WO2023063377A1 - 接触センサ、及び配線シート - Google Patents

接触センサ、及び配線シート Download PDF

Info

Publication number
WO2023063377A1
WO2023063377A1 PCT/JP2022/038139 JP2022038139W WO2023063377A1 WO 2023063377 A1 WO2023063377 A1 WO 2023063377A1 JP 2022038139 W JP2022038139 W JP 2022038139W WO 2023063377 A1 WO2023063377 A1 WO 2023063377A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wiring sheet
sheet
pseudo
linear body
Prior art date
Application number
PCT/JP2022/038139
Other languages
English (en)
French (fr)
Inventor
拓也 大嶋
雅春 伊藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023554598A priority Critical patent/JPWO2023063377A1/ja
Priority to CN202280068699.8A priority patent/CN118103936A/zh
Publication of WO2023063377A1 publication Critical patent/WO2023063377A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/12Movable parts; Contacts mounted thereon
    • H01H13/14Operating parts, e.g. push-button
    • H01H13/16Operating parts, e.g. push-button adapted for operation by a part of the human body other than the hand, e.g. by foot

Definitions

  • the present invention relates to contact sensors and wiring sheets.
  • a device equipped with a sensor that detects by contact is known.
  • Such a device for example, is configured to determine whether it is on or off based on detection by a sensor, and when it is in the on state, it is in a conductive state and current is supplied, thereby exhibiting its function. .
  • Patent Literature 1 discloses a membrane switch that is installed in a vehicle seat on which an occupant sits.
  • the membrane switch disclosed in Patent Literature 1 includes a sensor that detects seating of an occupant, and a communication device that transmits a detection signal detected by the sensor through wireless communication and supplies power to the sensor through wireless power supply.
  • An object of the present invention is to provide a contact sensor capable of detecting contact and a wiring sheet provided with the sensor.
  • a pseudo sheet structure in which a plurality of conductive linear bodies are arranged at intervals, a first electrode electrically connected to the conductive linear bodies, and the pseudo sheet structure and the first electrode a second electrode that is spaced apart and that intersects with the conductive linear body and does not overlap with the first electrode in a plan view of the pseudo sheet structure;
  • the contact sensor includes a spacer, and the spacer is arranged along the direction in which the conductive linear body extends in a plan view of the contact sensor.
  • a contact sensor comprising at least one of a spacer and a second spacer arranged along the direction in which the second electrode extends.
  • a wiring sheet comprising the contact sensor according to any one of [1] to [4] and further comprising another first electrode paired with the first electrode.
  • the relationship between the resistance value R e1 in the axial direction of the first electrode and the overall resistance value rw in the axial direction of the conductive linear body is a wiring sheet that satisfies the condition represented by the following formula (F4). 20>r w /R e1 (F4)
  • the wiring sheet further includes a battery and a relay, and one of the pair of first electrodes is electrically connected to the battery, the other first electrode of the pair of first electrodes is electrically connected to the battery via the relay, and the second electrode is connected to the relay and a wiring sheet configured to be electrically connected to the battery via and energized through the wiring sheet by energizing the first electrode and the second electrode.
  • a contact sensor capable of detecting contact and a wiring sheet provided with the sensor.
  • FIG. 1B is an exploded perspective view schematically showing the wiring sheet shown in FIG. 1A;
  • FIG. 3 is a cross-sectional view showing the III-III cross section of FIG. 2;
  • FIG. 4 is a diagram schematically showing a wiring sheet provided with contact sensors according to a second embodiment, and is a schematic perspective view schematically showing the wiring sheet.
  • 4B is an exploded perspective view schematically showing the wiring sheet shown in FIG. 4A;
  • FIG. 3 is a plan view schematically showing a wiring sheet provided with contact sensors according to a second embodiment
  • FIG. 6 is a sectional view showing a VI-VI section of FIG. 5
  • It is a schematic diagram which represents typically an example of the wiring sheet which concerns on 3rd embodiment.
  • It is a schematic diagram which represents typically another example of the wiring sheet which concerns on 4th embodiment.
  • the wiring sheet 100 according to the present embodiment is a wiring sheet 100 provided with contact sensors, as shown in FIGS. 1A, 1B, 2, and 3. FIG. Hereinafter, the contact sensor according to this embodiment will be described together with the wiring sheet 100 according to this embodiment.
  • the wiring sheet 100 includes a pseudo-sheet structure 11 in which a plurality of conductive linear bodies 13 are arranged at intervals; and a first electrode 50 electrically connected to the linear body 13 .
  • the first electrodes 50 are configured as a pair of first electrodes 50 with one electrode paired with another first electrode (i.e., the pair of first electrodes 50 are the first electrodes 50 and the other electrode of the first electrode 50).
  • Wiring sheet 100 is spaced apart from pseudo sheet structure 11 and first electrode 50 , and intersects conductive linear bodies 13 and first electrode 50 in plan view of pseudo sheet structure 11 .
  • a non-overlapping second electrode 52 is provided.
  • the wiring sheet 100 includes a base material 17 (first base material), a resin layer 15 (first resin layer) supporting the pseudo sheet structure 11 on the base material 17, and the resin layer 15 A sheet-like conductive member having a pseudo sheet structure 11 laminated thereon is provided. Further, the wiring sheet 100 includes spacers 70 (first spacers) that separate the conductive linear bodies 13 and the first electrodes 50 from the second electrodes 52. The spacers 70 allow the conductive linear bodies 13 to They are arranged along the extending direction (hereinafter sometimes referred to as the axial direction of the conductive linear body 13). In wiring sheet 100 , two spacers 70 sandwich conductive linear body 13 along the axial direction of conductive linear body 13 for one conductive linear body 13 .
  • the second electrode 52 is arranged apart from the pseudo sheet structure 11 and the first electrode 50 by arranging the spacer 70 . Furthermore, the wiring sheet 100 has a base material 37 (second base material) arranged on the second electrode 52 . As shown in FIG. 2, in a plan view of the wiring sheet 100, the conductive linear bodies 13 are linear. 1A, 1B, and 3, in the wiring sheet 100, the first electrode 50, the second electrode 52, the conductive linear bodies 13, and the spacers 70 are all linear bodies. has the shape of
  • the spacers 70 are arranged on the wiring sheet 100, the conductive linear bodies 13 and the first electrodes 50 are not in contact with the second electrodes 52 in a state where no stress is applied, and the second electrodes 52 are The structure is such that it is not electrically connected to the pseudo seat structure 11 .
  • the conductive linear bodies 13 and the second electrodes 52 come into contact with each other, and the second electrodes 52 are electrically connected to the pseudo sheet structure 11.
  • the second electrode 52 is put into a state of not being electrically connected to the pseudo sheet structure 11 again.
  • the resistance value of the conductive linear body 13 changes. For example, by detecting a change in the resistance value of the conductive linear body 13, it is determined whether the second electrode 52 is in contact with or out of contact with the pseudo sheet structure 11. be. Therefore, the part provided with the pseudo seat structure 11, the first electrode 50 electrically connected to the pseudo seat structure 11, and the second electrode 52 functions as a contact sensor.
  • a pseudo sheet structure 11 in which a plurality of conductive linear bodies 13 are arranged at intervals, a first electrode 50 electrically connected to the conductive linear bodies 13, and a pseudo sheet structure 11 and the first electrode 50, and is provided with a second electrode 52 that intersects the conductive linear body 13 and does not overlap the first electrode 50 in a plan view of the pseudo sheet structure 11.
  • the wiring sheet 100 having such a configuration also functions as a contact sensor.
  • the pseudo sheet structure 11 and the second electrode 52 when the pseudo sheet structure 11 and the second electrode 52 come into contact with each other and are electrically connected to each other while a stress is applied, the pseudo sheet structure 11 and the second electrode 52 are brought into contact with each other. It will be in the energized state, and the energization will be in the ON state. In addition, when the pseudo sheet structure 11 and the second electrode 52 of the wiring sheet 100 are not in contact with each other and are electrically disconnected, the pseudo sheet structure 11 and the second electrode 52 are in a non-conductive state. Power is turned off.
  • the second electrode 52 and the pseudo sheet structure 11 are brought into contact with each other and electrically connected to each other, so that the conductive lines of the pseudo sheet structure 11 are formed.
  • the body 13 becomes a heater that generates heat.
  • the relationship between the thickness A of the spacer 70 and the diameter a of the conductive linear body 13 preferably satisfies the condition represented by the following formula (F1). 5.0a ⁇ A ⁇ 2.0a (F1)
  • the contact sensor (wiring sheet 100) satisfies the condition represented by the above formula (F1), so that it becomes easy to determine whether or not the pseudo sheet structure 11 and the second electrode 52 are in an energized state.
  • the ON state or the OFF state can be easily generated.
  • the spacers 70 have a linear shape, so the thickness A of the spacers 70 corresponds to the diameter of the spacers 70 .
  • the relationship between the resistance value R e2 in the axial direction of the second electrode 52 and the resistance value r 1 per conductive linear body 13 in the axial direction is represented by the following formula (F3). It is preferable to satisfy the following conditions. R e2 ⁇ 1.5r 1 (F3)
  • the wiring sheet 100 since the first electrodes 50 are configured as a pair of electrodes, the wiring sheet 100 can be applied to a heater as one of the applications.
  • the wiring sheet 100 When the wiring sheet 100 is applied as a heater, the wiring sheet 100 has the resistance value R e2 in the axial direction of the second electrode 52 equal to 1.1 of the resistance value r 1 per conductive linear body 13 in the axial direction. By increasing the size by 5 times or more, heat generation of the second electrode 52 can be easily suppressed.
  • the relationship between the resistance value R e1 in the axial direction of the first electrode 50 and the overall resistance value rw in the axial direction of the conductive linear body 13 is represented by the following formula (F4). is preferably satisfied. 20>r w /R e1 (F4)
  • the wiring sheet 100 When the wiring sheet 100 is applied as a heater, the wiring sheet 100 is such that the ratio of the resistance value rw of the entire conductive linear body 13 in the axial direction to the resistance value R e1 of the first electrode 50 in the axial direction is 20. By making it smaller than 100, it becomes easy to suppress the heat generation of the first electrode 50 .
  • the resistance values of the first electrode 50, the second electrode 52 and the conductive linear body 13 can be measured using a tester. First, the resistance values in the respective axial directions of the first electrode 50 and the second electrode 52 are measured. Next, the overall resistance value in the axial direction of the conductive linear body 13 to which the first electrode 50 is attached (that is, the resistance value of the pseudo sheet structure 11) is measured. Then, the resistance values of the first electrode 50 and the pseudo sheet structure 11 are calculated by subtracting the measured value of the first electrode 50 from the resistance value of the pseudo sheet structure 11 to which the first electrode 50 is attached. The resistance value of the pseudo sheet structure 11 is obtained as the total resistance value of the conductive linear body 13 in the axial direction.
  • each conductive linear body 13 in the axial direction is determined from the total resistance value of the conductive linear body 13 in the axial direction, depending on the number of the conductive linear bodies 13. A resistance value per one in the axial direction of the body 13 can be obtained. Moreover, the resistance value can be measured by removing the first electrode 50 from the wiring sheet 100 as necessary.
  • the resistance value of the pseudo sheet structure 11, the resistance value in the axial direction of the conductive linear body 13, the resistance value in the axial direction of the first electrode 50, and the resistance value in the axial direction of the second electrode 52 are appropriately known. It can be set by a method, and can be adjusted, for example, by changing the material, cross-sectional area, length, and the like.
  • the pseudo sheet structure 11 has a structure in which a plurality of conductive linear bodies 13 are arranged at intervals. In addition, the pseudo sheet structure 11 has a structure in which a plurality of pseudo sheet structures 11 are arranged in a direction intersecting with the axial direction of the conductive linear body 13 .
  • the volume resistivity of the conductive linear body 13 is preferably 1.0 ⁇ 10 ⁇ 9 ⁇ m or more and 1.0 ⁇ 10 ⁇ 3 ⁇ m or less, and preferably 1.0 ⁇ 10 ⁇ 8 ⁇ m It is more preferable to be not less than 1.0 ⁇ 10 ⁇ 4 ⁇ m.
  • the measurement of the volume resistivity of the conductive linear body 13 is as follows. A silver paste is applied to one end of the conductive linear body 13 and a portion of 40 mm in length from the end, and the resistance of the end and a portion of 40 mm in length from the end is measured. Find the resistance value of 13.
  • the cross-sectional area (unit: m 2 ) of the conductive linear body 13 is multiplied by the above resistance value, and the obtained value is divided by the measured length (0.04 m) to obtain the conductive linear body.
  • a volume resistivity of the body 13 is calculated.
  • the cross-sectional shape of the conductive linear body 13 is not particularly limited, and may be polygonal, flat, elliptical, circular, or the like. From the viewpoint of compatibility with the resin layer 15, etc., the cross-sectional shape of the conductive linear body 13 is preferably elliptical or circular.
  • the diameter a (see FIG. 3, etc.) of the conductive linear body 13 is preferably 5 ⁇ m or more and 3 mm or less. From the viewpoint of suppressing an increase in sheet resistance and improving heat generation efficiency and dielectric breakdown resistance when the wiring sheet 100 is used as a heating element, the diameter a of the conductive linear body 13 should be 8 ⁇ m or more and 1 mm or less. is more preferable, and more preferably 12 ⁇ m or more and 100 ⁇ m or less.
  • the cross section of the conductive linear body 13 is elliptical, it is preferable that the major axis is in the same range as the above diameter a.
  • the diameter a of the conductive linear body 13 is obtained by observing the conductive linear body 13 using a digital microscope, measuring the diameter of the conductive linear body 13 at five randomly selected locations, and averaging the diameters. value.
  • the distance L1 (see FIG. 3) between the conductive linear bodies 13 is preferably 0.3 mm or more and 50 mm or less, more preferably 0.5 mm or more and 30 mm or less, and 0.8 mm or more and 20 mm or less. is more preferred. If the spacing between the conductive linear bodies 13 is within the above range, the conductive linear bodies 13 are densely packed to some extent, so the resistance of the pseudo sheet structure 11 is kept low and the wiring sheet 100 is used as a heating element. The function of the wiring sheet 100 can be improved, for example, by making the temperature rise distribution uniform.
  • the distance L1 between the conductive linear bodies 13 is obtained by observing the conductive linear bodies 13 of the pseudo sheet structure 11 using a digital microscope and measuring the distance between two adjacent conductive linear bodies 13 .
  • the interval between two adjacent conductive linear bodies 13 is the length along the direction in which the conductive linear bodies 13 are arranged. It is the length between the parts (see Figure 3).
  • the interval L1 is the average value of the intervals between all the adjacent conductive linear bodies 13 when the conductive linear bodies 13 are arranged at uneven intervals.
  • the conductive linear body 13 is not particularly limited, but is preferably a linear body containing metal wires (hereinafter also referred to as "metal wire linear body").
  • Metal wires have high thermal conductivity, high electrical conductivity, high handling properties, and versatility.
  • the resistance of the metal wire linear body can be greatly reduced, and even if the diameter of the metal wire linear body is extremely small, the electric current required for heat generation can be applied. .
  • the conductive linear body 13 can be made difficult to be visually recognized.
  • the resistance value of the quasi-sheet structure 11, which is obtained as the total resistance value in the axial direction of the conductive linear body 13, is reduced, and light transmission is increased. easier to improve.
  • the wiring sheet 100 is applied as a heat generating element, rapid heat generation is likely to be realized.
  • a linear body containing a carbon nanotube and a linear body in which a thread is coated with a conductive coating can be used.
  • the metal wire linear body may be a linear body made of one metal wire, or may be a linear body made by twisting a plurality of metal wires.
  • Metal wires include metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more kinds of metals (for example, steels such as stainless steel and carbon steel, brass, phosphor bronze, zirconium copper alloys, beryllium copper, iron nickel, nichrome, nickel titanium, kanthal, hastelloy, and rhenium tungsten, etc.).
  • the metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder, or the like, and the surface is coated with a carbon material or polymer described later. good too.
  • a wire containing one or more metals selected from tungsten, molybdenum, and alloys containing these is preferable from the viewpoint of making the conductive linear body 13 thin, high-strength, and low in volume resistivity.
  • Metal wires also include metal wires coated with a carbon material. When the metal wire is coated with a carbon material, the metallic luster is reduced, making it easier to make the presence of the metal wire inconspicuous. Metal corrosion is also suppressed when metal wires are coated with a carbon material.
  • Examples of carbon materials that coat metal wires include amorphous carbon (e.g., carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.), graphite, fullerene, graphene, and carbon nanotubes. be done.
  • amorphous carbon e.g., carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.
  • a linear body containing carbon nanotubes is, for example, a carbon nanotube forest (a growing body in which a plurality of carbon nanotubes are grown on a substrate so as to be oriented in the vertical direction to the substrate, and is called an “array”). It can be obtained by drawing carbon nanotubes in a sheet form from the end of the carbon nanotube, bundling the drawn carbon nanotube sheet, and then twisting the bundle of carbon nanotubes. In such a production method, a ribbon-like carbon nanotube linear body is obtained when twisting is not applied during twisting, and a thread-like linear body is obtained when twisting is applied.
  • a ribbon-shaped carbon nanotube linear body is a linear body that does not have a structure in which carbon nanotubes are twisted.
  • a carbon nanotube linear body can be obtained by spinning a carbon nanotube dispersion.
  • Production of carbon nanotube linear bodies by spinning can be performed, for example, by the method disclosed in US Patent Application Publication No. 2013/0251619 (Japanese Patent Application Laid-Open No. 2012-126635).
  • a filamentous carbon nanotube linear body it is desirable to use a filamentous carbon nanotube linear body. It is preferable to obtain a filamentous carbon nanotube linear body by
  • the carbon nanotube linear body may be a linear body in which two or more carbon nanotube linear bodies are woven together.
  • the carbon nanotube linear body may be a linear body in which a carbon nanotube and another conductive material are combined (hereinafter also referred to as a "composite linear body").
  • a composite linear body for example, (1) a carbon nanotube linear body in which carbon nanotubes are pulled out in a sheet form from the ends of a carbon nanotube forest, the pulled out carbon nanotube sheets are bundled, and then the bundles of carbon nanotubes are twisted.
  • a single metal or metal alloy is deposited by vapor deposition, ion plating, sputtering, wet plating, etc.
  • Composite linear (2) a linear body of a single metal or a linear body of a metal alloy or a composite linear body in which bundles of carbon nanotubes are twisted together with a linear body, (3) a linear body of a single metal or a metal alloy and a composite linear body obtained by weaving a linear body or composite linear body of the above with a carbon nanotube linear body or composite linear body.
  • a metal when twisting the bundle of carbon nanotubes, a metal may be supported on the carbon nanotubes in the same manner as in the composite linear body of (1).
  • the composite linear body of (3) is a composite linear body obtained by knitting two linear bodies.
  • linear bodies As long as linear bodies are included, three or more carbon nanotube linear bodies, linear bodies made of a single metal, linear bodies made of a metal alloy, or composite linear bodies may be woven together.
  • the metal of the composite linear body include simple metals such as gold, silver, copper, iron, aluminum, nickel, chromium, tin, and zinc, and alloys containing at least one of these simple metals (copper-nickel- phosphorus alloys, copper-iron-phosphorus-zinc alloys, etc.).
  • the conductive linear body 13 may be a linear body in which a thread is coated with a conductive coating.
  • Yarns include yarns spun from resins such as nylon and polyester.
  • Examples of conductive coatings include coatings of metals, conductive polymers, carbon materials, and the like.
  • the conductive coating can be formed by plating, vapor deposition, or the like.
  • a linear body in which a thread is coated with a conductive coating can improve the conductivity of the linear body while maintaining the flexibility of the thread. That is, it becomes easy to reduce the resistance of the pseudo sheet structure 11 .
  • the conductive linear body 13 is preferably a gold-plated linear body. Since the conductive linear body 13 is plated with gold, the influence of the contact resistance can be suppressed to a negligible level, so that the resistance value is easily stabilized.
  • the resin layer 15 is a layer containing resin. This resin layer 15 can directly or indirectly support the pseudo sheet structure 11 . Moreover, the resin layer 15 is preferably a layer containing an adhesive. If the resin layer 15 is a layer containing an adhesive, the adhesive facilitates attachment of the conductive linear bodies 13 to the resin layer 15 when forming the pseudo sheet structure 11 on the resin layer 15 . . Moreover, it is preferable that the resin layer 15 has stretchability. In such a case, the stretchability of the wiring sheet 100 can be ensured.
  • the resin layer 15 may be a layer made of a resin that can be dried and solidified or cured. This gives the resin layer 15 sufficient hardness to protect the pseudo sheet structure 11, and the resin layer 15 also functions as a protective film. In addition, the resin layer 15 after being cured or dried and solidified has impact resistance, and deformation of the resin layer 15 due to impact can be suppressed.
  • a resin that can be dried and solidified means that a resin composition (including an adhesive composition) for forming a resin layer can be applied and then dried to remove moisture or a solvent and be solidified.
  • the curable resin means that a resin composition (including an adhesive composition) for forming a resin layer is applied, optionally dried, and then subjected to at least one of heat treatment and energy ray irradiation treatment. Represents a resin that can be solidified by undergoing a chemical reaction such as a polymerization reaction through treatment.
