WO2023080112A1 - シート状ヒータ - Google Patents

シート状ヒータ Download PDF

Info

Publication number
WO2023080112A1
WO2023080112A1 PCT/JP2022/040715 JP2022040715W WO2023080112A1 WO 2023080112 A1 WO2023080112 A1 WO 2023080112A1 JP 2022040715 W JP2022040715 W JP 2022040715W WO 2023080112 A1 WO2023080112 A1 WO 2023080112A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
conductive linear
linear body
conductive
resin layer
Prior art date
Application number
PCT/JP2022/040715
Other languages
English (en)
French (fr)
Inventor
雅春 伊藤
孝至 森岡
拓也 大嶋
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2023080112A1 publication Critical patent/WO2023080112A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material

Definitions

  • the present invention relates to sheet heaters.
  • Sheet-shaped heaters are used for various purposes, and there are cases where it is required to control the temperature of the sheet-shaped heater.
  • a method comprising placing to obtain a modified heated transparent window is described.
  • Patent Document 2 describes a heater device including a heater body having a planar heat-generating surface and a thermal fuse disposed on the heater body and having a contact portion that makes surface contact with the heat-generating surface. .
  • An object of the present invention is to provide a sheet heater which has a simple structure and whose temperature can be controlled.
  • the average interval between the conductive linear bodies is 15 mm or less.
  • the single metal element is the group consisting of tungsten, molybdenum, copper, nickel, iron, gold, silver, titanium, and aluminum.
  • a sheet heater comprising at least one metal element selected from
  • FIG. 1 is a schematic diagram showing a sheet heater according to an embodiment of the present invention
  • FIG. FIG. 2 is a sectional view showing the II-II section of FIG. 1
  • It is a schematic diagram for explaining the usage method of the sheet-like heater according to the embodiment of the present invention.
  • a sheet heater 100 includes a base material 1, a pseudo sheet structure 2, a resin layer 3, a pair of electrodes 4, and a detection module 5, as shown in FIGS. ing.
  • the sheet-shaped heater 100 has the resin layer 3 laminated on the base material 1 and the pseudo sheet structure 2 laminated on the resin layer 3 .
  • the pseudo sheet structure 2 has a plurality of conductive linear bodies 21 arranged at intervals.
  • a pair of electrodes 4 are electrically connected to the conductive linear body 21 .
  • the detection module 5 can detect the resistance value of the conductive linear body 21 .
  • the conductive linear body 21 is a metal wire or a linear body obtained by coating the metal wire with a conductive coating.
  • the metal wire is made of a metal having a ratio of a single metal element of 97% by mass or more.
  • the sheet heater 100 temperature control is possible with a simple configuration as follows. That is, detection module 5 can detect the resistance value of conductive linear body 21 . Moreover, the metal wire constituting the conductive linear body 21 is made of a metal having a ratio of a single metal element of 97% by mass or more. If the conductive linear body 21 has such a structure, it has a large temperature coefficient and is suitable for temperature control. Specifically, since the temperature corresponds to the resistance value of the conductive linear body 21 on a one-to-one basis, the resistance value is calculated by obtaining the voltage with respect to the current value, or the current value with respect to the voltage. It becomes possible to estimate the temperature of the sex striatum 21 .
  • the temperature of the sheet heater 100 can be controlled by adjusting the current value or voltage value applied to the conductive linear body 21 based on the estimated temperature.
  • temperature control can be performed without separately providing a temperature sensor, a temperature fuse, or the like.
  • the substrate 1 can support the pseudo-sheet structure 2 directly or indirectly.
  • the base material 1 does not necessarily have to be provided.
  • the base material 1 is a member provided as needed.
  • Examples of the substrate 1 include resin film, paper, metal foil, nonwoven fabric, cloth, and glass film.
  • a resin film, a nonwoven fabric, a cloth, or the like can be used as the stretchable base material.
  • resin films examples include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene-(meth)acrylic acid copolymer film, ethylene-(meth)acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, etc. is mentioned.
  • stretchable substrates include these crosslinked films and laminated films.
  • nonwoven fabrics include spunbond nonwoven fabrics, needle-punched nonwoven fabrics, meltblown nonwoven fabrics, spunlaced nonwoven fabrics, and the like. Fabrics include, for example, woven fabrics and knitted fabrics. Paper, non-woven fabric, and cloth as stretchable substrates are not limited to these.
  • the thickness of the base material 1 is not particularly limited. The thickness of the substrate 1 is preferably 10 ⁇ m or more and 10 mm or less, more preferably 15 ⁇ m or more and 3 mm or less, and even more preferably 50 ⁇ m or more and 1.5 mm or less.
  • the pseudo sheet structure 2 has a structure in which a plurality of conductive linear bodies 21 are arranged at intervals. That is, the pseudo sheet structure 2 is a structure in which a plurality of conductive linear bodies 21 are arranged at intervals so as to form a flat surface or a curved surface.
  • the conductive linear body 21 extends in one direction and has a straight or wavy shape in a plan view of the sheet heater 100 .
  • the pseudo sheet structure 2 has a structure in which a plurality of conductive linear bodies 21 are arranged in a direction orthogonal to the axial direction of the conductive linear bodies 21 .
  • the conductive linear body 21 may have a linear shape in a plan view of the sheet heater 100, or may have a wavy shape.
  • Wave shapes include, for example, sine waves, rectangular waves, triangular waves, and sawtooth waves. If the pseudo sheet structure 2 has such a structure, disconnection of the conductive linear body 21 can be suppressed when the sheet heater 100 is stretched in the axial direction of the conductive linear body 21 .
  • the volume resistivity of the conductive linear body 21 is preferably 1.0 ⁇ 10 ⁇ 9 ⁇ m or more and 1.0 ⁇ 10 ⁇ 3 ⁇ m or less, and preferably 1.0 ⁇ 10 ⁇ 8 ⁇ m It is more preferable to be not less than 1.0 ⁇ 10 ⁇ 4 ⁇ m.
  • a method for measuring the volume resistivity of the conductive linear body 21 is as follows. A silver paste is applied to both ends of the conductive linear body 21, and the resistance of the 40 mm length from the end is measured to obtain the resistance value of the conductive linear body 21. FIG.
  • the cross-sectional area (unit: m 2 ) of the conductive linear body 21 is multiplied by the above resistance value, and the obtained value is divided by the measured length (0.04 m) to obtain the conductive linear body.
  • a volume resistivity of the body 21 is calculated.
