WO2023063672A1 - 금속-cnt 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-cnt 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법 - Google Patents

금속-cnt 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-cnt 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법 Download PDF

Info

Publication number
WO2023063672A1
WO2023063672A1 PCT/KR2022/015246 KR2022015246W WO2023063672A1 WO 2023063672 A1 WO2023063672 A1 WO 2023063672A1 KR 2022015246 W KR2022015246 W KR 2022015246W WO 2023063672 A1 WO2023063672 A1 WO 2023063672A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
metal
nanocomposite
cnt nanocomposite
electrode
Prior art date
Application number
PCT/KR2022/015246
Other languages
English (en)
French (fr)
Inventor
최수석
오정환
홍승현
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Priority to CN202280069225.5A priority Critical patent/CN118159685A/zh
Publication of WO2023063672A1 publication Critical patent/WO2023063672A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to a method for preparing a metal-CNT nanocomposite, a water electrolysis catalyst electrode including the metal-CNT nanocomposite prepared by the method, and a method for preparing the water electrolysis catalyst electrode.
  • water electrolysis should be performed at 1.23 V, but an overvoltage higher than that is required to produce hydrogen and oxygen in practice.
  • the higher the overvoltage the larger the amount of hydrogen and oxygen can be produced, but there is a problem that the cost of electric energy also increases.
  • the use of an electrode catalyst is unavoidable because the overvoltage entering the reaction must be lowered.
  • the method of synthesizing the electrode catalyst mainly uses a wet method with a long synthesis time and high cost of the catalyst, which increases the cost of hydrogen production. has
  • the problem to be solved in the present disclosure is to provide a method for manufacturing a metal-CNT (carbon nanotube) nanocomposite that can be used as a water electrolysis catalyst or a lithium ion battery electrode material without using a conventional wet method, and a water electrolysis catalyst To provide a water electrolysis catalyst electrode comprising a metal-CNT nanocomposite having excellent performance and a manufacturing method thereof.
  • a metal-CNT carbon nanotube
  • one aspect of the present disclosure is to inject a plasma forming gas into a triple torch type plasma jet device, and generate a plasma jet by applying power (Input power); injecting metal and CNT into the plasma jet by using a carrier gas, vaporizing the metal, and depositing the metal on the CNT; and recovering a metal-CNT nanocomposite by cooling the metal-deposited CNT.
  • the molar ratio of the metal and CNT may be 1-3:1.
  • the metal may be copper or nickel.
  • the CNT may have a diameter of 1 to 30 nm and a length of 20 ⁇ m or less.
  • the metal may be injected with an argon gas of 3 to 8 L/min, and the CNT may be injected with an argon gas of 5 to 55 L/min.
  • the metal-CNT nanocomposite may be in a form in which the metal is deposited on the surface of the CNT.
  • Another aspect of the present disclosure provides a metal-CNT nanocomposite prepared by the above-described manufacturing method.
  • Another aspect of the present disclosure is to prepare a metal-CNT nanocomposite by the method described above; and coating the metal-CNT nanocomposite on the water electrolysis catalyst electrode.
  • the step of coating the metal-CNT nanocomposite on the water electrolytic catalyst electrode may include preparing a catalyst ink containing the metal-CNT nanocomposite; and coating the catalyst ink on the electrode.
  • the preparing of the catalyst ink may include preparing a mixture of mixing a metal-CNT nanocomposite, propanol, deionized water, and Nafion; and subjecting the mixture to ultrasonication for 50 to 70 minutes.
  • a coating amount of the metal-CNT nanocomposite coated on the electrode may be 1 to 1.5 mg per cm 2 of the surface of the electrode.
  • Another aspect of the present disclosure provides a water electrolysis catalyst electrode including the metal-CNT nanocomposite prepared by the above manufacturing method.
  • the present disclosure uses thermal plasma to prepare a metal-CNT nanocomposite that can be used as a water electrolysis catalyst or a lithium ion battery electrode material, and to prepare a water electrolysis catalyst electrode including the same, thereby providing excellent electrical power without using a wet method. Due to the above, current density and surface area, excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) can be exhibited at the cathode or anode.
  • OER oxygen evolution reaction
  • HER hydrogen evolution reaction
  • FIG. 1 is a view showing a triple torch type plasma jet device according to the present disclosure.
  • FIG. 2 is a flowchart illustrating a method for manufacturing a metal-CNT nanocomposite according to the present disclosure.
  • FIG 3 is a flow chart showing a method for manufacturing a water electrolysis catalyst electrode according to the present disclosure.
  • FIG. 4 is a flow chart showing a catalyst ink manufacturing step according to the present disclosure.
  • 5 is an XRD graph of nickel-CNT nanocomposites prepared in Preparation Examples 1 to 3 and recovered from the first reactor.
  • FIG. 7 is a graph showing FE-SEM results of nickel-CNT nanocomposites prepared in Preparation Examples 1 to 3 and recovered from the first reactor.
  • FIG. 11 is a graph showing FE-SEM results of copper-CNT nanocomposites prepared in Preparation Examples 1 to 3 and recovered from the first reactor.
  • FIG. 13 is a photograph showing Potentiostat/Galva-nostat (PGSTAT128N, Metrohm, Switzerland) composed of three electrodes.
  • LSV linear scan voltage-current graph
  • 14B is a graph showing an overvoltage measured amount according to LSV measurement results.
  • 14C is a graph showing the Tafel slope.
  • 15a is a graph showing the results of measuring the circulating-current (CV) according to the scan rate of Example 4 (Cu-CNT) in the OER reaction.
  • 15B is a graph showing the results of measuring the circulating-current (CV) according to the scan rate of Example 2 (Ni-CNT) in the OER reaction.
  • FIG. 15C is a graph showing a current density difference that changes according to a scanning speed by measuring a current density difference between a highest point and a lowest point at a center voltage position in a CV measurement data graph in an OER response.
  • 16A is a graph showing a linear scanning voltammetry (LSV) for HER response.
  • 16B is a graph showing the overvoltage measured amount according to the LSV measurement result.
  • 16C is a graph showing the Tafel slope.
  • 17a is a graph showing the results of measuring the circulating-current (CV) according to the scan rate of Example 4 (Cu-CNT) in the HER response.
  • 17B is a graph showing the results of measuring the circulating-current (CV) according to the scan rate of Example 2 (Ni-CNT) in the HER reaction.
  • FIG. 17C is a graph showing a current density difference varying according to a scanning speed by measuring a current density difference between a peak and a trough at a center voltage position in a graph of CV measurement data in a HER response.
  • FIG. 1 is a view showing a triple torch type plasma jet device according to the present disclosure.
  • the triple torch type plasma jet apparatus includes a reaction tube 100 in which raw materials react and provide a space in which a plasma jet is formed; a torch unit 200 provided on one side of the reaction tube 100 and supplying a heat source to the supplied initial material; A metal supply unit 300 connected to the upper portion of the reaction tube 100 and supplying a metal raw material to the inside of the reaction tube 100 through a line; A CNT supply unit 400 connected to the central portion of the reaction tube 100 and supplying CNT raw material to the inside of the reaction tube 100 through a line; A power supply device 500 electrically connected to the torch unit 200 to supply power; and a gas supply device 600 connected to the torch unit 200, the metal supply unit 300, and the CNT supply unit 400 to supply gas, wherein the torch unit 200 has a plurality of torches at regular intervals. , and arranged so that the plasma jets generated from the plurality of torch units 200 can be merged.
  • the metal is supplied in the same direction as the plasma jet of the torch unit 200, and the CNT is supplied in the opposite direction from the plasma jet at the center of the reaction tube 100.
  • the CNT carbon nanotube
  • the CNT is injected with a large amount of carrier gas, and when the CNT is mixed with the metal and supplied together, due to the high temperature of the plasma jet, some of the CNT may be sublimated to exist in the form of CNT. does not exist. Therefore, it is preferable that the CNTs are supplied separately from the metal and injected together with a large amount of carrier gas as described above.
  • the reaction tube 100 is a space in which raw materials are reacted by a plasma jet and manufactured materials are accumulated, and includes a first reactor 110, a second reactor 120, and a third Reactor 130 may be included.
  • the torch unit 200 may include three torches, and may be arranged at equal intervals.
  • Generation of the triple torch-type plasma jet used in the present disclosure is preferably non-transferred.
  • the triple torch type plasma jet device generates a DC arc discharge between a cathode composed of a tungsten rod and an anode on the inner surface of a nozzle composed of copper, and flows a plasma forming gas in a swirling flow from the rear so that the plasma jet forming gas flows into the arc.
  • the metal-CNT nanocomposite can be prepared by generating a non-transporting plasma jet, which is heated by the anode nozzle and ejects a vigorous plasma jet flow from the anode nozzle.
  • the plasma jet is an ionized gas composed of electrons, ions, atoms, and molecules generated from a torch unit using a direct current arc or a high-frequency inductively coupled discharge. .
  • the metal-CNT nanocomposite according to the present disclosure comprises the steps of injecting a plasma forming gas into a triple torch type plasma jet device and applying power to generate a plasma jet; injecting metal and CNT into the plasma jet by using a carrier gas, vaporizing the metal, and depositing the metal on the CNT; and recovering a metal-CNT nanocomposite by cooling the metal-deposited CNT.
  • the step of injecting a plasma forming gas into the triple torch-type plasma jet device and applying power to generate a plasma jet is a mixture of argon (Ar) and nitrogen (N 2 ) in the triple torch-type plasma jet device, and It may be performed by injecting at a flow rate of 16 L/min and adjusting the input power of the plasma to 18 to 25 kW. At this time, argon and nitrogen may be mixed at 2 to 6 L/min and 6 to 10 L/min, respectively.
  • the step of injecting metal and CNT into the plasma jet using a carrier gas, vaporizing the metal, and depositing the metal on the CNT is performed as follows.
  • a metal raw material and CNT are respectively injected together with a carrier gas.
  • the metal raw material and the CNT may be injected in opposite directions, and the carrier gas may be argon gas.
  • a flow rate of argon gas injected together with the metal raw material may be 2 to 7 L/min, and an input amount of the metal raw material may be 0.5 to 0.7 g/min.
  • the flow rate of argon gas injected together with the CNT raw material may be 5 to 55 L/min, preferably 20 to 40 L/min, more preferably 25 to 30 L/min, ,
  • the input amount of the CNT raw material may be 0.05 ⁇ 0.07 g / min.
  • the water electrolysis catalyst exhibits the best efficacy within the range of the input amount of the metal and CNT and the flow rate of the argon gas, the above range is preferable.
  • the implanted metal raw material may be vaporized by a jet in plasma and deposited on the surface of the CNT to form a metal-CNT nanocomposite.
  • the CNT is not vaporized by being injected separately from the metal, and thus the metal can be deposited on the surface of the CNT.
  • a first reactor 110 for cooling the CNT on which the metal is deposited A cooling system may be further provided in the second reactor 120 and the third reactor 130, and the cooling may be natural cooling, and the metal-CNT nanocomposite is manufactured as the CNT on which the metal is deposited is cooled.
  • the molar ratio of the added metal and CNT may be 1 to 3:1, preferably 2:1, and the metal-CNT nanocomposite can be easily formed within the above range.
  • the metal may be copper or nickel powder having a diameter of 0.5 to 2 ⁇ m, preferably nickel powder.
  • the metal-CNT nanocomposite prepared through the above process can be manufactured in a short time in a single step, thereby increasing energy efficiency, and the metal-CNT nanocomposite may be in a form in which the metal is deposited on the surface of the CNT. .
  • Another embodiment according to aspects of the present disclosure relates to a metal-CNT nanocomposite prepared by the above-described manufacturing method.
  • the metal-CNT nanocomposite can be used in various fields, and preferably used as an anode material of a lithium ion battery or a water electrolysis catalyst.