  • the resin layer 15 is preferably curable with energy rays such as ultraviolet rays, visible energy rays, infrared rays, and electron beams, because it can be easily cured in a short time.
  • energy ray curing includes heat curing by heating using energy rays.
  • the adhesive applied to the resin layer 15 is not particularly limited.
  • the adhesive used for the resin layer 15 includes a dry-hardening adhesive, an energy-ray-curable adhesive that is cured by energy rays, a thermosetting adhesive that is cured by heat, and an adhesive that reacts with moisture (moisture). , a solidifying adhesive, a so-called heat-sealing type adhesive that adheres when melted by heat and then cooled, a pressure-sensitive adhesive (adhesive) that adheres due to stickiness, and a sticking property when wetted. Adhesives and the like that allow However, from the viewpoint of ease of application, the resin layer 15 is preferably energy ray-curable. Examples of energy ray-curable resins include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferred.
  • acrylate compounds include chain aliphatic skeleton-containing (meth)acrylates (trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra( meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate, etc.) , cycloaliphatic skeleton-containing (meth)acrylates (dicyclopentanyl di(meth)acrylate, dicyclopentadiene di(meth)acrylate, etc.), polyalkylene glycol (meth)acrylates (polyethylene glycol di(meth)acrylate,
  • the weight average molecular weight (Mw) of the energy ray-curable resin is preferably 100 or more and 30,000 or less, more preferably 300 or more and 10,000 or less.
  • the energy ray-curable resin contained in the adhesive composition may be of only one type, or may be of two or more types. When two or more types of energy ray-curable resins are contained in the adhesive composition, their combination and ratio can be arbitrarily selected. Furthermore, it may be combined with a thermoplastic resin, which will be described later, and the combination and ratio can be arbitrarily selected.
  • the resin layer 15 may be an adhesive layer (pressure-sensitive adhesive layer) formed from an adhesive (pressure-sensitive adhesive).
  • the adhesive for the adhesive layer is not particularly limited. Examples of adhesives include acrylic adhesives, urethane adhesives, rubber adhesives, polyester adhesives, silicone adhesives, and polyvinyl ether adhesives. Among these, the adhesive is preferably at least one selected from the group consisting of an acrylic adhesive, a urethane adhesive, and a rubber adhesive, and more preferably an acrylic adhesive.
  • an acrylic polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear alkyl group or a branched alkyl group that is, at least an alkyl (meth) acrylate is polymerized polymer
  • an acrylic polymer containing a structural unit derived from a (meth)acrylate having a cyclic structure that is, a polymer obtained by polymerizing at least a (meth)acrylate having a cyclic structure
  • “(meth)acrylate” is used as a term indicating both "acrylate” and "methacrylate”, and the same applies to other similar terms.
  • the acrylic copolymer may be crosslinked with a crosslinking agent.
  • cross-linking agents include known epoxy-based cross-linking agents, isocyanate-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • crosslinking agents include known epoxy-based cross-linking agents, isocyanate-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • at least one hydroxyl group and carboxyl group that react with these crosslinking agents are added to the acrylic copolymer as functional groups derived from the monomer components of the acrylic polymer. Can be introduced into coalesce.
  • the resin layer 15 may contain the energy ray-curable resin described above in addition to the adhesive.
  • the energy-ray-curable components include a functional group that reacts with a functional group derived from a monomer component in the acrylic copolymer, and an energy-ray-polymerizable functional group. You may use the compound which has both groups in one molecule. The reaction between the functional group of the compound and the functional group derived from the monomer component in the acrylic copolymer enables the side chains of the acrylic copolymer to polymerize by irradiation with energy rays. Even when the pressure-sensitive adhesive is not an acrylic pressure-sensitive adhesive, a component having an energy ray-polymerizable side chain may be used as a polymer component other than the acrylic polymer.
  • thermosetting resin used for the resin layer 15 is not particularly limited, and specific examples include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, urethane resin, acrylic resin, benzoxazine resin, and phenoxy resin. , amine-based compounds, and acid anhydride-based compounds. These can be used individually by 1 type or in combination of 2 or more types. Among these, epoxy resins, phenol resins, melamine resins, urea resins, amine compounds and acid anhydride compounds are preferably used from the viewpoint of being suitable for curing using imidazole curing catalysts, and are particularly excellent.
  • the moisture-curable resin used for the resin layer 15 is not particularly limited, and examples thereof include urethane resin, modified silicone resin, etc., which are resins formed by curing isocyanate groups with moisture.
  • an energy ray-curable resin and a thermosetting resin is used for the resin layer 15, it is preferable to use a photopolymerization initiator, a thermal polymerization initiator, etc. according to these curable resins.
  • a photopolymerization initiator e.g., a photopolymerization initiator
  • a thermal polymerization initiator e.g., a thermosetting resin
  • the resin layer 15 can protect the pseudo sheet structure 11 more firmly.
  • Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1 -hydroxycyclohexylphenyl ketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and bis(2,4,6) -trimethylbenzoyl)-phenyl-phosphine oxide and the like.
  • Thermal polymerization initiators include hydrogen peroxide, peroxodisulfates (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), azo compounds (2,2'-azobis(2-amidinopropane) di hydrochloride, 4,4′-azobis(4-cyanovaleric acid), 2,2′-azobisisobutyronitrile, and 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), etc.) , and organic peroxides (benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, etc.).
  • polymerization initiators can be used singly or in combination of two or more.
  • the amount used is 0.1 parts by mass or more with respect to 100 parts by mass of the curable resin of at least one of the energy ray curable resin and the thermosetting resin. It is preferably 100 parts by mass or less, more preferably 1 part by mass or more and 100 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less.
  • the resin layer 15 may be a layer made of, for example, a thermoplastic resin composition instead of being curable.
  • a thermoplastic resin composition By including a solvent in the thermoplastic resin composition, the thermoplastic resin layer can be softened. This makes it easy to attach the conductive linear bodies 13 to the resin layer 15 when forming the pseudo sheet structure 11 on the resin layer 15 .
  • the thermoplastic resin layer can be dried and solidified.
  • thermoplastic resins include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polyether, polyethersulfone, polyimide and acrylic resin.
  • solvents include alcohol-based solvents, ketone-based solvents, ester-based solvents, ether-based solvents, hydrocarbon-based solvents, halogenated alkyl-based solvents, and water.
  • the resin layer 15 may contain an inorganic filler. By including the inorganic filler, the hardness of the cured resin layer 15 can be further improved. Also, the thermal conductivity of the resin layer 15 is improved.
  • inorganic fillers examples include inorganic powders (for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, metals, boron nitride, etc.), beads obtained by spheroidizing inorganic powders, and single crystals. fibers, and glass fibers.
  • silica fillers and alumina fillers are preferred as inorganic fillers.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the resin layer 15 may contain other components.
  • Other components include, for example, organic solvents, flame retardants, tackifiers, ultraviolet absorbers, antioxidants, preservatives, antifungal agents, plasticizers, antifoaming agents, and well-known additives such as wettability modifiers. agents.
  • the resin layer 15 may or may not be curable.
  • the resin layer 15 preferably has tackiness from the viewpoint of ease of arrangement. In this case, the resin layer 15 preferably has a high tackiness.
  • the second electrode 52 is in contact with the resin layer 15 in a stress-loaded state, the second electrode 52 is removed from the resin layer 15 when the stress-loaded state transitions to the stress-free state. From the viewpoint of making it easier to separate, the resin layer 15 preferably has a low tackiness. In this case, the resin layer 15 preferably has no tackiness.
  • the resin layer 15 is preferably curable, and more preferably a curable adhesive layer containing an energy ray curable resin.
  • the tackiness means stickiness that occurs on the surface of a substance.
  • the tackiness means stickiness that occurs on the surface of the resin layer 15 .
  • the thickness of the resin layer 15 is appropriately determined according to the application of the wiring sheet 100.
  • the thickness of the resin layer 15 is preferably 3 ⁇ m or more and 150 ⁇ m or less, more preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the first electrode 50 is used to supply current to the conductive linear body 13 .
  • the first electrodes 50 are arranged to be electrically connected to both end portions of the conductive linear body 13 .
  • the second electrode 52 is used to provide a function as a contact sensor. Second electrode 52 is arranged apart from conductive linear body 13 and first electrode 50 . Then, the second electrode 52 can be switched from on to off or from off to on by being electrically connected or not electrically connected to the conductive linear body 13 .
  • metals of the metal foil or metal wire include copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and Metals such as gold, or alloys containing two or more metals (for example, stainless steel, steel such as carbon steel, brass, phosphor bronze, zirconium copper alloy, beryllium copper, iron nickel, nichrome, nickel titanium, kanthal, Hastelloy, and rhenium tungsten, etc.).
  • the metal foil or metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder, or the like.
  • the metal foil or metal wire is preferably gold plated.
  • the first electrode 50 and the second electrode 52 are not particularly limited, and may be belt-shaped or linear. Electrode materials for the first electrode 50 and the second electrode 52 are not particularly limited, and may be, for example, metal foil or metal wire. The electrode material of the first electrode 50 and the second electrode 52 is preferably metal wire.
  • the cross-sectional shape of the metal wire is not particularly limited, and may be polygonal, flat, elliptical, or circular. is preferred.
  • the diameter of the metal wire is preferably 2 ⁇ m or more and 1000 ⁇ m or less, more preferably 2 ⁇ m or more and 500 ⁇ m or less, and even more preferably 5 ⁇ m or more and 300 ⁇ m or less. , 10 ⁇ m or more and 250 ⁇ m or less. If the diameters of the first electrode 50 and the second electrode 52 are within the above range, the electric conductivity is high and the resistance is low, and the resistance value with the pseudo sheet structure can be kept low. Moreover, sufficient strength as an electrode can be obtained.
  • the thickness of the electrode is the diameter of the metal wire.
  • the cross section of the metal wire is elliptical, it is preferable that the major axis is in the same range as the above diameter.
  • the volume resistivities of the first electrode 50 and the second electrode 52 are set in the following ranges from the viewpoint of suppressing the heat generation of the first electrode 50 and the second electrode 52.
  • the volume resistivity of the first electrode 50 is preferably 1.0 ⁇ 10 ⁇ 9 ⁇ m or more and 1.0 ⁇ 10 ⁇ 5 ⁇ m or less, and 5.0 ⁇ 10 ⁇ 9 ⁇ m or more5 It is more preferably 0 ⁇ 10 ⁇ 6 ⁇ m or less.
  • the volume resistivity of the second electrode 52 is preferably 1.0 ⁇ 10 ⁇ 9 ⁇ m or more and 1.0 ⁇ 10 ⁇ 3 ⁇ m or less, and 1.0 ⁇ 10 ⁇ 8 ⁇ m or more5 It is more preferably 0 ⁇ 10 ⁇ 4 ⁇ m or less.
  • the volume resistivity of the first electrode 50 and the second electrode 52 is obtained by the same method as the method of measuring the volume resistivity of the conductive linear body 13 .
  • the distance from one electrode to the other electrode is not particularly limited, and the distance W1 between one electrode and the other electrode (see FIG. 2) is, for example, It may be 2 mm or more and 2 m or less, or may be 50 mm or more and 500 mm or less. Further, the distance from one electrode of the first electrode 50 to the second electrode 52 at the position where the second electrode 52 is arranged is not particularly limited, and the distance between one electrode of the first electrode 50 and the second electrode 52 is A distance W2 between (see FIG. 2) may be, for example, 1 mm or more and 1 m or less, or may be 25 mm or more and 250 mm or less.
  • the wiring sheet 100 includes spacers 70 (first spacers).
  • a spacer 70 is used to separate the pseudo sheet structure 11 and the second electrode 52 .
  • the wiring sheet 100 according to the present embodiment may include a spacer 70 as long as the pseudo sheet structure 11 and the second electrode 52 can be separated from each other. 70 may not be provided.
  • the spacer 70 is a member provided as required.
  • the wiring sheet 100 is provided with the spacer 70, it becomes easier to maintain the OFF state when the aforementioned stress is not applied. Then, when the stress is applied, the second electrode 52 and the pseudo sheet structure 11 are brought into contact with each other by, for example, deformation of the spacer 70 . In other words, the wiring sheet 100 is provided with the spacers 70, so that the second electrode 52 and the pseudo sheet structure 11 can be easily switched between the contact state and the non-contact state.
  • the material of the spacer 70 is not particularly limited as long as it is an insulating material.
  • a known insulating material can be used for the spacer 70 .
  • the material of the spacer 70 preferably has the property of deforming when stress is applied and returning to its original shape when the stress is removed.
  • Forms of the spacer 70 include, for example, a sheet-like material, a belt-like material, and a linear material.
  • the material of the spacer 70 includes, for example, a material containing a thermoplastic resin. Examples of thermoplastic resins include polyolefin resins, polyester resins, polyamide resins, polyimide resins, and polyamideimide resins. When the spacer 70 contains a thermoplastic resin, films, resin foams, threads, fabrics, non-woven fabrics, etc.
  • thermoplastic resins containing these thermoplastic resins can be used.
  • the second electrode 52 and the pseudo-sheet structure 11 come into contact and can be electrically connected,
  • the aspect of the spacer 70 is not particularly limited.
  • the thickness (diameter) of spacer 70 is not particularly limited.
  • the thickness of the spacer 70 may be, for example, 10 ⁇ m or more and 10 mm or less, or 50 ⁇ m or more and 500 ⁇ m or less.
  • the thickness (diameter) of spacer 70 is preferably within a range that satisfies the relationship of the above-described formula (F1).
  • the spacer 70 may have a volume resistivity of 10 12 ⁇ cm or more.
  • the distance from the conductive linear body 13 to the spacer 70 is not particularly limited, and the distance L2 between the conductive linear body 13 and the spacer 70 is, for example, 250 ⁇ m or more and 20 mm. It may be less than or equal to 1 mm or more and 5 mm or less (see FIG. 2). The distances from the conductive linear body 13 to the spacers 70 arranged on both sides of the conductive linear body 13 may be the same or different.
  • wiring sheet 100 includes base material 17 (first base material).
  • Substrate 17 can support pseudo-sheet structure 11 directly or indirectly. Without being limited to this, the wiring sheet 100 according to the present embodiment may or may not include the base material 17 .
  • the base material 17 is a member provided as needed.
  • the base material 17 examples include synthetic resin film, paper, metal foil, nonwoven fabric, cloth, and glass film. Moreover, it is preferable that the base material 17 is a stretchable base material. If the base material 17 is a stretchable base material, the stretchability of the wiring sheet 100 can be ensured even when the pseudo sheet structure 11 is provided on the base material 17 . A synthetic resin film, a nonwoven fabric, a cloth, or the like can be used as the stretchable base material.
  • Examples of synthetic resin films include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, and polybutylene terephthalate film. , polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene/(meth)acrylic acid copolymer film, ethylene/(meth)acrylic acid ester copolymer film, polystyrene film, polycarbonate film, and polyimide film etc.
  • stretchable substrates include these crosslinked films and laminated films.
  • nonwoven fabrics include spunbond nonwoven fabrics, needle-punched nonwoven fabrics, meltblown nonwoven fabrics, spunlaced nonwoven fabrics, and the like.
  • Fabrics include, for example, woven fabrics and knitted fabrics. Paper, non-woven fabric, and cloth as stretchable substrates are not limited to these.
  • the thickness of the elastic base material is not particularly limited.
  • the thickness of the stretchable substrate is preferably 10 ⁇ m or more and 10 mm or less, more preferably 15 ⁇ m or more and 3 mm or less, and even more preferably 50 ⁇ m or more and 1.5 mm or less.
  • the method for manufacturing the wiring sheet 100 according to this embodiment is not particularly limited.
  • the wiring sheet 100 can be manufactured, for example, by the following steps.
  • the composition for forming the resin layer 15 (first resin layer) is applied onto the base material 17 (first base material) to form a coating film.
  • the coating film is dried to form the resin layer 15 .
  • the pseudo sheet structure 11 is formed by arranging the conductive linear bodies 13 on the resin layer 15 .
  • the conductive linear body 13 is helically wound on the resin layer 15 while rotating the drum member.
  • the bundle of conductive linear bodies 13 wound spirally is cut along the axial direction of the drum member.
  • the pseudo sheet structure 11 is formed and placed on the resin layer 15 .
  • the resin layer 15 with the base material 17 on which the pseudo sheet structure 11 is formed is removed from the drum member to obtain a sheet-like conductive member.
  • the feeding portion of the conductive linear body 13 is moved along the direction parallel to the axis of the drum member, so that adjacent conductive elements in the pseudo sheet structure 11 are moved. It is easy to adjust the interval L1 between the sex striatum 13 .
  • first electrodes 50 are attached to both end portions of the conductive linear body 13 in the pseudo sheet structure 11 of the sheet-like conductive member.
  • spacers 70 (first spacers) are attached on the pseudo sheet structure 11 so as to face each other with the conductive linear bodies 13 interposed therebetween.
  • spacers 70 are arranged along the direction in which conductive linear body 13 extends, and are attached to both sides of conductive linear body 13 in a direction intersecting the extending direction of conductive linear body 13 .
  • the second electrode 52 is attached between the pair of first electrodes 50 in a direction parallel to the direction in which the pair of first electrodes 50 extends so as to be in contact with the spacer 70 .
  • the base material 37 (second base material) is bonded onto the second electrode 52 .
  • the wiring sheet 100 is manufactured by the above procedure.
  • the second electrode 52 is arranged apart from the pseudo sheet structure 11 and the first electrode 50, and in a plan view of the pseudo sheet structure 11, the second electrode 52 is the conductive wire. It is arranged so as to intersect the shaped body 13 and not overlap the first electrode 50 .
  • the wiring sheet 100 is electrically connected when the second electrode 52 contacts the pseudo sheet structure 11 . Therefore, according to this embodiment, when the second electrode 52 comes into contact with the pseudo sheet structure 11, it is possible to obtain a sensor that detects the contact.
  • the wiring sheet 100 according to this embodiment can easily increase the number of the second electrodes 52 to be installed. Therefore, according to the present embodiment, it is possible to easily increase the number of switch parts having a switch function simply by increasing the number of second electrodes 52 provided.
  • a spacer 72 (second spacer) is used, and the second electrode 52 is the base material 37 (second group material) and a resin layer 35 (second resin layer).
  • the differences from the first embodiment will be mainly described, and overlapping descriptions will be omitted or simplified.
  • the same reference numerals are given to the same configurations as in the first embodiment, and the explanations thereof are omitted or simplified.
  • the wiring sheet 120 according to the present embodiment is a wiring sheet 120 provided with contact sensors, as shown in FIGS. 4A, 4B, 5, and 6. FIG. Hereinafter, the contact sensor according to this embodiment will be described together with the wiring sheet 120 according to this embodiment.
  • the wiring sheet 120 includes a pseudo-sheet structure 11 in which a plurality of conductive linear bodies 13 are arranged at intervals, and a conductive and a first electrode 50 electrically connected to the linear body 13 .
  • the first electrodes 50 are configured as a pair of first electrodes 50, with one electrode paired with another first electrode (that is, the pair of first electrodes 50 , and the other electrode).
  • Wiring sheet 120 is spaced apart from pseudo sheet structure 11 and first electrode 50 , and intersects conductive linear bodies 13 and first electrode 50 in plan view of pseudo sheet structure 11 .
  • a non-overlapping second electrode 52 is provided.
  • the second electrode 52 is electrically connected to the pseudo sheet structure 11 when an external force is applied in a direction in which the second electrode 52 and the pseudo seat structure 11 approach each other.
  • the second electrode 52 is electrically disconnected from the pseudo sheet structure 11 when the external force is released in the direction in which the second electrode 52 and the pseudo sheet structure 11 approach each other.
  • the wiring sheet 120 includes a base material 17 (first base material), a resin layer 15 (first resin layer) supporting the pseudo sheet structure 11 on the base material 17, and a resin layer 15
  • a sheet-like conductive member 10 (first sheet-like conductive member) having a pseudo sheet structure 11 laminated thereon is provided.
  • the wiring sheet 120 includes a base material 37 (second base material), a resin layer 35 (second resin layer) supporting the second electrode 52 on the base material 37, and a second resin layer on the resin layer 35.
  • a sheet-like conductive member 30 (second sheet-like conductive member) in which electrodes 52 and spacers 72 (second spacers) are laminated is provided.
  • the spacers 72 are arranged along the direction in which the second electrode 52 extends (the axial direction of the second electrode 52).
  • two spacers 72 are arranged on both sides of the second electrode 52 along the axial direction of the second electrode 52 with the second electrode 52 sandwiched therebetween.
  • the first electrode 50 is arranged between the sheet-like conductive member 10 and the sheet-like conductive member 30 .
  • the first electrodes 50 are electrically connected to the conductive linear bodies 13 provided on the sheet-like conductive member 10 .
  • the second electrode 52 is arranged apart from the pseudo sheet structure 11 and the first electrode 50 by arranging the spacer 72 . 4A, 4B, and 6, in the wiring sheet 120, the first electrode 50, the second electrode 52, the conductive linear bodies 13, and the spacers 72 are all linear bodies. has the shape of
  • the conductive line The structure is such that the shaped body 13 and the first electrode 50 are not electrically connected to the second electrode 52 .