  • the cross-sectional shape of the conductive linear body 21 is not particularly limited, and may be polygonal, flat, elliptical, or circular. is preferably When the cross section of conductive linear body 21 is circular, the thickness (diameter) D (see FIG. 2) of conductive linear body 21 is preferably 5 ⁇ m or more and 75 ⁇ m or less. From the viewpoints of suppressing an increase in sheet resistance and improving heat generation efficiency and dielectric breakdown resistance of the sheet heater 100, the diameter D of the conductive linear body 21 is more preferably 8 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more. It is more preferably 30 ⁇ m or less, and particularly preferably 12 ⁇ m or more and 25 ⁇ m or less.
  • the conductive linear body 21 has a large heat capacity, and a temperature difference is likely to occur compared to the average temperature of the entire sheet. From the viewpoint of temperature control, it is preferable that the difference between the average temperature of the entire sheet and the temperature directly above the conductive linear members 21 is as small as possible. Therefore, the thinner the thickness (diameter) D of the conductive linear body 21, the easier the temperature control tends to be.
  • the cross section of the conductive linear body 21 is elliptical, it is preferable that the major axis is in the same range as the diameter D described above.
  • the diameter D of the conductive linear body 21 is obtained by observing the conductive linear body 21 of the pseudo sheet structure 2 using a digital microscope, and measuring the diameter of the conductive linear body 21 at five randomly selected locations. is measured and taken as the average value.
  • the distance L (see FIG. 2) between the conductive linear bodies 21 is preferably 0.3 mm or more and 50 mm or less, more preferably 0.5 mm or more and 30 mm or less, and 0.8 mm or more and 20 mm or less. is more preferable, and 2 mm or more and 15 mm or less is particularly preferable.
  • the conductive linear body 21 is arranged on the sheet plane, the temperature directly above the conductive linear body 21 becomes the highest. In such a case, since the interval L between the conductive linear bodies 21 is equal to or less than the above upper limit value, the difference between the average temperature of the entire sheet and the temperature directly above the conductive linear bodies 21 becomes small, and temperature control becomes impossible. easier.
  • the temperature control depends on the temperature of the conductive linear bodies 21, the deviation from the average temperature of the entire sheet can be made smaller. Moreover, from the viewpoint of suppressing temperature unevenness in the sheet-like heater 100, the interval L between the conductive linear members 21 is preferably equal.
  • the distance L between the conductive linear bodies 21 is obtained by observing the conductive linear bodies 21 of the pseudo sheet structure 2 using a digital microscope and measuring the distance between two adjacent conductive linear bodies 21 .
  • the interval between two adjacent conductive linear bodies 21 is the length along the direction in which the conductive linear bodies 21 are arranged. It is the length between the parts (see Figure 2).
  • the interval L is the average value of the intervals between all adjacent conductive linear bodies 21 when the conductive linear bodies 21 are arranged at uneven intervals.
  • the conductive linear body 21 is a metal wire or a linear body obtained by coating a metal wire with a conductive coating.
  • a metal wire is a linear body including a metal wire.
  • a metal wire has high thermal conductivity, high electrical conductivity, and high handleability. Therefore, if a metal wire linear body is used as the conductive linear body 21, the resistance value of the pseudo sheet structure 2 can be reduced and the light beam can be reduced. It becomes easy to improve the permeability. In addition, as described above, it is easy to obtain a filamentous body having a small diameter.
  • the metal wire must be made of a metal having a single metal element ratio of 97% by mass or more. If the ratio of a single metal element in the metal wire is less than 97% by mass, the temperature coefficient is too small to achieve sufficient temperature control.
  • the metal wire may be a linear body composed of one metal wire, or may be a linear body obtained by twisting a plurality of metal wires.
  • the single metal element is preferably at least one metal element selected from the group consisting of tungsten, molybdenum, copper, nickel, iron, gold, silver, titanium and aluminum. These metal elements are preferable from the viewpoint of making the conductive linear body 21 thin, high-strength, and low in volume resistivity.
  • the metal constituting the metal wire may be an alloy containing two or more metals as long as the ratio of a single metal element is 97% by mass or more.
  • the conductive linear body 21 is preferably a linear body in which a metal wire is coated with a conductive coating.
  • the conductive coating can reduce the contact resistance between the electrode 4 and the conductive linear body 21, and can prevent corrosion of the metal forming the metal wire.
  • Conductive coatings include coatings with metal plating and coatings with carbon materials. Examples of the metal plating metal that coats the metal wire include gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloys, and solder. Examples of the carbon material that coats the metal wire include amorphous carbon (eg, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.), graphite, fullerene, graphene, carbon nanotubes, and the like.
  • amorphous carbon eg, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.
  • the resin layer 3 is a layer containing resin. This resin layer 3 can directly or indirectly support the pseudo sheet structure 2 . Note that the resin layer 3 does not necessarily have to be provided. The resin layer 3 is provided as required. Moreover, the resin layer 3 is preferably a layer containing an adhesive. When the pseudo sheet structure 2 is formed on the resin layer 3 , the adhesive facilitates the attachment of the conductive linear bodies 21 to the resin layer 3 . Moreover, it is preferable that the resin layer 3 has stretchability. In such a case, the stretchability of the sheet heater 100 can be ensured.
  • the resin layer 3 may be a layer made of a resin that can be dried or cured. This gives the resin layer 3 sufficient hardness to protect the pseudo sheet structure 2, and the resin layer 3 also functions as a protective film. Moreover, the cured or dried resin layer 3 has impact resistance, and deformation of the resin layer 3 due to impact can be suppressed.
  • the resin layer 3 is preferably curable with energy rays such as ultraviolet rays, visible energy rays, infrared rays, electron rays, etc., because it can be easily cured in a short time.
  • energy ray curing includes heat curing by heating using energy rays.
  • the adhesive for the resin layer 3 examples include a thermosetting adhesive that hardens with heat, a so-called heat seal type that adheres with heat, and an adhesive that develops sticking properties when wetted.
  • the resin layer 3 is preferably energy ray-curable.
  • energy ray-curable resins include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferred.
  • acrylate compounds include chain aliphatic skeleton-containing (meth)acrylates (trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra( meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate, etc.) , cycloaliphatic skeleton-containing (meth)acrylates (dicyclopentanyl di(meth)acrylate, dicyclopentadiene di(meth)acrylate, etc.), polyalkylene glycol (meth)acrylates (polyethylene glycol di(meth)acrylate,
  • the weight average molecular weight (Mw) of the energy ray-curable resin is preferably 100-30,000, more preferably 300-10,000.
  • the energy ray-curable resin contained in the adhesive composition may be of one type or two or more types, and when two or more types are used, the combination and ratio thereof can be arbitrarily selected. Furthermore, it may be combined with a thermoplastic resin, which will be described later, and the combination and ratio can be arbitrarily selected.
  • the resin layer 3 may be an adhesive layer formed from an adhesive (pressure-sensitive adhesive).