  • Another embodiment according to an aspect of the present disclosure relates to a method for manufacturing a water electrolysis catalyst electrode including a metal-CNT nanocomposite prepared by the above-described manufacturing method.
  • the water electrolysis catalyst electrode according to the present disclosure includes preparing a metal-CNT nanocomposite using the above-described manufacturing method; and coating the metal-CNT nanocomposite on a water electrolytic catalyst electrode.
  • Another embodiment according to an aspect of the present disclosure relates to a method for preparing a catalyst ink including a metal-CNT nanocomposite prepared by the above-described method.
  • preparing a catalyst ink including a metal-CNT nanocomposite includes preparing a mixture of mixing the metal-CNT nanocomposite, propanol, deionized water, and Nafion; and subjecting the mixture to ultrasonication for 50 to 70 minutes.
  • the mixture may be prepared by mixing 40-60 mg of metal-CNT nanocomposite, 600-800 ⁇ l of propanol, 200-400 ⁇ l of deionized water and 5-20 ⁇ l of Nafion (5 wt%).
  • the ultrasonic treatment time is out of the above range, the manufacturing efficiency of the catalyst ink is reduced, so the above range is preferable.
  • the coating of the catalyst ink on the electrode may be performed by applying the sonicated catalyst ink on the electrode and then drying it. Specifically, 2 to 5 ⁇ l of the sonicated catalyst ink is applied to the electrode using a pipette. After applying the amount, it may be dried at room temperature for 40 to 50 minutes.
  • the electrode may be a glassy carbon electrode, and the coating amount of the metal-CNT nanocomposite coated on the electrode may be 1 to 1.5 mg per cm 2 of the electrode surface, preferably 1.2 mg per cm 2 of the electrode surface.
  • the coating amount of the metal-CNT nanocomposite coated on the surface of the electrode is out of the above range, the above range is preferable because there are problems in that the coating on the electrode and cracks after the applied ink is dried.
  • the present disclosure provides a water electrolysis catalyst electrode including a metal-CNT nanocomposite prepared by the above-described manufacturing method.
  • the water electrolysis catalyst electrode according to the present disclosure can generate hydrogen and oxygen at the cathode or anode, respectively, and can exhibit an excellent hydrogen generation reaction or oxygen generation reaction at the cathode or anode, respectively, in an alkaline electrolyte (1 M KOH). .
  • Plasma forming gas was supplied to the torch unit of the triple torch type plasma jet device shown in FIG. 1, and a plasma jet was generated under the operating conditions shown in Table 1 below.
  • nickel and CNT were respectively supplied to a triple torch type plasma jet device, and nickel was vaporized and deposited on the surface of the CNT.
  • the nickel-deposited CNT was cooled to prepare a nickel-CNT nanocomposite in which nickel was deposited on the surface of the CNT.
  • Plasma forming gas was supplied to the torch unit of the triple torch type plasma jet device shown in FIG. 1, and a plasma jet was generated under the operating conditions shown in Table 2 below.
  • copper and CNTs were respectively supplied to a triple torch type plasma jet device, and copper was vaporized and deposited on the surface of the CNTs.
  • the copper-deposited CNT was cooled to prepare a copper-CNT nanocomposite in which copper was deposited on the surface of the CNT.
  • a catalyst ink was prepared by mixing 50 mg of the nickel-CNT nanocomposite prepared in Preparation Example 1, 700 ⁇ l of propanol, 300 ⁇ l of deionized water, and 10 ⁇ l of Nafion (5 wt%) and ultrasonicating for 60 minutes.
  • the prepared catalyst ink is applied to a pre-cleaned glassy carbon electrode per cm 2
  • a catalytic electrode was prepared by loading (coating) 1.2 mg using a pipette and drying in air for 50 minutes.
  • a catalyst ink was prepared by mixing 50 mg of the nickel-CNT nanocomposite prepared in Preparation Example 2, 700 ⁇ l of propanol, 300 ⁇ l of deionized water, and 10 ⁇ l of Nafion (5 wt%) and ultrasonicating for 60 minutes.
  • the prepared catalyst ink was loaded (coated) with a pipette in an amount of 1.2 mg per cm 2 onto a previously washed glass carbon electrode, and then dried in air for 50 minutes to prepare a catalyst electrode.
  • a catalyst ink was prepared by mixing 50 mg of the copper-CNT nanocomposite prepared in Preparation Example 4, 700 ⁇ l of propanol, 300 ⁇ l of deionized water, and 10 ⁇ l of Nafion (5 wt%) and ultrasonicating for 60 minutes.
  • the prepared catalyst ink was loaded (coated) with a pipette in an amount of 1.2 mg per cm 2 onto a previously washed glass carbon electrode, and then dried in air for 50 minutes to prepare a catalyst electrode.
  • a catalyst ink was prepared by mixing 50 mg of the copper-CNT nanocomposite prepared in Preparation Example 5, 700 ⁇ l of propanol, 300 ⁇ l of deionized water, and 10 ⁇ l of Nafion (5 wt%) and ultrasonicating for 60 minutes.
  • the prepared catalyst ink was loaded (coated) with a pipette in an amount of 1.2 mg per cm 2 onto a previously washed glass carbon electrode, and then dried in air for 50 minutes to prepare a catalyst electrode.
  • the crystal structure of the nickel-CNT nanocomposites prepared in Preparation Examples 1 to 3 was analyzed using X-ray diffraction, and the crystal structure was analyzed using FE-SEM, and the results are shown in FIGS. 5 to 7 showed up
  • FIG. 5 is an XRD graph of nickel-CNT nanocomposites prepared in Preparation Examples 1 to 3 and recovered from the first reactor
  • FIG. 6 is prepared in Preparation Example 2 and recovered from the first to third reactors. It is an XRD graph of the CNT nanocomposite
  • FIG. 7 is a graph showing FE-SEM results of the nickel-CNT nanocomposite prepared in Preparation Examples 1 to 3 and recovered from the first reactor.
  • Ni-CNT nanocomposite exists as general spherical nanoparticles, not in the form of Ni, from which Ni nanoparticles were synthesized. You can check.
  • Production Examples 2 (c, d) and 3 (e, f) it can be confirmed that the particles presumed to be Ni are attached to the surface of the CNT.
  • the nickel-CNT nanocomposite prepared in Preparation Example 2 and recovered from the first reactor was analyzed using FE-TEM (Talos Fe200X G2 (Thermo Fisher Scientific, US)), SEAD and EDS, and the results for this help 8.
  • FIG. 9 is an XRD graph of copper-CNT nanocomposites prepared in Preparation Examples 4 to 6 and recovered from the first reactor, and FIG. 10 is prepared in Preparation Example 5 and recovered from the first to third reactors.
  • 11 is an XRD graph of the CNT nanocomposite, and FIG. 11 is a graph showing FE-SEM results of the copper-CNT nanocomposite prepared in Preparation Examples 1 to 3 and recovered from the first reactor.
  • the copper-CNT nanocomposite prepared in Preparation Example 5 and recovered from the first reactor was analyzed using FE-TEM (Talos Fe200X G2 (Thermo Fisher Scientific, US)), SEAD and EDS. 12.
  • Electrochemical properties of the water electrolysis catalysts prepared in Examples 1 to 4 were evaluated using a 3-electrode Potentiostat/Galva-nostat (PGSTAT128N, Metrohm, Switzerland), and the equipment used is shown in FIG. 13.
  • a glass carbon electrode with a diameter of 3 mm was used as the working electrode, a platinum sheet was used as the counter electrode, and Ag/AgCl/3M KCl with a double junction was used as the reference electrode.
  • 1 M KOH (pH 14) was used as all electrochemical electrolytes, and a rotator rotating the working electrode at 1,600 rpm was used for all solutions to remove bubbles generated in the working electrode.
  • LSV Linear sweep voltammetry
  • OER oxygen evolution response
  • the double layer capacitance (Cdl) to obtain the electrochemical active surface area (ECSA) is in the non-Faradic potential range of 1.1 ⁇ 1.4 V vs. While changing the scanning speed from 20 to 120 mV/s in RHE, a voltage-current (Cyclic voltammetry, CV) graph is measured and measured using the CV graph.
  • LSV Linear sweep voltammetry
  • the double layer capacitance (Cdl) to obtain the electrochemical active surface area (ECSA) is in the non-Faradic potential 0.4 ⁇ 0.6 V vs. While changing the scanning speed from 20 to 120 mV/s in RHE, a voltage-current (Cyclic voltammetry, CV) graph is measured and measured using the CV graph.
  • FIG. 14A is a graph showing a linear scan voltage-current graph (LSV) for OER response
  • FIG. 14B is a graph showing an overvoltage measurement according to LSV measurement results
  • FIG. 14C is a graph showing a Tapel slope. .
  • the current increase according to the voltage increase is more rapid in the case of including the Ni-CNT nanocomposite (Examples 1 and 2) than in the case of including the Cu-CNT nanocomposite (Examples 3 and 4).
  • the overvoltage value is lower in the case of including the Ni-CNT nanocomposite (Examples 1 and 2) than in the case of including the Cu-CNT nanocomposite (Examples 3 and 4). there is.
  • Example 2 was 0.328 V and 0.350 V, which was lower than Example 4.
  • Example 2 (Ni-CNT) has a Tafel slope of 62.4 mV/dec, which is lower than 66.5 mV/dec of Example 4 (Ni-CNT).
  • Figure 15a is a graph showing the results of measuring the circulating current (CV) according to the scan rate of Example 4 (Cu-CNT) in the OER reaction
  • Figure 15b is a graph showing the results of Example 2 (Ni-CNT) in the OER reaction
  • Figure 15c is a graph showing the results of measuring the circulating-current (CV) according to the scan speed
  • FIG. 15c is a graph showing the current density difference between the highest point and the lowest point at the center voltage position in the CV measurement data graph in the OER response. It is a graph showing the changing current density difference.
  • the slope of FIG. 15c is a double-layer capacitance (Cdl) value proportional to ECSA, meaning that the active surface area of the catalyst increases as the slope increases.
  • Cdl double-layer capacitance
  • FIG. 16A is a graph showing a linear scan voltage-current graph (LSV) for the HER response
  • FIG. 16B is a graph showing the measured amount of overvoltage according to the LSV measurement result
  • FIG. 16C is a graph showing the Tafel slope.
  • LSV linear scan voltage-current graph
  • the current increase according to the voltage increase is more rapid in the case of including the Ni-CNT nanocomposite (Examples 1 and 2) than in the case of including the Cu-CNT nanocomposite (Examples 3 and 4).
  • Example 2 (Ni-CNT) showed -0.192 V and -0.228 V at 10 mA/cm 2 and 20 mA/cm 2
  • Example 4 (Cu-CNT) at 10 mA/cm 2 -0.439 V, measured at -0.490 V at 20 mA/cm 2 .
  • Example 2 (Ni-CNT) has a Tafel slope of 48.8 mV/dec, which is lower than 98.2 mV/dec of Example 4 (Ni-CNT).
  • 17a is a graph showing the results of measuring the circulating current (CV) according to the scan rate of Example 4 (Cu-CNT) in the HER reaction
  • FIG. 17B is a graph showing the results of Example 2 (Ni-CNT) in the HER reaction
  • 17c is a graph showing the results of measuring the circulating-current (CV) according to the scan rate of
  • FIG. 17c is a graph showing the current density difference between the highest point and the lowest point at the center voltage position in the CV measurement data graph in the HER response. It is a graph showing the changing current density difference.
  • the slope of FIG. 17c is a double-layer capacitor (Cdl) value proportional to ECSA, and the larger the slope, the greater the active surface area of the catalyst. 17a to 17c, it can be confirmed that Example 2 (Ni-CNT) has a higher surface activity than Example 4 (Cu-CNT).
  • Table 3 compares the OER and HER activities of catalysts prepared by chemical reduction and non-plating in the same electrolyte or at the same pH and the water electrolysis catalyst containing metal-CNT of the present disclosure.
  • NP nanoparticles
  • NS nanosheets
  • NR nanorods
  • NB nanobelts
  • 3D NNCNTAs three-dimensional Ni@[Ni( 2+/3+ )Co 2 (OH) 6-7 ]x nanotube arrays
  • NF nickel foam
  • the process using thermal plasma of the present disclosure has the advantage of not requiring unnecessary processes such as filtration and drying.
  • the Ni-CNT nanocomposite of the present disclosure has excellent OER and HER activities.
  • the present disclosure uses thermal plasma to prepare a metal-CNT nanocomposite that can be used as a water electrolysis catalyst or a lithium ion battery electrode material, and to prepare a water electrolysis catalyst electrode including the same, thereby producing a method without using a wet method.
  • a metal-CNT nanocomposite that can be used as a water electrolysis catalyst or a lithium ion battery electrode material
  • HER hydrogen evolution reaction
  • reaction tube 110 first reaction tube
  • the method for manufacturing a metal-CNT nanocomposite according to the present disclosure is to prepare a metal-CNT nanocomposite that can be used as a water electrolysis catalyst or a lithium ion battery electrode material using thermal plasma, and to prepare a water electrolysis catalyst electrode including the same.
  • excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) can be exhibited at the cathode or anode due to excellent overpotential, current density and surface area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