  • the second electrode 52 is in contact with the pseudo sheet structure. 11 and no stress is applied to the wiring sheet 120 again, the second electrode 52 is not electrically connected to the pseudo sheet structure 11 again.
  • the second electrode 52 is in contact with the pseudo sheet structure 11. be.
  • the pseudo sheet structure 11, the first electrode 50, and the second electrode 52 function as contact sensors. That is, as in the wiring sheet 100 according to the first embodiment, the portion provided with the pseudo sheet structure 11, the first electrode 50 electrically connected to the pseudo sheet structure 11, and the second electrode 52 is It is a contact sensor.
  • the wiring sheet 120 having such a configuration also functions as a contact sensor, like the wiring sheet 100 according to the first embodiment.
  • the wiring sheet 120 is in a state where the pseudo sheet structure 11 and the second electrode 52 are in contact and electrically connected under stress. Then, the pseudo sheet structure 11 and the second electrode 52 are energized, and the energization is turned on. In addition, when the pseudo sheet structure 11 and the second electrode 52 of the wiring sheet 120 are not in contact with each other and electrically disconnected, the pseudo sheet structure 11 and the second electrode 52 do not conduct electricity. , the energization is turned off.
  • the wiring sheet 120 when used as a heater, the second electrode 52 and the pseudo sheet structure 11 are brought into contact with each other and electrically connected to each other, so that the conductive wire of the pseudo sheet structure 11 is formed.
  • the body 13 becomes a heater that generates heat.
  • the wiring sheet 120 according to the present embodiment preferably satisfies the aforementioned formulas (F3) and (F4), like the wiring sheet 100 according to the first embodiment.
  • the relationship between the thickness B of the spacer 72 (second spacer) and the thickness b of the second electrode 52 preferably satisfies the condition represented by the following formula (F2). . 3.0b ⁇ B ⁇ 1.2b (F2)
  • Wiring sheet 120 satisfies the condition represented by the above formula (F2), thereby facilitating the presence or absence of an energized state between pseudo sheet structure 11 and second electrode 52, and an ON state as a contact sensor. Alternatively, the off state is likely to occur easily.
  • the spacers 72 and the second electrodes 52 are both in the form of linear bodies, so the thickness B of the spacers 72 and the thickness b of the second electrodes 52 are They correspond to the diameter of the spacer 72 and the diameter of the second electrode 52, respectively.
  • the resin layer 35 and the spacers 72 can be made of the same material as the resin layer 15 and the spacers 70 described in the first embodiment, respectively.
  • the spacer 72 may have a thickness of, for example, 3 ⁇ m or more and 10 mm or less, or may be 80 ⁇ m or more and 500 ⁇ m or less.
  • the thickness (diameter) of the spacer 72 is preferably within a range that satisfies the above-mentioned formula (F2).
  • the distance from one electrode to the other electrode is not particularly limited, and the distance W1 (see FIG. 5) between one electrode and the other electrode is It may be 2 mm or more and 2 m or less, or may be 50 mm or more and 500 mm or less.
  • the distance from one electrode of the first electrode 50 to the second electrode 52 is particularly limited as the position where the second electrode 52 is arranged. not.
  • the distance between one electrode of the first electrode 50 and the second electrode 52 may be approximately the same as W2 in the first embodiment, for example.
  • the distance from the second electrode 52 to the spacer 72 is not particularly limited, and the distance W3 (see FIG. 5) between the second electrode 52 and the spacer 72 is, for example, 250 ⁇ m or more. It may be 20 mm or less, or may be 1 mm or more and 5 mm or less. The distances from the second electrode 52 to the spacers 72 arranged on both sides of the second electrode 52 may be the same or different.
  • the method for manufacturing the wiring sheet 120 according to this embodiment is not particularly limited.
  • the wiring sheet 120 can be manufactured, for example, by the following steps.
  • the composition for forming the resin layer 15 (first resin layer) is applied onto the base material 17 (first base material) to form a coating film.
  • the coating film is dried to form the resin layer 15 .
  • the pseudo sheet structure 11 is formed by arranging the conductive linear bodies 13 on the resin layer 15 .
  • the conductive linear body 13 is helically wound on the resin layer 15 while rotating the drum member.
  • the bundle of conductive linear bodies 13 wound spirally is cut along the axial direction of the drum member.
  • the pseudo sheet structure 11 is formed and placed on the resin layer 15 .
  • the resin layer 15 with the base material 17 on which the pseudo sheet structure 11 is formed is removed from the drum member to obtain the sheet-like conductive member 10 (first sheet-like conductive member).
  • the feeding portion of the conductive linear body 13 is moved along the direction parallel to the axis of the drum member, so that adjacent conductive elements in the pseudo sheet structure 11 are moved. It is easy to adjust the interval L1 between the sex striatum 13 .
  • a pair of first electrodes 50 are attached to both end portions of the conductive linear bodies 13 in the pseudo sheet structure 11 of the sheet-like conductive member 10 .
  • the composition for forming the resin layer 35 (second resin layer) is applied onto the base material 37 (second base material) to form a coating film.
  • the coating film is dried to form the resin layer 35 .
  • the second electrode 52 is attached, and a spacer 72 (second spacer) is attached along the axial direction of the second electrode 52 so as to face each other with the second electrode 52 interposed therebetween.
  • the spacers 72 are arranged along the axial direction of the second electrode 52 and attached to both sides of the second electrode 52 in a direction crossing the axial direction.
  • the sheet-like conductive member 30 (second sheet-like conductive member) is obtained.
  • the sheet-like conductive member 10 provided with the pair of first electrodes 50 and the sheet-like conductive member 30 are pasted together.
  • the sheet-like conductive member 10 and the sheet-like conductive member 10 are arranged so that the second electrode 52 is arranged in a direction parallel to the direction in which the pair of first electrodes 50 extends (the axial direction of the first electrodes 50).
  • the member 30 is pasted together.
  • the wiring sheet 120 is manufactured by the above procedure.
  • a third embodiment is a wiring sheet 300 including a wiring sheet 140 .
  • the wiring sheet 140 differs from the wiring sheet 120 of the second embodiment in that the length of the pair of first electrodes 50 in the axial direction is longer than the wiring sheet 120 of the second embodiment. Otherwise, the wiring sheet 120 of the second embodiment has the same configuration.
  • the differences from the second embodiment will be mainly described, and overlapping descriptions will be omitted or simplified.
  • the same reference numerals are assigned to the same configurations as in the second embodiment, and the explanations thereof are omitted or simplified.
  • the wiring sheet 300 includes a wiring sheet 140.
  • a wiring sheet 140 shown in FIG. 7 includes a contact sensor and functions as a contact sensor, like the wiring sheet 100 and the wiring sheet 120 described in the first and second embodiments.
  • a wiring sheet 300 according to the third embodiment includes a wiring sheet 140 having a contact sensor, a first battery P1, a second battery P2, and a relay R, as shown in FIG.
  • the wiring sheet 140 includes one electrode 50A of the pair of first electrodes 50 , the other electrode 50B, and a second electrode 52 .
  • one electrode 50A of the pair of first electrodes 50 is electrically connected to the first battery P1 and the second battery P2
  • the other electrode of the pair of first electrodes 50 is electrically connected to the first battery P1 and the second battery P2.
  • 50B is electrically connected through a relay R to the second battery P2.
  • the second electrode 52 is electrically connected via a relay R to the first battery P1.
  • the wiring sheet 300 is configured such that the circuit via the relay R is energized when the pair of the first electrode 50 and the second electrode 52 are energized by the relay R. As shown in FIG.
  • one electrode 50A of the pair of first electrodes 50 included in the wiring sheet 140 of the wiring sheet 300 is electrically connected to the first battery P1 at one end side of the electrode 50A.
  • the first battery P1 is electrically connected with the relay R.
  • the relay R is electrically connected with the second electrode 52 . That is, the second electrode 52 is electrically connected to the first battery P1 via the relay R at one end side of the second electrode 52 .
  • the other end side of the second electrode 52 is not wired.
  • the wiring sheet 300 is electrically connected to the second battery P2 at the other end of the electrode 50A.
  • the second battery P2 is electrically connected with the relay R. That is, one end side of the electrode 50B of the pair of first electrodes 50 included in the wiring sheet 140 is electrically connected via the relay R to the other electrode 50B. No wiring is provided on the other end side of the electrode 50B.
  • the wiring sheet 140 In the wiring sheet 140 provided with the contact sensor, when no stress is applied (that is, a state where no external force acts in the direction in which the second electrode 52 and the pseudo sheet structure 11 approach each other), the second electrode 52 and the pseudo The sheet structure 11 is not electrically connected, and the wiring sheet 300 is in a state where the circuit via the relay R is not energized.
  • a stress is applied (that is, a state in which an external force acts in a direction in which the second electrode 52 and the pseudo sheet structure 11 approach each other), and the second electrode 52 and the pseudo sheet structure 11 are electrically connected, the wiring sheet 300 is connected to the contact of the relay R, and the relay R is supplied with current.
  • the wiring sheet 300 By supplying the current to the relay R, the wiring sheet 300 enters a state in which the circuit via the relay R is energized. That is, when the wiring sheet 300 is applied as a heating element, the wiring sheet 300 is supplied with electric power for heat generation.
  • the wiring sheet 140 provided with the contact sensor when the wiring sheet 140 is put into a state where no stress is applied again, and the second electrode 52 and the pseudo sheet structure 11 are electrically disconnected, The contact of the relay R is cut off and the current supply to the relay R is cut off.
  • the wiring sheet 300 By cutting off the current supply to the relay R, the wiring sheet 300 is in a state in which the energization of the circuit via the relay R is stopped. That is, when the wiring sheet 300 is applied as a heating element, the wiring sheet 300 is in a state where power supply for heat generation is stopped.
  • the wiring sheet 300 includes the contact sensor (wiring sheet 140) and the relay R in the circuit of the wiring sheet 300, so that the pseudo sheet structure 11 included in the contact sensor and the second electrode 52 come into contact with each other and are electrically connected to each other, so that the current is supplied to the relay R.
  • the wiring sheet 300 is applied as a heating element, the provision of the relay R enables the wiring sheet 300 to be heated when the contact sensor detects contact.
  • the fourth embodiment is wiring sheet 320 including wiring sheet 140 .
  • the wiring sheet 140 is the same as the wiring sheet 140 used in the wiring sheet 300 according to the third embodiment.
  • the differences from the third embodiment will be mainly described, and overlapping descriptions will be omitted or simplified.
  • the same reference numerals are assigned to the same configurations as in the third embodiment, and the description thereof is omitted or simplified.
  • a wiring sheet 320 according to the fourth embodiment includes a wiring sheet 140 having a contact sensor, a battery P3, and a relay R, as shown in FIG.
  • the wiring sheet 140 includes one electrode 50A of the pair of first electrodes 50 , the other electrode 50B, and a second electrode 52 .
  • one electrode 50A of the pair of first electrodes 50 is electrically connected to the battery P3, and the other electrode 50B of the pair of first electrodes 50 is connected via the relay R. is electrically connected to battery P3.
  • the second electrode 52 is electrically connected via a relay R to the battery P3.
  • the wiring sheet 320 is configured such that the circuit via the relay R is energized when the pair of the first electrode 50 and the second electrode 52 are energized by the relay R. As shown in FIG.
  • the wiring sheet 320 includes a battery P3 having two negative terminals (negative terminal -) and two positive terminals (positive terminal +).
  • One electrode 50A of the pair of first electrodes 50 included in the wiring sheet 140 is electrically connected to two negative terminals of the battery P3 at one end side and the other end side of the electrode 50A.
  • the other electrode 50B of the pair of first electrodes 50 is electrically connected to the relay R at one end side of the electrode 50B.
  • Relay R is electrically connected to one positive terminal of battery P3. That is, the electrode 50B is electrically connected via the relay R to the battery P3. No wiring is provided on the other end side of the electrode 50B.
  • the second electrode 52 is electrically connected to the relay R, and the relay R is electrically connected to the other positive terminal of the battery P3. That is, the second electrode 52 is electrically connected to the first battery P1 via the relay R at one end side of the second electrode 52 . The other end side of the second electrode 52 is not wired.
  • the wiring sheet 140 In the wiring sheet 140 provided with the contact sensor, when no stress is applied, the second electrode 52 and the pseudo sheet structure 11 are not electrically connected, and the wiring sheet 320 is not energized. be. As in the third embodiment, when the wiring sheet 140 is stressed, the wiring sheet 320 is energized through the relay R, and the wiring sheet 140 is again stress-free. Then, the wiring sheet 320 is in a state in which the energization of the circuit via the relay R is stopped.
  • the contact sensor has been described with the wiring sheet 100 according to the first embodiment, the wiring sheet 120 according to the second embodiment, and the wiring sheet 140 according to the third embodiment and the fourth embodiment.
  • the contact sensor is not limited to these embodiments.
  • the contact sensor is not limited to the form of a pair of electrodes in which the first electrode 50 includes two electrodes, and the form of the first electrode 50 may be a single electrode.
  • the contact sensor is not limited to having one second electrode 52 , and may have two or more second electrodes 52 .
  • the contact sensor is not limited to being arranged between one electrode and the other electrode in the pair of first electrodes 50, and as long as it has a function of detecting contact, the pair of first electrodes 50 may be arranged outside.
  • the form of the first electrode 50 and the second electrode 52 is a linear object, but is not limited thereto. may be in the form of
  • the contact sensor is not limited to a mode comprising either spacer 70 (first spacer) or spacer 72 (second spacer), spacer 70 (first spacer) and spacer 72 (second spacer) It may be a mode provided with both.
  • the contact sensor is the wiring sheet 100 according to the first embodiment, the wiring sheet 120 according to the second embodiment, and the wiring sheet 140 according to the third embodiment and the fourth embodiment.
  • spacer 70 and spacer 72 may be elastic.
  • the form of the spacer 70 and the spacer 72 is linear, but not limited to this, and at least one of the first electrode 50 and the second electrode 52 may be in the form of a strip or the like.
  • the conductive linear bodies 13 are linear and be.
  • the conductive linear body 13 is not limited to this, and may be wave-shaped, for example.
  • the waveform may be, for example, sinusoidal, circular, rectangular, triangular, and sawtooth waveforms.
  • conductive linear body 13 has a wavy shape, when wiring sheet 100, wiring sheet 120, or wiring sheet 140 is stretched in the axial direction of conductive linear body 13, conductive linear body 13 It is possible to obtain the advantage that disconnection of the wire can be suppressed.
  • the use of the wiring sheet 100 is not particularly limited, and for example, it can be applied as a heating element (heater). In addition to the use as a heating element, it can also be applied to a flat cable for wiring electric signals, a detection device, and the like.
  • Example 1 (Preparation of adhesive sheet)
  • the adhesive obtained in Preparation Example 1 was applied to a polyethylene terephthalate film (hereinafter referred to as PET film) having a thickness of 50 ⁇ m so that the thickness after drying was 20 ⁇ m, dried, and pressure-sensitive.
  • An adhesive layer was applied. After drying, the PET film provided with the pressure-sensitive adhesive layer was cut into a rectangle of 250 mm ⁇ 320 mm to prepare an adhesive sheet.
  • PET film polyethylene terephthalate film having a thickness of 50 ⁇ m so that the thickness after drying was 20 ⁇ m, dried, and pressure-sensitive.
  • An adhesive layer was applied. After drying, the PET film provided with the pressure-sensitive adhesive layer was cut into a rectangle of 250 mm ⁇ 320 mm to prepare an adhesive sheet.
  • a gold-plated tungsten wire (hereinafter referred to as a wire) (diameter: 25 ⁇ m, manufactured by Tokusai Co., Ltd., product name: Au(0.1)-TWG) was prepared as a conductive linear body.
  • the adhesive sheet was wound around a drum member having a rubber outer peripheral surface with the surface (adhesive surface) of the pressure-sensitive adhesive layer facing outward so as not to wrinkle. Both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape.
  • the wire wound on the bobbin was adhered to the surface of the pressure sensitive adhesive layer of the adhesive sheet located near the end of the drum member.
  • the wire is reeled out and wound on the drum member, and the drum member is moved little by little in the direction parallel to the drum axis so that the wire is wound around the drum member at regular intervals of 10 mm while drawing a spiral. bottom.
  • a pseudo-sheet structure was formed with 20 wires arranged on the surface of the pressure-sensitive adhesive layer.
  • the wire was cut and the pseudo-sheet structure was removed from the drum member.
  • the pseudo sheet structure was cut into a width of 60 mm ⁇ 190 mm so that 5 wires could be taken out to prepare a sheet-like conductive member.
  • a gold-plated copper wire (diameter 150 ⁇ m, manufacturer name: Tokusai Co., Ltd., product name: C1100-H AuP) is placed on both ends of the wire at an interval of 150 mm between the electrodes, and a pair of second One electrode was attached. Further, a 140 mm long nylon wire (50 ⁇ m in diameter, manufacturer: Yamatoyo Tegus Co., Ltd.) was placed as a spacer on both sides of each conductive linear body positioned between the electrodes in parallel with a distance of 1 mm.
  • one nichrome wire (diameter: 75 ⁇ m, manufactured by Tokusai Co., Ltd., product name: NCHW1) was attached in parallel at a position 75 mm away from each first electrode.
  • a PET film having a thickness of 50 ⁇ m was attached to the adhesive surface of the pressure-sensitive adhesive layer on which the conductive linear bodies of the sheet-like conductive member with electrodes were arranged.
  • ultraviolet rays with a wavelength of 365 nm were irradiated under the conditions of an illuminance of 300 mW/cm 2 and a light amount of 1400 mJ/cm 2 to cure the pressure-sensitive adhesive layer, thereby producing a wiring sheet provided with a contact sensor.
  • the obtained wiring sheet functions as a heater.
  • Example 2 In Example 1, the nylon wire (diameter 50 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) used as a spacer was changed to a nylon wire (diameter 90 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) Same as Example 1. Then, a wiring sheet was produced.
  • Example 3 In Example 1, the nylon wire (diameter 50 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) used as a spacer was changed to a nylon wire (diameter 120 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) Same as Example 1. Then, a wiring sheet was produced.
  • Example 1 In Example 1, the nylon wire (diameter 50 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) used as a spacer was replaced with a nylon wire (diameter 150 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.). A wiring sheet was produced by
  • Example 4 (Preparation of adhesive sheet)
  • the adhesive obtained in Preparation Example 1 was coated on a PET film having a thickness of 50 ⁇ m so that the thickness after drying was 20 ⁇ m, and dried to form a pressure-sensitive adhesive layer. After drying, the PET film provided with the pressure-sensitive adhesive layer was cut into a rectangle of 250 mm ⁇ 320 mm to prepare an adhesive sheet.
  • a gold-plated tungsten wire (hereinafter referred to as a wire) (diameter: 25 ⁇ m, manufactured by Tokusai Co., Ltd., product name: Au(0.1)-TWG) was prepared as a conductive linear body.
  • the adhesive sheet was wound around a drum member having a rubber outer peripheral surface with the surface (adhesive surface) of the pressure-sensitive adhesive layer facing outward so as not to wrinkle. Both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape.
  • the wire wound on the bobbin was adhered to the surface of the pressure sensitive adhesive layer of the adhesive sheet located near the end of the drum member.
  • the wire is reeled out and wound on the drum member, and the drum member is moved little by little in the direction parallel to the drum axis so that the wire is wound around the drum member at regular intervals of 10 mm while drawing a spiral. bottom.
  • a pseudo-sheet structure was formed with 20 wires arranged on the surface of the pressure-sensitive adhesive layer.
  • the wire was cut and the pseudo-sheet structure was removed from the drum member.
  • the pseudo sheet structure was cut into a width of 60 mm ⁇ 190 mm so that 5 wires could be taken out to prepare a first sheet-like conductive member.
  • a gold-plated copper wire (diameter 150 ⁇ m, manufacturer name: Tokusai Co., Ltd., product name: C1100-H AuP) was placed on both ends of the wire at an interval of 150 mm between the electrodes, and a pair of second One electrode was attached.
  • the adhesive sheet prepared above is cut into a rectangle of 60 mm ⁇ 190 mm, and as a second electrode, a nichrome wire (diameter 75 ⁇ m, manufactured by Tokusai Co., Ltd., product name: NCHW1) is attached 95 mm from the end of the adhesive sheet. installed in the correct position.
  • Nylon wires of 60 mm in length were placed as spacers in parallel on both sides of the second electrode at positions separated by 1 mm to prepare a second sheet-like conductive member.
  • the second sheet-like conductive member was attached to the adhesive surface of the pressure-sensitive adhesive layer on which the conductive linear bodies were arranged in the first sheet-like conductive member.
  • An ultraviolet ray having a wavelength of 365 nm was irradiated under conditions of an illuminance of 300 mW/cm 2 and a light amount of 1400 mJ/cm 2 to cure the pressure-sensitive adhesive layer, thereby producing a wiring sheet provided with a contact sensor.
  • the obtained wiring sheet functions as a heater.
  • Example 5 In Example 4, the nylon wire (diameter 90 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) used as a spacer was changed to a nylon wire (diameter 150 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) Same as Example 4. Then, a wiring sheet was produced.
  • Example 6 In Example 4, the nylon wire (diameter 90 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) used as a spacer was changed to a nylon wire (diameter 210 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) Same as Example 4. Then, a wiring sheet was produced.
  • Example 4 the nylon wire (diameter 90 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) used as a spacer was changed to a nylon wire (diameter 240 ⁇ m, manufacturer name: Yamatoyo Tegus Co., Ltd.) Same as Example 4. Then, a wiring sheet was produced.