  • the adhesive for the adhesive layer is not particularly limited. Examples of adhesives include acrylic adhesives, urethane adhesives, rubber adhesives, polyester adhesives, silicone adhesives, and polyvinyl ether adhesives. Among these, the adhesive is preferably at least one selected from the group consisting of an acrylic adhesive, a urethane adhesive, and a rubber adhesive, and more preferably an acrylic adhesive.
  • acrylic pressure-sensitive adhesives include polymers containing structural units derived from alkyl (meth)acrylates having straight-chain alkyl groups or branched-chain alkyl groups (that is, polymers obtained by polymerizing at least alkyl (meth)acrylates ), an acrylic polymer containing structural units derived from a (meth)acrylate having a cyclic structure (that is, a polymer obtained by polymerizing at least a (meth)acrylate having a cyclic structure), and the like.
  • (meth)acrylate” is used as a term indicating both "acrylate” and "methacrylate”, and the same applies to other similar terms.
  • the acrylic copolymer may be crosslinked with a crosslinking agent.
  • the cross-linking agent include known epoxy-based cross-linking agents, isocyanate-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • a hydroxyl group, a carboxyl group, or the like that reacts with these cross-linking agents should be introduced into the acrylic copolymer as a functional group derived from the monomer component of the acrylic polymer. can be done.
  • the resin layer 3 may contain the energy ray-curable resin described above in addition to the adhesive.
  • the energy-ray-curable components include a functional group that reacts with a functional group derived from a monomer component in the acrylic copolymer, and an energy-ray-polymerizable functional group.
  • a compound having both groups in one molecule may be used.
  • the reaction between the functional group of the compound and the functional group derived from the monomer component in the acrylic copolymer enables the side chains of the acrylic copolymer to polymerize by irradiation with energy rays.
  • a component having an energy ray-polymerizable side chain may be used as a polymer component other than the acrylic polymer.
  • thermosetting resin used for the resin layer 3 is not particularly limited, and specific examples include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, urethane resin, acrylic resin, benzoxazine resin, and phenoxy resin. , amine-based compounds, and acid anhydride-based compounds. These can be used individually by 1 type or in combination of 2 or more types. Among these, epoxy resins, phenol resins, melamine resins, urea resins, amine compounds and acid anhydride compounds are preferably used from the viewpoint of being suitable for curing using imidazole curing catalysts, and are particularly excellent.
  • the moisture-curable resin used for the resin layer 3 is not particularly limited, and examples thereof include urethane resins, modified silicone resins, etc., which are resins in which isocyanate groups are generated by moisture.
  • a photopolymerization initiator When using an energy ray-curable resin or a thermosetting resin, it is preferable to use a photopolymerization initiator, a thermal polymerization initiator, or the like.
  • a photopolymerization initiator, a thermal polymerization initiator, or the like By using a photopolymerization initiator, a thermal polymerization initiator, or the like, a crosslinked structure is formed, and the pseudo sheet structure 2 can be protected more firmly.
  • Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1 -hydroxycyclohexylphenyl ketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and bis(2,4,6) -trimethylbenzoyl)-phenyl-phosphine oxide and the like.
  • Thermal polymerization initiators include hydrogen peroxide, peroxodisulfates (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), azo compounds (2,2'-azobis(2-amidinopropane) di hydrochloride, 4,4′-azobis(4-cyanovaleric acid), 2,2′-azobisisobutyronitrile, and 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), etc.) , and organic peroxides (benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, etc.).
  • polymerization initiators can be used singly or in combination of two or more.
  • the amount used is 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the energy ray-curable resin or thermosetting resin. , more preferably 1 part by mass or more and 100 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less.
  • the resin layer 3 may be a layer made of, for example, a thermoplastic resin composition instead of being curable.
  • a thermoplastic resin composition By including a solvent in the thermoplastic resin composition, the thermoplastic resin layer can be softened. This makes it easy to attach the conductive linear bodies 21 to the resin layer 3 when forming the pseudo sheet structure 2 on the resin layer 3 .
  • the thermoplastic resin layer can be dried and solidified.
  • thermoplastic resins include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polyether, polyethersulfone, polyimide and acrylic resin.
  • solvents include alcohol-based solvents, ketone-based solvents, ester-based solvents, ether-based solvents, hydrocarbon-based solvents, halogenated alkyl-based solvents, and water.
  • the resin layer 3 may contain an inorganic filler. By including the inorganic filler, the hardness of the cured resin layer 3 can be further improved. Moreover, the thermal conductivity of the resin layer 3 is improved.
  • inorganic fillers examples include inorganic powders (for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, metals, boron nitride, etc.), beads obtained by spheroidizing inorganic powders, and single crystals. fibers, and glass fibers.
  • silica fillers and alumina fillers are preferred as inorganic fillers.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the resin layer 3 may contain other components.
  • Other components include, for example, organic solvents, flame retardants, tackifiers, ultraviolet absorbers, antioxidants, preservatives, antifungal agents, plasticizers, antifoaming agents, and well-known additives such as wettability modifiers. agents.
  • the thickness of the resin layer 3 is appropriately determined according to the use of the sheet heater 100.
  • the thickness of the resin layer 3 is preferably 3 ⁇ m or more and 150 ⁇ m or less, more preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • Electrode 4 is used to supply current to conductive linear body 21 . Electrode 4 is in direct contact with conductive linear body 21 . The electrodes 4 are arranged to be electrically connected to both ends of the conductive linear body 21 .
  • the electrode 4 can be formed using a known electrode material. Examples of electrode materials include conductive paste (silver paste, etc.), metal foil (copper foil, etc.), metal wire, and the like. When the electrode material is a metal wire, the number of metal wires may be one, but preferably two or more.
  • the metal of the metal foil or metal wire includes metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or two metals. alloys containing more than one species (eg, steels such as stainless steel, carbon steel, brass, phosphor bronze, zirconium-copper alloys, beryllium-copper, iron-nickel, nichrome, nickel-titanium, kanthal, Hastelloy, and rhenium-tungsten). Also, the metal foil or metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder, or the like.
  • the width of one of the electrodes 4 is preferably 10 mm or less, more preferably 3000 ⁇ m or less, and even more preferably 1500 ⁇ m or less in plan view of the sheet heater 100 .
  • the width of the electrode is the diameter of the metal wire, and when two or more metal wires are used, the width of one electrode is the diameter of each metal wire. It means peace.
  • the thickness of the electrode 4 is preferably 2 ⁇ m or more and 200 ⁇ m or less, more preferably 2 ⁇ m or more and 170 ⁇ m or less, and even more preferably 10 ⁇ m or more and 150 ⁇ m or less. If the thickness of the electrode 4 is within the above range, the electrical conductivity is high and the resistance is low, and the resistance value with the pseudo sheet structure can be kept low. Moreover, sufficient strength as an electrode can be obtained. In addition, when the electrode is a metal wire, the thickness of the electrode is the diameter of the metal wire.