본 개시는 금속-CNT 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법에 관한 것으로, 구체적으로, 종래의 습식법을 사용하지 않고, 수전해 촉매 또는 리튬이온 배터리 전극 소재로도 활용가능한 금속-CNT(탄소나노튜브) 나노 복합재의 제조방법을 제공하고, 물 전기분해 촉매로서 우수한 성능을 가지는 금속-CNT를 포함하는 수전해 촉매 제조방법을 제공할 수 있다.

Description

금속-CNT 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법
관련 출원에 대한 상호 참조
본 출원은 2021년 10월 14일에 출원된 한국 특허출원 제2021-0136848호에 대한 우선권 이익을 주장하며, 상기 특허출원의 내용은 그 전문이 본 명세서에 참조로 통합된다.
본 개시는 금속-CNT 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법에 관한 것이다.
전기에너지를 물 분자에 가하면 수소와 산소 분자가 생성되는데, 이들의 전체 반응은 수소발생 반응 (Hydrogen Evolution Reaction, HER)과 산소발생 반응 (Oxygen Evolution reaction, OER)의 두 가지 반응으로 이루어진다.
물 전기분해는 이론적으로 1.23 V에서 이루어져야 하지만, 실제 수소 및 산소를 생산하기 위해서는 그 이상의 과전압이 필요하다. 과전압이 높을수록 더 많은 양의 수소 및 산소를 생산할 수 있지만 그만큼 전기에너지 비용도 증가한다는 문제가 발생한다.
전기에너지 비용을 줄이기 위해서는 반응에 들어가는 과전압을 낮추어야 하기 때문에 전극촉매 사용이 불가피하나, 전극 촉매를 합성하는 방식에는 주로 합성 시간이 길고 촉매 단가가 비싼 습식법을 사용하고 있어, 수소 생산 비용을 상승시킨다는 단점을 가지고 있다.
따라서, 상기 문제점을 해결할 수 있는 전극 촉매 제조 기술이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
1. 등록특허 제10-1733492호(2017.04.28.)
본 개시에서 해결하고자 하는 과제는 종래의 습식법을 사용하지 않고, 수전해 촉매 또는 리튬이온 배터리 전극 소재로도 활용이 가능한 금속-CNT(탄소나노튜브) 나노 복합재 제조방법을 제공하고, 물 전기분해 촉매로서 우수한 성능을 가지는 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극과 이의 제조방법을 제공하는 것이다.
전술한 기술적 과제를 해결하기 위해, 본 개시의 일 양태는 삼중 토치형 플라즈마 제트장치에 플라즈마 형성 가스를 주입하고, 전원(Input power)을 인가하여 플라즈마 제트를 발생시키는 단계; 상기 플라즈마 제트에 캐리어 가스를 이용하여 금속 및 CNT를 각각 주입하고, 금속을 기화시켜 CNT에 증착시키는 단계; 및 상기 금속이 증착된 CNT를 냉각하여 금속-CNT 나노 복합재를 회수하는 단계;를 포함하는 금속-CNT 나노 복합재 제조방법을 제공한다.
상기 금속 및 CNT의 몰비는 1~3:1일 수 있다.
상기 금속은 구리 또는 니켈일 수 있다.
상기 CNT의 직경은 1~30 nm일 수 있고, 길이는 20 ㎛이하일 수 있다.
상기 금속은 3~8 L/min의 아르곤 가스와 함께 주입될 수 있고, 상기 CNT는 5~55 L/min의 아르곤 가스와 함께 주입될 수 있다.
상기 금속-CNT 나노 복합재는 상기 금속이 상기 CNT의 표면에 증착된 형태일 수 있다.
본 개시의 다른 양태는 전술한 제조방법으로 제조된 금속-CNT 나노 복합재를 제공한다.
본 개시의 또 다른 양태는 전술한 방법으로 금속-CNT 나노 복합재를 제조하는 단계; 및 상기 금속-CNT 나노 복합재를 수전해 촉매전극에 코팅하는 단계;를 포함하는 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극의 제조방법을 제공한다.
상기 금속-CNT 나노 복합재를 수전해 촉매전극에 코팅하는 단계는, 금속-CNT 나노 복합재가 포함된 촉매 잉크를 제조하는 단계; 및 상기 촉매 잉크를 전극에 코팅하는 단계;를 포함할 수 있다.
상기 촉매 잉크를 제조하는 단계는, 금속-CNT 나노 복합재, 프로판올, 탈이온수 및 나피온(Nafion)을 혼합하는 혼합물 제조 단계; 및 상기 혼합물을 50~70분 동안 초음파 처리하는 단계;를 포함할 수 있다.
상기 전극에 코팅된 금속-CNT 나노 복합재의 코팅양은, 상기 전극 표면 ㎠당 1~1.5 mg일 수 있다.
본 개시의 또 다른 양태는 상기 제조방법으로 제조된 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극을 제공한다.
본 개시는 열 플라즈마를 사용하여 수전해 촉매 또는 리튬이온 배터리 전극 소재로도 활용이 가능한 금속-CNT 나노 복합재를 제조하고, 이를 포함하는 수전해 촉매전극을 제조함으로써, 습식법을 사용하지 않고, 우수한 과전위, 전류밀도 및 표면적으로 인해 음극 또는 양극에서 우수한 산소발생반응(OER) 및 수소발생반응(HER)을 나타낼 수 있다.
도 1은 본 개시에 따른 삼중 토치형 플라즈마 제트장치를 나타낸 도면이다.
도 2는 본 개시에 따른 금속-CNT 나노 복합재 제조방법을 나타낸 순서도이다.
도 3는 본 개시에 따른 수전해 촉매전극의 제조방법을 나타내는 순서도이다.
도 4는 본 개시에 따른 촉매잉크 제조단계를 나타내는 순서도이다.
도 5은 제조예 1 내지 3에서 제조되고, 제1 반응기에서 회수한 니켈-CNT 나노복합재의 XRD 그래프이다.
도 6은 제조예 2에서 제조되고, 제1 반응기 내지 제3 반응기에서 회수한 니켈-CNT 나노복합재의 XRD 그래프이다.
도 7은 제조예 1 내지 3에서 제조되고, 제1 반응기에서 회수한 니켈-CNT 나노복합재의 FE-SEM 결과를 나타낸 그래프이다.
도 8은 제조예 2에서 제조되고, 제1 반응기에서 회수된 니켈-CNT 나노복합재의 FE-TEM, SEAD 및 EDS 분석 결과이다.
도 9는 제조예 4 내지 6에서 제조되고, 제1 반응기에서 회수한 구리-CNT 나노복합재의 XRD 그래프이다.
도 10은 제조예 5에서 제조되고, 제1 반응기 내지 제3 반응기에서 회수한 구리-CNT 나노복합재의 XRD 그래프이다.
도 11은 제조예 1 내지 3에서 제조되고, 제1 반응기에서 회수한 구리-CNT 나노복합재의 FE-SEM 결과를 나타낸 그래프이다.
도 12는 제조예 5에서 제조되고, 제1 반응기에서 회수된 니켈-CNT 나노복합재의 FE-TEM, SEAD 및 EDS 분석 결과이다.
도 13은 3전극으로 구성된 Potentiostat/Galva-nostat(PGSTAT128N, Metrohm, Switzerland)를 나타낸 사진이다.
도 14a는 OER 반응에 대한 선형 주사 전압-전류 그래프(LSV)를 나타낸 그래프이다.
도 14b는 LSV 측정 결과에 따른 과전압 측정량을 나타낸 그래프이다.
도 14c는 타펠 기울기(Tafel slope)를 나타낸 그래프이다.
도 15a는 OER 반응에서, 실시예 4(Cu-CNT)의 스캔 속도에 따라 순환-전류(CV)를 측정한 결과를 나타낸 그래프이다.
도 15b는 OER 반응에서, 실시예 2(Ni-CNT)의 스캔 속도에 따라 순환-전류(CV)를 측정한 결과를 나타낸 그래프이다.
도 15c는 OER 반응에서, CV 측정 데이터 그래프에서 중심 전압 위치에서 최고점과 최저점의 전류밀도차를 측정하여 주사속도에 따라 변화하는 전류밀도차를 나타낸 그래프이다.
도 16a는 HER 반응에 대한 선형 주사 전압-전류 그래프(LSV)를 나타낸 그래프이다.
도 16b는 LSV 측정 결과에 따른 과전압 측정량을 나타낸 그래프이다.
도 16c는 타펠 기울기를 나타낸 그래프이다.
도 17a는 HER 반응에서, 실시예 4(Cu-CNT)의 스캔 속도에 따라 순환-전류(CV)를 측정한 결과를 나타낸 그래프이다.
도 17b는 HER 반응에서, 실시예 2(Ni-CNT)의 스캔 속도에 따라 순환-전류(CV)를 측정한 결과를 나타낸 그래프이다.
도 17c는 HER 반응에서, CV 측정 데이터 그래프에서 중심 전압 위치에서 최고점과 최저점의 전류밀도차를 측정하여 주사속도에 따라 변화하는 전류밀도차를 나타낸 그래프이다.
이하에서는 본 개시의 바람직한 실시예를 상세하게 설명한다. 본 개시를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 개시의 설명에 앞서 본 개시에서 사용되는 삼중 토치형 플라즈마 장치에 대하여 먼저 설명하도록 한다.
도 1은 본 개시에 따른 삼중 토치형 플라즈마 제트장치를 나타낸 도면이다.
도 1을 참조하면, 삼중 토치형 플라즈마 제트장치는, 플라즈마 제트가 형성되는 공간을 제공하며 원료 물질들이 반응하는 반응관(100); 상기 반응관(100) 일측에 구비되어 공급되는 초기 물질에 열원을 공급하는 토치부(200); 상기 반응관(100)의 상부와 연결되어 라인을 통해 금속 원료를 반응관(100) 내부에 공급하는 금속 공급부(300); 상기 반응관(100)의 중심부와 연결되어 라인을 통해 CNT 원료를 반응관(100) 내부에 공급하는 CNT 공급부(400); 상기 토치부(200)와 전기적으로 연결되어, 전원을 공급하는 전원 공급 장치(500); 및 상기 토치부(200), 금속 공급부(300) 및 CNT 공급부(400)와 연결되어 가스를 공급하는 가스 공급 장치(600);를 포함하고, 상기 토치부(200)는 다수의 토치가 등 간격으로 배치되고, 상기 다수 개의 토치부(200)에서 발생되는 플라즈마 제트가 병합될 수 있도록 배치된다.
또한, 상기 금속은 토치부(200)의 플라즈마 제트와 동일 방향으로 공급되고, 상기 CNT는 반응관(100)의 중심부에서 플라즈마 제트와 반대되는 방향으로 공급된다.