Landscapes

  • Laminated Bodies (AREA)

Abstract

複数の導電性線状体(13)が間隔をもって配列された疑似シート構造体(11)と、前記導電性線状体(13)に電気的に接続する第一電極(50)と、前記疑似シート構造体(11)および前記第一電極(50)に離間して配置され、前記疑似シート構造体(11)の平面視において、前記導電性線状体(13)と交差し、かつ前記第一電極(50)と重ならない第二電極(52)と、を備え、前記第二電極(52)は、前記第二電極(52)と前記疑似シート構造体(11)とが近づく方向に外力が作用されたとき、前記疑似シート構造体(11)と電気的に接続した状態となり、前記第二電極(52)と前記疑似シート構造体(11)とが近づく方向の外力が解除されたとき、前記疑似シート構造体(11)と電気的に非接続の状態となる、接触センサ(100)。

Description

接触センサ、及び配線シート
 本発明は、接触センサ、及び配線シートに関する。
 接触することによって検知するセンサを備えた装置が知られている。このような装置は、例えば、センサが検知することによって、オンまたはオフの状態を判断し、オンの状態になると、導通状態となって電流が供給され、機能を発現するように構成されている。
 例えば、特許文献1には、乗員が着座する車載用のシートに設置されるメンブレンスイッチが開示されている。特許文献1に開示されるメンブレンスイッチは、乗員の着座を検知するセンサと、センサによって検知した検知信号を無線通信によって送信し、無線給電によって、センサに電力を供給する通信装置と、を備える。
特開2015-020447号公報
 本発明の目的は、接触したときに検知することが可能な接触センサ、及び当該センサを備える配線シートを提供することである。
[1] 複数の導電性線状体が間隔をもって配列された疑似シート構造体と、前記導電性線状体に電気的に接続する第一電極と、前記疑似シート構造体および前記第一電極に離間して配置され、前記疑似シート構造体の平面視において、前記導電性線状体と交差し、かつ前記第一電極と重ならない第二電極と、を備え、前記第二電極は、前記第二電極と前記疑似シート構造体とが近づく方向に外力が作用されたとき、前記疑似シート構造体と電気的に接続した状態となり、前記第二電極と前記疑似シート構造体とが近づく方向の外力が解除されたとき、前記疑似シート構造体と電気的に非接続の状態となる、接触センサ。
[2] [1]に記載の接触センサにおいて、前記接触センサは、スペーサーを備え、前記スペーサーは、前記接触センサの平面視において、前記導電性線状体が延びる方向に沿って配置された第一スペーサー、および、前記第二電極が延びる方向に沿って配置された第二スペーサーの少なくとも一つを備える、接触センサ。
[3] [2]に記載の接触センサにおいて、前記第一スペーサーの厚さAと、前記導電性線状体の直径aとの関係が、下記数式(F1)で表される条件を満たす、接触センサ。
 5.0a≧A≧2.0a ・・・(F1)
[4] [2]に記載の接触センサにおいて、前記第二スペーサーの厚さBと、前記第二電極の厚さbとの関係が、下記数式(F2)で表される条件を満たす、接触センサ。
 3.0b≧B≧1.2b ・・・(F2)
[5] [1]から[4]のいずれか一項に記載の接触センサを備え、前記第一電極と対をなす、別の第一電極を、さらに備える、配線シート。
[6] [5]に記載の配線シートにおいて、前記第二電極の軸方向における抵抗値Re2と、前記導電性線状体の軸方向における1本当たりの抵抗値rとの関係が、下記数式(F3)で表される条件を満たす、配線シート。
 Re2≧1.5r ・・・(F3)
[7] [5]または[6]に記載の配線シートにおいて、前記第一電極の軸方向における抵抗値Re1と、前記導電性線状体の軸方向における全体の抵抗値rとの関係が、下記数式(F4)で表される条件を満たす、配線シート。
 20>r/Re1 ・・・(F4)
[8] [5]から[7]のいずれか一項に記載の配線シートにおいて、前記配線シートは、バッテリーと、リレーとをさらに備え、一対の前記第一電極のうち、一方の第一電極は、前記バッテリーに電気的に接続され、一対の前記第一電極のうち、他方の第一電極は、前記リレーを介して、前記バッテリーと電気的に接続され、前記第二電極は、前記リレーを介して、前記バッテリーに電気的に接続され、前記第一電極と、前記第二電極とが通電することにより、前記配線シートに通電されるように構成されている、配線シート。
[9] [5]から[8]のいずれか一項に記載の配線シートにおいて、前記導電性線状体は、金めっきが施された線状体である、配線シート。
 本発明によれば、接触したときに検知することが可能な接触センサ、及び当該センサを備える配線シートが提供できる。
第一実施形態に係る接触センサを備えた配線シートを表す図であって、配線シートを模式的に表す概略斜視図である。 図1Aに示す配線シートを模式的に表す分解斜視図である。 第一実施形態に係る接触センサを備える配線シートを模式的に表す平面図である。 図2のIII-III断面を表す断面図である。 第二実施形態に係る接触センサを備えた配線シートを模式的に表す図であって、配線シートを模式的に表す概略斜視図である。 図4Aに示す配線シートを模式的に表す分解斜視図である。 第二実施形態に係る接触センサを備える配線シートを模式的に表す平面図である。 図5のVI-VI断面を表す断面図である。 第三実施形態に係る配線シートの一例を模式的に表す模式図である。 第四実施形態に係る配線シートの他の一例を模式的に表す模式図である。
[第一実施形態]
 以下、本発明について実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
(接触センサ及び配線シート)
 本実施形態に係る配線シート100は、図1A、図1B、図2、及び図3に示すように、接触センサを備えた配線シート100である。以下、本実施形態に係る接触センサは、本実施形態に係る配線シート100とともに説明する。
 本実施形態に係る配線シート100は、図1A、図1B、図2、及び図3に示すように、複数の導電性線状体13が間隔をもって配列された疑似シート構造体11と、導電性線状体13に電気的に接続する第一電極50とを備えている。第一電極50は、一対の第一電極50として構成されており、一方の電極と対をなす、別の第一電極を備えている(つまり、一対の第一電極50は、第一電極50のうちの一方の電極と、第一電極50のうちの他方の電極とにより構成されている。)。また、配線シート100は、疑似シート構造体11および第一電極50に離間して配置され、疑似シート構造体11の平面視において、導電性線状体13と交差し、かつ第一電極50と重ならない第二電極52を備えている。そして、第二電極52と疑似シート構造体11とが近づく方向に外力が作用されたとき(以下、応力が負荷された状態と称する場合がある。)、第二電極52は、疑似シート構造体11と電気的に接続した状態となる。一方、第二電極52と疑似シート構造体11とが近づく方向に外力が解除されたとき(以下、応力が負荷されない状態と称する場合がある。)、第二電極52は、疑似シート構造体11と電気的に非接続の状態となる。
 具体的には、配線シート100は、基材17(第一基材)、基材17の上に、疑似シート構造体11を支持する樹脂層15(第一樹脂層)、及び、樹脂層15の上に、疑似シート構造体11が積層されているシート状導電部材を備えている。また、配線シート100は、導電性線状体13および第一電極50と、第二電極52とを隔てるスペーサー70(第一スペーサー)を備えており、スペーサー70は、導電性線状体13が延びる方向(以下、導電性線状体13の軸方向と称する場合がある。)に沿って配置されている。そして、配線シート100では、1つの導電性線状体13に対し、2つのスペーサー70が、導電性線状体13の軸方向に沿って、導電性線状体13を挟んで、導電性線状体13の両側に配置されている。配線シート100では、スペーサー70が配置されることにより、第二電極52が、疑似シート構造体11及び第一電極50に離間して配置されている。さらに、配線シート100は、第二電極52の上に、基材37(第二基材)が配置されている。図2に示すように、配線シート100の平面視において、導電性線状体13は、直線状を成している。また、図1A、図1B、及び図3に示すように、配線シート100においては、第一電極50、第二電極52、導電性線状体13、及びスペーサー70は、いずれも、線状体の形状を成している。
 配線シート100には、スペーサー70が配置されるため、応力が負荷されない状態では、導電性線状体13および第一電極50と、第二電極52とが接触せず、第二電極52は、疑似シート構造体11と電気的に接続しない構造とされている。配線シート100に、応力が負荷された状態になると、導電性線状体13と、第二電極52とが接触して、第二電極52は、疑似シート構造体11と電気的に接続した状態となり、配線シート100に、再び応力が負荷されない状態となると、第二電極52は、疑似シート構造体11と再び電気的に接続しない状態となる。
 配線シート100において、疑似シート構造体11と第二電極52とが接触すると、導電性線状体13の抵抗値が変化する。例えば、導電性線状体13の抵抗値の変化を検知することにより、第二電極52は、疑似シート構造体11と接触した状態であるか、又は接触していない状態であるかが判断される。このため、疑似シート構造体11、疑似シート構造体11に電気的に接続する第一電極50、及び第二電極52を備える部位が、接触センサとしての機能を果たす。すなわち、配線シート100において、複数の導電性線状体13が間隔をもって配列された疑似シート構造体11と、導電性線状体13に電気的に接続する第一電極50と、疑似シート構造体11および第一電極50に離間して配置され、疑似シート構造体11の平面視において、導電性線状体13と交差し、かつ第一電極50と重ならない第二電極52とを備えた部位が、接触センサである。このような構成を備える配線シート100は、接触センサとしても機能する。
 配線シート100は、応力が負荷された状態で、疑似シート構造体11と第二電極52とが、接触して、電気的に接続した状態となると、疑似シート構造体11と第二電極52が通電した状態となり、通電がオンの状態となる。また、配線シート100は、疑似シート構造体11と第二電極52とが、接触せず、電気的に非接続の状態となると、疑似シート構造体11と第二電極52が通電しない状態となり、通電がオフの状態となる。
 配線シート100は、例えば、ヒーターの用途に適用された場合、第二電極52と疑似シート構造体11とが接触して、電気的に接続することで、疑似シート構造体11の導電性線状体13が発熱するヒーターとなる。
 接触センサ(配線シート100)は、スペーサー70の厚さAと、導電性線状体13の直径aとの関係が、下記数式(F1)で表される条件を満たすことが好ましい。
 5.0a≧A≧2.0a ・・・(F1)
 接触センサ(配線シート100)は、上記の数式(F1)で表される条件を満たすことで、疑似シート構造体11と第二電極52との通電状態の有無が容易になり、接触センサとしてのオンの状態、又はオフの状態を容易に発現しやすくなる。
 配線シート100において、スペーサー70は、線状体の形状を成しているため、スペーサー70の厚さAは、スペーサー70の直径に相当する。
 配線シート100は、第二電極52の軸方向における抵抗値Re2と、導電性線状体13の軸方向における1本当たりの抵抗値rとの関係が、下記数式(F3)で表される条件を満たすことが好ましい。
 Re2≧1.5r ・・・(F3)
 配線シート100においては、第一電極50が一対の電極として構成されているため、配線シート100の用途の一つとして、ヒーターに適用することが可能である。配線シート100をヒーターとして適用した場合、配線シート100は、第二電極52の軸方向における抵抗値Re2を、導電性線状体13の軸方向における1本当たりの抵抗値rの1.5倍以上に大きくすることで、第二電極52の発熱が抑えやすくなる。
 配線シート100は、第一電極50の軸方向における抵抗値Re1と、導電性線状体13の軸方向における全体の抵抗値rとの関係が、下記数式(F4)で表される条件を満たすことが好ましい。
 20>r/Re1 ・・・(F4)
 配線シート100をヒーターとして適用した場合、配線シート100は、第一電極50の軸方向における抵抗値Re1に対する、導電性線状体13の軸方向における全体の抵抗値rの比を、20未満に小さくすることで、第一電極50の発熱が抑えやすくなる。
 第一電極50、第二電極52及び導電性線状体13のそれぞれの抵抗値は、テスターを用いて測定することができる。まず、第一電極50、及び第二電極52のそれぞれの軸方向における抵抗値を測定する。次に、第一電極50を貼付した導電性線状体13の軸方向における全体の抵抗値(つまり、疑似シート構造体11の抵抗値)を測定する。その後、第一電極50を貼付した疑似シート構造体11の抵抗値から第一電極50の測定値を差し引くことで、第一電極50及び疑似シート構造体11のそれぞれの抵抗値を算出する。疑似シート構造体11の抵抗値は、導電性線状体13の軸方向における全体の抵抗値として求められる。導電性線状体13の軸方向における一本当たりの抵抗値は、導電性線状体13の軸方向における全体の抵抗値から、導電性線状体13の本数に応じて、導電性線状体13の軸方向における一本当たりの抵抗値を求めることができる。また、必要に応じて、配線シート100から第一電極50を取り出して、抵抗値を測定できる。
 疑似シート構造体11の抵抗値及び導電性線状体13の軸方向における抵抗値、並びに、第一電極50の軸方向における抵抗値及び第二電極52の軸方向における抵抗値は、適宜公知の方法で設定でき、例えば、材質、断面積、及び長さ等を変更することで、調整できる。
(疑似シート構造体)
 疑似シート構造体11は、複数の導電性線状体13が、互いに間隔をもって配列された構造とされている。また、疑似シート構造体11は、導電性線状体13の軸方向と交差する方向に、複数配列された構造とされている。
 導電性線状体13の体積抵抗率は、1.0×10-9Ω・m以上1.0×10-3Ω・m以下であることが好ましく、1.0×10-8Ω・m以上1.0×10-4Ω・m以下であることがより好ましい。導電性線状体13の体積抵抗率を上記範囲にすると、疑似シート構造体11の面抵抗が低下しやすくなる。
 導電性線状体13の体積抵抗率の測定は、次のとおりである。導電性線状体13の一方の端部及び端部からの長さ40mmの部分に銀ペーストを塗布し、端部及び端部から長さ40mmの部分の抵抗を測定し、導電性線状体13の抵抗値を求める。そして、導電性線状体13の断面積(単位:m)を上記の抵抗値に乗じ、得られた値を上記の測定した長さ(0.04m)で除して、導電性線状体13の体積抵抗率を算出する。
 導電性線状体13の断面の形状は、特に限定されず、多角形状、扁平形状、楕円形状、又は円形状等を取り得る。樹脂層15との馴染み等の観点から、導電性線状体13の断面の形状は、楕円形状、又は円形状であることが好ましい。
 導電性線状体13の断面が円形状である場合には、導電性線状体13の直径a(図3等参照)は、それぞれ、5μm以上3mm以下であることが好ましい。シート抵抗の上昇抑制と、配線シート100を発熱体として用いた場合の発熱効率及び耐絶縁破壊特性の向上との観点から、導電性線状体13の直径aは、8μm以上1mm以下であることがより好ましく、12μm以上100μm以下であることがさらに好ましい。
 導電性線状体13の断面が楕円形状である場合には、長径が上記の直径aと同様の範囲にあることが好ましい。
 導電性線状体13の直径aは、デジタル顕微鏡を用いて、導電性線状体13を観察し、無作為に選んだ5箇所で、導電性線状体13の直径を測定し、その平均値とする。
 導電性線状体13の間隔L1(図3参照)は、0.3mm以上50mm以下であることが好ましく、0.5mm以上30mm以下であることがより好ましく、0.8mm以上20mm以下であることがさらに好ましい。
 導電性線状体13同士の間隔が上記範囲であれば、導電性線状体13がある程度密集しているため、疑似シート構造体11の抵抗を低く維持し、配線シート100を発熱体として用いる場合の温度上昇の分布を均一にする等、配線シート100の機能の向上を図ることができる。
 導電性線状体13の間隔L1は、デジタル顕微鏡を用いて、疑似シート構造体11の導電性線状体13を観察し、隣り合う2つの導電性線状体13の間隔を測定する。
 なお、隣り合う2つの導電性線状体13の間隔とは、導電性線状体13を配列させていった方向に沿った長さであって、2つの導電性線状体13の対向する部分間の長さである(図3参照)。間隔L1は、導電性線状体13の配列が不等間隔である場合には、全ての隣り合う導電性線状体13同士の間隔の平均値である。
 導電性線状体13は、特に制限はないが、金属製のワイヤーを含む線状体(以下「金属ワイヤー線状体」とも称する)であることがよい。金属製のワイヤーは高い熱伝導性、高い電気伝導性、高いハンドリング性、及び汎用性を有する。配線シート100を発熱体として適用した場合、金属ワイヤー線状体は抵抗を大きく低下させることが可能であり、金属ワイヤー線状体の直径を極めて小さくしても、発熱に必要な電流で通電できる。これにより、導電性線状体13が視認されにくい状態にできる。すなわち、導電性線状体13として金属ワイヤー線状体を適用すると、導電性線状体13の軸方向における全体の抵抗値として求められる疑似シート構造体11の抵抗値を低減しつつ、光線透過性が向上しやすくなる。また、配線シート100を発熱体として適用したとき、速やかな発熱が実現されやすくなる。さらに、上述したように直径が細い線状体を得られやすい。
 なお、導電性線状体13としては、金属ワイヤー線状体の他に、カーボンナノチューブを含む線状体、及び、糸に導電性被覆が施された線状体が挙げられる。
 金属ワイヤー線状体は、1本の金属製のワイヤーからなる線状体であってもよいし、複数本の金属製のワイヤーを撚った線状体であってもよい。
 金属製のワイヤーとしては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)を含むワイヤーが挙げられる。また、金属製のワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされていてもよく、後述する炭素材料、又はポリマーにより表面が被覆されていてもよい。特に、タングステン及びモリブデン、並びに、これらを含む合金から選ばれる一種以上の金属を含むワイヤーが、細くて高強度であり、低い体積抵抗率の導電性線状体13とする観点から好ましい。
 金属製のワイヤーとしては、炭素材料で被覆された金属製のワイヤーも挙げられる。金属製のワイヤーは、炭素材料で被覆されていると、金属光沢が低減し、金属製のワイヤーの存在を目立たなくすることが容易となる。また、金属製のワイヤーは、炭素材料で被覆されていると金属腐食も抑制される。
 金属製のワイヤーを被覆する炭素材料としては、非晶質炭素(例えば、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボン、及びカーボンファイバー等)、グラファイト、フラーレン、グラフェン及びカーボンナノチューブ等が挙げられる。