  • the detection module 5 can detect the resistance value of the conductive linear body 21 .
  • the detection module 5 may be provided so that terminals of the detection module 5 are in contact with both ends of the conductive linear body 21 .
  • the locations where the terminals of the detection module 5 are brought into contact are not limited to both ends of the conductive linear body 21 , and may be any location on the conductive linear body 21 .
  • the detection module 5 may be provided so as to contact the electrode 4 itself.
  • the detection module 5 When the detection module 5 is provided so as to be in contact with the pair of electrodes 4 themselves, the resistance values of the plurality of conductive linear bodies 21 electrically connected to the electrodes 4 can be detected.
  • the detection module 5 can detect the voltage value and the current value applied to the conductive linear body 21, and can detect the resistance value.
  • a well-known component that can detect a voltage value, a current value, or a resistance value and is equipped with receiving and transmitting means can be appropriately used.
  • a specific example of the detection module 5 is a resistance temperature controller or the like having a receiving/transmitting means.
  • the receiving and transmitting means can transmit the detected resistance value to the control module 6, which will be described later.
  • a method for manufacturing the sheet-like heater 100 according to this embodiment is not particularly limited.
  • the sheet heater 100 can be manufactured, for example, by the following steps. First, the composition for forming the resin layer 3 is applied onto the substrate 1 to form a coating film. Next, the coating film is dried to produce the resin layer 3 . Next, the pseudo sheet structure 2 is formed by arranging and arranging the conductive linear bodies 21 on the resin layer 3 . For example, in a state in which the resin layer 3 with the substrate 1 is arranged on the outer peripheral surface of the drum member, the conductive linear body 21 is helically wound on the resin layer 3 while rotating the drum member. After that, the bundle of conductive linear bodies 21 wound spirally is cut along the axial direction of the drum member.
  • the pseudo sheet structure 2 is formed and placed on the resin layer 3 .
  • the resin layer 3 with the base material 1 on which the pseudo sheet structure 2 is formed is removed from the drum member to obtain a sheet-like conductive member.
  • this method for example, while rotating the drum member, by moving the feed-out portion of the conductive linear body 21 along the direction parallel to the axis of the drum member, adjacent conductive elements in the pseudo sheet structure 2 are moved. It is easy to adjust the interval L between the sex striatum 21 .
  • a pair of electrodes 4 is attached to both ends of the conductive linear body 21 in the pseudo sheet structure 2 of the sheet-like conductive member.
  • the sheet heater 100 can be manufactured by connecting terminals of the detection module 5 to both ends of at least one of the conductive linear bodies 21 .
  • the sheet heater 100 according to this embodiment is used using a power source 7 and a control module 6 capable of controlling the voltage or current of the power source 7, as shown in FIG.
  • the temperature coefficient of the conductive linear body 21 is measured in advance.
  • the temperature coefficient of the conductive linear body 21 is preferably 3 (10 ⁇ 3 /° C.) or more, more preferably 4 (10 ⁇ 3 /° C.) or more, and 4.7 (10 ⁇ 3 / ° C.) or higher is particularly preferred.
  • the upper limit of the temperature coefficient is not particularly limited, but may be, for example, 100 (10 -3 /°C) or less.
  • the temperature coefficient of the conductive linear body 21 can be measured by the method described in Examples below.
  • the power source 7 is electrically connected to the pair of electrodes 4 of the sheet heater 100 through terminals.
  • the detection module 5 of the sheet heater 100 transmits a signal to the control module 6 when detecting the resistance value of the conductive linear body 21 .
  • This signal may be a wireless signal or a wired signal.
  • the control module 6 receives signals sent from the sensing module 5 . Then, control module 6 calculates the estimated temperature of conductive linear body 21 from the received resistance value and the temperature coefficient of conductive linear body 21 . Then, a signal is transmitted to the power supply 7 according to the calculated value.
  • Power supply 7 receives signals transmitted from control module 6 . Then, the power supply 7 changes the voltage value or current value applied to the pair of electrodes 4 according to the signal.
  • the sheet heater 100 enables temperature control.
  • thermocontrol can be performed without separately providing a temperature sensor, a temperature fuse, or the like.
  • the sheet heater 100 includes the base material 1, but is not limited to this.
  • the sheet heater 100 does not have to include the substrate 1 .
  • the sheet heater 100 can be attached to the adherend by the resin layer 3 .
  • the sheet heater 100 includes the resin layer 3, but is not limited to this.
  • the sheet heater 100 does not have to include the resin layer 3 .
  • the pseudo sheet structure 2 may be formed by using a knitted fabric as the base material 1 and knitting the conductive linear bodies 21 into the base material 1 .
  • Example 1 An acrylic adhesive (manufactured by Lintec Co., Ltd., trade name "PK”) is applied on a release film (manufactured by Lintec Co., Ltd., trade name "SP-PET381130”), dried, and a resin with a thickness of 25 ⁇ m after drying. formed a layer.
  • a polycarbonate (PC) film manufactured by Teijin Limited, product name “L-100”, no release agent layer, thickness: 100 ⁇ m
  • a carbon-coated molybdenum wire (diameter: 12 ⁇ m, manufactured by Tokusai Co., Ltd., product name: “TMG-BS”) was prepared as a conductive linear body.
  • the composition ratio of molybdenum is 99.9%.
  • peel off the release film of the adhesive sheet manufactured by Lintec Co., Ltd., product name "SP-PET381130"
  • Both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape.
  • the conductive linear body was helically wound on the resin layer while rotating the drum member.
  • the conductive linear bodies were provided at regular intervals of 2 mm. After that, the bundle of the conductive linear bodies wound spirally was cut along the axial direction of the drum member. As a result, a pseudo sheet structure was formed and placed on the resin layer.
  • the adhesive sheet on which the pseudo sheet structure was formed was removed from the drum member to obtain a sheet-like conductive member.
  • the sheet-shaped conductive member was cut into a shape of 210 mm ⁇ 200 mm.
  • Table 1 shows the properties of the conductive linear body.
  • a gold-plated ribbon (thickness: 80 ⁇ m, width: 2 mm, gold-plated thickness: 100 nm) was attached to the surface of the adhesive layer as a lead-out electrode so that the distance between the lead-out electrodes was 200 mm. (manufactured by Teijin Limited, product name “L-100”, no release agent layer, thickness: 100 ⁇ m) was attached to prepare a sheet heater. In this sheet heater, the resistance value of any one of the conductive linear bodies can be measured.
  • a resistance temperature controller manufactured by Ace Engineering Co., Ltd. was used as the detection module.