상기 CNT(탄소나노튜브)는 다량의 캐리어 가스와 함께 주입되며, 상기 CNT가 상기 금속과 혼합되어 함께 공급되면, 플라즈마 제트의 높은 온도로 인해, 상기 CNT의 일부가 승화되어 CNT의 형태로 존재할 수 없다. 따라서 상기 CNT는 전술한 바와 같이 금속과 별도로 공급되고 다량의 캐리어 가스와 함께 주입되는 것이 바람직하다.
상기 반응관(100)은 플라즈마 제트에 의해 원료 물질들이 반응하고, 제조된 물질이 축적되는 공간으로써, 일측에 급냉 시스템이 구비되어 있는 제1 반응기(110), 제2 반응기(120) 및 제3 반응기(130)를 포함할 수 있다.
상기 토치부(200)는 3개의 토치가 구비될 수 있으며, 등 간격으로 배치될 수 있다.
본 개시에서 사용되는 삼중 토치형 플라즈마 제트의 발생은 비이송식(Non-Transferred)인 것이 바람직하다.
본 개시에서는 삼중 토치형 플라즈마 제트 장치는 텅스텐 봉으로 구성된 음극과 동으로 구성된 노즐 내면의 양극 사이에 직류 아크 방전을 생성시키고, 후방으로부터 플라즈마 형성 가스를 선회류로 흘려보내 플라즈마 제트 형성 가스가 아크에 의해 가열되며, 양극 노즐에서 격렬한 플라즈마 제트류가 분출되는 비이송식 플라즈마 제트 발생으로 금속-CNT 나노복합재를 제조할 수 있다.
상기 플라즈마 제트는 직류 아크나 고주파 유도 결합 방전을 이용하여 토치부에서 발생하는 전자, 이온, 원자 및 분자로 구성된 이온화 기체로, 수천에서 수만 켈빈(K)에 이르는 초고온과 높은 활성을 가진 고속 제트이다.
이하, 본 개시의 양태에 따른 일 실시형태로서, 금속-CNT 나노 복합재 제조방법에 대하여 상세히 설명한다.
도 2에 나타낸 바와 같이, 본 개시에 따른 금속-CNT 나노 복합재는, 삼중 토치형 플라즈마 제트장치에 플라즈마 형성 가스를 주입하고, 전원을 인가하여 플라즈마 제트를 발생시키는 단계; 상기 플라즈마 제트에 캐리어 가스를 이용하여 금속 및 CNT를 각각 주입하고, 금속을 기화시켜 CNT에 증착시키는 단계; 및 상기 금속이 증착된 CNT를 냉각하여 금속-CNT 나노 복합재를 회수하는 단계;를 통해 제조할 수 있다.
상기 삼중 토치형 플라즈마 제트장치에 플라즈마 형성 가스를 주입하고, 전원을 인가하여 플라즈마 제트를 발생시키는 단계는, 상기 삼중 토치형 플라즈마 제트장치에 아르곤(Ar)과 질소(N2)를 혼합하여 8~16 L/min 유량으로 주입하고, 플라즈마의 전원(Input power)을 18~25 kW로 조절하여 진행될 수 있다. 이때, 아르곤 및 질소를 각각 2~6 L/min 및 6~10 L/min로 혼합할 수 있다.
상기 플라즈마 제트에 캐리어 가스를 이용하여 금속 및 CNT를 각각 주입하고, 금속을 기화시켜 CNT에 증착시키는 단계는 하기와 같이 수행된다.
먼저, 금속 원료 및 CNT를 캐리어 가스와 함께 각각 주입한다. 이때, 금속 원료와 CNT는 서로 반대되는 방향으로 주입될 수 있으며, 상기 캐리어 가스는 아르곤 기체일 수 있다.
상기 금속 원료와 함께 주입되는 아르곤 기체의 유량은 2~7 L/min일 수 있으며, 상기 금속 원료의 투입량은 0.5~0.7 g/min일 수 있다. 또한, 상기 CNT 원료와 함께 주입되는 아르곤 기체의 유량은 5~55 L/min일 수 있으며, 바람직하게는 20~40 L/min일 수 있고, 더욱 바람직하게는 25~30 L/min일 수 있으며, 상기 CNT 원료의 투입량은 0.05~0.07 g/min일 수 있다.
상기 금속 및 CNT의 투입량과, 상기 아르곤 기체의 유량 범위 내에서 가장 우수한 수전해 촉매 효능을 나타내므로, 상기 범위가 바람직하다.
또한, 상기 CNT와 함께 주입되는 아르곤 기체의 유량이 5 L/min 미만이거나, 55 L/min 초과하면, CNT 표면에 금속이 증착되지 않고 일반적인 나노 사이즈의 금속 입자가 합성될 수 있다.
상기 주입된 금속 원료는 플라즈마에 제트에 의해 기화되고, 상기 CNT의 표면에 증착되어, 금속-CNT 나노복합재를 형성할 수 있다. 상기 CNT는 상기 금속과 별도로 투입되어 기화되지 않고, 이에 따라 상기 금속이 CNT 표면에 증착될 수 있다.
상기 금속이 증착된 CNT의 냉각을 위해 제1 반응기(110); 제2 반응기(120) 및 제3 반응기(130)에 냉각시스템을 더 구비할 수 있으며, 상기 냉각은 자연 냉각일 수 있고, 상기 금속이 증착된 CNT가 냉각되면서 금속-CNT 나노복합재가 제조된다.
상기 투입되는 금속 및 CNT의 몰비는 1~3:1일 수 있고, 바람직하게는 2:1일 수 있으며, 상기 범위 내에서 금속-CNT 나노복합재가 용이하게 형성될 수 있다.
상기 금속은 직경이 0.5~2 ㎛인 구리 또는 니켈 분말일 수 있으며, 바람직하게는 니켈 분말일 수 있다.
상기한 과정을 통해 제조된 금속-CNT 나노복합재는 단일 STEP으로 짧은 시간에 제조됨으로써, 에너지 효율을 높일 수 있으며, 상기 금속-CNT 나노 복합재는 상기 금속이 상기 CNT의 표면에 증착된 형태일 수 있다.
본 개시의 양태에 따른 다른 실시형태는 전술한 제조방법으로 제조된 금속-CNT 나노 복합재와 관련이 있다.
상기 금속-CNT 나노 복합재는 다양한 분야에 사용될 수 있으며, 바람직하게는 리튬이온배터리의 음극재 또는 수전해 촉매에 사용될 수 있다.
본 개시의 양태에 따른 다른 실시형태는 전술한 제조방법으로 제조한 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극의 제조방법과 관련이 있다.
도 3에 나타낸 바와 같이, 본 개시에 따른 수전해 촉매전극은 전술한 제조방법을 이용하여 금속-CNT 나노 복합재를 제조하는 단계; 및 상기 금속-CNT 나노 복합재를 수전해 촉매전극에 코팅하는 단계;를 통해 제조할 수 있다.
금속-CNT 나노 복합재를 제조하는 방법은 전술한 바와 동일하므로, 상세한 설명은 생략한다.
본 개시의 양태에 따른 다른 실시형태는 전술한 제조방법으로 제조한 금속-CNT 나노 복합재를 포함하는 촉매잉크의 제조방법과 관련이 있다.
도 4에 나타낸 바와 같이, 금속-CNT 나노복합재가 포함된 촉매 잉크를 제조하는 단계는 금속-CNT 나노복합재, 프로판올, 탈이온수 및 나피온(Nafion)를 혼합하는 혼합물 제조 단계; 및 상기 혼합물을 50~70분 동안 초음파 처리하는 단계;를 포함할 수 있다.
상기 혼합물은 금속-CNT 나노복합재 40~60 mg, 프로판올 600~800 ㎕, 탈이온수 200~400 ㎕ 및 나피온(5 wt%) 5~20 ㎕를 혼합하여 제조될 수 있다.
상기 초음파 처리 시간이 상기 범위를 벗어나면 촉매 잉크의 제조효율이 저하되어 상기 범위가 바람직하다.
상기 촉매 잉크를 전극에 코팅하는 단계는, 상기 전극에 상기 초음파 처리된 촉매 잉크를 도포한 후 건조하여 진행될 수 있고, 구체적으로, 피펫을 이용하여 전극에 상기 초음파 처리된 촉매 잉크 2~5㎕의 양을 도포한 후 상온에 40~50 분 동안 건조하여 진행될 수 있다.
상기 전극은 유리 탄소 전극일 수 있으며, 상기 전극에 코팅된 금속-CNT 나노복합재의 코팅양은, 상기 전극 표면 cm2당 1~1.5 mg일 수 있으며, 바람직하게는 상기 전극 표면 cm2당 1.2 mg일 수 있다.
상기 전극 표면에 코팅된 금속-CNT 나노복합재의 코팅양이 상기한 범위를 벗어나면 도포된 잉크가 건조된 후 크랙 및 전극에 코팅이 잘 안된다는 문제점이 있어 상기한 범위가 바람직하다.
본 개시에 따른 실시형태로서, 본 개시는 전술한 제조방법으로 제조된 금속-CNT 나노복합재를 포함하는 수전해 촉매전극을 제공한다.
본 개시에 따른 수전해 촉매전극은 음극 또는 양극에서 각각 수소와 산소를 생성할 수 있으며, 구체적으로 알칼리 전해질(1 M KOH)에서 음극 또는 양극에서 각각 우수한 수소발생반응 또는 산소발생반응을 발휘할 수 있다.
이하, 본 개시를 하기의 실시예 및 실험예에 의해 보다 상세하게 설명한다.
제조예 1 내지 3 : 니켈-CNT 나노복합재
도 1에 나타낸 삼중 토치형 플라즈마 제트 장치의 토치부에 플라즈마 형성 가스를 공급하고 하기 표 1의 운전조건으로 플라즈마 제트를 발생시켰다.
다음으로, 삼중 토치형 플라즈마 제트장치에 니켈과 CNT를 각각 공급하고, 니켈을 기화시켜, CNT 표면에 증착시켰다.
이후, 니켈이 증착된 CNT를 냉각시켜 니켈이 CNT 표면에 증착된, 니켈-CNT 나노 복합재를 제조하였다.
여기서, 니켈(1 μm, 순도 99.8%, Sigma Aldrich, USA)와 CNT(직경 : 5~20 nm, 길이 : 10 μm 이하, Carbon Nano-material Technology, Korea)는 시판되는 것을 사용하였으며, 운전 시간은 10분이였다.
구분 제조예1
(EXP 1)
제조예2
(EXP 2)
제조예3
(EXP 3)
Molar ratio of Ni/CNT(니켈 : 탄소나노튜브 몰비, mol%) 2:1 2:1 2:1
Flow rate of carrier gas for Ni(니켈 캐리어 가스 유량, L/min) 5 Ar 5 Ar 5 Ar
Flow rate of carrier gas for CNT(CNT 캐리어 가스 유량, L/min) 10 Ar 27 Ar 50 Ar
Feeding rate(원료 공급속도, g/min) Ni : 0.6
CNT : 0.062
Ni : 0.6
CNT : 0.062
Ni : 0.6
CNT : 0.062
Flow rate of plasma forming gas (플라즈마 형성 가스 유량, L/min) 4 Ar 8 N2 4 Ar
8 N2
4 Ar
8 N2
Plasma input power(플라즈마 전원, kW) 21 21 21
Reactor pressure(반응기 압력, kPa) 101.3 101.3 101.3
제조예 4 내지 6 : 구리-CNT 나노복합재
도 1에 나타낸 삼중 토치형 플라즈마 제트 장치의 토치부에 플라즈마 형성 가스를 공급하고 하기 표 2의 운전조건으로 플라즈마 제트를 발생시켰다.
다음으로, 삼중 토치형 플라즈마 제트장치에 구리와 CNT를 각각 공급하고, 구리를 기화시켜, CNT 표면에 증착시켰다.
이후, 구리가 증착된 CNT를 냉각시켜 구리가 CNT 표면에 증착된, 구리-CNT 나노 복합재를 제조하였다.
