杂的软磁合金、软磁复合材料及其制备方法 Download PDF

Info

Publication number
WO2023071226A1
WO2023071226A1 PCT/CN2022/099006 CN2022099006W WO2023071226A1 WO 2023071226 A1 WO2023071226 A1 WO 2023071226A1 CN 2022099006 W CN2022099006 W CN 2022099006W WO 2023071226 A1 WO2023071226 A1 WO 2023071226A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
rare earth
magnetic alloy
doped
layer
Prior art date
Application number
PCT/CN2022/099006
Other languages
English (en)
French (fr)
Inventor
李玉平
张云逸
孙永阳
蒋云涛
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP22830681.7A priority Critical patent/EP4195225A4/en
Publication of WO2023071226A1 publication Critical patent/WO2023071226A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to the field of magnetic materials, in particular to a soft magnetic alloy doped with rare earth ions, a soft magnetic composite material and a preparation method thereof.
  • Power inductors play the role of energy coupling transfer and conversion in electric power and electronic equipment. Their miniaturization and integration can improve equipment efficiency, reduce energy consumption and reduce environmental pollution.
  • the third-generation wide-bandgap semiconductor materials represented by GaN and SiC it has become possible to further realize high-frequency, miniaturized, and high-power electronic devices. Higher requirements are put forward in terms of frequency, high saturation magnetic flux density, high magnetic permeability and low loss.
  • Ferrite soft magnetic materials have high resistivity and permeability, but low saturation magnetization (Bs ⁇ 0.5T), resulting in weak magnetic energy storage capacity, which is not conducive to the realization of small products when used in electronic devices change.
  • metal soft magnetic materials such as Fe, FeNi, FeSi and FeSiAl, have higher saturation magnetization, which is beneficial to the miniaturization design of electronic components.
  • the eddy current loss is very large under high-frequency application conditions, so generally it can only work in the frequency band below 1MHz.
  • amorphous and nanocrystalline magnetic powders have become research hotspots in this field in recent years due to their high saturation magnetization and high resistivity.
  • the disadvantages of difficult material molding and harsh stress relief annealing conditions limit their application range.
  • patent CN110047637A proposes a preparation method of rare earth-iron-nitrogen composite magnetic material, and Nd-Fe-N composite rare earth material is prepared, and the electromagnetic absorption and shielding properties of the material are tested.
  • the rare earth content of this method is too high, resulting in a low saturation magnetization of the material.
  • the patent document CN110047637A pointed out that the high-frequency characteristics of metal soft magnetic materials can be improved by doping rare earth ions, especially the easy-to-face type rare-earth-iron intermetallic compound Re 2 Fe 17 can be formed. This compound has a high cut-off frequency. Can be used under GHz conditions.
  • the compound can also increase the resistance of the material and reduce the eddy current loss of the material.
  • Re 2 Fe 17 compounds and Re 2 Fe 17 nitride products have relatively good loss characteristics under GHz conditions, their magnetic permeability and saturation magnetization are relatively low, which limits their application under MHz conditions. The loss is large.
  • Patents CN109982791A, CN100513015C, CN1093311C, CN1286602C and CN1022520C all proposed a method for preparing new rare earth-iron-nitrogen materials, and prepared Sm-Fe-N, Nd-Fe-N and other materials.
  • the above-mentioned materials have good permanent magnetic properties and insufficient soft magnetic properties, so they cannot be used as soft magnetic materials for inductive appliances.
  • J.Magn.Magn.Mater., 2017, 424(15):39-43 discloses a method for preparing Ce 2 Fe 17 N 3- ⁇ compounds, and tests the high-frequency (GHz) absorption properties of the materials.
  • the material prepared by this method is mainly used at ultra-high frequencies of GHz, and its saturation magnetization and permeability at MHz are relatively low, and its loss is relatively large.
  • the soft magnetic materials in the prior art cannot simultaneously satisfy the problems of high electromagnetic characteristics and low loss under the working conditions of MHz and high current. Therefore, it is necessary to provide a soft magnetic material to improve the above problems.
  • the main purpose of the present invention is to provide a soft magnetic alloy doped with rare earth ions, a soft magnetic composite material and a preparation method thereof, so as to solve the problem that the soft magnetic material in the prior art cannot simultaneously take into account the high electromagnetic potential under the working conditions of MHz and high current. characteristics and low loss issues.
  • a soft magnetic alloy doped with rare earth ions is provided, the soft magnetic alloy doped with rare earth ions is composed of Fe, Si, Al, N and Re, and Re is a rare earth element;
  • the content of Fe is 82-85wt%
  • the content of Si is 8-10wt%
  • the content of Al is 3-5wt%
  • the content of Re is 1-2wt%
  • the content of N The content is 0.25-0.65wt%.
  • the rare earth element is one or more of Ce, La, Sm, Nd, Pr or Ho.
  • the average grain size of the soft magnetic alloy doped with rare earth ions is 5-50 ⁇ m.
  • a method for preparing the above-mentioned soft magnetic alloy doped with rare earth ions includes the following steps: under an inert gas atmosphere, iron, iron-silicon alloy, aluminum and Rare earth metals are mixed and smelted to form a molten body; the molten body is sequentially subjected to atomization powder making, heat treatment and nitriding treatment to form a soft magnetic alloy doped with rare earth ions; wherein, the soft magnetic alloy doped with rare earth ions is composed of Fe, Composed of Si, Al, N and Re, Re is a rare earth element; in the soft magnetic alloy doped with rare earth ions, the content of Fe is 82-85wt%, the content of Si is 8-10wt%, and the content of Al is 3-5wt% , the content of Re is 1-2wt%, and the content of N is 0.25-0.65wt%.
  • nitrogen gas is introduced into the system for nitriding treatment; preferably, during nitriding treatment, the treatment temperature is 450-550° C., and the treatment time is 4-6 hours; preferably, nitriding During the treatment process, the pressure of nitrogen is 0.1-0.2 MPa.
  • the smelting temperature is 1800-2000°C, and the smelting time is 0.5-5h; preferably, during the heat treatment, the processing temperature is 900-1000°C, and the processing time is 2-3h; atomization equipment for atomization powder making; more preferably in the gas atomization equipment, the atomization gas is an inert gas, and its gas pressure is 0.1-1.0 MPa.
  • a kind of soft magnetic composite material comprises: a soft magnetic alloy core layer doped with rare earth ions; a phosphating layer coated on the soft magnetic alloy core doped with rare earth ions The outer surface of the layer; the glass layer is coated on the outer surface of the phosphating layer away from the soft magnetic alloy core layer doped with rare earth ions; the lubricating layer is coated on the glass layer away from the soft magnetic alloy core layer doped with rare earth ions The outer surface of the glass layer, and the lubricating layer is coupled and coated on the surface of the glass layer by a coupling agent; wherein, the material of the rare earth ion-doped soft magnetic alloy core layer is the above-mentioned rare earth ion-doped soft magnetic alloy, and the phosphating layer
  • the material is iron phosphate and/or aluminum phosphate
  • the material of the glass layer is one or more of silicon dioxide, sodium pyrophosphate or sodium silicate
  • the material of the material of the glass layer is iron phosphate and/or aluminum
  • the coupling agent is selected from one or more of silane coupling agents, titanate coupling agents or aluminate coupling agents; preferably, the lubricant is selected from zinc stearate, calcium stearate or one or more of magnesium stearate; preferably, the average particle size of the soft magnetic composite material is 10-40 ⁇ m; preferably, the thickness of the phosphating layer is 10-50 nm, and the thickness of the glass layer is 10-50 nm , the thickness of the lubricating layer is 10-50nm.
  • a method for preparing the above-mentioned soft magnetic composite material includes the following steps: providing a soft magnetic alloy core layer doped with rare earth ions, so that the soft magnetic alloy doped with rare earth ions
  • the outer surface of the nuclear layer is coated with a phosphating layer; the outer surface of the phosphating layer is far away from the soft magnetic alloy core layer doped with rare earth ions, and the outer surface is coated with a glass layer; the outer surface of the glass layer is far away from the soft magnetic alloy core layer doped with rare earth ions
  • the outer surface of the outer surface is coupled with a coupling agent to coat the lubricating layer, thereby forming a soft magnetic composite material; wherein, the material of the rare earth ion-doped soft magnetic alloy core layer is the above-mentioned rare earth ion-doped soft magnetic alloy, and the phosphating layer
  • the material of the glass layer is iron phosphate and/or aluminum phosphate, the material of the glass layer
  • the preparation method includes: in a vacuum environment, mixing the first dispersion liquid containing the rare earth ion-doped soft magnetic alloy core layer with phosphoric acid, and performing the first stirring, so that the phosphoric acid and the rare earth ion-doped soft magnetic alloy
  • the material in the surface area of the nuclear layer reacts to coat the outer surface and forms a phosphating layer to obtain an intermediate material A;
  • the material of the phosphating layer includes iron phosphate and aluminum phosphate; under the condition of pH6.0 ⁇ 8.0, it will contain the intermediate material A.
  • the second dispersion liquid of ethyl silicate, sodium pyrophosphate and sodium silicate is stirred for the second time to react and form a glass layer on the outer surface of the phosphating layer away from the soft magnetic alloy core layer doped with rare earth ions,
  • the intermediate material B is obtained; the glass layer comprises silicon dioxide, sodium pyrophosphate and sodium silicate; the third dispersion liquid containing the intermediate material B and the coupling agent is stirred for the third time, so that the glass layer is far away from the rare earth ion doping
  • the outer surface of the soft magnetic alloy core layer is connected with a coupling agent to obtain an intermediate material C; the intermediate material C and the lubricant are mixed, and the fourth stirring is performed so that the lubricant is coupled and coated on the surface of the glass layer by the coupling agent to form a lubricant layer, and then form a soft magnetic composite material.
  • the amount of phosphoric acid is 0.5-1% of the weight of the rare earth ion-doped soft magnetic alloy core layer; preferably, the amount of ethyl silicate is 0.5-1% of the weight of the rare earth ion-doped soft magnetic alloy core layer , the amount of sodium pyrophosphate is 0.2-0.5% of the weight of the soft magnetic alloy core layer doped with rare earth ions, and the amount of sodium silicate is 0.5-1% of the weight of the soft magnetic alloy core layer doped with rare earth ions; preferably,
  • the dosage of the coupling agent is 0.5-1.0% of the weight of the rare earth ion-doped soft magnetic alloy core layer; preferably, the amount of the lubricant is 0.1-1% of the weight of the rare earth ion-doped soft magnetic alloy core layer.