  • Example 2 A gold-plated copper wire (diameter: 25 ⁇ m, manufacturer name: Tokusai Co., Ltd.) was prepared as the conductive linear body. The composition ratio of copper is 99.9% by mass.
  • the base material of the adhesive sheet described in Example 1 was changed to a nonwoven fabric (manufactured by Kurashiki Textile Processing Co., Ltd., trade name "TS60E"), and a release film (manufactured by Lintec Co., Ltd., trade name "SP-PET381130”). was peeled off, the surface of the resin layer was directed outward, and the adhesive sheet was wound around the outer peripheral surface of the drum member made of rubber so as not to wrinkle.
  • a nonwoven fabric manufactured by Kurashiki Textile Processing Co., Ltd., trade name "TS60E”
  • a release film manufactured by Lintec Co., Ltd., trade name "SP-PET381130”
  • Both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape.
  • the conductive linear body was helically wound on the resin layer while rotating the drum member.
  • the conductive linear bodies were provided at regular intervals of 15 mm.
  • the bundle of the conductive linear bodies wound spirally was cut along the axial direction of the drum member.
  • a pseudo sheet structure was formed and placed on the resin layer.
  • the adhesive sheet on which the pseudo sheet structure was formed was removed from the drum member to obtain a sheet-like conductive member.
  • the sheet-shaped conductive member was cut into a shape of 210 mm ⁇ 200 mm. Table 1 shows the properties of the conductive linear body.
  • a gold-plated ribbon (thickness: 80 ⁇ m, width: 2 mm, gold plating thickness: 100 nm) is attached to the surface of the adhesive layer so that the distance between the extraction electrodes is 200 mm.
  • Kako Co., Ltd., product name "TS60E” was attached to prepare a sheet heater. In this sheet heater, the resistance value between the gold-plated ribbons of the electrodes can be measured.
  • Example 3 A silver-plated rhenium-tungsten wire (diameter: 14 ⁇ m, manufacturer name: Tokusai Co., Ltd., product name: Ag(0.1)-TWR) was prepared as a conductive linear body. The composition ratio is 97 mass % tungsten and 3 mass % rhenium. Next, the release film of the adhesive sheet described in Example 1 (manufactured by Lintec Corporation, product name “SP-PET381130”) is peeled off, the surface of the resin layer is turned outward, and the outer peripheral surface is wrinkled on a rubber drum member. The adhesive sheet was wrapped around the Both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape.
  • the conductive linear body was helically wound on the resin layer while rotating the drum member.
  • the conductive linear bodies were provided at regular intervals of 10 mm. After that, the bundle of the conductive linear bodies wound spirally was cut along the axial direction of the drum member. As a result, a pseudo sheet structure was formed and placed on the resin layer. Then, the adhesive sheet on which the pseudo sheet structure was formed was taken out from the drum member to obtain a sheet-like conductive member.
  • the sheet-shaped conductive member was cut into a shape of 210 mm ⁇ 200 mm. Table 1 shows the properties of the conductive linear body.
  • a gold-plated ribbon (thickness: 80 ⁇ m, width: 2 mm, gold plating thickness: 100 nm) was attached to the surface of the adhesive layer so that the distance between the extraction electrodes was 200 mm.
  • a sheet-like heater was produced by attaching a film (manufactured by Teijin Limited, product name “L-100”, no release agent layer, thickness: 100 ⁇ m). In this sheet heater, the resistance value between the gold-plated ribbons of the electrodes can be measured.
  • Example 1 A stainless steel wire (diameter: 35 ⁇ m, manufacturer name: Tokusai Co., Ltd., product name: SUS304) was prepared as the conductive linear body. The proportion of iron in stainless steel is 72% by mass. Next, the release film of the adhesive sheet described in Example 1 (manufactured by Lintec Corporation, product name “SP-PET381130”) is peeled off, the surface of the resin layer is turned outward, and the outer peripheral surface is wrinkled on a rubber drum member. The adhesive sheet was wrapped around the Both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape. The conductive linear body was helically wound on the resin layer while rotating the drum member.
  • the conductive linear bodies were provided at regular intervals of 20 mm. After that, the bundle of the conductive linear bodies wound spirally was cut along the axial direction of the drum member. As a result, a pseudo sheet structure was formed and placed on the resin layer. Then, the adhesive sheet on which the pseudo sheet structure was formed was removed from the drum member to obtain a sheet-like conductive member. The sheet-shaped conductive member was cut into a shape of 210 mm ⁇ 200 mm. Table 1 shows the properties of the conductive linear body.
  • a copper ribbon (thickness: 80 ⁇ m, width: 2 mm) was attached to the surface of the adhesive layer so that the distance between the extraction electrodes was 200 mm, and a polycarbonate (PC) film (manufactured by Teijin Limited, (product name: "L-100", no release agent layer, thickness: 100 ⁇ m) was attached to prepare a sheet heater.
  • PC polycarbonate
  • Temperature coefficient (10 ⁇ 3 /° C.) ⁇ (R ⁇ Ra)/Ra ⁇ /(T ⁇ Ta) ⁇ 1000 (F1)
  • Ta reference temperature (assumed to be 25°C)
  • Ra resistance value at reference temperature T: arbitrary temperature
  • R resistance value and resistance value evaluation at arbitrary temperature (manufactured by the company, trade name “PC700”) was connected and measured, and the resistance value was calculated.
  • Base material 2... Pseudo sheet structure, 21... Conductive linear body, 3... Resin layer, 4... Electrode, 5... Detection module, 6... Control module, 7... Power supply, 100... Sheet heater.