여기서, 구리(1 μm, 순도 99.5%, Sigma Aldrich, USA)와 CNT(직경 : 5~20 nm, 길이 : 10μm 이하, Carbon Nano-material Technology, Korea)는 시판되는 것을 사용하였으며, 운전 시간은 10분이였다.
구분 제조예4
(EXP 4)
제조예5
(EXP 5)
제조예6
(EXP 6)
Molar ratio of Cu/CNT(구리 : 탄소나노튜브 몰비, mol%) 2 : 1 2 : 1 2 : 1
Flow rate of carrier gas for Cu(구리 캐리어 가스 유량, L/min) 5 Ar 5 Ar 5 Ar
Flow rate of carrier gas for CNT(CNT 캐리어 가스 유량, L/min) 10 Ar 27 Ar 50 Ar
Feeding rate(원료 공급속도, g/min) Cu : 0.61
CNT : 0.057
Cu : 0.61
CNT : 0.057
Cu : 0.61
CNT : 0.057
Flow rate of plasma forming gas (플라즈마 형성 가스 유량, L/min) 4 Ar 8 N2 4 Ar
8 N2
4 Ar
8 N2
Plasma input power(플라즈마 전원, kW) 21 21 21
Reactor pressure(반응기 압력, kPa) 101.3 101.3 101.3
실시예 1
제조예 1에서 제조된 니켈-CNT 나노복합재 50 mg, 프로판올 700 ㎕, 탈이온수 300 ㎕ 및 나피온(5 wt%) 10 ㎕를 혼합하고 60분 동안 초음파 처리하여 촉매잉크를 제조하였다.
제조된 촉매 잉크는 미리 세척한 유리 탄소전극에 cm2 1.2 mg을 피펫을 이용하여 로딩(코팅)시킨 후 50 분 동안 공기 중에서 건조시켜 촉매전극을 제조하였다.
실시예 2
제조예 2에서 제조된 니켈-CNT 나노복합재 50 mg, 프로판올 700 ㎕, 탈이온수 300 ㎕ 및 나피온(5 wt%) 10 ㎕를 혼합하고 60분 동안 초음파 처리하여 촉매잉크를 제조하였다.
제조된 촉매 잉크는 미리 세척한 유리 탄소전극에 cm2당 1.2 mg을 피펫을 이용하여 로딩(코팅)시킨 후 50 분 동안 공기 중에서 건조시켜 촉매전극을 제조하였다.
실시예 3
제조예 4에서 제조된 구리-CNT 나노복합재 50 mg, 프로판올 700 ㎕, 탈이온수 300 ㎕ 및 나피온(5 wt%) 10 ㎕를 혼합하고 60분 동안 초음파 처리하여 촉매잉크를 제조하였다.
제조된 촉매 잉크는 미리 세척한 유리 탄소전극에 cm2당 1.2 mg을 피펫을 이용하여 로딩(코팅)시킨 후 50 분 동안 공기 중에서 건조시켜 촉매전극을 제조하였다.
실시예 4
제조예 5에서 제조된 구리-CNT 나노복합재 50 mg, 프로판올 700 ㎕, 탈이온수 300 ㎕ 및 나피온(5 wt%) 10 ㎕를 혼합하고 60분 동안 초음파 처리하여 촉매잉크를 제조하였다.
제조된 촉매 잉크는 미리 세척한 유리 탄소전극에 cm2당 1.2 mg을 피펫을 이용하여 로딩(코팅)시킨 후 50 분 동안 공기 중에서 건조시켜 촉매전극을 제조하였다.
실험예 1
상기 제조예 1 내지 3에서 제조된 니켈-CNT 나노복합재의 결정구조를 X-선 회절을 이용하여 분석하였고, 결정구조는 FE-SEM을 이용하여 분석하였고, 이에 대한 결과를 도 5 내지 도 7에 나타내었다.
도 5은 제조예 1 내지 3에서 제조되고, 제1 반응기에서 회수한 니켈-CNT 나노복합재의 XRD 그래프이고, 도 6은 제조예 2에서 제조되고, 제1 반응기 내지 제3 반응기에서 회수한 니켈-CNT 나노복합재의 XRD 그래프이고, 도 7은 제조예 1 내지 3에서 제조되고, 제1 반응기에서 회수한 니켈-CNT 나노복합재의 FE-SEM 결과를 나타낸 그래프이다.
도 5를 참조하면, Ni, CNT 피크가 두개 존재하지만, CNT의 결정성이 Ni보다 상대적으로 많이 낮기 때문에, 그래프 상에서 CNT의 피크가 존재하지 않는 것으로 보여진다. 또한, CNT가 금속과 별도로 다량의 아르곤 가스와 함께 투입되었기 때문에, CNT가 플라즈마의 고온에 노출되어도 구조적으로 변형 없이 유지되었으며, 이에 따라 Ni와 반응할 C가 없어 탄화니켈이 합성되지 않은 것을 확인할 수 있다.
도 6을 참조하면, 포집 위치에 따라서도 Ni 피크만 존재하였고, 결정성 또한 비슷한 모습을 나타내었다.
도 7을 참조하면, 제조예 1의 경우(a, b), Ni-CNT 나노 복합재가의 형태가 아닌 일반적인 구형의 나노입자들로 존재하는 것을 확인할 수 있으며, 이로부터 Ni 나노 입자가 합성된 것을 확인할 수 있다. 제조예 2(c, d) 및 3(e, f)는 Ni로 추측되는 입자들이 CNT의 표면에 붙어있는 형상을 확인할 수 있다.
실험예 2
상기 제조예 2에서 제조되고, 제1 반응기에서 회수한 니켈-CNT 나노복합재를 FE-TEM(Talos Fe200X G2(Thermo Fisher Scientific, US)), SEAD 및 EDS를 이용하여 분석하였고, 이에 대한 결과를 도 8에 나타내었다.
도 8은 제조예 2에서 제조되고, 제1 반응기에서 회수된 니켈-CNT 나노복합재의 FE-TEM, SEAD 및 EDS 분석 결과이다.
도 8을 참조하면, FE-TEM 이미지(a)에서 CNT 표면에 입자들이 증착된 것을 확인할 수 있으며, SAED 패턴의 경우(b), XRD 회절 분석과 동일한 데이터를 나타내는 것을 확인할 수 있다. 또한, TEM-EDS 맵핑 분석을 살펴보면(c~f), CNT 표면에 증착된 입자가 Ni임을 확인할 수 있으며, 입자를 감싸는 얇은 산화막이 형성되어 있는 것을 확인할 수 있다.
실험예 3
상기 제조예 4 내지 6에서 제조된 구리-CNT 나노복합재의 결정구조를 X-선 회절을 이용하여 분석하였고, 결정구조는 FE-SEM을 이용하여 분석하였고, 이에 대한 결과를 도 9 내지 도 11에 나타내었다.
도 9는 제조예 4 내지 6에서 제조되고, 제1 반응기에서 회수한 구리-CNT 나노복합재의 XRD 그래프이고, 도 10은 제조예 5에서 제조되고, 제1 반응기 내지 제3 반응기에서 회수한 구리-CNT 나노복합재의 XRD 그래프이고, 도 11은 제조예 1 내지 3에서 제조되고, 제1 반응기에서 회수한 구리-CNT 나노복합재의 FE-SEM 결과를 나타낸 그래프이다.
도 9를 참조하면, Cu, CNT 피크가 두개 존재하지만, CNT의 결정성이 Cu보다 상대적으로 낮기 때문에, 그래프 상에서 CNT의 피크의 존재는 명확하게 나타나지 않는다. 또한, CNT가 금속과 별도로 다량의 아르곤 가스와 함께 투입되었기 때문에, CNT가 플라즈마의 고온에 노출되어도 구조적으로 변형 없이 유지되었으며, 이에 따라 Cu와 반응할 C가 없어 탄화구리가 합성되지 않은 것을 확인할 수 있다.
도 10을 참조하면, 포집 위치에 따라서도 Cu 피크만 존재하였고, 결정성 또한 비슷한 모습을 나타내었다.
도 11을 참조하면, 제조예 4의 경우(a, b), Cu-CNT 나노 복합재가의 형태가 아닌 일반적인 구형의 나노입자로 존재하는 것을 확인할 수 있으며, 이로부터 Ni 나노입자가 합성된 것을 확인할 수 있다. 제조예 5(c, d) 및 6(e, f)은 Ni로 추측되는 입자들이 CNT의 표면에 붙어있는 형상을 확인할 수 있으며, Ni-CNT 나노복합재와 비교할 때, 입자의 사이즈가 상대적으로 큰 것을 확인할 수 있다.
이는 Ni와 Cu의 열전도도의 차이에 의한 것으로서, 열전도도가 높은 Cu가 Ni보다 빠른 핵 형성으로 인해 성장시간이 길어 Ni-CNT보다 큰 입자가 형성된 것으로 판단된다.
실험예 4
상기 제조예 5에서 제조되고, 제1 반응기에서 회수한 구리-CNT 나노복합재를 FE-TEM(Talos Fe200X G2(Thermo Fisher Scientific, US)), SEAD 및 EDS를 이용하여 분석하였고, 이에 대한 결과를 도 12에 나타내었다.
도 12는 제조예 5에서 제조되고, 제1 반응기에서 회수된 니켈-CNT 나노복합재의 FE-TEM, SEAD 및 EDS 분석 결과이다.
도 12를 참조하면, FE-TEM 이미지(a)에서 CNT 표면에 입자들이 증착된 것을 확인할 수 있으며, SAED 패턴의 경우(b), XRD 회절 분석과 동일한 데이터를 나타내는 것을 확인할 수 있다. 또한, TEM-EDS 맵핑 분석을 살펴보면(c~f), CNT 표면에 증착된 입자가 Cu임을 확인할 수 있으며, 입자를 감싸는 얇은 산화막이 형성되어 있는 것을 확인할 수 있다.
실험예 5
전기화학 특성 평가 방법
실시예 1 내지 4에서 제조된 수전해 촉매의 전기 화학적 특성 평가는 3전극으로 구성된 Potentiostat/Galva-nostat(PGSTAT128N, Metrohm, Switzerland)를 이용하여 측정하였으며, 사용된 장비는 도 13에 나타내었다.
작동전극(Working electrode)으로 직경 3 mm의 유리 탄소 전극을 사용하였으며, 상대 전극(Counter electrode)으로 백금 시트를 사용하였고, 기준전극(Reference electrode)으로 이중 접합부가 있는 Ag/AgCl/3M KCl을 사용하였다.
본 개시에서 모든 전위는 하기의 식 1을 이용하여 가역성 수소전극(Reversible hydrogen electrode, RHE)을 기준으로 계산하였다.
[수학식 1]
ERHE = EAg/AgCl + 0.1976 V + (0.059 × pH))
본 개시에서는 모든 전기화학 전해질은 1 M KOH(pH 14)를 사용하였으며, 모든 용액은 작동전극에 발생하는 버블을 제거하기 위하여 작동전극을 1,600 rpm으로 회전시켜주는 로테이터를 사용하였다.
산소발생반응(OER)에 대한 선형 주사 전압-전류(Linear sweep voltammetry, LSV)를 0.5 ~ 2 V vs. RHE 범위 내에서 주사 속도를 10 mV/s로 하여 측정하였다.