 カーボンナノチューブを含む線状体は、例えば、カーボンナノチューブフォレスト(カーボンナノチューブを、基板に対して垂直方向に配向するよう、基板上に複数成長させた成長体のことであり、「アレイ」と称される場合もある)の端部から、カーボンナノチューブをシート状に引き出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚ることにより得られる。このような製造方法において、撚りの際に捻りを加えない場合には、リボン状のカーボンナノチューブ線状体が得られ、捻りを加えた場合には、糸状の線状体が得られる。リボン状のカーボンナノチューブ線状体は、カーボンナノチューブが捻られた構造を有しない線状体である。このほか、カーボンナノチューブの分散液から、紡糸をすること等によっても、カーボンナノチューブ線状体を得ることができる。紡糸によるカーボンナノチューブ線状体の製造は、例えば、米国特許出願公開第2013/0251619号明細書(日本国特開2012-126635号公報)に開示されている方法により行うことができる。カーボンナノチューブ線状体の直径の均一さが得られる観点からは、糸状のカーボンナノチューブ線状体を用いることが望ましく、純度の高いカーボンナノチューブ線状体が得られる観点からは、カーボンナノチューブシートを撚ることによって糸状のカーボンナノチューブ線状体を得ることが好ましい。カーボンナノチューブ線状体は、2本以上のカーボンナノチューブ線状体同士が編まれた線状体であってもよい。また、カーボンナノチューブ線状体は、カーボンナノチューブと他の導電性材料が複合された線状体(以下「複合線状体」とも称する)であってもよい。
 複合線状体としては、例えば、(1)カーボンナノチューブフォレストの端部から、カーボンナノチューブをシート状に引き出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚るカーボンナノチューブ線状体を得る過程において、カーボンナノチューブのフォレスト、シート若しくは束、又は撚った線状体の表面に、金属単体又は金属合金を蒸着、イオンプレーティング、スパッタリング、及び湿式めっき等により担持させた複合線状体、(2)金属単体の線状体若しくは金属合金の線状体又は複合線状体と共に、カーボンナノチューブの束を撚った複合線状体、(3)金属単体の線状体若しくは金属合金の線状体又は複合線状体と、カーボンナノチューブ線状体又は複合線状体とを編んだ複合線状体等が挙げられる。なお、(2)の複合線状体においては、カーボンナノチューブの束を撚る際に、(1)の複合線状体と同様にカーボンナノチューブに対して金属を担持させてもよい。また、(3)の複合線状体は、2本の線状体を編んだ場合の複合線状体であるが、少なくとも1本の金属単体の線状体若しくは金属合金の線状体又は複合線状体が含まれていれば、カーボンナノチューブ線状体又は金属単体の線状体若しくは金属合金の線状体若しくは複合線状体の3本以上を編み合わせてあってもよい。
 複合線状体の金属としては、例えば、金、銀、銅、鉄、アルミニウム、ニッケル、クロム、スズ、及び亜鉛等の金属単体、並びに、これら金属単体の少なくとも一種を含む合金(銅-ニッケル-リン合金、及び、銅-鉄-リン-亜鉛合金等)が挙げられる。
 導電性線状体13は、糸に導電性被覆が施された線状体であってもよい。糸としては、ナイロン、及びポリエステル等の樹脂から紡糸した糸等が挙げられる。導電性被覆としては、金属、導電性高分子、及び炭素材料等の被膜等が挙げられる。導電性被覆は、メッキ又は蒸着法等により形成することができる。糸に導電性被覆が施された線状体は、糸の柔軟性を維持しつつ、線状体の導電性を向上させることができる。つまり、疑似シート構造体11の抵抗を、低下させることが容易となる。
 導電性線状体13は、導電性線状体13と第一電極50との接触抵抗を抑制する観点で、金めっきが施された線状体であることが好ましい。導電性線状体13は、金めっきが施されていることにより、前記の接触抵抗の影響を無視できるほど抑制できるため、抵抗値が安定しやすくなる。
(樹脂層)
 樹脂層15は、樹脂を含む層である。この樹脂層15により、疑似シート構造体11を直接または間接的に支持できる。また、樹脂層15は、接着剤を含む層であることが好ましい。樹脂層15が接着剤を含む層であれば、樹脂層15に疑似シート構造体11を形成する際に、接着剤により、導電性線状体13の樹脂層15への貼り付けが容易となる。また、樹脂層15は、伸縮性を有することが好ましい。このような場合には、配線シート100の伸縮性を確保できる。
 樹脂層15は、乾燥固化又は硬化可能な樹脂からなる層であってもよい。これにより、疑似シート構造体11を保護するのに十分な硬度が樹脂層15に付与され、樹脂層15は保護膜としても機能する。また、硬化又は乾燥固化後の樹脂層15は、耐衝撃性を有し、衝撃による樹脂層15の変形も抑制できる。
 ここで、乾燥固化可能な樹脂とは、樹脂層を形成させるための樹脂組成物(接着剤組成物も含む)を塗布した後、乾燥させることで水分又は溶剤を取り除き、固体化することが可能な樹脂を表す。硬化可能な樹脂とは、樹脂層を形成させるための樹脂組成物(接着剤組成物も含む)を塗布し、任意に乾燥させた後、加熱処理、及びエネルギー線の照射処理の少なくともいずれかの処理を施して重合反応等の化学反応をさせることで、固体化することが可能な樹脂を表す。
 樹脂層15は、短時間で簡便に硬化することができる点で、紫外線、可視エネルギー線、赤外線、及び電子線等のエネルギー線硬化性であることが好ましい。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。
 樹脂層15に接着剤が含まれる場合、樹脂層15に適用される接着剤は、特に限定されない。樹脂層15に用いられる接着剤は、乾燥固化性の接着剤、エネルギー線により硬化するエネルギー線硬化性の接着剤、熱により硬化する熱硬化性の接着剤、湿気(水分)と反応することで、固体化する接着剤、熱により溶融し、冷却されることにより接着するいわゆるヒートシールタイプの接着剤、粘着性により接着する感圧性の接着剤(粘着剤)、及び湿潤させて貼付性を発現させる接着剤等が挙げられる。ただし、適用の簡便さからは、樹脂層15が、エネルギー線硬化性であることが好ましい。エネルギー線硬化性樹脂としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 前記アクリレート系化合物としては、例えば、鎖状脂肪族骨格含有(メタ)アクリレート(トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレート等)、環状脂肪族骨格含有(メタ)アクリレート(ジシクロペンタニルジ(メタ)アクリレート、及びジシクロペンタジエンジ(メタ)アクリレート等)、ポリアルキレングリコール(メタ)アクリレート(ポリエチレングリコールジ(メタ)アクリレート等)、オリゴエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、エポキシ変性(メタ)アクリレート、前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート、及びイタコン酸オリゴマー等が挙げられる。
 エネルギー線硬化性樹脂の重量平均分子量(Mw)は、100以上30000以下であることが好ましく、300以上10000以下であることがより好ましい。
 接着剤組成物が含有するエネルギー線硬化性樹脂は、1種のみでもよいし、2種以上でもよい。接着剤組成物が含有するエネルギー線硬化性樹脂が、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。さらに、後述する熱可塑性樹脂と組み合わせてもよく、組み合わせ及び比率は任意に選択できる。
 樹脂層15は、粘着剤(感圧性接着剤)から形成される粘着剤層(感圧性接着剤層)であってもよい。粘着剤層の粘着剤は、特に限定されない。例えば、粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、ポリエステル系粘着剤、シリコーン系粘着剤、及びポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、粘着剤は、アクリル系粘着剤、ウレタン系粘着剤、及びゴム系粘着剤からなる群から選択される少なくともいずれかであることが好ましく、アクリル系粘着剤であることがより好ましい。
 アクリル系粘着剤としては、例えば、直鎖のアルキル基又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含むアクリル系重合体(つまり、アルキル(メタ)アクリレートを少なくとも重合した重合体)、環状構造を有する(メタ)アクリレートに由来する構成単位を含むアクリル系重合体(つまり、環状構造を有する(メタ)アクリレートを少なくとも重合した重合体)等が挙げられる。ここで「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の双方を示す語として用いており、他の類似用語についても同様である。
 アクリル系共重合体は架橋剤により架橋されていてもよい。架橋剤としては、例えば、公知のエポキシ系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、及び金属キレート系架橋剤等が挙げられる。アクリル系共重合体を架橋する場合には、アクリル系重合体の単量体成分に由来する官能基として、これらの架橋剤と反応する水酸基、及びカルボキシル基の少なくとも1種等をアクリル系共重合体に導入することができる。
 樹脂層15が粘着剤から形成される場合、樹脂層15は、粘着剤の他に、さらに上述したエネルギー線硬化性樹脂を含有していてもよい。また、粘着剤としてアクリル系粘着剤を適用する場合、エネルギー線硬化性の成分として、アクリル系共重合体における単量体成分に由来する官能基と反応する官能基と、エネルギー線重合性の官能基との両方を一分子中に有する化合物を用いてもよい。当該化合物の官能基と、アクリル系共重合体における単量体成分に由来する官能基との反応により、アクリル系共重合体の側鎖がエネルギー線照射により重合可能となる。粘着剤がアクリル系粘着剤以外の場合においても、アクリル系重合体以外の重合体成分として、同様に側鎖がエネルギー線重合性である成分を用いてもよい。
 樹脂層15に用いられる熱硬化性樹脂としては、特に限定されず、具体的には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂、アミン系化合物、及び酸無水物系化合物などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール系硬化触媒を使用した硬化に適すという観点から、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物を使用することが好ましく、特に、優れた硬化性を示すという観点から、エポキシ樹脂、フェノール樹脂、及びそれらの混合物、又はエポキシ樹脂と、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物からなる群から選択される少なくとも1種との混合物を使用することが好ましい。
 樹脂層15に用いられる湿気硬化性樹脂としては、特に限定されず、湿気でイソシアネート基が硬化して生成する樹脂であるウレタン樹脂、変性シリコーン樹脂等が挙げられる。
 樹脂層15に、エネルギー線硬化性樹脂、及び熱硬化性樹脂の少なくとも一方を用いる場合、これらの硬化性樹脂に応じて、光重合開始剤及び熱重合開始剤等を用いることが好ましい。樹脂層15が、エネルギー線硬化性樹脂を含む場合には、光重合開始剤を用いることで、樹脂層15には、架橋構造が形成される。また、樹脂層15が、熱硬化性樹脂を含む場合には、熱重合開始剤等を用いることで、架橋構造が形成される。このため、樹脂層15によって、疑似シート構造体11を、より強固に保護することが可能になる。
 光重合開始剤としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、2-クロロアントラキノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニル-ホスフィンオキサイド等が挙げられる。
 熱重合開始剤としては、過酸化水素、ペルオキソ二硫酸塩(ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、及びペルオキソ二硫酸カリウム等)、アゾ系化合物(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビスイソブチロニトリル、及び2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等)、及び有機過酸化物(過酸化ベンゾイル、過酸化ラウロイル、過酢酸、過コハク酸、ジ-t-ブチルパーオキサイド、t-ブチルヒドロパーオキサイド、及びクメンヒドロパーオキサイド等)等が挙げられる。
 これらの重合開始剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの重合開始剤を用いて架橋構造を形成する場合、その使用量は、エネルギー線硬化性樹脂及び熱硬化性樹脂の少なくとも一方の硬化性樹脂100質量部に対して、0.1質量部以上100質量部以下であることが好ましく、1質量部以上100質量部以下であることがより好ましく、1質量部以上10質量部以下であることが特に好ましい。
 樹脂層15は、硬化性でなく、例えば、熱可塑性樹脂組成物からなる層であってもよい。そして、熱可塑性樹脂組成物中に溶剤を含有させることで、熱可塑性樹脂層を軟化させることができる。これにより、樹脂層15に疑似シート構造体11を形成する際に、導電性線状体13の樹脂層15への貼り付けが容易となる。一方で、熱可塑性樹脂組成物中の溶剤を揮発させることで、熱可塑性樹脂層を乾燥固化させることができる。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリエーテル、ポリエーテルサルホン、ポリイミド及びアクリル樹脂等が挙げられる。
 溶剤としては、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、炭化水素系溶剤、ハロゲン化アルキル系溶媒及び水等が挙げられる。
 樹脂層15は、無機充填材を含有していてもよい。無機充填材を含有することで、硬化後の樹脂層15の硬度をより向上させることができる。また、樹脂層15の熱伝導性が向上する。
 無機充填材としては、例えば、無機粉末(例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、金属、及び窒化ホウ素等の粉末)、無機粉末を球形化したビーズ、単結晶繊維、及びガラス繊維等が挙げられる。これらの中でも、無機充填材としては、シリカフィラー及びアルミナフィラーが好ましい。無機充填材は、1種単独で用いてもよく、2種以上を併用してもよい。
 樹脂層15には、その他の成分が含まれていてもよい。その他の成分としては、例えば、有機溶媒、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、及び濡れ性調整剤等の周知の添加剤が挙げられる。
 樹脂層15は、硬化性であるか、又は硬化性でなくてもよい。導電性線状体13を樹脂層15に配置するときには、配置のしやすさの観点から、樹脂層15は、タック性を有することが好ましい。この場合、樹脂層15は、タック性は大きいほうが好ましい。一方、応力が負荷された状態で、第二電極52が樹脂層15に接触した場合、応力が負荷された状態から応力が負荷されない状態に移行するときに、第二電極52が樹脂層15から離れやすくする観点から、樹脂層15は、タック性が小さいほうが好ましい。この場合、樹脂層15は、タック性を有さないことが好ましい。これらの観点で、樹脂層15は、硬化性であることが好ましく、エネルギー線硬化性樹脂を含む硬化性の接着剤層であることがより好ましい。
 ここで、タック性とは、物質の表面に生じるベタつき感を意味する。本実施形態では、タック性は、樹脂層15の表面に生じるベタつき感を意味する。
 樹脂層15を、このような構成とすれば、第二電極52が、樹脂層15に接触したとき、第二電極52は、疑似シート構造体11と接触した状態を保持しないようにすることができる。
 樹脂層15の厚さは、配線シート100の用途に応じて適宜決定される。例えば、接着性の観点から、樹脂層15の厚さは、3μm以上150μm以下であることが好ましく、5μm以上100μm以下であることがより好ましい。
(電極)
 第一電極50は、導電性線状体13に電流を供給するために用いられる。第一電極50は、導電性線状体13の両端部側に電気的に接続されて配置される。第二電極52は、接触センサとしての機能を付与するために用いられる。第二電極52は、導電性線状体13および第一電極50と離間して配置される。そして、第二電極52は、導電性線状体13と電気的に接続、又は電気的に非接続の状態となることで、オンからオフ、又はオフからオンへの切り替えが可能となる。
 第一電極50及び第二電極52の電極材料が、金属箔又は金属ワイヤーである場合、金属箔又は金属ワイヤーの金属としては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)が挙げられる。また、金属箔又は金属ワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされていてもよい。金属箔又は金属ワイヤーは、金めっきされていることが好ましい。このような場合、第一電極50と導電性線状体13との接触抵抗を抑えられるため、第一電極50での発熱を抑制できる。第一電極50及び第二電極52は、帯状物、及び線状物など、特に限定されさない。第一電極50及び第二電極52の電極材料は、特に限定されず、例えば、金属箔又は金属ワイヤーのいずれでもよい。第一電極50及び第二電極52の電極材料は、金属ワイヤーであることが好ましい。
 電極材料が、金属ワイヤーである場合、金属ワイヤーの断面の形状は、特に限定されず、多角形、扁平形状、楕円形状、又は円形状等を取り得るが、楕円形状、又は円形状であることが好ましい。
 金属ワイヤーの断面が円形状である場合には、金属ワイヤーの直径は、2μm以上1000μm以下であることが好ましく、2μm以上500μm以下であることがより好ましく、5μm以上300μm以下であることがさらに好ましく、10μm以上250μm以下であることがよりさらに好ましい。
 第一電極50、及び第二電極52の直径が、上記範囲内であれば、電気伝導率が高く低抵抗となり疑似シート構造体との抵抗値を低く抑えられる。また、電極として十分な強度が得られる。なお、電極が金属ワイヤーである場合には、電極の厚さは、金属ワイヤーの直径である。
 金属ワイヤーの断面が楕円形状である場合には、長径が上記の直径と同様の範囲にあることが好ましい。
 配線シート100をヒーターに適用した場合、第一電極50、及び第二電極52の発熱を抑制する観点で、第一電極50、及び第二電極52の体積抵抗率は、それぞれ、以下の範囲であることが好ましい。第一電極50の体積抵抗率は、1.0×10-9Ω・m以上1.0×10-5Ω・m以下であることが好ましく、5.0×10-9Ω・m以上5.0×10-6Ω・m以下であることがより好ましい。第二電極52の体積抵抗率は、1.0×10-9Ω・m以上1.0×10-3Ω・m以下であることが好ましく、1.0×10-8Ω・m以上5.0×10-4Ω・m以下であることがより好ましい。第一電極50、及び第二電極52の体積抵抗率は、導電性線状体13の体積抵抗率の測定方法と同様の方法で求められる。
 一対の第一電極50が配置される位置において、一方の電極から他方の電極までの距離は特に限定されず、一方の電極と他方の電極と間の距離W1は(図2参照)、例えば、2mm以上2m以下であってもよく、50mm以上500mm以下であってもよい。また、第二電極52が配置される位置において、第一電極50の一方の電極から第二電極52までの距離は、特に限定されず、第一電極50の一方の電極と第二電極52との間の距離W2(図2参照)は、例えば、1mm以上1m以下であってもよく、25mm以上250mm以下であってもよい。