  • the treatment temperatures of the first stirring, the second stirring, the third stirring and the fourth stirring are each independently selected from 50-100° C., and the treatment time is each independently 1-5 h.
  • an application of the above-mentioned soft magnetic composite material in an inductance device for MHz frequency band is provided.
  • the interior of the soft magnetic alloy doped with rare earth ions of the present invention is mostly composed of FeSiAl grains, but a small amount of easy-faced Re-Fe-N compound is diffusely distributed between the FeSiAl grains. Based on such a structure, the soft magnetic alloy doped with rare earth ions of the present invention also has excellent electromagnetic characteristics and low loss when it is subsequently applied to MHz working conditions.
  • the soft magnetic materials in the prior art cannot simultaneously take into account high electromagnetic properties and low loss under the working conditions of MHz and high current.
  • the present invention provides a soft magnetic alloy doped with rare earth ions.
  • the soft magnetic alloy doped with rare earth ions is composed of Fe, Si, Al, N and Re, and Re is a rare earth element; wherein, rare earth In the ion-doped soft magnetic alloy, the content of Fe is 82-85wt%, the content of Si is 8-10wt%, the content of Al is 3-5wt%, the content of Re is 1-2wt%, and the content of N is 0.25wt%. ⁇ 0.65 wt%.
  • rare earth elements are more likely to adsorb N elements, and can form an easy-faced Re-Fe-N inside the soft magnetic alloy.
  • Compound, in the soft magnetic alloy structure of the present invention most of the interior of the soft magnetic alloy is composed of FeSiAl grains, and a small amount of easy-surface type Re-Fe-N compound is diffusely distributed between the FeSiAl grains.
  • the easy-faced Re-Fe-N compound makes the low-resistivity FeSiAl discontinuous, thereby increasing the resistivity of the soft magnetic alloy and effectively reducing the eddy current loss of the material.
  • the formation of too much Re-Fe-N compound is avoided, thereby effectively avoiding the problem of material saturation magnetization and magnetic permeability reduction, and then promoting the material of the present invention to have excellent electromagnetic properties under MHz working conditions and lower losses.
  • it can be more closely matched with the third-generation wide bandgap semiconductor, and is more suitable for the needs of miniaturization, high frequency and high power of inductive devices.
  • the rare earth element is preferably one or more of Ce, La, Sm, Nd, Pr or Ho.
  • the average particle size of the soft magnetic alloy doped with rare earth ions is 5-50 ⁇ m. Based on this, the particle size of the material is more suitable for application under MHz working conditions, and under this condition, it has excellent electromagnetic characteristics and low loss. It is more suitable for the miniaturization, high frequency and high power requirements of inductive devices.
  • the content of Fe is 83wt%, the content of Si is 9.45wt%, the content of Al is 5wt%, the content of Re is 2wt%, and the content of N The content is 0.55wt%; or, in the soft magnetic alloy doped with rare earth ions, the content of Fe is 85wt%, the content of Si is 9.5wt%, the content of Al is 3wt%, the content of Re is 2wt%, and the content of N 0.50wt%; or, in the soft magnetic alloy doped with rare earth ions, the content of Fe is 85wt%, the content of Si is 8.75wt%, the content of Al is 5wt%, the content of Re is 1wt%, and the content of N is 0.25wt%; or, in the soft magnetic alloy doped with rare earth ions, the content of Fe is 85wt%, the content of Si is 7.47wt%, the content of Al is 5wt%
  • the present invention also provides a method for preparing the aforementioned soft magnetic alloy doped with rare earth ions.
  • the preparation method includes the following steps: under an inert gas atmosphere, iron, iron-silicon alloy, aluminum and rare earth metals are mixed and smelted to form a molten body; the melt is sequentially subjected to atomization powder making, heat treatment and nitriding treatment to form a soft magnetic alloy doped with rare earth ions; wherein, the soft magnetic alloy doped with rare earth ions is composed of Fe, Si, Al, N and Re, Re is a rare earth element; in the soft magnetic alloy doped with rare earth ions, the content of Fe is 82-85wt%, the content of Si is 8-10wt%, the content of Al is 3-5wt%, and the content of Re is 1-2wt%. , The content of N is 0.25-0.65wt%.
  • the present invention adopts the above preparation method.
  • rare earth elements are more likely to adsorb N elements, and can form an easy-faced Re-Fe-N compound inside the soft magnetic alloy.
  • the soft magnetic alloy of the present invention In the structure, most of the interior of the soft magnetic alloy is composed of FeSiAl grains, and a small amount of easy-faced Re-Fe-N compound is dispersed between the FeSiAl grains. As a high-resistivity substance, the easy-faced Re-Fe-N compound makes the low-resistivity FeSiAl discontinuous, thereby increasing the resistivity of the soft magnetic alloy and effectively reducing the eddy current loss of the material.
  • the formation of too much Re-Fe-N compound is avoided, thereby effectively avoiding the problem of material saturation magnetization and magnetic permeability reduction, and then promoting the material of the present invention to have excellent electromagnetic properties under MHz working conditions and lower losses.
  • it can be more closely matched with the third-generation wide bandgap semiconductor, and is more suitable for the needs of miniaturization, high frequency and high power of inductive devices.
  • the selected preparation raw materials in the present invention such as iron, iron-silicon alloy and aluminum, are easier to obtain, lower in cost, and the preparation process is simpler and easier to operate.
  • N 2 is introduced into the system for nitriding treatment.
  • the nitriding process is more convenient to operate and easier to control, so the formation of the easy-faced Re-Fe-N compound can be further better controlled, and the electromagnetic properties of the material are also better on the basis of reducing the eddy current loss of the material.
  • the treatment temperature is 450-550° C.
  • the treatment time is 4-6 hours; the nitrogen pressure is 0.1-0.2 MPa.
  • the easy-faced Re-Fe-N compound can be more uniformly dispersed among FeSiAl grains, thereby further balancing the electromagnetic properties and loss of the material under MHz working conditions. If the above-mentioned treatment temperature is lower than 450°C, the nitriding of the magnetic powder is not complete, and the nitrogen content is too low, which will increase the eddy current loss of the magnetic powder. However, if the above-mentioned treatment temperature is higher than 550°C, the easy-faced rare earth-iron-nitride formed is easy to decompose and generate other compounds, which will increase the eddy current loss of the magnetic powder.
  • the smelting temperature is 1800-2000° C., and the smelting time is 0.5-5 hours.
  • the treatment temperature is 900-1000° C., and the treatment time is 2-3 hours. Based on this, the above-mentioned structural performance of the material is better, and the material has more excellent electromagnetic properties and lower loss.
  • atomization equipment is used for atomization and powder production; more preferably, in the gas atomization equipment, the atomization gas is an inert gas, and its pressure is 0.1-1.0 MPa. Based on this, the particle size of the material is more suitable for application under MHz working conditions, and under this condition, it has excellent electromagnetic characteristics and low loss. It is more suitable for the miniaturization, high frequency and high power requirements of inductive devices.
  • the present invention also provides a soft magnetic composite material, which includes: a soft magnetic alloy core layer doped with rare earth ions; a phosphating layer coated on the outer surface of the soft magnetic alloy core layer doped with rare earth ions; The glass layer is coated on the outer surface of the phosphating layer away from the soft magnetic alloy core layer doped with rare earth ions; the lubricating layer is coated on the outer surface of the glass layer far away from the soft magnetic alloy core layer doped with rare earth ions; and The lubricating layer is coupled and coated on the surface of the glass layer by a coupling agent; wherein, the material of the rare earth ion-doped soft magnetic alloy core layer is the above-mentioned rare earth ion-doped soft magnetic alloy, and the material of the phosphating layer is iron phosphate and/or Or aluminum phosphate, the material of the glass layer is one or more of silicon dioxide, sodium pyrophosphate or sodium silicate, and the material of the lubricating layer is a lubricant.
  • the rare earth ion-doped soft magnetic alloy of the present invention is mostly composed of FeSiAl grains, but a small amount of easy-surface Re-Fe-N compound is diffusely distributed between FeSiAl grains. Based on such a structure, the soft magnetic alloy doped with rare earth ions of the present invention also has excellent electromagnetic properties and low loss under MHz working conditions.
  • the present invention uses the above-mentioned alloy as the core layer, and further coats the surface of the alloy core layer with a phosphating layer, a glass layer, a coupling layer and a lubricating layer in order to form a soft magnetic layer with a multi-layer coating film.
  • the composite material structure enables the composite material to further improve the insulating properties and pressing properties, and improving the insulating properties can further reduce the eddy current loss between the soft magnetic alloys doped with rare earth ions.
  • the phosphating layer and the glass layer can further improve the insulating properties of the material
  • the lubricating layer can further improve the pressing properties of the material
  • the intermediate coupling layer serves as a transition connection between the inorganic material (glass layer) and the organic material (lubricating layer) layer, which can further balance the insulating properties and pressing properties of the material.
  • the composite material based on this structure when used synergistically with the soft magnetic alloys doped with rare earth ions, it has better electromagnetic properties and less loss, and in the subsequent application process, it can be combined with the first
  • the third-generation wide-bandgap semiconductors have a higher matching degree and are more suitable for the miniaturization, high-frequency and high-power requirements of inductive devices.
  • the average particle size of the soft magnetic composite material is 10-40 ⁇ m; preferably, the thickness of the phosphating layer is 10 ⁇ m. ⁇ 50nm, the thickness of the glass layer is 10 ⁇ 50nm, the thickness of the coupling layer is 10 ⁇ 50nm, and the thickness of the lubricating layer is 10 ⁇ 50nm.
  • the present invention also provides a method for preparing the aforementioned soft magnetic composite material.
  • the preparation method includes the following steps: providing a soft magnetic alloy core layer doped with rare earth ions; Coating the phosphating layer; coating the glass layer on the outer surface of the phosphating layer away from the soft magnetic alloy core layer doped with rare earth ions; The coupling agent coats the lubricating layer; the outer surface of the coupling layer away from the soft magnetic alloy core layer doped with rare earth ions is coated with a lubricating layer, thereby forming a soft magnetic composite material; wherein, the soft magnetic alloy core layer doped with rare earth ions