전기 화학적 활성 표면적(Electrochemical active surface area, ECSA)를 구하기 위한 이중층 커패시턴스(Cdl)는 유도전류가 흐르지 않는 전압 범위(non-Faradic potenital) 1.1 ~ 1.4 V vs. RHE에서 주사 속도를 20에서 120 mV/s로 변경하면서, 전압-전류(Cyclic voltammetry, CV) 그래프를 측정하고, CV 그래프를 이용하여 측정한다.
수소발생반응(HER)에 대한 선형 주사 전압-전류(Linear sweep voltammetry, LSV)를 0 ~ -1 V vs. RHE 범위 내에서 주사 속도를 10 mV/s로 하여 측정하였다.
전기 화학적 활성 표면적(Electrochemical active surface area, ECSA)를 구하기 위한 이중층 커패시턴스(Cdl)는 유도전류가 흐르지 않는 전압 범위(non-Faradic potential) 0.4 ~ 0.6 V vs. RHE에서 주사 속도를 20에서 120 mV/s로 변경하면서, 전압-전류(Cyclic voltammetry, CV) 그래프를 측정하고, CV 그래프를 이용하여 측정한다.
결과 및 분석
1. 산소발생반응
1-1. 산소발생반응성 분석
도 14a는 OER 반응에 대한 선형 주사 전압-전류 그래프(LSV)를 나타낸 그래프이고, 도 14b는 LSV 측정 결과에 따른 과전압 측정량을 나타낸 그래프이고, 도 14c는 타펠 기울기(Tapel slope)를 나타낸 그래프이다.
도 14a를 참조하면, Ni-CNT 나노복합재를 포함하는 경우(실시예 1 및 2)가 Cu-CNT 나노복합재를 포함하는 경우(실시예 3 및 4)보다 전압 증가에 따른 전류 증가가 급격한 것을 확인할 수 있다.
또한, 아르곤 유량이 10 L/min인 경우(실시예 1 및 3)보다 아르곤 유량이 27 L/min인 경우(실시예 2 및 4)의 높은 전류 밀도를 보여주고 있다. 이는 아르곤의 유량이 낮은 경우, 일반적인 구형의 나노입자가 형성되고, 높은 경우에는 CNT 표면에 금속이 증착되었기 때문이다.
도 14b를 참조하면, 과전압 수치가 Ni-CNT 나노복합재를 포함하는 경우(실시예 1 및 2)가 Cu-CNT 나노복합재를 포함하는 경우(실시예 3 및 4)보다 낮은 수치를 나타내는 것을 확인할 수 있다.
구체적으로, 10 mA/㎠ 및 20 mA/㎠에서 실시예 2는 0.328 V 및 0.350 V으로, 실시예 4보다 낮은 것을 확인할 수 있다.
도 14c를 참조하면, 실시예 2(Ni-CNT)의 타펠 기울기가 62.4 mV/dec로, 실시예 4(Ni-CNT)의 66.5 mV/dec보다 낮은 수치를 나타내는 것을 확인할 수 있다.
상기 결과로부터 실시예 2에 따라 아르곤 가스가 27 L/min의 유량으로 투입되고, Ni-CNT 나노 복합재를 포함하는 경우, 산소발생반응에 대하여 우수하다는 것을 확인할 수 있다.
1-2. 전기화학적 활성 표면적(ECSA) 분석
도 15a는 OER 반응에서, 실시예 4(Cu-CNT)의 스캔 속도에 따라 순환-전류(CV)를 측정한 결과를 나타낸 그래프이고, 도 15b는 OER 반응에서, 실시예 2(Ni-CNT)의 스캔 속도에 따라 순환-전류(CV)를 측정한 결과를 나타낸 그래프이고, 도 15c는 OER 반응에서, CV 측정 데이터 그래프에서 중심 전압 위치에서 최고점과 최저점의 전류밀도차를 측정하여 주사속도에 따라 변화하는 전류밀도차를 나타낸 그래프이다.
도 15c의 기울기가 ECSA와 비례하는 이중층 커패시턴스(Cdl) 값으로 기울기가 클수록 촉매의 활성 표면적이 증가하는 것을 의미한다. 도 15a 내지 15c를 참조하면, 실시예 2(Ni-CNT)가 실시예 4(Cu-CNT)보다 높은 표면 활성도를 가지는 것을 확인할 수 있다.
상기 결과로부터 실시예 2에 따라 아르곤 가스가 27 L/min의 유량으로 투입되고, Ni-CNT 나노 복합재를 포함하는 경우, 산소발생반응에 대하여 우수하다는 것을 확인할 수 있다.
2. 수소발생반응
2-1. 수소발생반응성 분석
도 16a는 HER 반응에 대한 선형 주사 전압-전류 그래프(LSV)를 나타낸 그래프이고, 도 16b는 LSV 측정 결과에 따른 과전압 측정량을 나타낸 그래프이고, 도 16c는 타펠 기울기를 나타낸 그래프이다.
도 16a를 참조하면, Ni-CNT 나노복합재를 포함하는 경우(실시예 1 및 2)가 Cu-CNT 나노복합재를 포함하는 경우(실시예 3 및 4)보다 전압 증가에 따른 전류 증가가 급격한 것을 확인할 수 있다.
또한, 아르곤 유량이 10 L/min인 경우(실시예 1 및 3)보다 아르곤 유량이 27 L/min인 경우(실시예 2 및 4)의 높은 전류 밀도를 보여주고 있다.
도 16b를 참조하면, 과전압 수치가 Ni-CNT 나노복합재를 포함하는 경우(실시예 1 및 2)가 Cu-CNT 나노복합재를 포함하는 경우(실시예 3 및 4)보다 낮은 수치를 나타낸 것을 확인할 수 있다.
구체적으로, 10 mA/cm2 및 20 mA/cm2 에서 실시예 2(Ni-CNT)는 -0.192 V 및 -0.228 V를 보인 반면, 실시예 4(Cu-CNT)는 10 mA/cm2에서 -0.439 V, 20 mA/cm2에서 -0.490 V으로 측정되었다.
도 16c를 참조하면, 실시예 2(Ni-CNT)의 타펠 기울기가 48.8 mV/dec로, 실시예 4(Ni-CNT)의 98.2 mV/dec보다 낮은 수치를 나타내는 것을 확인할 수 있다.
상기 결과로부터 실시예 2에 따라 아르곤 가스가 27 L/min의 유량으로 투입되고, Ni-CNT 나노 복합재를 포함하는 경우, 수소발생반응에 대하여 우수하다는 것을 확인할 수 있다.
2-2. 전기화학적 활성 표면적(ECSA) 분석
도 17a는 HER 반응에서, 실시예 4(Cu-CNT)의 스캔 속도에 따라 순환-전류(CV)를 측정한 결과를 나타낸 그래프이고, 도 17b는 HER 반응에서, 실시예 2(Ni-CNT)의 스캔 속도에 따라 순환-전류(CV)를 측정한 결과를 나타낸 그래프이고, 도 17c는 HER 반응에서, CV 측정 데이터 그래프에서 중심 전압 위치에서 최고점과 최저점의 전류밀도차를 측정하여 주사속도에 따라 변화하는 전류밀도차를 나타낸 그래프이다.
도 17c의 기울기가 ECSA와 비례하는 이중층 커페시터(Cdl) 값으로 기울기가 클수록 촉매의 활성 표면적이 증가하는 것을 의미한다. 도 17a 내지 17c를 참조하면, 실시예 2(Ni-CNT)가 실시예 4(Cu-CNT)보다 높은 표면 활성도를 가지는 것을 확인할 수 있다.
상기 결과로부터 실시예 2에 따라 아르곤 가스가 27 L/min의 유량으로 투입되고, Ni-CNT 나노 복합재를 포함하는 경우, 수소발생반응에 대하여 우수하다는 것을 확인할 수 있다.
실험예 5 : 유사 전해액에서의 다양한 촉매들과 활성 비교
하기의 표 3은 동일한 전해질 또는 동일한 pH에서 화학적 환원 및 비전해도금 방식으로 제조된 촉매들과 본 개시의 금속-CNT를 포함하는 수전해 촉매의 OER 및 HER의 활성을 비교한 것이다.
물질 합성방법 전해질 Tafel slope (mV/dec.)
Ni-CNT nanopomposite 열플라즈마 1M KOH OER : 62.4
HER : 48.8
Cu-CNT nanopomposite 열플라즈마 1M KOH OER : 65.5
HER : 98.2
Co2B-500 화학적 환원 0.1M KOH OER : 45
1M KOH HER : 136.2
Co-Ni NP/NS 화학적 환원 1M KOH OER : 77
HER : 127
3D NNCNTAs 화학적 환원 1M KOH OER : 65
Amorphous transition metal boride 화학적 환원 1M KOH OER : 84
CoB/NF 비전해도금 1M KOH OER : 80HER : 96
β-Mo2C NP 화학적 환원 1M KOH HER : 60
β-Mo2C NR 화학적 환원 1M KOH HER : 66.2
β-Mo2C NB 화학적 환원 1M KOH HER : 49.7
CoFe2O4-Li NP 화학적 환원 1M KOH OER : 42.1
* NP: 나노입자, NS: 나노시트, NR: 나노로드, NB: 나노벨트 3D NNCNTAs: three-dimensional Ni@[Ni(2+/3+)Co2(OH)6-7]x 나노튜브 어레이, NF: 니켈 폼
종래의 대부분의 촉매들은 멀티 STEP과 오랜 공정 시간 필요한 화학적 감소에 의해 합성된 반면, 본 개시의 열플라즈마를 이용한 공정의 경우 여과 및 건조 등의 불필요한 공정이 없는 장점이 있다.
특히, 본 개시의 Ni-CNT 나노복합재는 Co2B-500, Co-Ni NP/NS, CoB/NF 등의 코발트 기반 촉매들과 비교하였을 때, OER 및 HER 활성이 매우 우수한 것을 확인할 수 있다.
이와 같이, 본 개시는 열 플라즈마를 사용하여 수전해 촉매 또는 리튬이온 배터리 전극 소재로도 활용이 가능한 금속-CNT 나노 복합재를 제조하고, 이를 포함하는 수전해 촉매전극을 제조함으로써, 습식법을 사용하지 않고, 우수한 과전위, 전류밀도 및 표면적으로 인해 음극 또는 양극에서 우수한 산소발생반응(OER) 및 수소발생반응(HER)을 나타낼 수 있다.
이상에서 본 개시의 바람직한 실시형태에 대하여 상세하게 설명하였지만 본 개시의 권리범위는 이로만 한정되는 것은 아니고, 첨부된 청구범위에서 정의하고 있는 본 개시의 기본 개념에 기초하여 당업자에 의해 시도될 수 있는 다수의 변형 및 개량 형태가 또한 본 개시의 권리범위에 속하도록 의도된다.
[부호의 설명]
100 : 반응관 110 : 제1 반응관
120 : 제2 반응관 130 : 제3 반응관
200 : 토치부 300 : 금속 공급부
400 : CNT 공급부 500: 전원 공급 장치
600: 가스 공급 장치
본 개시에 따른 금속-CNT 나노 복합재 제조방법은 열 플라즈마를 사용하여 수전해 촉매 또는 리튬이온 배터리 전극 소재로도 활용이 가능한 금속-CNT 나노 복합재를 제조하고, 이를 포함하는 수전해 촉매전극을 제조함으로써, 습식법을 사용하지 않고, 우수한 과전위, 전류밀도 및 표면적으로 인해 음극 또는 양극에서 우수한 산소발생반응(OER) 및 수소발생반응(HER)을 나타낼 수 있다.