Landscapes

  • Resistance Heating (AREA)

Abstract

複数の導電性線状体(21)が間隔をもって配列された疑似シート構造体(2)と、導電性線状体(21)に電気的に接続する一対の電極(4)と、導電性線状体(21)の抵抗値を検知できる検知モジュール(5)と、を備えるシート状ヒータ(100)であって、導電性線状体(21)は、金属ワイヤー、或いは、前記金属ワイヤーに導電性被覆が施された線状体であり、前記金属ワイヤーは、単一の金属元素の比率が97質量%以上の金属からなる、シート状ヒータ(100)。

Description

シート状ヒータ
 本発明は、シート状ヒータに関する。
 シート状ヒータは、様々な用途に用いられるが、シート状ヒータの温度を制御することを求められる場合がある。例えば、特許文献1には、車両から電熱装置を備えていない前記透明窓、特に車両フロントガラスを除去するステップと、電熱装置、特に加熱層、及び少なくとも1つの温度センサが設けられた透明窓を配置して、改造加熱透明窓を得るステップを備える方法が記載されている。また、特許文献2には、面状の発熱面を有するヒータ本体と、前記ヒータ本体に配置され、前記発熱面に面接触する接触部を有する温度ヒューズと、を備えるヒータ装置が記載されている。
特開2021-513184号公報 特開2021-082387号公報
 しかしながら、特許文献1に記載の方法では、加熱部分の他に、温度センサを別途に設ける必要がある。また、特許文献2に記載のヒータ装置では、ヒータ本体に、温度ヒューズが別途に設けられている。
 本発明の目的は、簡易な構成で、温度制御できるシート状ヒータを提供することである。
[1] 複数の導電性線状体が間隔をもって配列された疑似シート構造体と、前記導電性線状体に電気的に接続する一対の電極と、前記導電性線状体の抵抗値を検知できる検知モジュールと、を備えるシート状ヒータであって、前記導電性線状体は、金属ワイヤー、或いは、前記金属ワイヤーに導電性被覆が施された線状体であり、前記金属ワイヤーは、単一の金属元素の比率が97質量%以上の金属からなる、シート状ヒータ。
[2] [1]に記載のシート状ヒータにおいて、前記導電性線状体の平均間隔が、15mm以下である、シート状ヒータ。
[3] [1]又は[2]に記載のシート状ヒータにおいて、前記導電性線状体の直径が、0.03mm以下である、シート状ヒータ。
[4] [1]から[3]のいずれかに記載のシート状ヒータにおいて、前記単一の金属元素が、タングステン、モリブデン、銅、ニッケル、鉄、金、銀、チタン、及びアルミニウムからなる群から選択される少なくとも1つの金属元素である、シート状ヒータ。
[5] [1]から[4]のいずれかに記載のシート状ヒータにおいて、前記金属ワイヤーに導電性被覆が施された線状体である、シート状ヒータ。
 本発明の一態様によれば、簡易な構成で、温度制御できるシート状ヒータを提供できる。
本発明の実施形態に係るシート状ヒータを示す概略図である。 図1のII-II断面を示す断面図である。 本発明の実施形態に係るシート状ヒータの使用方法を説明するための概略図である。
 以下、本発明について実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
(シート状ヒータ)
 本実施形態に係るシート状ヒータ100は、図1及び図2に示すように、基材1と、疑似シート構造体2と、樹脂層3と、一対の電極4と、検知モジュール5とを備えている。具体的には、シート状ヒータ100は、基材1上に樹脂層3が積層され、樹脂層3上に疑似シート構造体2が積層されている。疑似シート構造体2は、複数の導電性線状体21が間隔をもって配列されている。一対の電極4は、導電性線状体21に電気的に接続する。検知モジュール5は、導電性線状体21の抵抗値を検知できる。
 そして、導電性線状体21は、金属ワイヤー、或いは、前記金属ワイヤーに導電性被覆が施された線状体である。また、前記金属ワイヤーは、単一の金属元素の比率が97質量%以上の金属からなる。
 本実施形態に係るシート状ヒータ100によれば、次のようにして、簡易な構成で、温度制御が可能となる。すなわち、検知モジュール5は、導電性線状体21の抵抗値を検知できる。また、導電性線状体21を構成する金属ワイヤーは、単一の金属元素の比率が97質量%以上の金属からなる。導電性線状体21がこのような構成であれば、温度係数が大きく、温度制御に適している。具体的には、導電性線状体21の抵抗値に対して、温度がほぼ一対一で対応するため、電流値に対する電圧、或いは、電圧に対する電流値を求めることで抵抗値を算出し、導電性線状体21の温度を推定することが可能となる。そして、推定した温度に基づいて、導電性線状体21に流す電流値又は電圧値を調整すれば、シート状ヒータ100の温度制御が可能となる。以上のようにして、本実施形態に係るシート状ヒータ100によれば、温度センサ又は温度ヒューズ等を別途に設けることなく、温度制御が可能となる。
(基材)
 基材1は、疑似シート構造体2を直接的又は間接的に支持できる。なお、基材1は、必ずしも備えていなくてもよい。基材1は必要に応じて設けられる部材である。
 基材1としては、例えば、樹脂フィルム、紙、金属箔、不織布、布及びガラスフィルム等が挙げられる。また、基材1は、伸縮性を有することが好ましい。基材1が伸縮性を有していれば、疑似シート構造体2を基材1上に設けた場合でも、シート状ヒータ100の伸縮性を確保できる。
 伸縮性を有する基材としては、樹脂フィルム、不織布、及び布等を用いることができる。
 樹脂フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン―(メタ)アクリル酸共重合体フィルム、エチレン―(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、及びポリイミドフィルム等が挙げられる。その他、伸縮性基材としては、これらの架橋フィルム及び積層フィルム等が挙げられる。
 また、不織布としては、例えば、スパンボンド不織布、ニードルパンチ不織布、メルトブロー不織布、及びスパンレース不織布等が挙げられる。布としては、例えば、織物及び編物等が挙げられる。伸縮性基材としての紙、不織布、及び布はこれらに限定されない。
 基材1の厚さは特に限定されない。基材1の厚さは、10μm以上10mm以下であることが好ましく、15μm以上3mm以下であることがより好ましく、50μm以上1.5mm以下であることがさらに好ましい。
(疑似シート構造体)
 疑似シート構造体2は、複数の導電性線状体21が、互いに間隔をもって配列された構造を有する。すなわち、疑似シート構造体2は、複数の導電性線状体21が、互いに間隔をもって、平面又は曲面を構成するように配列された構造体である。導電性線状体21は、シート状ヒータ100の平面視において、一方向に延び、直線又は波形状を成している。そして、疑似シート構造体2は、導電性線状体21が、導電性線状体21の軸方向と直交する方向に、複数配列された構造としている。
 なお、導電性線状体21は、シート状ヒータ100の平面視において、直線状であってもよいが、波形状を成していてもよい。波形状としては、例えば、正弦波、矩形波、三角波、及びのこぎり波等が挙げられる。疑似シート構造体2が、このような構造であれば、導電性線状体21の軸方向に、シート状ヒータ100を伸張した際に、導電性線状体21の断線を抑制できる。
 導電性線状体21の体積抵抗率は、1.0×10-9Ω・m以上1.0×10-3Ω・m以下であることが好ましく、1.0×10-8Ω・m以上1.0×10-4Ω・m以下であることがより好ましい。導電性線状体21の体積抵抗率を上記範囲にすると、疑似シート構造体2の面抵抗が低下しやすくなる。
 導電性線状体21の体積抵抗率の測定方法は、次の通りである。導電性線状体21の両端に銀ペーストを塗布し、端部からの長さ40mmの部分の抵抗を測定し、導電性線状体21の抵抗値を求める。そして、導電性線状体21の断面積(単位:m)を上記の抵抗値に乗じ、得られた値を上記の測定した長さ(0.04m)で除して、導電性線状体21の体積抵抗率を算出する。