  • the material of the glass layer is the above-mentioned soft magnetic alloy doped with rare earth ions
  • the material of the phosphating layer is iron phosphate and/or aluminum phosphate
  • the material of the glass layer is one or more of silicon dioxide, sodium pyrophosphate or sodium silicate
  • the material of the lubricating layer is a lubricant.
  • the present invention uses the above-mentioned alloy as the core layer, and further coats the surface of the alloy core layer with a phosphating layer, a glass layer, a coupling layer and a lubricating layer in order to form a multi-layer coating
  • the soft magnetic composite material structure of the film further improves the insulation and pressing characteristics of the composite material, and the improvement of the insulation characteristics can further reduce the eddy current loss of the material. Therefore, the composite material based on this structure, on the basis of better electromagnetic properties, has smaller loss, and in the subsequent application process, it can be more closely matched with the third-generation wide bandgap semiconductor, which is more suitable for the miniaturization of inductive devices , high frequency and high power requirements.
  • the preparation method includes: in a vacuum environment, mixing the first dispersion liquid containing the soft magnetic alloy core layer doped with rare earth ions and phosphoric acid, and performing the first stirring, so that the phosphoric acid and the rare earth ions
  • the material in the surface area of the doped soft magnetic alloy core layer reacts to coat the phosphating layer on its outer surface to obtain an intermediate material A;
  • the material of the phosphating layer includes iron phosphate and aluminum phosphate; under the condition of pH6.0 ⁇ 8.0 , the second dispersion liquid containing the intermediate material A, ethyl silicate, sodium pyrophosphate and sodium silicate is stirred for the second time, so as to react on the outer surface of the phosphating layer away from the soft magnetic alloy core layer doped with rare earth ions And form a glass layer to obtain the intermediate material B;
  • the glass layer comprises silicon dioxide, sodium pyrophosphate and sodium silicate;
  • the third dispersion liquid containing the intermediate material B and the coupling agent is stirred for the third time,
  • the phosphating layer and the glass layer can further improve the insulating properties of the material
  • the lubricating layer can further improve the pressing properties of the material
  • the intermediate coupling layer serves as a transition between the inorganic material (glass layer) and the organic material (lubricating layer)
  • the connection layer can further balance the insulating and pressing properties of the material.
  • silicone resin in the process of mixing the intermediate material C and the lubricant for the fourth stirring, silicone resin can be added to the system, which can further improve the insulation properties of the composite material, and also help to further improve The molding properties of the material.
  • the amount of the silicone resin is 0.5-1% of the weight of the rare earth ion-doped soft magnetic alloy core layer.
  • the intermediate material obtained in each step can be heated to 80° C. to dry the material, and then put into the next preparation step. Based on this, the above-mentioned excellent structural properties of the material are even better.
  • the material is broken up by a crusher and sieved by a 300-400 mesh sieve to obtain a soft magnetic composite material.
  • the dosage of phosphoric acid is 0.5-1% of the weight of the soft magnetic alloy core layer doped with rare earth ions. If the amount of phosphoric acid is less than 0.5%, the passivation effect of the magnetic powder will be slightly worse, thereby reducing the resistivity of the material, resulting in a slight increase in high-frequency eddy current loss. If the amount of phosphoric acid is higher than 1%, the magnetic powder will react with excess phosphoric acid, thereby reducing the saturation magnetization of the material.
  • the amount of ethyl silicate is 0.5-1% of the weight of the rare earth ion-doped soft magnetic alloy core layer, and the amount of sodium pyrophosphate is 0.2-0.5% of the weight of the rare earth ion-doped soft magnetic alloy core layer,
  • the dosage of sodium silicate is 0.5-1% of the weight of the soft magnetic alloy core layer doped with rare earth ions. If the amount of ethyl silicate, sodium pyrophosphate and sodium silicate is lower than the above-mentioned range, the thickness of the glass layer will be thinned, and a good insulating effect will not be achieved. If the amount is higher than the above range, there will be too much non-magnetic material, which will reduce the soft magnetic properties of the magnetic powder.
  • the dosage of the silane coupling agent is 0.5-1.0% of the weight of the soft magnetic alloy core layer doped with rare earth ions. Based on this, the connection effect between the glass layer and the lubricating layer is better, and the structural performance of the material is more stable. More preferably, the silane coupling agent is selected from one or more of silane coupling agents, titanate coupling agents or aluminate coupling agents.
  • the lubricant is preferably used in an amount of 0.1-1% of the weight of the rare earth ion-doped soft magnetic alloy core layer. More preferably, the lubricant is selected from one or more of zinc stearate, calcium stearate or magnesium stearate.
  • the treatment temperature is 50-100° C., and the treatment time is 1-5 hours. Based on this, the formation of the phosphating layer is more stable and the structure is denser.
  • the treatment temperature is 50-100° C., and the treatment time is 1-5 hours. Based on this, the glass layer can be co-coated on the phosphating layer more smoothly, further improving the insulation of the core layer.
  • the treatment temperature is 50-100° C., and the treatment time is 1-5 hours.
  • the treatment temperature is 50-100° C., and the treatment time is 1-5 hours. Based on this, the lubricating layer can be coated on the glass layer more stably, which further improves the insulating properties and press-forming properties of the material.
  • the present invention also provides an application of the above-mentioned soft magnetic composite material in an inductance device used in frequency bands above MHz. Based on the above reasons, on the basis of better electromagnetic characteristics, its loss is smaller, and in the subsequent application process, it can be more closely matched with the third-generation wide bandgap semiconductor, which is more suitable for the miniaturization of inductive devices, The demand for high frequency and high power.
  • the powder is cooled to room temperature to obtain a soft magnetic alloy doped with rare earth ions.
  • the content of Fe is 83wt%
  • the content of Si is 9.45wt%
  • the content of Al is 5wt%
  • the content of Ce is 2wt%
  • the content of N is 0.55wt%.
  • step (10) Cool the material treated in step (10) to room temperature, break up the material with a crusher, and sieve it with a 300-mesh sieve to obtain a soft magnetic composite material.
  • the material was molded under a pressure of 1600MPa to obtain a ring sample with an outer diameter of 20mm, an inner diameter of 10mm, and a height of 5mm.
  • Example 1 The difference from Example 1 is only that in the soft magnetic alloy doped with rare earth ions, the content of Fe is 85wt%, the content of Si is 9.5wt%, the content of Al is 3wt%, the content of Ce is 2wt%, and the content of N The content is 0.50wt%.
  • Example 1 The difference from Example 1 is only that in the soft magnetic alloy doped with rare earth ions, the content of Fe is 85wt%, the content of Si is 8.75wt%, the content of Al is 5wt%, the content of Ce is 1wt%, and the content of N The content is 0.25wt%.
  • Example 1 The difference from Example 1 is only that in the soft magnetic alloy doped with rare earth ions, the content of Fe is 85wt%, the content of Si is 7.47wt%, the content of Al is 5wt%, the content of Ce is 2wt%, and the content of N The content is 0.53wt%.
  • Example 1 The difference from Example 1 is only that in the soft magnetic alloy doped with rare earth ions, the content of Fe is 83wt%, the content of Si is 8.47wt%, the content of Al is 6wt%, the content of Ce is 2wt%, and the content of N The content is 0.53wt%.
  • Example 1 The difference from Example 1 is only that in step (5), the nitriding treatment temperature is 550° C. and the time is 6 hours.
  • the content of Fe is 83wt%, that of Si is 9.39wt%, that of Al is 5wt%, that of Ce is 2wt%, and that of N is 0.61wt%.
  • Example 1 The difference with Example 1 is only that in step (7), the phosphoric acid addition is 1wt%.
  • Example 1 The difference with Example 1 is only that in step (8), the consumption of ethyl silicate is 1wt%, sodium pyrophosphate is 0.5wt%, and the amount of sodium silicate is 1wt%.
  • Example 1 The difference from Example 1 is only that in step (5), the nitriding treatment temperature is 380°C.
  • a soft magnetic alloy doped with rare earth ions is obtained.
  • the content of Fe is 83wt%
  • the content of Si is 10wt%
  • the content of Al is 5wt%
  • the content of Ce is 2wt%
  • the content of N The content is 0.25wt%.
  • step (9) the amount of coupling agent is 1 wt%.
  • step (10) The difference from Example 1 is only that in step (10), the amount of lubricant is 1wt%.
  • Iron, iron-silicon alloy, metal aluminum are fed into the feed, and by adjusting the ratio, the weight ratios of the three elements of Fe, Si, and Al in the feed are respectively 85wt%, 10wt% and 5wt%; then under the protection of Ar gas Melting to form a melt; the melting temperature is 1900°C, and the melting time is 3 hours;
  • the prepared FeSiAl powder was sieved through 300 mesh, and molded under a pressure of 1600MPa to obtain a ring sample with an outer diameter of 20mm, an inner diameter of 10mm, and a height of 5mm.
  • Example 1 The difference from Example 1 is only that in the soft magnetic alloy doped with rare earth ions, the content of Fe is 80wt%, the content of Si is 15wt%, the content of Al is 4.5wt%, the content of Ce is 0.5wt%, and the content of N The content is 0.12wt%.
  • Example 1 The difference from Example 1 is only that in the soft magnetic alloy doped with rare earth ions, the content of Fe is 90wt%, the content of Si is 5wt%, the content of Al is 1wt%, the content of Ce is 4wt%, and the content of N 1.0 wt%.
  • Comparing Example 1, Example 6, Example 10, Example 11 and Comparative Example 1 it can be seen that the saturation magnetization and magnetic permeability of Example 1, Example 6, Example 10 and Example 11 are basically the same as those of Comparative Example 1. There is no difference, but the loss in Comparative Example 1 is greatly increased. Comparing Examples 1 to 11 with Comparative Example 2, it can be seen that in Comparative Example 2, the saturation magnetization and magnetic permeability are significantly reduced, and the loss is also greatly increased. Comparing Example 2, Example 3, Example 4 and Comparative Example 3, it can be known that the saturation magnetization and magnetic permeability of Example 2, Example 3, Example 4 and Comparative Example 3 are basically the same, but in Comparative Example 3 losses have increased significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供了一种稀土离子掺杂的软磁合金、软磁复合材料及其制备方法,该稀土离子掺杂的软磁合金由Fe、Si、Al、N及Re组成,Re为稀土元素;其中,稀土离子掺杂的软磁合金中,Fe的含量为82~85wt%、Si的含量为8~10wt%、Al的含量为3~5wt%、Re的含量为1~2wt%、N的含量为0.25~0.65wt%。本发明的稀土离子掺杂的软磁合金内部绝大部分是由FeSiAl晶粒组成,但在FeSiAl晶粒之间弥撒分布有适量易面型Re-Fe-N化合物。基于这样的结构,促使本发明稀土离子掺杂的软磁合金在MHz工作条件下具备优异的电磁特性及较低的损耗。