(スペーサー)
 図1A、図1B、図2、及び図3に示されるように、配線シート100は、スペーサー70(第一スペーサー)を備えている。スペーサー70は、疑似シート構造体11と、第二電極52とを隔てるために用いられる。これに限定されず、本実施形態に係る配線シート100は、疑似シート構造体11と第二電極52とを隔てるように離間して配置できるのであれば、スペーサー70を備えていてもよく、スペーサー70を備えていなくてもよい。スペーサー70は必要に応じて設けられる部材である。
 配線シート100は、スペーサー70を備えているため、前述の応力が負荷されない状態のとき、オフの状態を保持しやすくなる。そして、応力が負荷された状態のとき、例えば、スペーサー70が変形することで、第二電極52と疑似シート構造体11とが接触する。つまり、配線シート100は、スペーサー70を備えることにより、第二電極52と、疑似シート構造体11とが、接触した状態、又は非接触の状態に切り替えることが容易になる。
 スペーサー70の材質は、絶縁性を有する材料であれば、特に限定されない。スペーサー70には、公知の絶縁材料を用いることができる。スペーサー70の材質は、応力を受けると変形し、応力が除かれると元の形状に戻る性質を有することが好ましい。スペーサー70の形態は、例えば、シート状物、帯状物、及び線状物などが挙げられる。スペーサー70の材質は、例えば、熱可塑性樹脂を含む材質などが挙げられる。熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、及びポリアミドイミド樹脂などが挙げられる。スペーサー70が熱可塑性樹脂を含む場合、これら熱可塑性樹脂を含むフィルム、樹脂発泡体、糸、布帛、及び不織布などが挙げられる。第二電極52と疑似シート構造体11とが近付く方向に外力が作用されたとき、第二電極52と疑似シート構造体11とが接触して、電気的に接続することが可能であれば、スペーサー70の態様は、特に限定されない。
 スペーサー70の厚さ(直径)は、特に限定されない。スペーサー70の厚さは、例えば、10μm以上10mm以下であってもよく、50μm以上500μm以下であってもよい。配線シート100において、スペーサー70の厚さ(直径)は、前述の数式(F1)の関係を満たす範囲の厚さであることが好ましい。スペーサー70の絶縁性としては、例えば、スペーサー70の体積抵抗率が1012Ω・cm以上であってもよい。
 スペーサー70が配置される位置において、導電性線状体13からスペーサー70までの距離は、特に限定されず、導電性線状体13とスペーサー70との間の距離L2は、例えば、250μm以上20mm以下であってもよく、1mm以上5mm以下であってもよい(図2参照)。導電性線状体13の両側に配される、導電性線状体13からスペーサー70までの距離は、同じであってもよく、異なっていてもよい。
(基材)
 図1A、図1B、図2、及び図3に示されるように、配線シート100は、基材17(第一基材)を備えている。基材17は、疑似シート構造体11を直接的または間接的に支持できる。これに限定されず、本実施形態に係る配線シート100は、基材17を備えていてもよく、基材17を備えていなくてもよい。基材17は必要に応じて設けられる部材である。
 基材17としては、例えば、合成樹脂フィルム、紙、金属箔、不織布、布及びガラスフィルム等が挙げられる。また、基材17は、伸縮性基材であることが好ましい。基材17が伸縮性基材であれば、疑似シート構造体11を基材17上に設けた場合でも、配線シート100の伸縮性を確保できる。
 伸縮性基材としては、合成樹脂フィルム、不織布、及び布等を用いることができる。
 合成樹脂フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、及びポリイミドフィルム等が挙げられる。その他、伸縮性基材としては、これらの架橋フィルム及び積層フィルム等が挙げられる。
 また、不織布としては、例えば、スパンボンド不織布、ニードルパンチ不織布、メルトブロー不織布、及びスパンレース不織布等が挙げられる。布としては、例えば、織物及び編物等が挙げられる。伸縮性基材としての紙、不織布、及び布はこれらに限定されない。
 伸縮性基材の厚さは特に限定されない。伸縮性基材の厚さは、10μm以上10mm以下であることが好ましく、15μm以上3mm以下であることがより好ましく、50μm以上1.5mm以下であることがさらに好ましい。
(接触センサ及び配線シートの製造方法)
 本実施形態に係る配線シート100の製造方法は、特に限定されない。配線シート100は、例えば、次の工程により、製造できる。
 まず、基材17(第一基材)の上に、樹脂層15(第一樹脂層)の形成用組成物を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、樹脂層15を作製する。次に、樹脂層15の上に、導電性線状体13を配列しながら配置して、疑似シート構造体11を形成する。例えば、ドラム部材の外周面に基材17付きの樹脂層15を配置した状態で、ドラム部材を回転させながら、樹脂層15の上に導電性線状体13を螺旋状に巻き付ける。その後、螺旋状に巻き付けた導電性線状体13の束をドラム部材の軸方向に沿って切断する。これにより、疑似シート構造体11を形成すると共に、樹脂層15に配置する。そして、疑似シート構造体11が形成された基材17付きの樹脂層15をドラム部材から取り出し、シート状導電部材が得られる。この方法によれば、例えば、ドラム部材を回転させながら、導電性線状体13の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、疑似シート構造体11における隣り合う導電性線状体13の間隔L1を調整することが容易である。
 次に、一対の第一電極50を、シート状導電部材の疑似シート構造体11における導電性線状体13の両端部側に貼り合わせる。続いて、スペーサー70(第一スペーサー)を、疑似シート構造体11上に、導電性線状体13を介して、対向するように取り付ける。具体的には、スペーサー70は、導電性線状体13が延びる方向に沿って配置し、導電性線状体13が延びる方向と交差する方向における導電性線状体13の両隣に取り付ける。次いで、第二電極52を、スペーサー70に接するように、一対の第一電極50の間に、一対の第一電極50が延びる方向と平行に沿う方向に取り付ける。そして、第二電極52上に、基材37(第二基材)を貼り合わせる。以上の手順により、配線シート100が作製される。
(第一実施形態の作用効果)
 本実施形態によれば、次のような作用効果を奏することができる。
(1)配線シート100は、第二電極52が、疑似シート構造体11および第一電極50に離間して配置され、疑似シート構造体11の平面視において、第二電極52が、導電性線状体13と交差し、かつ第一電極50と重ならないように配置される。配線シート100は、この構造を備えることにより、第二電極52が疑似シート構造体11と接触したときに、電気的に接続する。このため、本実施形態によれば、第二電極52が疑似シート構造体11と接触したときに、接触したことを検知するセンサが得られる。これにより、配線シート100への通電を可能とし、オンからオフ、又はオフからオンへの切り替えを可能とするスイッチ機能が発現する。
(2)本実施形態に係る配線シート100は、第二電極52を設置する数を容易に増加させることができる。このため、本実施形態によれば、第二電極52を設置する数を増加させるだけで、スイッチ機能を有するスイッチ部位を容易に増加させることが可能となる。
[第二実施形態]
 次に、本発明の第二実施形態を図面に基づいて説明する。本発明の第二実施形態は本実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
 第二実施形態は、第一実施形態で用いたスペーサー70(第一スペーサー)に代えて、スペーサー72(第二スペーサー)を用いる点、及び、第二電極52が、基材37(第二基材)と樹脂層35(第二樹脂層)とを備えるシート状導電部材30(第二シート状導電部材)に設けられている点で、第一実施形態と異なる。
 以下の説明では、第一実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第一実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。
(接触センサ及び配線シート)
 本実施形態に係る配線シート120は、図4A、図4B、図5、及び図6に示すように、接触センサを備えた配線シート120である。以下、本実施形態に係る接触センサは、本実施形態に係る配線シート120とともに説明する。
 本実施形態に係る配線シート120は、図4A、図4B、図5、及び図6に示すように、複数の導電性線状体13が間隔をもって配列された疑似シート構造体11と、導電性線状体13に電気的に接続する第一電極50とを備えている。第一電極50は、一対の第一電極50として構成されており、一方の電極と対をなす、別の第一電極を備えている(つまり、一対の第一電極50は、一方の電極と、他方の電極とにより構成されている。)。また、配線シート120は、疑似シート構造体11および第一電極50に離間して配置され、疑似シート構造体11の平面視において、導電性線状体13と交差し、かつ第一電極50と重ならない第二電極52を備えている。そして、第二電極52は、第二電極52と疑似シート構造体11とが近づく方向に外力が作用されたとき、疑似シート構造体11と電気的に接続した状態となる。一方、第二電極52は、第二電極52と疑似シート構造体11とが近づく方向に外力が解除されたとき、疑似シート構造体11と電気的に非接続の状態となる。
 具体的には、配線シート120は、基材17(第一基材)、基材17の上に、疑似シート構造体11を支持する樹脂層15(第一樹脂層)、及び、樹脂層15の上に、疑似シート構造体11が積層されているシート状導電部材10(第一シート状導電部材)を備えている。また、配線シート120は、基材37(第二基材)、基材37の上に、第二電極52を支持する樹脂層35(第二樹脂層)、樹脂層35の上に、第二電極52、及びスペーサー72(第二スペーサー)が積層されたシート状導電部材30(第二シート状導電部材)を備えている。スペーサー72は、第二電極52が延びる方向(第二電極52の軸方向)に沿って配置されている。そして、配線シート120では、2つのスペーサー72が、第二電極52の軸方向に沿って、第二電極52を挟んで、第二電極52の両側に配置されている。配線シート120においては、第一電極50が、シート状導電部材10と、シート状導電部材30との間に配置されている。第一電極50は、シート状導電部材10に設けられている導電性線状体13と、電気的に接続している。配線シート120では、スペーサー72が配置されることにより、第二電極52が、疑似シート構造体11および第一電極50に離間して配置されている。また、図4A、図4B、及び図6に示すように、配線シート120においては、第一電極50、第二電極52、導電性線状体13、及びスペーサー72は、いずれも、線状体の形状を成している。
 配線シート120には、スペーサー72が配置されるため、応力が負荷されない状態(つまり、第二電極52と疑似シート構造体11とが近づく方向に外力が作用していない状態)では、導電性線状体13および第一電極50と、第二電極52とが電気的に接続しない構造とされている。配線シート120に、応力が負荷された状態(つまり、第二電極52と疑似シート構造体11とが近づく方向に外力が作用している状態)になると、第二電極52は、疑似シート構造体11と電気的に接続した状態となり、配線シート120に、再び応力が負荷されない状態となると、第二電極52は、疑似シート構造体11と再び電気的に接続しない状態になる。
 第一実施形態に係る配線シート100と同様に、例えば、導電性線状体13の抵抗値の変化を検知することによって、第二電極52は、疑似シート構造体11と接触したことが判断される。配線シート120において、疑似シート構造体11と、第一電極50と、第二電極52とが、接触センサとしての機能を果たす。すなわち、第一実施形態に係る配線シート100と同様に、疑似シート構造体11と、疑似シート構造体11に電気的に接続する第一電極50と、第二電極52とを備えた部位が、接触センサである。このような構成を備える配線シート120は、第一実施形態に係る配線シート100と同様に、接触センサとしても機能する。
 第一実施形態に係る配線シート100と同様に、配線シート120は、応力が負荷された状態で、疑似シート構造体11と第二電極52とが、接触して、電気的に接続した状態となると、疑似シート構造体11と第二電極52とが通電した状態となり、通電がオンの状態となる。また、配線シート120は、疑似シート構造体11と第二電極52とが、接触せず、電気的に非接続の状態となると、疑似シート構造体11と第二電極52とが通電しない状態となり、通電がオフの状態となる。
 配線シート120は、例えば、ヒーターの用途に適用された場合、第二電極52と疑似シート構造体11とが接触して、電気的に接続することで、疑似シート構造体11の導電性線状体13が発熱するヒーターとなる。
 本実施形態に係る配線シート120は、第一実施形態に係る配線シート100と同様に、前述の数式(F3)及び数式(F4)を満たすことが好ましい。
 接触センサ(配線シート120)は、スペーサー72(第二スペーサー)の厚さBと、第二電極52の厚さbとの関係が、下記数式(F2)で表される条件を満たすことが好ましい。
 3.0b≧B≧1.2b ・・・(F2)
 配線シート120は、上記の数式(F2)で表される条件を満たすことで、疑似シート構造体11と第二電極52との通電状態の有無が容易になり、接触センサとしてのオンの状態、又はオフの状態を容易に発現しやすくなる。
 配線シート120においては、スペーサー72、及び第二電極52は、いずれも、線状体の形状を成しているため、スペーサー72の厚さBと、第二電極52の厚さbとは、それぞれ、スペーサー72の直径、及び第二電極52の直径に相当する。
 配線シート120において、樹脂層35、及びスペーサー72は、それぞれ、第一実施形態で説明した、樹脂層15、及びスペーサー70と同様の材料が使用できる。
 ただし、配線シート120において、スペーサー72の厚さは、例えば、3μm以上10mm以下であってもよく、80μm以上500μm以下であってもよい。配線シート120において、スペーサー72の厚さ(直径)は、前述の数式(F2)を満たす範囲の厚さであることが好ましい。
 一対の第一電極50が配置される位置において、一方の電極から他方の電極までの距離は特に限定されず、一方の電極と他方の電極と間の距離W1(図5参照)は、例えば、2mm以上2m以下であってもよく、50mm以上500mm以下であってもよい。
 また、シート状導電部材10とシート状導電部材30とを重ね合わせるとき、第二電極52が配置される位置として、第一電極50の一方の電極から第二電極52までの距離は、特に限定されない。第一電極50の一方の電極と第二電極52との間の距離は、例えば、第一実施形態におけるW2と同程度であってもよい。
 スペーサー72が配置される位置において、第二電極52からスペーサー72までの距離は、特に限定されず、第二電極52とスペーサー72との間の距離W3(図5参照)は、例えば、250μm以上20mm以下であってもよく、1mm以上5mm以下であってもよい。第二電極52の両側に配される、第二電極52からスペーサー72までの距離は、同じであってもよく、異なっていてもよい。
(接触センサ及び配線シートの製造方法)
 本実施形態に係る配線シート120の製造方法は、特に限定されない。配線シート120は、例えば、次の工程により、製造できる。
 まず、基材17(第一基材)の上に、樹脂層15(第一樹脂層)の形成用組成物を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、樹脂層15を作製する。次に、樹脂層15の上に、導電性線状体13を配列しながら配置して、疑似シート構造体11を形成する。例えば、ドラム部材の外周面に基材17付きの樹脂層15を配置した状態で、ドラム部材を回転させながら、樹脂層15の上に導電性線状体13を螺旋状に巻き付ける。その後、螺旋状に巻き付けた導電性線状体13の束をドラム部材の軸方向に沿って切断する。これにより、疑似シート構造体11を形成すると共に、樹脂層15に配置する。そして、疑似シート構造体11が形成された基材17付きの樹脂層15をドラム部材から取り出し、シート状導電部材10(第一シート状導電部材)が得られる。この方法によれば、例えば、ドラム部材を回転させながら、導電性線状体13の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、疑似シート構造体11における隣り合う導電性線状体13の間隔L1を調整することが容易である。
 次に、一対の第一電極50を、シート状導電部材10の疑似シート構造体11における導電性線状体13の両端部側に、貼り合わせる。
 次に、基材37(第二基材)の上に、樹脂層35(第二樹脂層)の形成用組成物を塗布し、塗膜を形成する。次いで、塗膜を乾燥させて、樹脂層35を作製する。その後、第二電極52を取り付け、さらに、第二電極52の軸方向に沿って、第二電極52を介して、対向するように、スペーサー72(第二スペーサー)を取り付ける。具体的には、スペーサー72は、第二電極52の軸方向に沿って配置し、第二電極52に軸方向と交差する方向に、第二電極52の両隣に取り付ける。これにより、シート状導電部材30(第二シート状導電部材)が得られる。
 次に、一対の第一電極50を設置したシート状導電部材10と、シート状導電部材30とを貼り合わせる。具体的には、第二電極52が、一対の第一電極50が延びる方向(第一電極50の軸方向)と平行に沿う方向に配置されるように、シート状導電部材10とシート状導電部材30とを貼り合わせる。
 以上の手順により、配線シート120が作製される。
(第二実施形態の作用効果)
 本実施形態によれば、前記第一実施形態における作用効果(1)及び(2)と同様の作用効果を奏することができる。
[第三実施形態]
 次に、本発明の第三実施形態を図面に基づいて説明する。本発明の第三実施形態は本実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
 第三実施形態は、配線シート140を含む配線シート300である。配線シート140は、一対の第一電極50の軸方向における長さが、第二実施形態の配線シート120よりも長い点で、第二実施形態の配線シート120と異なる。その他の点は、第二実施形態の配線シート120と同様の構成を備えている。
 以下の説明では、第二実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第二実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。
(配線シート)
 図7に示すように、第三実施形態に係る配線シート300は、配線シート140を含んでいる。図7に示す配線シート140は、第一実施形態及び第二実施形態で説明した配線シート100及び配線シート120と同様に、接触センサを備えており、接触センサとして機能する。