 導電性線状体21の断面の形状は、特に限定されず、多角形、扁平形、楕円形、又は円形等を取り得るが、樹脂層3との馴染み等の観点から、楕円形、又は円形であることが好ましい。
 導電性線状体21の断面が円形状である場合には、導電性線状体21の太さ(直径)D(図2参照)は、5μm以上75μm以下であることが好ましい。シート抵抗の上昇抑制と、シート状ヒータ100の発熱効率及び耐絶縁破壊特性の向上との観点から、導電性線状体21の直径Dは、8μm以上50μm以下であることがより好ましく、10μm以上30μm以下であることがさらに好ましく、12μm以上25μm以下であることが特に好ましい。なお、導電性線状体21の太さ(直径)Dが太すぎるの場合、導電性線状体21の熱容量が大きく、シート全体の平均温度と比較して、温度差が生じやすい。温度制御の観点からは、シート全体の平均温度と導電性線状体21の直上における温度差が小さいほど好ましい。そのため、導電性線状体21の太さ(直径)Dが細いほど、温度制御しやすくなる傾向にある。
 導電性線状体21の断面が楕円形である場合には、長径が上記の直径Dと同様の範囲にあることが好ましい。
 導電性線状体21の直径Dは、デジタル顕微鏡を用いて、疑似シート構造体2の導電性線状体21を観察し、無作為に選んだ5箇所で、導電性線状体21の直径を測定し、その平均値とする。
 導電性線状体21の間隔L(図2参照)は、0.3mm以上50mm以下であることが好ましく、0.5mm以上30mm以下であることがより好ましく、0.8mm以上20mm以下であることがさらに好ましく、2mm以上15mm以下であることが特に好ましい。
 導電性線状体21がシート平面に配置されている場合、導電性線状体21の直上が最も高温になる。このような場合、導電性線状体21の間隔Lが前記の上限値以下であることで、シート全体の平均温度と導電性線状体21の直上の温度差が小さくなり、温度制御がしやすくなる。温度制御が導電性線状体21の温度に依存するため、シート全体の平均温度との乖離をより小さくできる。
 また、シート状ヒータ100における温度ムラを抑制の観点から、導電性線状体21の間隔Lは、等間隔であることが好ましい。
 導電性線状体21の間隔Lは、デジタル顕微鏡を用いて、疑似シート構造体2の導電性線状体21を観察し、隣り合う2つの導電性線状体21の間隔を測定する。
 なお、隣り合う2つの導電性線状体21の間隔とは、導電性線状体21を配列させていった方向に沿った長さであって、2つの導電性線状体21の対向する部分間の長さである(図2参照)。間隔Lは、導電性線状体21の配列が不等間隔である場合には、全ての隣り合う導電性線状体21同士の間隔の平均値である。
 導電性線状体21は、金属ワイヤー、或いは、金属ワイヤーに導電性被覆が施された線状体である。なお、金属ワイヤーとは、金属製のワイヤーを含む線状体である。金属ワイヤーは高い熱伝導性、高い電気伝導性、高いハンドリング性を有するため、導電性線状体21として金属ワイヤー線状体を適用すると、疑似シート構造体2の抵抗値を低減しつつ、光線透過性が向上しやすくなる。また、上述したように直径が細い線状体を得られやすい。
 本実施形態において、金属ワイヤーは、単一の金属元素の比率が97質量%以上の金属からなることが必要である。金属ワイヤーにおける単一の金属元素の比率が97質量%未満であると、温度係数が小さ過ぎて、十分な温度制御ができない。
 金属ワイヤーは、1本の金属製のワイヤーからなる線状体であってもよいし、複数本の金属製のワイヤーを撚った線状体であってもよい。
 単一の金属元素としては、タングステン、モリブデン、銅、ニッケル、鉄、金、銀、チタン、及びアルミニウムからなる群から選択される少なくとも1つの金属元素であることが好ましい。これらの金属元素は、細くて高強度であり、低い体積抵抗率の導電性線状体21とする観点から好ましい。
 金属ワイヤーを構成する金属は、単一の金属元素の比率が97質量%以上であれば、金属を2種以上含む合金であってもよい。
 導電性線状体21は、金属ワイヤーに導電性被覆が施された線状体であることが好ましい。導電性被覆により、電極4と導電性線状体21との接触抵抗を低減でき、また、金属ワイヤーを構成する金属の腐食を防止できる。
 導電性被覆としては、金属めっきでの被膜、及び炭素材料での被膜が挙げられる。
 金属ワイヤーを被膜する金属めっきの金属としては、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、及びはんだ等が挙げられる。
 金属ワイヤーを被覆する炭素材料としては、非晶質炭素(例えば、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボン、及びカーボンファイバー等)、グラファイト、フラーレン、グラフェン及びカーボンナノチューブ等が挙げられる。
(樹脂層)
 樹脂層3は、樹脂を含む層である。この樹脂層3により、疑似シート構造体2を直接又は間接的に支持できる。なお、樹脂層3は、必ずしも備えていなくてもよい。樹脂層3は必要に応じて設けられるものである。
 また、樹脂層3は、接着剤を含む層であることが好ましい。樹脂層3に疑似シート構造体2を形成する際に、接着剤により、導電性線状体21の樹脂層3への貼り付けが容易となる。また、樹脂層3は、伸縮性を有することが好ましい。このような場合には、シート状ヒータ100の伸縮性を確保できる。
 樹脂層3は、乾燥又は硬化可能な樹脂からなる層であってもよい。これにより、疑似シート構造体2を保護するのに十分な硬度が樹脂層3に付与され、樹脂層3は保護膜としても機能する。また、硬化又は乾燥後の樹脂層3は、耐衝撃性を有し、衝撃による樹脂層3の変形も抑制できる。
 樹脂層3は、短時間で簡便に硬化することができる点で、紫外線、可視エネルギー線、赤外線、電子線等のエネルギー線硬化性であることが好ましい。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。
 樹脂層3の接着剤は、熱により硬化する熱硬化性のもの、熱により接着するいわゆるヒートシールタイプのもの、湿潤させて貼付性を発現させる接着剤等も挙げられる。ただし、適用の簡便さからは、樹脂層3が、エネルギー線硬化性であることが好ましい。エネルギー線硬化性樹脂としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 前記アクリレート系化合物としては、例えば、鎖状脂肪族骨格含有(メタ)アクリレート(トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレート等)、環状脂肪族骨格含有(メタ)アクリレート(ジシクロペンタニルジ(メタ)アクリレート、及びジシクロペンタジエンジ(メタ)アクリレート等)、ポリアルキレングリコール(メタ)アクリレート(ポリエチレングリコールジ(メタ)アクリレート等)、オリゴエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、エポキシ変性(メタ)アクリレート、前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート、及びイタコン酸オリゴマー等が挙げられる。
 エネルギー線硬化性樹脂の重量平均分子量(Mw)は、100~30000であることが好ましく、300~10000であることがより好ましい。
 接着剤組成物が含有するエネルギー線硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。さらに、後述する熱可塑性樹脂と組み合わせてもよく、組み合わせ及び比率は任意に選択できる。