Claims (12)

  1. 삼중 토치형 플라즈마 제트장치에 플라즈마 형성 가스를 주입하고, 전원을 인가하여 플라즈마 제트를 발생시키는 단계;
    상기 플라즈마 제트에 캐리어 가스를 이용하여 금속 및 CNT를 각각 주입하고, 금속을 기화시켜 CNT에 증착시키는 단계; 및
    상기 금속이 증착된 CNT를 냉각하여 금속-CNT 나노 복합재를 회수하는 단계;
    를 포함하는, 금속-CNT 나노 복합재의 제조방법.
  2. 제1항에 있어서,
    상기 금속 및 CNT의 몰비는 1~3:1인 것을 특징으로 하는, 금속-CNT 나노 복합재의 제조방법.
  3. 제1항에 있어서,
    상기 금속은 구리 또는 니켈인 것을 특징으로 하는, 금속-CNT 나노 복합재의 제조방법.
  4. 제1항에 있어서,
    상기 CNT의 직경은 1~30 nm이고, 길이는 20 ㎛이하인 것을 특징으로 하는, 금속-CNT 나노 복합재의 제조방법.
  5. 제1항에 있어서,
    상기 금속은 3~8 L/min의 아르곤 가스와 함께 주입되고, 상기 CNT는 5~55 L/min의 아르곤 가스와 함께 주입되는 것을 특징으로 하는, 금속-CNT 나노 복합재의 제조방법.
  6. 제1항에 있어서,
    상기 금속-CNT 나노 복합재는 상기 금속이 상기 CNT의 표면에 증착된 형태인 것을 특징으로 하는, 금속-CNT 나노 복합재의 제조방법.
  7. 제1항 내지 제6항 중 어느 한 항의 방법으로 제조된 금속-CNT 나노 복합재.
  8. 제1항 내지 제6항 중 어느 한 항의 방법으로 금속-CNT 나노 복합재를 제조하는 단계; 및
    상기 금속-CNT 나노 복합재를 수전해 촉매전극에 코팅하는 단계;
    를 포함하는, 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극의 제조방법.
  9. 제8항에 있어서,
    상기 금속-CNT 나노 복합재를 수전해 촉매전극에 코팅하는 단계는,
    금속-CNT 나노 복합재가 포함된 촉매 잉크를 제조하는 단계; 및
    상기 촉매 잉크를 전극에 코팅하는 단계;
    를 포함하는 것을 특징으로 하는, 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극의 제조방법.
  10. 제9항에 있어서,
    상기 촉매 잉크를 제조하는 단계는,
    금속-CNT 나노 복합재, 프로판올, 탈이온수 및 나피온(Nafion)를 혼합하는 혼합물 제조 단계; 및
    상기 혼합물을 50~70분 동안 초음파 처리하는 단계;
    를 포함하는 것을 특징으로 하는, 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극의 제조방법.
  11. 제8항에 있어서,
    상기 전극에 코팅된 금속-CNT 나노 복합재의 코팅양은,
    상기 전극 표면 cm2당 1~1.5 mg인 것을 특징으로 하는,
    금속-CNT 나노 복합재를 포함하는 수전해 촉매전극의 제조방법.
  12. 제8항 내지 제11항에 따른 제조방법으로 제조된 금속-CNT 나노 복합재를 포함하는 수전해 촉매전극.
PCT/KR2022/015246 2021-10-14 2022-10-11 금속-cnt 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-cnt 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법 WO2023063672A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280069225.5A CN118159685A (zh) 2021-10-14 2022-10-11 金属-cnt纳米复合材料的制备方法、包括由该制备方法制得的金属-cnt纳米复合材料的水电解催化剂电极、以及该水电解催化剂电极的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210136848A KR102661308B1 (ko) 2021-10-14 2021-10-14 금속-cnt 나노 복합재 제조방법 및 이를 포함하는 수전해 촉매전극의 제조방법
KR10-2021-0136848 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023063672A1 true WO2023063672A1 (ko) 2023-04-20