Description

稀土离子掺杂的软磁合金、软磁复合材料及其制备方法
本申请是以CN申请号为202111249286.3,申请日为2021年10月26日的中国申请为基础,并主张其优先权,该CN申请的公开内容再次作为整体引入本申请中。
技术领域
本发明涉及磁性材料领域,具体而言,涉及一种稀土离子掺杂的软磁合金、软磁复合材料及其制备方法。
背景技术
功率电感在电力、电子设备中起到能量耦合传递及转换的作用,其小型化与集成化可以提高设备效率,降低能源消耗及减少环境污染。近年来,随着以GaN与SiC为代表的第三代宽禁带半导体材料走向实用化,使得电子器件进一步实现高频化、微型化及大功率化成为可能,同时也对软磁材料在高频率、高饱和磁通密度、高磁导率及低损耗方面提出了更高的要求。但是,目前还没有能够与第三代宽禁带半导体完全匹配的软磁材料,这已经成为制约电子信息技术高频化、集成化的瓶颈所在。
目前在MHz以上频段应用的电感器件,大多是采用铁氧体作为软磁材料。铁氧体软磁材料具有较高的电阻率和磁导率,但是饱和磁化强度较低(Bs<0.5T),导致其磁能储存能力较弱,在电子器件中应用时不利于实现产品的小型化。与之相较,金属软磁材料,如Fe、FeNi、FeSi及FeSiAl等,则具有更高的饱和磁化强度,有利于电子元件的小型化设计。但是,这类材料由于电阻率低,在高频应用条件下的涡流损耗非常大,因此一般只能在1MHz以下的频段工作。此外,非晶与纳米晶磁粉由于兼具高饱和磁化强度及较高电阻率,是近几年本领域的研究热点,但是材料成型困难、去应力退火条件苛刻等缺点限制了它们的应用范围。
现有技术中,专利CN110047637A提出一种稀土类-铁-氮系复合磁性材料制备方法,制备出了Nd-Fe-N复合稀土材料,并测试了材料的电磁吸收及屏蔽特性。但是该方法稀土含量过高,导致其材料的饱和磁化强度较低。专利文献CN110047637A指出, 通过稀土离子掺杂,可以改善金属软磁材料的高频特性,尤其是可以形成易面型稀土铁系金属间化合物Re 2Fe 17,这种化合物具有很高的截止频率,可以在GHz条件下使用。而且,如果对该化合物进行渗氮处理,还可以提升材料的电阻,降低材料的涡流损耗。但是,Re 2Fe 17化合物及Re 2Fe 17氮化产物尽管在GHz条件下具有比较好的损耗特性,但是其磁导率、饱和磁化强度比较低,导致其在MHz条件下的应用受到限制,损耗较大。
专利CN109982791A、CN100513015C、CN1093311C、CN1286602C及CN1022520C均提出了一种制备新型稀土-铁-氮材料的方法,制备了Sm-Fe-N,Nd-Fe-N等材料。但是上述材料由于合金成分及微观组织的差异,永磁特性很好,软磁特性不足,无法作为电感电器的软磁材料应用。
J.Magn.Magn.Mater.,2017,424(15):39-43公开了一种制备Ce 2Fe 17N 3-δ化合物的方法,并测试了材料的高频(GHz)吸收特性。但是,该方法制备的材料主要在GHz的超高频使用,其在MHz下的饱和磁化强度、磁导率均较低,损耗较大。
浙江大学硕士学位论文《表面氮化/氧化法制备FeSi、FeSiAl和FeSiCr软磁复合材料》(赵敬,2018)指出,通过对磁粉进行表面氮化/氧化,可以提高磁粉的电阻率,从而降低磁粉的涡流损耗。但是,此篇论文指出通过对磁粉进行表面氮化/氧化,可以提高磁粉的电阻率,从而降低磁粉的涡流损耗。但是,由于N 2气化学性质非常稳定,常规的FeSi、FeSiAl和FeSiCr与N 2气很难充分反应,因此合金中的N含量是比较低的,因此其对于降低磁粉涡流损耗的效果仍然是不足的。
综上,现有技术中的软磁材料在MHz、大电流工作条件下无法同时兼顾高电磁特性及低损耗的问题。因此,有必要提供一种软磁材料,以改善上述问题。
发明内容
本发明的主要目的在于提供一种稀土离子掺杂的软磁合金、软磁复合材料及其制备方法,以解决现有技术中的软磁材料在MHz、大电流工作条件下无法同时兼顾高电磁特性及低损耗的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种稀土离子掺杂的软磁合金,稀土离子掺杂的软磁合金由Fe、Si、Al、N及Re组成,Re为稀土元素;其中,稀土离子掺杂的软磁合金中,Fe的含量为82~85wt%、Si的含量为8~10wt%、Al的含量为3~5wt%、Re的含量为1~2wt%、N的含量为0.25~0.65wt%。
进一步地,稀土元素为Ce、La、Sm、Nd、Pr或Ho中的一种或多种。
进一步地,稀土离子掺杂的软磁合金的平均粒径为5~50μm。
为了实现上述目的,根据本发明的一个方面,提供了一种上述的稀土离子掺杂的软磁合金的制备方法,制备方法包括以下步骤:惰性气体氛围下,将铁、铁硅合金、铝及稀土金属混合并进行熔炼,形成熔融体;将熔融体依次进行雾化制粉、热处理及氮化处理,形成稀土离子掺杂的软磁合金;其中,稀土离子掺杂的软磁合金由Fe、Si、Al、N及Re组成,Re为稀土元素;稀土离子掺杂的软磁合金中,Fe的含量为82~85wt%、Si的含量为8~10wt%、Al的含量为3~5wt%、Re的含量为1~2wt%、N的含量为0.25~0.65wt%。
进一步地,氮化处理过程中,向体系中通入氮气以进行氮化处理;优选地,氮化处理过程中,处理温度为450~550℃,处理时间为4~6h;优选地,氮化处理过程中,氮气的压力为0.1~0.2MPa。
进一步地,熔炼过程中,熔炼温度为1800~2000℃,熔炼时间为0.5~5h;优选地,热处理过程中,处理温度为900~1000℃,处理时间为2~3h;优选地,采用气雾化设备以进行雾化制粉;更优选气雾化设备中,雾化气体为惰性气体,其气体压力为0.1~1.0MPa。
根据本发明的另一方面,提供了一种软磁复合材料,软磁复合材料包括:稀土离子掺杂的软磁合金核层;磷化层,包覆在稀土离子掺杂的软磁合金核层的外表面;玻璃层,包覆在磷化层的远离稀土离子掺杂的软磁合金核层的外表面;润滑层,包覆在玻璃层的远离稀土离子掺杂的软磁合金核层的外表面,且润滑层通过偶联剂偶联包覆在玻璃层表面;其中,稀土离子掺杂的软磁合金核层的材料为上述的稀土离子掺杂的软磁合金,磷化层的材料为磷酸铁和/或磷酸铝,玻璃层的材料为二氧化硅、焦磷酸钠或硅酸钠中的一种或多种,润滑层的材料为润滑剂。
进一步地,偶联剂选自硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂中的一种或多种;优选地,润滑剂选自硬脂酸锌、硬脂酸钙或硬脂酸镁中的一种或多种;优选地,软磁复合材料的平均粒径为10~40μm;优选地,磷化层的厚度为10~50nm,玻璃层的厚度为10~50nm,润滑层的厚度为10~50nm。
根据本发明的另一方面,提供了一种上述的软磁复合材料的制备方法,制备方法包括以下步骤:提供稀土离子掺杂的软磁合金核层,以在稀土离子掺杂的软磁合金核层的外表面包覆磷化层;在磷化层的远离稀土离子掺杂的软磁合金核层的外表面包覆玻璃层;在玻璃层的远离稀土离子掺杂的软磁合金核层的外表面通过偶联剂偶联包覆润滑层,进而形成软磁复合材料;其中,稀土离子掺杂的软磁合金核层的材料为上述的稀土离子掺杂的软磁合金,磷化层的材料为磷酸铁和/或磷酸铝,玻璃层的材料为二氧化硅、焦磷酸钠或硅酸钠中的一种或多种,润滑层的材料为润滑剂。
进一步地,制备方法包括:在真空环境下,将含有稀土离子掺杂的软磁合金核层的第一分散液和磷酸混合,进行第一搅拌,以使磷酸与稀土离子掺杂的软磁合金核层表面区域的材料进行反应包覆在其外表面并形成磷化层,得到中间材料A;磷化层的材料包含磷酸铁和磷酸铝;在pH6.0~8.0条件下,将含有中间材料A、硅酸乙酯、焦磷酸钠及硅酸钠的第二分散液进行第二搅拌,以在磷化层的远离稀土离子掺杂的软磁合金核层的外表面反应并形成玻璃层,得到中间材料B;玻璃层包含二氧化硅、焦磷酸钠和硅酸钠;将含有中间材料B及偶联剂的第三分散液进行第三搅拌,以在玻璃层的远离稀土离子掺杂的软磁合金核层的外表面连接偶联剂,得到中间材料C;将中间材料C、润滑剂混合,进行第四搅拌,以使润滑剂通过偶联剂偶联包覆在玻璃层表面形成润滑层,进而形成软磁复合材料。
进一步地,磷酸的用量为稀土离子掺杂的软磁合金核层重量的0.5~1%;优选地,硅酸乙酯的用量为稀土离子掺杂的软磁合金核层重量的0.5~1%,焦磷酸钠的用量为稀土离子掺杂的软磁合金核层重量的0.2~0.5%,硅酸钠的用量为稀土离子掺杂的软磁合金核层重量的0.5~1%;优选地,偶联剂的用量为稀土离子掺杂的软磁合金核层重量的0.5~1.0%;优选地,润滑剂的用量为稀土离子掺杂的软磁合金核层重量的0.1~1%。
进一步地,第一搅拌、第二搅拌、第三搅拌及第四搅拌的处理温度各自独立地选自50~100℃,处理时间各自独立地为1~5h。
根据本发明的另一方面,提供了一种上述的软磁复合材料在MHz频段用电感器件中的应用。