 第三実施形態に係る配線シート300は、図7に示すように、接触センサを備える配線シート140と、第一バッテリーP1と、第二バッテリーP2と、リレーRとを備えている。配線シート140は、一対の第一電極50のうちの一方の電極50Aと、他方の電極50Bと、第二電極52とを備えている。配線シート300は、一対の第一電極50のうちの一方の電極50Aが、第一バッテリーP1及び第二バッテリーP2と電気的に接続されており、一対の第一電極50のうちの他方の電極50Bが、リレーRを介して第二バッテリーP2に電気的に接続されている。第二電極52は、リレーRを介して第一バッテリーP1に電気的に接続されている。そして、リレーRによって、一対の第一電極50と、第二電極52とが通電することにより、配線シート300は、リレーRを介する回路に通電されるように構成されている。
 具体的には、配線シート300は、配線シート140が備える一対の第一電極50のうち、一方の電極50Aは、電極50Aの一端側が、第一バッテリーP1に電気的に接続されている。第一バッテリーP1は、リレーRと電気的に接続されている。リレーRは、第二電極52と電気的に接続されている。つまり、第二電極52は、第二電極52の一端側が、リレーRを介して、第一バッテリーP1に電気的に接続されている。第二電極52の他端側は、配線が施されていない。配線シート300は、電極50Aの他端側が、第二バッテリーP2に電気的に接続されている。第二バッテリーP2は、リレーRと電気的に接続されている。つまり、配線シート140が備える一対の第一電極50のうち、他方の電極50Bは、電極50Bの一端側が、リレーRを介して、電気的に接続されている。電極50Bの他端側は、配線が施されていない。
 接触センサを備える配線シート140において、応力が負荷されない状態(つまり、第二電極52と疑似シート構造体11とが近づく方向に外力が作用していない状態)のとき、第二電極52と、疑似シート構造体11とが、電気的に接続しておらず、配線シート300は、リレーRを介する回路が通電されていない状態である。配線シート140において、応力が負荷された状態(つまり、第二電極52と疑似シート構造体11とが近づく方向に外力が作用している状態)となり、第二電極52と、疑似シート構造体11とが、電気的に接続したとき、配線シート300は、リレーRの接点が接続され、リレーRに電流が供給される。リレーRに電流が供給されることにより、配線シート300は、リレーRを介する回路が通電された状態となる。すなわち、配線シート300が発熱体として適用された場合、配線シート300に、発熱のための電力が供給された状態となる。一方、接触センサを備える配線シート140において、配線シート140は、再び応力が負荷されない状態となり、第二電極52と、疑似シート構造体11とが、電気的に非接続の状態となったとき、リレーRの接点が切断され、リレーRへの電流の供給が遮断される。リレーRへの電流の供給が遮断されることにより、配線シート300は、リレーRを介する回路への通電が停止された状態となる。すなわち、配線シート300が発熱体として適用された場合、配線シート300に、発熱のための電力の供給が停止された状態となる。
(第三実施形態の作用効果)
 本実施形態によれば、前記第一実施形態及び前記第二実施形態における作用効果(1)及び(2)と同様の作用効果を奏することができる。また、下記の作用効果(3)も奏することができる。
(3)本実施形態によれば、配線シート300は、配線シート300の回路内に、接触センサ(配線シート140)、及びリレーRを備えていることにより、接触センサが備える疑似シート構造体11と、第二電極52とが接触して、電気的に接続することで、リレーRに電流が供給される。配線シート300を発熱体として適用した場合、リレーRを備えていることで接触センサが接触したことを検知したとき、配線シート300が加温されることが可能となる。
[第四実施形態]
 次に、本発明の第四実施形態を図面に基づいて説明する。本発明の第四実施形態は本実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
 第四実施形態は、配線シート140を含む配線シート320である。配線シート140は、第三実施形態に係る配線シート300で用いられている配線シート140と同様である。
 以下の説明では、第三実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第三実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。
(配線シート)
 第四実施形態に係る配線シート320は、図8に示すように、接触センサを備える配線シート140と、バッテリーP3と、リレーRとを備えている。配線シート140は、一対の第一電極50のうちの一方の電極50Aと、他方の電極50Bと、第二電極52とを備えている。配線シート320は、一対の第一電極50のうちの一方の電極50Aが、バッテリーP3と電気的に接続しており、一対の第一電極50のうちの他方の電極50Bが、リレーRを介してバッテリーP3に電気的に接続されている。第二電極52は、リレーRを介してバッテリーP3に電気的に接続されている。そして、リレーRによって、一対の第一電極50と、第二電極52とが通電することにより、配線シート320は、リレーRを介する回路に通電されるように構成されている。
 具体的には、配線シート320は、2つのマイナス端子(マイナス端子-)と2つのプラス端子(プラス端子+)とを有するバッテリーP3を備えている。配線シート140が備える一対の第一電極50のうち、一方の電極50Aは、電極50Aの一端側及び他端側が、バッテリーP3の2つのマイナス端子と、それぞれ、電気的に接続されている。一対の第一電極50のうち、他方の電極50Bは、電極50Bの一端側が、リレーRと電気的に接続している。リレーRは、バッテリーP3の一方のプラス端子と電気的に接続している。つまり、電極50Bは、リレーRを介して、バッテリーP3と電気的に接続されている。電極50Bの他端側は、配線が施されていない。第二電極52は、リレーRと電気的に接続し、リレーRは、バッテリーP3の他方のプラス端子と電気的に接続している。つまり、第二電極52は、第二電極52の一端側が、リレーRを介して、第一バッテリーP1に電気的に接続されている。第二電極52の他端側は、配線が施されていない。
 接触センサを備える配線シート140において、応力が負荷されない状態のとき、第二電極52と、疑似シート構造体11とが、電気的に接続しておらず、配線シート320は通電されていない状態である。第三実施形態と同様に、配線シート140は、応力が負荷された状態となると、配線シート320は、リレーRを介する回路が通電された状態となり、配線シート140は、再び応力が負荷されない状態となると、配線シート320は、リレーRを介する回路への通電が停止された状態となる。
(第四実施形態の作用効果)
 本実施形態によれば、前記第三実施形態における各作用効果(1)から(3)と同様の作用効果を奏することができる。
[実施形態の変形]
 本発明は前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれる。
 本明細書では、接触センサについて、第一実施形態に係る配線シート100、及び第二実施形態に係る配線シート120、並びに、第三実施形態、及び第四実施形態に係る配線シート140により説明したが、接触センサは、これらの実施形態に限定されない。
 例えば、接触センサは、第一電極50が二つの電極を備える、一対の電極の態様に限られず、第一電極50が一つの電極の態様でもよい。例えば、接触センサは、一つの第二電極52を備えている態様に限られず、二つ以上の複数の第二電極52を備える態様でもよい。例えば、接触センサは、一対の第一電極50における一方の電極と他方の電極の間に配置される態様に限られず、接触して検知する機能を有していれば、一対の第一電極50の外側に配置される態様であってもよい。例えば、接触センサは、第一電極50、及び第二電極52の形態が線状物であるが、これに限定されず、第一電極50、及び第二電極52の少なくとも一方が、帯状物などの形態でもよい。
 また、例えば、接触センサは、スペーサー70(第一スペーサー)、又はスペーサー72(第二スペーサー)のいずれかを備える態様に限られず、スペーサー70(第一スペーサー)、及びスペーサー72(第二スペーサー)の両者を備える態様でもよい。
 接触センサは、第一実施形態に係る配線シート100、及び第二実施形態に係る配線シート120、並びに、第三実施形態及び第四実施形態に係る配線シート140において、スペーサー70及びスペーサー72の材質は、例えば、外力を作用させると変形するが、外力が解放されると、外力が作用する前の形状に復元するような性質を示す材質であってもよい。例えば、スペーサー70及びスペーサー72は、弾性体であってもよい。スペーサー70及びスペーサー72の形態は、線状物であるが、これに限定されず、第一電極50、及び第二電極52の少なくとも一方が、帯状物などの形態でもよい。
 第一実施形態に係る配線シート100、及び第二実施形態に係る配線シート120、並びに、第三実施形態及び第四実施形態に係る配線シート140において、導電性線状体13は、直線状である。これに限定されず、導電性線状体13は、例えば、波形状であってもよい。波形状は、例えば、正弦波、円形波、矩形波、三角波、及びのこぎり波等の波形状であってもよい。
 なお、導電性線状体13が波形状である場合、導電性線状体13の軸方向に、配線シート100、配線シート120、又は配線シート140を伸張したときに、導電性線状体13の断線を抑制できるという利点が得られる。
[接触センサおよび配線シートの用途]
 配線シート100の用途は、特に限定されず、例えば、発熱体(ヒーター)として適用することが可能である。また、発熱体としての利用以外にも、電気信号の配線のためのフラットケーブル、検知デバイス等にも適用可能である。
 以下、実施例を挙げて本発明をさらに具体的に説明する。ただし、本発明は、これら各実施例に何ら限定されない。
[調製例1]
(接着剤の調製)
 アクリル系共重合体(n-ブチルアクリレート(BA)/アクリル酸(AAc)=90.0/10.0(質量比)からなる原料モノマー由来の構成単位を有するアクリル系共重合体、重量平均分子量(Mw):41万)100質量部に、アクリル系2官能硬化性樹脂(トリシクロデカンジメタノールジアクリレート)25質量部、光重合開始剤(IGM Resins B.V.社製、商品名「Omnirad 184」)を固形分濃度が30質量%となるように、メチルエチルケトンに溶解して、溶液1を調製した。この溶液1を3質量部量り取り、希釈溶剤としてメチルエチルケトンを配合して、接着剤(感圧性接着剤)を得た。
[実施例1]
(接着シートの作製)
 厚さ50μmのポリエチレンテレフタレートフィルム(以下、PETフィルムと称する。)上に、調製例1で得られた接着剤を、乾燥後の厚さが20μmになるように塗布して、乾燥し、感圧性接着剤層を設けた。乾燥後、感圧性接着剤層が設けられたPETフィルムを、250mm×320mmの長方形に裁断し、接着シートを作製した。
(シート状導電部材の作製)
 導電性線状体として、金めっきタングステンワイヤー(以下、ワイヤーと称する。)(直径25μm、メーカー名:株式会社トクサイ製、製品名:Au(0.1)-TWG)を準備した。次に、外周面がゴム製のドラム部材に、上記接着シートを、感圧性接着剤層の表面(粘着面)を外側に向け、しわのないように巻きつけた。円周方向における上記接着シートの両端部を両面テープで固定した。ボビンに巻き付けた上記ワイヤーを、ドラム部材の端部付近に位置する接着シートの感圧性接着剤層の表面に付着させた。その上で、ワイヤーを繰り出しながらドラム部材で巻き取り、少しずつドラム部材をドラム軸と平行な方向に移動させていき、ワイヤーが等間隔に10mmで、らせんを描きながらドラム部材に巻きつくようにした。これにより、ワイヤーが感圧性接着剤層の表面に20本並べられた状態で疑似シート構造体を形成した。その後、ワイヤーを切断し、ドラム部材上から、疑似シート構造体を取り外した。ワイヤー5本分が取り出されるように、60mm×190mm幅に疑似シート構造体を裁断し、シート状導電部材を作製した。
(配線シートの作製)
 次に、第一電極として、金めっき銅線(直径150μm、メーカー名:株式会社トクサイ製、製品名:C1100-H AuP)を電極間距離150mmの間隔でワイヤーの両端部に乗せ、一対の第一電極を取り付けた。さらに、スペーサーとして長さ140mmのナイロン線(直径50μm、メーカー名:山豊テグス株式会社)を、電極間に位置する各導電性線状体の両側に、1mm離れた位置に平行に設置した。その後、第二電極として、ニクロム線(直径75μm、メーカー名:株式会社トクサイ製、製品名:NCHW1)1本を、各第一電極から75mm離れた位置に平行に取り付けた。その後、電極付きシート状導電部材の導電性線状体を配置した感圧性接着剤層の粘着面に、厚さ50μmのPETフィルムを貼り合わせた。次いで、波長365nmの紫外線を、照度300mW/cm、光量1400mJ/cmの条件で照射し、感圧性接着剤層を硬化させ、接触センサを備えた配線シートを作製した。得られた配線シートは、ヒーターとして機能する。
[実施例2]
 実施例1において、スペーサーとして用いたナイロン線(直径50μm、メーカー名:山豊テグス株式会社)を、ナイロン線(直径90μm、メーカー名:山豊テグス株式会社)に変更したこと以外、実施例1と同様にして配線シートを作製した。
[実施例3]
 実施例1において、スペーサーとして用いたナイロン線(直径50μm、メーカー名:山豊テグス株式会社)を、ナイロン線(直径120μm、メーカー名:山豊テグス株式会社)に変更したこと以外、実施例1と同様にして配線シートを作製した。
[比較例1]
 実施例1において、スペーサーとして用いたナイロン線(直径50μm、メーカー名:山豊テグス株式会社)を、ナイロン線(直径150μm、メーカー名:山豊テグス株式会社)にしたこと以外、実施例1と同様にして配線シートを作製した。
[オン-オフ評価]
 ヒーターの第一電極と第二電極とをテスターに接続し、第二電極と各導電性線状体の交差する部位に圧力(30N)を印加することで、配線シートにおける通電の有無を確認した。表1中、通電が有った場合を、「Detected」と表し、通電が無かった場合を、「N.D」と表記した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、各実施例の配線シートは、通電が有ることが確認された。したがって、各実施例の配線シートは、第二電極と疑似シート構造体とが近づく方向に外力が作用されたとき、第二電極と疑似シート構造体とが接触して、第二電極は、疑似シート構造体と電気的に接続した状態となったことがわかる。
 一方、比較例1の配線シートは、通電が無いことが確認された。したがって、比較例1の配線シートは、第二電極と疑似シート構造体とが近づく方向に外力が作用されたとき、第二電極と疑似シート構造体とが接触せず、第二電極は、疑似シート構造体と、電気的に接続しなかったことがわかる。
[実施例4]
(接着シートの作製)
 厚さ50μmのPETフィルム上に、調製例1で得られた接着剤を、乾燥後の厚さが20μmになるように塗布して、乾燥し、感圧性接着剤層を設けた。乾燥後、感圧性接着剤層が設けられたPETフィルムを、250mm×320mmの長方形に裁断し、接着シートを作製した。
(第一シート状導電部材の作製)
 導電性線状体として、金めっきタングステンワイヤー(以下、ワイヤーと称する。)(直径25μm、メーカー名:株式会社トクサイ製、製品名:Au(0.1)-TWG)を準備した。次に、外周面がゴム製のドラム部材に、上記接着シートを、感圧性接着剤層の表面(粘着面)を外側に向け、しわのないように巻きつけた。円周方向における上記接着シートの両端部を両面テープで固定した。ボビンに巻き付けた上記ワイヤーを、ドラム部材の端部付近に位置する接着シートの感圧性接着剤層の表面に付着させた。その上で、ワイヤーを繰り出しながらドラム部材で巻き取り、少しずつドラム部材をドラム軸と平行な方向に移動させていき、ワイヤーが等間隔に10mmで、らせんを描きながらドラム部材に巻きつくようにした。これにより、ワイヤーが感圧性接着剤層の表面に20本並べられた状態で疑似シート構造体を形成した。その後、ワイヤーを切断し、ドラム部材上から、疑似シート構造体を取り外した。ワイヤー5本分が取り出されるように、60mm×190mm幅に疑似シート構造体を裁断し、第一シート状導電部材を作製した。
 次に、第一電極として、金めっき銅線(直径150μm、メーカー名:株式会社トクサイ製、製品名:C1100-H AuP)を電極間距離150mmの間隔でワイヤーの両端部に乗せ、一対の第一電極を取り付けた。
(第二シート状導電部材の作製)
 上記で作製した接着シートを60mm×190mmの長方形に裁断し、第二電極として、ニクロム線(直径75μm、メーカー名:株式会社トクサイ製、製品名:NCHW1)1本を接着シート端部から95mm離れた位置に取り付けた。スペーサーとして長さ60mmのナイロン線(直径90μm、メーカー名:山豊テグス株式会社)を第二電極の両側に、1mm離れた位置に平行に設置し、第二シート状導電部材を作製した。
(配線シートの作製)
 第一シート状導電部材における導電性線状体を配置した感圧性接着剤層の粘着面の上に、第二シート状導電部材を貼り合わせた。波長365nmの紫外線を、照度300mW/cm、光量1400mJ/cmの条件で照射し、感圧性接着剤層を硬化させ、接触センサを備えた配線シートを作製した。得られた配線シートは、ヒーターとして機能する。
[実施例5]
 実施例4において、スペーサーとして用いたナイロン線(直径90μm、メーカー名:山豊テグス株式会社)を、ナイロン線(直径150μm、メーカー名:山豊テグス株式会社)に変更したこと以外、実施例4と同様にして配線シートを作製した。
[実施例6]
 実施例4において、スペーサーとして用いたナイロン線(直径90μm、メーカー名:山豊テグス株式会社)を、ナイロン線(直径210μm、メーカー名:山豊テグス株式会社)に変更したこと以外、実施例4と同様にして配線シートを作製した。
[比較例2]
 実施例4において、スペーサーとして用いたナイロン線(直径90μm、メーカー名:山豊テグス株式会社)を、ナイロン線(直径240μm、メーカー名:山豊テグス株式会社)に変更したこと以外、実施例4と同様にして配線シートを作製した。
[オン-オフ評価]
 ヒーターの第一電極と第二電極とをテスターに接続し、第二電極と各導電性線状体の交差する部位に圧力(30N)を印加することで、配線シートにおける通電の有無を確認した。表2中、通電が有った場合を、「Detected」と表し、通電が無かった場合を、「N.D」と表記した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、各実施例の配線シートは、通電が有ることが確認された。したがって、各実施例の配線シートは、第二電極と疑似シート構造体とが近づく方向に外力が作用されたとき、第二電極と疑似シート構造体とが接触して、第二電極は、疑似シート構造体と、電気的に接続した状態となったことがわかる。
 一方、比較例2の配線シートは、通電が無いことが確認された。したがって、比較例2の配線シートは、第二電極と疑似シート構造体とが近づく方向に外力が作用されたとき、第二電極と疑似シート構造体とが接触せず、第二電極は、疑似シート構造体と、電気的に接続しなかったことがわかる。
 10,30…シート状導電部材、11…疑似シート構造体、13…導電性線状体、15,35…樹脂層、17,37…基材、50…第一電極、52…第一電極、70,72…スペーサー、100,120,140,300,320…配線シート。