Family

ID=85988430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015246 WO2023063672A1 (ko) 2021-10-14 2022-10-11 금속-cnt 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-cnt 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법

Country Status (3)

Country Link
KR (1) KR102661308B1 (ko)
CN (1) CN118159685A (ko)
WO (1) WO2023063672A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174914A (zh) * 2023-09-20 2023-12-05 中能鑫储(北京)科技有限公司 一种应用于铝离子电池的三维集流体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211030A1 (en) * 2002-05-09 2003-11-13 Smiljanic Olivier Method and apparatus for producing single-wall carbon nanotubes
KR20050091705A (ko) * 2002-11-15 2005-09-15 맥길 유니버시티 Dc 비전사형 열 플라즈마 토치를 사용하여 카본나노튜브를 제조하는 방법
KR20050108699A (ko) * 2004-05-13 2005-11-17 재단법인서울대학교산학협력재단 열플라즈마 토치를 이용한 탄소나노튜브 제조방법 및 장치
KR20060116285A (ko) * 2005-05-09 2006-11-15 재단법인서울대학교산학협력재단 도전성 탄소 나노물질의 제조를 위한 열플라즈마 반응기 및그 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928662B1 (fr) * 2008-03-11 2011-08-26 Arkema France Procede et systeme de depot d'un metal ou metalloide sur des nanotubes de carbone
KR101733492B1 (ko) 2015-01-09 2017-05-11 한국과학기술연구원 음극 및 양극에서 각각 수소와 산소를 발생시키는 비귀금속계 수전해 촉매 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211030A1 (en) * 2002-05-09 2003-11-13 Smiljanic Olivier Method and apparatus for producing single-wall carbon nanotubes
KR20050091705A (ko) * 2002-11-15 2005-09-15 맥길 유니버시티 Dc 비전사형 열 플라즈마 토치를 사용하여 카본나노튜브를 제조하는 방법
KR20050108699A (ko) * 2004-05-13 2005-11-17 재단법인서울대학교산학협력재단 열플라즈마 토치를 이용한 탄소나노튜브 제조방법 및 장치
KR20060116285A (ko) * 2005-05-09 2006-11-15 재단법인서울대학교산학협력재단 도전성 탄소 나노물질의 제조를 위한 열플라즈마 반응기 및그 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 31 October 2020, GRADUATE SCHOOL OF JEJU NATIONAL UNIVERSITY, Korea, article HONG, SEUNG-HYUN: "Thermal plasma synthesis of Si-MWCNT nano composite and its electrochemical performance as an anode for lithium‐ion batteries", pages: 1 - 44, XP009546651 *
"Thesis for the degree of doctor of philosophy", 31 July 2021, GRADUATE SCHOOL OF JEJU NATIONAL UNIVERSITY, Korea, article OH, JEONG-HWAN: "Thermal Plasma Synthesis of Nano-catalyst and Analysis of Electrochemical Performance for Water Splitting", pages: 1 - 153, XP009545068 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174914A (zh) * 2023-09-20 2023-12-05 中能鑫储(北京)科技有限公司 一种应用于铝离子电池的三维集流体及其制备方法

Also Published As

Publication number Publication date
KR102661308B1 (ko) 2024-04-26
CN118159685A (zh) 2024-06-07
KR20230053788A (ko) 2023-04-24

Similar Documents

Publication Publication Date Title
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2023063672A1 (ko) 금속-cnt 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-cnt 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법
WO2017135709A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2020256395A2 (ko) 리튬이차전지 음극재용 탄소-규소복합산화물 복합체 및 이의 제조방법
WO2012169836A9 (ko) 층 구조물 및 그 제조방법
CN103155242A (zh) 电极片及其制备方法及超级电容器和锂离子电池
WO2019035503A1 (ko) 질소 도핑된 그래핀 양자점 제조방법, 질소 도핑된 그래핀 양자점 및 질소 도핑된 그래핀 양자점을 포함하는 태양전지
WO2020022725A1 (ko) 탄소나노튜브의 제조방법
WO2021125915A1 (ko) 전기화학 촉매 및 그 제조 방법
WO2021075906A1 (ko) 금속-탄소 복합 촉매, 그 제조 방법, 및 이를 포함하는 아연-공기 전지
WO2016114546A1 (ko) 전기선 폭발법 및 광소결을 통한 하이브리드 금속 패턴의 제조방법 및 이로부터 제조된 하이브리드 금속 패턴
WO2021215578A1 (ko) 롤투롤 대면적 그래핀 합성 장치, 대면적 그래핀의 제조방법 및 산화그래핀 직물의 환원방법
WO2024010271A1 (ko) 그래핀 제조 방법
WO2022092987A1 (ko) 열플라즈마로 합성된 붕소화코발트 나노입자를 포함하는 수전해 촉매전극의 제조방법 및 이에 따른 수전해 촉매전극
WO2018216983A2 (ko) 벌크소재, 이의 제조방법, 및 이를 포함하는 촉매 및 전극
WO2019059738A2 (ko) 전기증착을 이용한 구리 델라포사이트 광전극의 제조방법 및 이에 따라 제조된 광전극을 이용한 수소의 제조방법
WO2023013985A1 (ko) 수소발생반응용 루테늄계 나노촉매, 이의 제조방법, 수소발생전극 및 수전해시스템
WO2024191141A1 (ko) 열 플라즈마를 이용한 그래핀 연속 대량 제조 방법
WO2020009473A1 (ko) 전기분해용 환원 전극의 활성층 조성물 및 이로 유래된 환원 전극
WO2023075566A1 (ko) 백금-알칼리토금속 합금을 포함하는 복합체, 이를 포함하는 연료전지 및 수전해 전지 그리고 이의 제조방법
WO2024010287A1 (ko) 탄소지지체 기반 다공성 수분해 촉매 및 이의 제조방법
WO2022203191A1 (ko) 니오븀 함유 티타늄-루테늄 복합 나노 입자의 제조 방법, 니오븀 함유 티타늄-루테늄 복합 나노 입자 및 이를 포함하는 염소발생 전극
WO2022169061A1 (ko) 다공성 tio2-x 기반 인 시투 성장한 촉매 및 이의 제조방법
WO2023043121A1 (ko) 탄소 담지 로듐 원자단위 표면가공 백금 나노큐브 촉매 및 이의 제조방법, 이를 포함하는 에탄올 분해 장치
WO2020009475A1 (ko) 전기분해용 환원전극 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18700820

Country of ref document: US

Ref document number: 202280069225.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22881300

Country of ref document: EP

Kind code of ref document: A1