本发明的稀土离子掺杂的软磁合金内部绝大部分是由FeSiAl晶粒组成,但在FeSiAl晶粒之间弥撒分布有少量易面型Re-Fe-N化合物。基于这样的结构,促使本发明稀土离子掺杂的软磁合金在后续应用于MHz工作条件下也具备优异的电磁特性及较低的损耗。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术部分所描述的,现有技术中的软磁材料在MHz、大电流工作条件下无法同时兼顾高电磁特性及低损耗。
为了解决这一问题,本发明提供了一种稀土离子掺杂的软磁合金,该稀土离子掺杂的软磁合金由Fe、Si、Al、N及Re组成,Re为稀土元素;其中,稀土离子掺杂的软磁合金中,Fe的含量为82~85wt%、Si的含量为8~10wt%、Al的含量为3~5wt%、Re的含量为1~2wt%、N的含量为0.25~0.65wt%。
本发明通过将Fe、Si、Al、N及Re的重量含量控制在上述范围内,一方面,稀土元素更容易吸附N元素的性质,可以在软磁合金内部形成易面型Re-Fe-N化合物,本发明的软磁合金结构中,软磁合金内部绝大部分是由FeSiAl晶粒组成,在FeSiAl晶粒之间弥撒分布有少量易面型Re-Fe-N化合物。易面型Re-Fe-N化合物作为高电阻率的物质,使得低电阻率的FeSiAl变得不连续,从而提升了软磁合金的电阻率,进而有效降低了材料的涡流损耗。另一方面,避免了过多Re-Fe-N化合物的形成,从而有效地避免了材料饱和磁化强度与磁导率降低的问题,进而促使本发明材料在MHz工作条件下也具备优异的电磁特性及较低的损耗。具体地,在后续应用过程中,能够与第三代宽禁带半导体匹配度更高,更适合电感器件小型化、高频化及大功率化的需求。
为了进一步平衡材料在MHz工作条件下的电磁特性及损耗,优选稀土元素为Ce、La、Sm、Nd、Pr或Ho中的一种或多种。
在一种优选的实施方式中,稀土离子掺杂的软磁合金的平均粒径为5~50μm。基于此,材料的粒径更适宜在MHz工作条件下应用,且在此条件下,具备优异的电磁特性及较低的损耗。其更适合电感器件小型化、高频化及大功率化的需求。
在一种优选的实施方式中,稀土离子掺杂的软磁合金中,Fe的含量为83wt%、Si的含量为9.45wt%、Al的含量为5wt%、Re的含量为2wt%、N的含量为0.55wt%;或 者,稀土离子掺杂的软磁合金中,Fe的含量为85wt%、Si的含量为9.5wt%、Al的含量为3wt%、Re的含量为2wt%、N的含量为0.50wt%;或者,稀土离子掺杂的软磁合金中,Fe的含量为85wt%、Si的含量为8.75wt%、Al的含量为5wt%、Re的含量为1wt%、N的含量为0.25wt%;或者,稀土离子掺杂的软磁合金中,Fe的含量为85wt%、Si的含量为7.47wt%、Al的含量为5wt%、Re的含量为2wt%、N的含量为0.53wt%;或者,稀土离子掺杂的软磁合金中,Fe的含量为83wt%、Si的含量为8.47wt%、Al的含量为6wt%、Re的含量为2wt%、N的含量为0.53wt%;或者,稀土离子掺杂的软磁合金中,Fe的含量为83wt%、Si的含量为9.39wt%、Al的含量为5wt%、Re的含量为2wt%、N的含量为0.61wt%;或者,稀土离子掺杂的软磁合金中,Fe的含量为83wt%、Si的含量为10wt%、Al的含量为5wt%、Re的含量为2wt%、N的含量为0.25wt%。
本发明还提供了一种前述的稀土离子掺杂的软磁合金的制备方法,制备方法包括以下步骤:惰性气体氛围下,将铁、铁硅合金、铝及稀土金属混合并进行熔炼,形成熔融体;将熔融体依次进行雾化制粉、热处理及氮化处理,形成稀土离子掺杂的软磁合金;其中,稀土离子掺杂的软磁合金由Fe、Si、Al、N及Re组成,Re为稀土元素;稀土离子掺杂的软磁合金中,Fe的含量为82~85wt%、Si的含量为8~10wt%、Al的含量为3~5wt%、Re的含量为1~2wt%、N的含量为0.25~0.65wt%。
基于前文的各项原因,本发明通过上述制备方法,一方面,稀土元素更容易吸附N元素的性质,可以在软磁合金内部形成易面型Re-Fe-N化合物,本发明的软磁合金结构中,软磁合金内部绝大部分是由FeSiAl晶粒组成,在FeSiAl晶粒之间弥撒分布有少量易面型Re-Fe-N化合物。易面型Re-Fe-N化合物作为高电阻率的物质,使得低电阻率的FeSiAl变得不连续,从而提升了软磁合金的电阻率,进而有效降低了材料的涡流损耗。另一方面,避免了过多Re-Fe-N化合物的形成,从而有效地避免了材料饱和磁化强度与磁导率降低的问题,进而促使本发明材料在MHz工作条件下也具备优异的电磁特性及较低的损耗。具体地,在后续应用过程中,能够与第三代宽禁带半导体匹配度更高,更适合电感器件小型化、高频化及大功率化的需求。另外,本发明选择的制备原料如铁、铁硅合金、铝更易得,成本更低,且制备过程更简单易操作。
优选地,氮化处理过程中,向体系中通入N 2以进行氮化处理。基于此,氮化处理过程操作更便捷、更易调控,故而可以进一步更好的控制易面型Re-Fe-N化合物的形成,进而在降低材料涡流损耗的基础上,其电磁特性也较佳。优选地,氮化处理过程中,处理温度为450~550℃,处理时间为4~6h;氮气的压力为0.1~0.2MPa。基于此,易面型Re-Fe-N化合物可以更均匀的弥散分布在FeSiAl晶粒之间,从而进一步平衡材料在MHz工作条件下的电磁特性及损耗。如果上述处理温度低于450℃,磁粉氮化不完全,氮含量过低,会导致磁粉的涡流损耗增加。而如果上述处理温度高于550℃,则形成的易面型稀土-铁-氮化物易分解,生成其他化合物,从而会导致磁粉的涡流损耗增加。
在一种优选的实施方式中,熔炼过程中,熔炼温度为1800~2000℃,熔炼时间为0.5~5h。热处理过程中,处理温度为900~1000℃,处理时间为2~3h。基于此,材料的上述结构性能更佳,材料具备更优异的电磁特性及更低的损耗。
优选地,采用气雾化设备以进行雾化制粉;更优选气雾化设备中,雾化气体为惰性气体,其压力为0.1~1.0MPa。基于此,材料的粒径更适宜在MHz工作条件下应用,且在此条件下,具备优异的电磁特性及较低的损耗。其更适合电感器件小型化、高频化及大功率化的需求。
本发明还提供了一种软磁复合材料,软磁复合材料包括:稀土离子掺杂的软磁合金核层;磷化层,包覆在稀土离子掺杂的软磁合金核层的外表面;玻璃层,包覆在磷化层的远离稀土离子掺杂的软磁合金核层的外表面;润滑层,包覆在玻璃层的远离稀土离子掺杂的软磁合金核层的外表面;且润滑层通过偶联剂偶联包覆在玻璃层表面;其中,稀土离子掺杂的软磁合金核层的材料为上述稀土离子掺杂的软磁合金,磷化层的材料为磷酸铁和/或磷酸铝,玻璃层的材料为二氧化硅、焦磷酸钠或硅酸钠中的一种或多种,润滑层的材料为润滑剂。
基于前文的各项原因,本发明的稀土离子掺杂的软磁合金内部绝大部分是由FeSiAl晶粒组成,但在FeSiAl晶粒之间弥撒分布有少量易面型Re-Fe-N化合物。基于 这样的结构,促使本发明稀土离子掺杂的软磁合金在MHz工作条件下也具备优异的电磁特性及较低的损耗。
在此基础上,本发明以上述合金作为核层,进一步在合金核层表面依次进行磷化层、玻璃层、偶联层及润滑层的包覆,形成了具有多层包覆膜的软磁复合材料结构,使复合材料进一步改善了绝缘特性及压制特性,改善绝缘特性可以进一步降低稀土离子掺杂的软磁合金之间的涡流损耗。具体地,磷化层和玻璃层协同可以进一步改善材料的绝缘特性,润滑层可以进一步改善材料的压制特性,而中间偶联层作为无机材料(玻璃层)和有机材料(润滑层)的过渡连接层,可以进一步平衡材料的绝缘特性及压制特性。
故而,基于此结构的复合材料,在稀土离子掺杂的软磁合金彼此之间协同应用时,其在电磁特性更佳的基础上,其损耗更小,进而在后续应用过程中,能够与第三代宽禁带半导体匹配度更高,更适合电感器件小型化、高频化及大功率化的需求。
为了进一步平衡材料的有益电磁性能及较低损耗性能,且还可以进一步提高材料的压制特性,优选地,软磁复合材料的平均粒径为10~40μm;优选地,磷化层的厚度为10~50nm,玻璃层的厚度10~50nm,偶联层的厚度为10~50nm,润滑层的厚度为10~50nm。
本发明还提供了一种上述的软磁复合材料的制备方法,制备方法包括以下步骤:提供稀土离子掺杂的软磁合金核层;以在稀土离子掺杂的软磁合金核层的外表面包覆磷化层;在磷化层的远离稀土离子掺杂的软磁合金核层的外表面包覆玻璃层;在玻璃层的远离稀土离子掺杂的软磁合金核层的外表面通过偶联剂包覆润滑层;在偶联层的远离稀土离子掺杂的软磁合金核层的外表面包覆润滑层,进而形成软磁复合材料;其中,稀土离子掺杂的软磁合金核层的材料为上述的稀土离子掺杂的软磁合金,磷化层的材料为磷酸铁和/或磷酸铝,玻璃层的材料为二氧化硅、焦磷酸钠或硅酸钠中的一种或多种,润滑层的材料为润滑剂。
基于前文所描述的各相原因,本发明以上述合金作为核层,进一步在合金核层表面依次进行磷化层、玻璃层、偶联层及润滑层的包覆,形成了具有多层包覆膜的软磁 复合材料结构,使复合材料进一步改善了绝缘特性及压制特性,改善绝缘特性可以进一步降低材料的涡流损耗。故而,基于此结构的复合材料,在电磁特性更佳的基础上,其损耗更小,进而在后续应用过程中,能够与第三代宽禁带半导体匹配度更高,更适合电感器件小型化、高频化及大功率化的需求。