Claims (9)

  1.  複数の導電性線状体が間隔をもって配列された疑似シート構造体と、
     前記導電性線状体に電気的に接続する第一電極と、
     前記疑似シート構造体および前記第一電極に離間して配置され、前記疑似シート構造体の平面視において、前記導電性線状体と交差し、かつ前記第一電極と重ならない第二電極と、
     を備え、
     前記第二電極は、
     前記第二電極と前記疑似シート構造体とが近づく方向に外力が作用されたとき、前記疑似シート構造体と電気的に接続した状態となり、
     前記第二電極と前記疑似シート構造体とが近づく方向の外力が解除されたとき、前記疑似シート構造体と電気的に非接続の状態となる、
     接触センサ。
  2.  請求項1に記載の接触センサであって、
     前記接触センサは、スペーサーを備え、
     前記スペーサーは、
     前記接触センサの平面視において、前記導電性線状体が延びる方向に沿って配置された第一スペーサー、および、前記第二電極が延びる方向に沿って配置された第二スペーサーの少なくとも一つを備える、
     接触センサ。
  3.  請求項2に記載の接触センサであって、
     前記第一スペーサーの厚さAと、前記導電性線状体の直径aとの関係が、下記数式(F1)で表される条件を満たす、
     接触センサ。
     5.0a≧A≧2.0a ・・・(F1)
  4.  請求項2に記載の接触センサであって、
     前記第二スペーサーの厚さBと、前記第二電極の厚さbとの関係が、下記数式(F2)で表される条件を満たす、
     接触センサ。
     3.0b≧B≧1.2b ・・・(F2)
  5.  請求項1から請求項4のいずれか一項に記載の接触センサを備え、
     前記第一電極と対をなす、別の第一電極を、さらに備える、
     配線シート。
  6.  請求項5に記載の配線シートであって、
     前記第二電極の軸方向における抵抗値Re2と、前記導電性線状体の軸方向における1本当たりの抵抗値rとの関係が、下記数式(F3)で表される条件を満たす、
     配線シート。
     Re2≧1.5r ・・・(F3)
  7.  請求項5に記載の配線シートであって、
     前記第一電極の軸方向における抵抗値Re1と、前記導電性線状体の軸方向における全体の抵抗値rとの関係が、下記数式(F4)で表される条件を満たす、
     配線シート。
    20>r/Re1 ・・・(F4)
  8.  請求項5に記載の配線シートであって、
     前記配線シートは、バッテリーと、リレーとをさらに備え、
     一対の前記第一電極のうち、一方の第一電極は、前記バッテリーに電気的に接続され、
     一対の前記第一電極のうち、他方の第一電極は、前記リレーを介して、前記バッテリーと電気的に接続され、
     前記第二電極は、前記リレーを介して、前記バッテリーに電気的に接続され、
     前記第一電極と、前記第二電極とが通電することにより、前記配線シートに通電されるように構成されている、
     配線シート。
  9.  請求項5に記載の配線シートであって、
     前記導電性線状体は、金めっきが施された線状体である、
     配線シート。
PCT/JP2022/038139 2021-10-14 2022-10-13 接触センサ、及び配線シート WO2023063377A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023554598A JPWO2023063377A1 (ja) 2021-10-14 2022-10-13
CN202280068699.8A CN118103936A (zh) 2021-10-14 2022-10-13 接触传感器及布线片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-169029 2021-10-14
JP2021169029 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023063377A1 true WO2023063377A1 (ja) 2023-04-20

Family

ID=85988677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038139 WO2023063377A1 (ja) 2021-10-14 2022-10-13 接触センサ、及び配線シート

Country Status (3)

Country Link
JP (1) JPWO2023063377A1 (ja)
CN (1) CN118103936A (ja)
WO (1) WO2023063377A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144168A (ja) * 1996-11-12 1998-05-29 Sensor Technol Kk 面状スイッチ
JP2000311565A (ja) * 1999-04-28 2000-11-07 Fujikura Ltd 着座センサ及びそれを用いた着座検出システム
JP2006250705A (ja) * 2005-03-10 2006-09-21 Toshiba Corp 触覚センサー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144168A (ja) * 1996-11-12 1998-05-29 Sensor Technol Kk 面状スイッチ
JP2000311565A (ja) * 1999-04-28 2000-11-07 Fujikura Ltd 着座センサ及びそれを用いた着座検出システム
JP2006250705A (ja) * 2005-03-10 2006-09-21 Toshiba Corp 触覚センサー

Also Published As

Publication number Publication date
CN118103936A (zh) 2024-05-28
JPWO2023063377A1 (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
JP7321164B2 (ja) 導電性シート付き物品の製造方法
WO2021201069A1 (ja) 配線シート
US20230156868A1 (en) Sheet-like conductive member and sheet-like heater
WO2021192775A1 (ja) 配線シート及びシート状ヒーター
JP2020119856A (ja) シート状導電部材の製造方法、及びシート状導電部材
JP7308210B2 (ja) シート状導電部材
WO2023063377A1 (ja) 接触センサ、及び配線シート
EP4207940A1 (en) Wiring sheet and wiring sheet production method
JP2022149123A (ja) 配線シート
WO2020189173A1 (ja) シート状導電部材及びその製造方法
JP2022085213A (ja) 配線シート及びその製造方法
TW202207753A (zh) 配線薄片及薄片狀加熱器
WO2023063378A1 (ja) 配線シート
WO2023063379A1 (ja) 配線シート
JP2023059087A (ja) 配線シート
JP2023040321A (ja) 配線シート
WO2022202230A1 (ja) 配線シート
US20230413389A1 (en) Wiring sheet and sheet-form heater
JP2023059085A (ja) 面状発熱体
JP2023022338A (ja) センサ及び感知デバイス
WO2023080112A1 (ja) シート状ヒータ
WO2023188122A1 (ja) 配線シート
JP2024052337A (ja) 配線シート及びシート状ヒータ
WO2024070718A1 (ja) 配線シート及びシート状ヒータ
JP2024052310A (ja) 配線シート及びシート状ヒータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554598

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280068699.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22881072

Country of ref document: EP

Kind code of ref document: A1