在一种优选的实施方式中,制备方法包括:在真空环境下,将含有稀土离子掺杂的软磁合金核层的第一分散液和磷酸混合,进行第一搅拌,以使磷酸与稀土离子掺杂的软磁合金核层表面区域的材料进行反应包覆在其外表面的磷化层,得到中间材料A;磷化层的材料包含磷酸铁和磷酸铝;在pH6.0~8.0条件下,将含有中间材料A、硅酸乙酯、焦磷酸钠及硅酸钠的第二分散液进行第二搅拌,以在磷化层的远离稀土离子掺杂的软磁合金核层的外表面反应并形成玻璃层,得到中间材料B;玻璃层包含二氧化硅、焦磷酸钠及硅酸钠;将含有中间材料B及偶联剂的第三分散液进行第三搅拌,以在玻璃层的远离稀土离子掺杂的软磁合金核层的外表面连接偶联剂,得到中间材料C;将中间材料C、润滑剂混合,进行第四搅拌,使润滑剂通过偶联剂偶联包覆在玻璃层表面形成润滑层,进而形成软磁复合材料。
基于此操作,磷化层和玻璃层协同可以进一步改善材料的绝缘特性,润滑层可以进一步改善材料的压制特性,而中间偶联层作为无机材料(玻璃层)和有机材料(润滑层)的过渡连接层,可以进一步平衡材料的绝缘特性及压制特性。后续在稀土离子掺杂的软磁合金彼此之间协同应用时,其在电磁特性更佳的基础上,其损耗更小,进而在后续应用过程中,能够与第三代宽禁带半导体匹配度更高,更适合电感器件小型化、高频化及大功率化的需求。
在一种优选的实施方式中,在将中间材料C及润滑剂混合进行第四搅拌的过程中,可向体系中加入硅树脂,这样,可以进一步提高复合材料的绝缘特性,也有助于进一步改善材料的成型特性。优选地,硅树脂的用量为稀土离子掺杂的软磁合金核层重量的0.5~1%。
在一种优选的实施方式中,可将每一步骤中得到的中间材料加热至80℃使物料干燥后,再投入到下一制备步骤中,基于此,材料的上述优异结构性能更佳。
在一种可选的实施方式中,可将上述第四搅拌后的物料冷却至室温后,再将物料用破碎机打散,采用300~400目筛分器过筛,得到软磁复合材料。
优选地,磷酸的用量为稀土离子掺杂的软磁合金核层重量的0.5~1%。磷酸用量低于0.5%,磁粉的钝化效果会略微变差,从而降低材料的电阻率,导致高频涡流损耗稍增加。磷酸用量高于1%,则会导致磁粉与过量的磷酸反应,从而降低材料的饱和磁化强度。
优选地,硅酸乙酯的用量为稀土离子掺杂的软磁合金核层重量的0.5~1%,焦磷酸钠的用量为稀土离子掺杂的软磁合金核层重量的0.2~0.5%,硅酸钠的用量为稀土离子掺杂的软磁合金核层重量的0.5~1%。硅酸乙酯、焦磷酸钠与硅酸钠用量低于上述范围,则会使的玻璃层的厚度变薄,起不到良好的绝缘效果。而用量高于上述范围,则会导致非磁性物质过多,降低磁粉的软磁特性。
优选地,硅烷偶联剂的用量为稀土离子掺杂的软磁合金核层重量的0.5~1.0%。基于此,玻璃层与润滑层的连接效果更佳,材料的结构性能更稳定。更优选硅烷偶联剂选自硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂中的一种或多种。
为了进一步提高材料的压制成型特性,优选润滑剂的用量为稀土离子掺杂的软磁合金核层重量的0.1~1%。更优选润滑剂选自硬脂酸锌、硬脂酸钙或硬脂酸镁中的一种或多种。
在一种优选的实施方式中,第一搅拌过程中,处理温度为50~100℃,处理时间为1~5h。基于此,磷化层的形成更平稳且结构更致密。在一种优选的实施方式中,第二搅拌过程中,处理温度为50~100℃,处理时间为1~5h。基于此,玻璃层可以更平稳的协同包覆在磷化层上,对核层更进一步进行绝缘改善。在一种优选的实施方式中,第三搅拌过程中,处理温度为50~100℃,处理时间为1~5h。第四搅拌过程中,处理温度为50~100℃,处理时间为1~5h。基于此,润滑层可以更平稳的包覆在玻璃层上,促使材料的绝缘特性及压制成型特性均进一步得到改善。
本发明还提供了一种上述的软磁复合材料在MHz以上频段应用的电感器件中的应用。基于前文的各项原因,其在电磁特性更佳的基础上,其损耗更小,进而在后续应用过程中,能够与第三代宽禁带半导体匹配度更高,更适合电感器件小型化、高频化及大功率化的需求。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1
制备稀土离子掺杂的软磁合金
(1)首先准备以下初始材料:铁、铁硅合金、金属铝及稀土金属铈。
(2)将铁、铁硅合金、金属铝及稀土金属铈在Ar气保护条件下熔炼形成熔融体;熔炼温度为1900℃,熔炼时间为3h。
(3)将熔融体通过气雾化设备,在Ar气环境中进行雾化制粉;雾化气体压力为0.5MPa。
(4)将雾化后的粉末在900℃,Ar气环境中下热处理2h。
(5)将处理温度降至450℃,然后将Ar气抽出,充入N 2进行4h的氮化处理;在处理过程中,始终保持氮气压力为0.1MPa。
(6)将粉末冷却至室温,得到稀土离子掺杂的软磁合金,稀土离子掺杂的软磁合金中,Fe的含量为83wt%、Si的含量为9.45wt%、Al的含量为5wt%、Ce的含量为2wt%、N的含量为0.55wt%。
制备软磁复合材料
(7)将上述稀土离子掺杂的软磁合金浸入酒精中,然后向酒精中加入稀土离子掺杂的软磁合金重量0.5%的磷酸,在真空环境下搅拌1h,然后加热至80℃干燥,得到中间材料A。
(8)将稀土离子掺杂的软磁合金重量0.5%的硅酸乙酯、0.2%的焦磷酸钠、0.5%的硅酸钠用酒精分散,倒入上述中间材料A中,使其变成浆料,然后高速搅拌1h,搅拌过程中向浆料中加入氨水,使浆料的pH值接近8.0,然后加热至80℃干燥,得到中间材料B。
(9)将稀土离子掺杂的软磁合金重量0.5%的KH550硅烷偶联剂用酒精稀释,加入上述中间材料B中进行搅拌1h,然后在80℃下干燥。
(10)加入稀土离子掺杂的软磁合金重量0.1%的硬脂酸锌,在80度下搅拌30min,然后加入稀土离子掺杂的软磁合金重量1%的硅树脂,继续搅拌1h。
(11)将步骤(10)处理后的物料冷却至室温,再将物料用破碎机打散,采用300目筛分器过筛,得到软磁复合材料。
将材料在1600MPa的压力下模压成型,得到外径为20mm,内径为10mm,高度为5mm的圆环样品。
实施例2
和实施例1的区别仅在于:稀土离子掺杂的软磁合金中,Fe的含量为85wt%、Si的含量为9.5wt%、Al的含量为3wt%、Ce的含量为2wt%、N的含量为0.50wt%。
实施例3
和实施例1的区别仅在于:稀土离子掺杂的软磁合金中,Fe的含量为85wt%、Si的含量为8.75wt%、Al的含量为5wt%、Ce的含量为1wt%、N的含量为0.25wt%。
实施例4
和实施例1的区别仅在于:稀土离子掺杂的软磁合金中,Fe的含量为85wt%、Si的含量为7.47wt%、Al的含量为5wt%、Ce的含量为2wt%、N的含量为0.53wt%。
实施例5
和实施例1的区别仅在于:稀土离子掺杂的软磁合金中,Fe的含量为83wt%、Si的含量为8.47wt%、Al的含量为6wt%、Ce的含量为2wt%、N的含量为0.53wt%。
实施例6
和实施例1的区别仅在于步骤(5)中,氮化处理的处理温度为550℃,时间为6h。
稀土离子掺杂的软磁合金中,Fe的含量为83wt%、Si的含量为9.39wt%、Al的含量为5wt%、Ce的含量为2wt%、N的含量为0.61wt%。
实施例7
和实施例1的区别仅在于步骤(7)中,磷酸加入量为1wt%。
实施例8
和实施例1的区别仅在于步骤(8)中,硅酸乙酯的用量为1wt%,焦磷酸钠为0.5wt%,硅酸钠的量为1wt%。
实施例9
和实施例1的区别仅在于步骤(5)中,氮化处理的处理温度为380℃。
得到稀土离子掺杂的软磁合金,稀土离子掺杂的软磁合金中,Fe的含量为83wt%、Si的含量为10wt%、Al的含量为5wt%、Ce的含量为2wt%、N的含量为0.25wt%。
实施例10
和实施例1的区别仅在于步骤(9)中,偶联剂的用量为1wt%。
实施例11
和实施例1的区别仅在于步骤(10)中,润滑剂的用量为1wt%。
比较例1
(1)首先准备以下初始材料:铁、铁硅合金、金属铝。
(2)将铁、铁硅合金、金属铝投料,通过调整比例,使得投料中Fe、Si、Al三种元素的重量比例分别为85wt%、10wt%及5wt%;然后在Ar气保护条件下熔炼形成熔融体;熔炼温度为1900℃,熔炼时间为3h;
(3)将熔融体通过气雾化设备,在Ar气环境中进行雾化制粉;雾化气体压力为0.5MPa;
(4)将雾化后的粉末在900℃,Ar气环境中下热处理2h,得到FeSiAl合金粉末。
将所制备的FeSiAl粉末经300目过筛,在1600MPa的压力下模压成型,得到外径为20mm,内径为10mm,高度为5mm的圆环样品。
比较例2
和实施例1的区别仅在于:稀土离子掺杂的软磁合金中,Fe的含量为80wt%、Si的含量为15wt%、Al的含量为4.5wt%、Ce的含量为0.5wt%、N的含量为0.12wt%。
比较例3
和实施例1的区别仅在于:稀土离子掺杂的软磁合金中,Fe的含量为90wt%、Si的含量为5wt%、Al的含量为1wt%、Ce的含量为4wt%、N的含量为1.0wt%。
性能测试:
将上述实施例及对比例的复合材料在1MHz、50mT的条件下测试,其性能结果见下表1所示:
表1
  饱和磁化强度 磁导率 损耗
实施例1中的软磁复合材料 0.79T 70 1750mW/cm 3
实施例2中的软磁复合材料 0.82T 75 1920mW/cm 3
实施例3中的软磁复合材料 0.83T 75 2010mW/cm 3
实施例4中的软磁复合材料 0.82T 77 2060mW/cm 3
实施例5中的软磁复合材料 0.75T 58 1730mW/cm 3
实施例6中的软磁复合材料 0.78T 69 1710mW/cm 3
实施例7中的软磁复合材料 0.77T 66 1670mW/cm 3
实施例8中的软磁复合材料 0.77T 63 1710mW/cm 3
实施例9中的软磁复合材料 0.79T 71 2150mW/cm 3
实施例10中的软磁复合材料 0.78T 69 1735mW/cm 3
实施例11中的软磁复合材料 0.79T 69 1720mW/cm 3
比较例1中的软磁复合材料 0.80T 69 2406mW/cm 3
对比例2中的软磁复合材料 0.68T 55 2312mW/cm 3
对比例3中的软磁复合材料 0.82T 71 4012mW/cm 3
比较实施例1、实施例6、实施例10、实施例11及比较例1可知,实施例1、实施例6、实施例10及实施例11的饱和磁化强度及磁导率和比较例1基本无差,但对比例1中的损耗大幅度增加。比较实施例1至11及比较例2可知,比较例2中饱和磁化强度与磁导率明显降低,损耗也大幅度增加。比较实施例2、实施例3、实施例4及比较例3可知,实施例2、实施例3、实施例4的饱和磁化强度及磁导率和比较例3基本无差,但对比例3中的损耗大幅度增加。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种稀土离子掺杂的软磁合金,其特征在于,所述稀土离子掺杂的软磁合金由Fe、Si、Al、N及Re组成,所述Re为稀土元素;
    其中,所述稀土离子掺杂的软磁合金中,所述Fe的含量为82~85wt%、所述Si的含量为8~10wt%、所述Al的含量为3~5wt%、所述Re的含量为1~2wt%、所述N的含量为0.25~0.65wt%。
  2. 根据权利要求1所述的稀土离子掺杂的软磁合金,其特征在于,所述稀土元素为Ce、La、Sm、Nd、Pr或Ho中的一种或多种。
  3. 根据权利要求1或2所述的稀土离子掺杂的软磁合金,其特征在于,所述稀土离子掺杂的软磁合金的平均粒径为5~50μm。
  4. 一种权利要求1至3中任一项所述的稀土离子掺杂的软磁合金的制备方法,其特征在于,所述制备方法包括以下步骤:
    惰性气体氛围下,将铁、铁硅合金、铝及稀土金属混合并进行熔炼,形成熔融体;
    将所述熔融体依次进行雾化制粉、热处理及氮化处理,形成所述稀土离子掺杂的软磁合金;
    其中,所述稀土离子掺杂的软磁合金由Fe、Si、Al、N及Re组成,所述Re为稀土元素;所述稀土离子掺杂的软磁合金中,所述Fe的含量为82~85wt%、所述Si的含量为8~10wt%、所述Al的含量为3~5wt%、所述Re的含量为1~2wt%、所述N的含量为0.25~0.65wt%。
  5. 根据权利要求4所述的制备方法,其特征在于,所述氮化处理过程中,向体系中通入氮气以进行所述氮化处理;
    优选地,所述氮化处理过程中,处理温度为450~550℃,处理时间为4~6h;
    优选地,所述氮化处理过程中,氮气的压力为0.1~0.2MPa。
  6. 根据权利要求4或5所述的制备方法,其特征在于,所述熔炼过程中,熔炼温度为1800~2000℃,熔炼时间为0.5~5h;
    优选地,所述热处理过程中,处理温度为900~1000℃,处理时间为2~3h;
    优选地,采用气雾化设备以进行所述雾化制粉;更优选所述气雾化设备中,雾化气体为惰性气体,其气体压力为0.1~1.0MPa。
  7. 一种软磁复合材料,其特征在于,所述软磁复合材料包括:
    稀土离子掺杂的软磁合金核层;
    磷化层,包覆在所述稀土离子掺杂的软磁合金核层的外表面;
    玻璃层,包覆在所述磷化层的远离所述稀土离子掺杂的软磁合金核层的外表面;
    润滑层,包覆在所述玻璃层的远离所述稀土离子掺杂的软磁合金核层的外表面,且所述润滑层通过偶联剂偶联包覆在所述玻璃层表面;
    其中,所述稀土离子掺杂的软磁合金核层的材料为权利要求1至3中任一项所述的稀土离子掺杂的软磁合金,所述磷化层的材料为磷酸铁和/或磷酸铝,所述玻璃层的材料为二氧化硅、焦磷酸钠或硅酸钠中的一种或多种,所述润滑层的材料为润滑剂。
  8. 根据权利要求7所述的软磁复合材料,其特征在于,所述偶联剂选自硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂中的一种或多种;
    优选地,所述润滑剂选自硬脂酸锌、硬脂酸钙或硬脂酸镁中的一种或多种;
    优选地,所述软磁复合材料的平均粒径为10~40μm;
    优选地,所述磷化层的厚度为10~50nm,所述玻璃层的厚度为10~50nm,所述润滑层的厚度为10~50nm。
  9. 一种权利要求7或8所述的软磁复合材料的制备方法,其特征在于,所述制备方法包括以下步骤:
    提供稀土离子掺杂的软磁合金核层,以在所述稀土离子掺杂的软磁合金核层的外表面包覆磷化层;
    在所述磷化层的远离所述稀土离子掺杂的软磁合金核层的外表面包覆玻璃层;
    在所述玻璃层的远离所述稀土离子掺杂的软磁合金核层的外表面通过偶联剂偶联包覆润滑层,进而形成所述软磁复合材料;
    其中,所述稀土离子掺杂的软磁合金核层的材料为权利要求1至3中任一项所述的稀土离子掺杂的软磁合金,所述磷化层的材料为磷酸铁和/或磷酸铝,所述玻璃层的材料为二氧化硅、焦磷酸钠或硅酸钠中的一种或多种,所述润滑层的材料为润滑剂。
  10. 根据权利要求9所述的制备方法,其特征在于,所述制备方法包括:
    在真空环境下,将含有所述稀土离子掺杂的软磁合金核层的第一分散液和磷酸混合,进行第一搅拌,以使所述磷酸与所述稀土离子掺杂的软磁合金核层表面区域的材料进行反应包覆在其外表面并形成所述磷化层,得到中间材料A;所述磷化层的材料包含所述磷酸铁和所述磷酸铝;
    在pH6.0~8.0条件下,将含有所述中间材料A、所述硅酸乙酯、所述焦磷酸钠及所述硅酸钠的第二分散液进行第二搅拌,以在所述磷化层的远离所述稀土离子掺杂的软磁合金核层的外表面反应并形成所述玻璃层,得到中间材料B;所述玻璃层包含所述二氧化硅、所述焦磷酸钠和所述硅酸钠;
    将含有所述中间材料B及所述偶联剂的第三分散液进行第三搅拌,以在所述玻璃层的远离所述稀土离子掺杂的软磁合金核层的外表面连接所述偶联剂,得到中间材料C;
    将所述中间材料C、所述润滑剂混合,进行第四搅拌,以使所述润滑剂通过所述偶联剂偶联包覆在所述玻璃层表面形成所述润滑层,进而形成所述软磁复合材料。
  11. 根据权利要求10所述的制备方法,其特征在于,所述磷酸的用量为所述稀土离子 掺杂的软磁合金核层重量的0.5~1%;
    优选地,所述硅酸乙酯的用量为所述稀土离子掺杂的软磁合金核层重量的0.5~1%,所述焦磷酸钠的用量为所述稀土离子掺杂的软磁合金核层重量的0.2~0.5%,所述硅酸钠的用量为所述稀土离子掺杂的软磁合金核层重量的0.5~1%;
    优选地,所述偶联剂的用量为所述稀土离子掺杂的软磁合金核层重量的0.5~1.0%;
    优选地,所述润滑剂的用量为所述稀土离子掺杂的软磁合金核层重量的0.1~1%。
  12. 根据权利要求10所述的制备方法,其特征在于,所述第一搅拌、所述第二搅拌、所述第三搅拌及所述第四搅拌的处理温度各自独立地选自50~100℃,处理时间各自独立地为1~5h。
  13. 一种权利要求7或8所述的软磁复合材料在MHz频段用电感器件中的应用。
PCT/CN2022/099006 2021-10-26 2022-06-15 稀土离子掺杂的软磁合金、软磁复合材料及其制备方法 WO2023071226A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22830681.7A EP4195225A4 (en) 2021-10-26 2022-06-15 RARE EARTH ION-DOPPED SOFT MAGNETIC ALLOY, SOFT MAGNETIC COMPOSITE MATERIAL AND PRODUCTION METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111249286.3A CN116031037A (zh) 2021-10-26 2021-10-26 稀土离子掺杂的软磁合金、软磁复合材料及其制备方法
CN202111249286.3 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023071226A1 true WO2023071226A1 (zh) 2023-05-04

Family

ID=85283738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099006 WO2023071226A1 (zh) 2021-10-26 2022-06-15 稀土离子掺杂的软磁合金、软磁复合材料及其制备方法

Country Status (3)

Country Link
EP (1) EP4195225A4 (zh)
CN (1) CN116031037A (zh)
WO (1) WO2023071226A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1022520C (zh) 1990-11-16 1993-10-20 北京大学 新型稀土-铁-氮永磁材料
CN1093311C (zh) 1995-11-28 2002-10-23 住友金属矿山株式会社 稀土-铁-氮磁体合金
JP2005008951A (ja) * 2003-06-19 2005-01-13 Mitsubishi Materials Corp 軟磁性合金粒の粒界に金属窒化物が介在する組織を有する金属窒化物介在軟磁性焼結合金の製造方法
CN1286602C (zh) 1997-12-25 2006-11-29 日亚化学工业株式会社 Sm-Fe-N系列合金粉末的制造方法
CN101699578A (zh) * 2009-10-25 2010-04-28 兰州大学 稀土铁氮高频软磁材料及其复合材料和制备方法
CN101871071A (zh) * 2010-06-24 2010-10-27 湖州微控电子有限公司 添加少量稀土元素铈或镧的软磁铁硅铝合金磁粉芯的制作方法
CN104319050A (zh) * 2014-11-06 2015-01-28 钢铁研究总院 双相纳米晶高频软磁材料及其制备方法
CN109982791A (zh) 2016-11-28 2019-07-05 国立大学法人东北大学 稀土类铁氮系磁性粉末及其制造方法
CN110047637A (zh) 2019-03-20 2019-07-23 兰州大学 一种高频用2:17型稀土类-铁-氮系复合磁性材料的制备方法
JP2020161726A (ja) * 2019-03-27 2020-10-01 旭化成株式会社 高周波用複合磁性材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4457682B2 (ja) * 2004-01-30 2010-04-28 住友電気工業株式会社 圧粉磁心およびその製造方法
JP2016092262A (ja) * 2014-11-06 2016-05-23 住友金属鉱山株式会社 ボンド磁石形成材料およびボンド磁石

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1022520C (zh) 1990-11-16 1993-10-20 北京大学 新型稀土-铁-氮永磁材料
CN1093311C (zh) 1995-11-28 2002-10-23 住友金属矿山株式会社 稀土-铁-氮磁体合金
CN1286602C (zh) 1997-12-25 2006-11-29 日亚化学工业株式会社 Sm-Fe-N系列合金粉末的制造方法
CN100513015C (zh) 1997-12-25 2009-07-15 日亚化学工业株式会社 Sm-Fe-N系列合金粉末及其制造方法
JP2005008951A (ja) * 2003-06-19 2005-01-13 Mitsubishi Materials Corp 軟磁性合金粒の粒界に金属窒化物が介在する組織を有する金属窒化物介在軟磁性焼結合金の製造方法
CN101699578A (zh) * 2009-10-25 2010-04-28 兰州大学 稀土铁氮高频软磁材料及其复合材料和制备方法
CN101871071A (zh) * 2010-06-24 2010-10-27 湖州微控电子有限公司 添加少量稀土元素铈或镧的软磁铁硅铝合金磁粉芯的制作方法
CN104319050A (zh) * 2014-11-06 2015-01-28 钢铁研究总院 双相纳米晶高频软磁材料及其制备方法
CN109982791A (zh) 2016-11-28 2019-07-05 国立大学法人东北大学 稀土类铁氮系磁性粉末及其制造方法
CN110047637A (zh) 2019-03-20 2019-07-23 兰州大学 一种高频用2:17型稀土类-铁-氮系复合磁性材料的制备方法
JP2020161726A (ja) * 2019-03-27 2020-10-01 旭化成株式会社 高周波用複合磁性材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. MAGN. MAGN. MATER, vol. 424, no. 15, 2017, pages 39 - 43
LIU DONG; ZHANG YAN; ZHOU CHENHUI; LV HUIPENG; CHEN SONG; CHEN YU; GAO SHANMIN; ZHANG BEIBEI: "A facile strategy for the core-shell FeSiAl composites with high-efficiency electromagnetic wave absorption", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 818, 1 November 2019 (2019-11-01), CH , XP086018926, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2019.152861 *
See also references of EP4195225A4

Also Published As

Publication number Publication date
CN116031037A (zh) 2023-04-28
EP4195225A1 (en) 2023-06-14
EP4195225A4 (en) 2024-01-31

Similar Documents

Publication Publication Date Title
JP6430556B2 (ja) 磁性材料、インダクタ素子、磁性インク及びアンテナ装置
JP6215163B2 (ja) 複合磁性材料の製造方法
JP6230513B2 (ja) 複合磁性材料の製造方法
JP6436082B2 (ja) 圧粉磁心、これを用いたコイル部品および圧粉磁心の製造方法
CN100519013C (zh) Fe-Ni50系合金粉末及磁粉芯制造方法
CN109786096B (zh) 一种二维层状金属软磁复合材料及其制备方法与应用
CN103262183A (zh) 复合软磁粉末、复合软磁磁粉芯以及它们的制备方法
CN112530655B (zh) 一种低功耗软磁合金材料及其制备方法和应用
CN106710771B (zh) 一种软磁合金材料及其制备方法、功率电感
CN111540558B (zh) 一种复合软磁材料及其制备方法
WO2017193384A1 (zh) 复合软磁材料及其制备方法
CN103745791A (zh) 一种具有超高磁导率的铁基纳米晶磁粉芯的制备方法
CN116013631A (zh) 一种FeSiAl复合软磁粉芯及其制备方法、应用
CN111081466A (zh) 一种非晶纳米晶软磁复合材料及其制备方法与应用
CN112712992A (zh) 一种FeSi/Ni复合磁粉芯及其制备方法
WO2023071226A1 (zh) 稀土离子掺杂的软磁合金、软磁复合材料及其制备方法
CN116053018A (zh) 一种低损耗高直流叠加特性磁粉心的制备方法
CN109599240B (zh) 一种铁氧体类软磁粉芯及其制备方法
CN110783091B (zh) 一种纳米晶FeSiBCr磁粉芯的制备方法
CN116670314A (zh) 用于制造磁体的磁性粉末、磁体和磁性元件
CN112712991A (zh) 一种FeSiAl/Ni复合磁粉芯及其制备方法
CN109148070A (zh) 一种新型复合磁粉芯及其制造方法
CN113096948B (zh) 一种高磁导率高饱和软磁合金材料及其制备方法
CN117809924A (zh) 一种低损耗纳米晶复合材料及其制备方法和应用
CN116612975A (zh) 一种高频低损耗铁基软磁复合材料的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18015730

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022830681

Country of ref document: EP

Effective date: 20230106