 樹脂層3は、粘着剤(感圧性接着剤)から形成される粘着剤層であってもよい。粘着剤層の粘着剤は、特に限定されない。例えば、粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、ポリエステル系粘着剤、シリコーン系粘着剤、及びポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、粘着剤は、アクリル系粘着剤、ウレタン系粘着剤、及びゴム系粘着剤からなる群から選択される少なくともいずれかであることが好ましく、アクリル系粘着剤であることがより好ましい。
 アクリル系粘着剤としては、例えば、直鎖のアルキル基又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体(つまり、アルキル(メタ)アクリレートを少なくとも重合した重合体)、環状構造を有する(メタ)アクリレートに由来する構成単位を含むアクリル系重合体(つまり、環状構造を有する(メタ)アクリレートを少なくとも重合した重合体)等が挙げられる。ここで「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の双方を示す語として用いており、他の類似用語についても同様である。
 アクリル系共重合体は架橋剤により架橋されていてもよい。架橋剤としては、例えば、公知のエポキシ系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。アクリル系共重合体を架橋する場合には、アクリル系重合体の単量体成分に由来する官能基として、これらの架橋剤と反応する水酸基やカルボキシ基等をアクリル系共重合体に導入することができる。
 樹脂層3が粘着剤から形成される場合、樹脂層3は、粘着剤の他に、さらに上述したエネルギー線硬化性樹脂を含有していてもよい。また、粘着剤としてアクリル系粘着剤を適用する場合、エネルギー線硬化性の成分として、アクリル系共重合体における単量体成分に由来する官能基と反応する官能基と、エネルギー線重合性の官能基の両方を一分子中に有する化合物を用いてもよい。当該化合物の官能基と、アクリル系共重合体における単量体成分に由来する官能基との反応により、アクリル系共重合体の側鎖がエネルギー線照射により重合可能となる。粘着剤がアクリル系粘着剤以外の場合においても、アクリル系重合体以外の重合体成分として、同様に側鎖がエネルギー線重合性である成分を用いてもよい。
 樹脂層3に用いられる熱硬化性樹脂としては、特に限定されず、具体的には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂、アミン系化合物、及び酸無水物系化合物等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール系硬化触媒を使用した硬化に適すという観点から、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物を使用することが好ましく、特に、優れた硬化性を示すという観点から、エポキシ樹脂、フェノール樹脂、それらの混合物、又はエポキシ樹脂と、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物からなる群から選択される少なくとも1種との混合物を使用することが好ましい。
 樹脂層3に用いられる湿気硬化性樹脂としては、特に限定されず、湿気でイソシアネート基が生成してくる樹脂であるウレタン樹脂、変性シリコーン樹脂等が挙げられる。
 エネルギー線硬化性樹脂や熱硬化性樹脂を用いる場合、光重合開始剤や熱重合開始剤等を用いることが好ましい。光重合開始剤や熱重合開始剤等を用いることで、架橋構造が形成され、疑似シート構造体2を、より強固に保護することが可能になる。
 光重合開始剤としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、2-クロロアントラキノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニル-ホスフィンオキサイド等が挙げられる。
 熱重合開始剤としては、過酸化水素、ペルオキソ二硫酸塩(ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、及びペルオキソ二硫酸カリウム等)、アゾ系化合物(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビスイソブチロニトリル、及び2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等)、及び有機過酸化物(過酸化ベンゾイル、過酸化ラウロイル、過酢酸、過コハク酸、ジ-t-ブチルパーオキサイド、t-ブチルヒドロパーオキサイド、及びクメンヒドロパーオキサイド等)等が挙げられる。
 これらの重合開始剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの重合開始剤を用いて架橋構造を形成する場合、その使用量は、エネルギー線硬化性樹脂や熱硬化性樹脂100質量部に対して、0.1質量部以上100質量部以下であることが好ましく、1質量部以上100質量部以下であることがより好ましく、1質量部以上10質量部以下であることが特に好ましい。
 樹脂層3は、硬化性でなく、例えば、熱可塑性樹脂組成物からなる層であってもよい。そして、熱可塑性樹脂組成物中に溶剤を含有させることで、熱可塑性樹脂層を軟化させることができる。これにより、樹脂層3に疑似シート構造体2を形成する際に、導電性線状体21の樹脂層3への貼り付けが容易となる。一方で、熱可塑性樹脂組成物中の溶剤を揮発させることで、熱可塑性樹脂層を乾燥させ、固化させることができる。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリエーテル、ポリエーテルサルホン、ポリイミド及びアクリル樹脂等が挙げられる。
 溶剤としては、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、炭化水素系溶剤、ハロゲン化アルキル系溶媒及び水等が挙げられる。
 樹脂層3は、無機充填材を含有していてもよい。無機充填材を含有することで、硬化後の樹脂層3の硬度をより向上させることができる。また、樹脂層3の熱伝導性が向上する。
 無機充填材としては、例えば、無機粉末(例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、金属、及び窒化ホウ素等の粉末)、無機粉末を球形化したビーズ、単結晶繊維、及びガラス繊維等が挙げられる。これらの中でも、無機充填材としては、シリカフィラー及びアルミナフィラーが好ましい。無機充填材は、1種単独で用いてもよく、2種以上を併用してもよい。
 樹脂層3には、その他の成分が含まれていてもよい。その他の成分としては、例えば、有機溶媒、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、及び濡れ性調整剤等の周知の添加剤が挙げられる。
 樹脂層3の厚さは、シート状ヒータ100の用途に応じて適宜決定される。例えば、接着性の観点から、樹脂層3の厚さは、3μm以上150μm以下であることが好ましく、5μm以上100μm以下であることがより好ましい。
(電極)
 電極4は、導電性線状体21に電流を供給するために用いられる。電極4は、導電性線状体21に直接的に接触する。そして、電極4は、導電性線状体21の両端部に電気的に接続されて配置される。
 電極4は、公知の電極材料を用いて形成できる。電極材料としては、導電性ペースト(銀ペースト等)、金属箔(銅箔等)、及び金属ワイヤー等が挙げられる。電極材料が金属ワイヤーである場合、金属ワイヤーは、1本であってもよいが、2本以上であることが好ましい。
 電極材料が、金属箔又は金属ワイヤーである場合、金属箔又は金属ワイヤーの金属としては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)が挙げられる。また、金属箔又は金属ワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよい。
 電極4のうち、一方の電極の幅は、シート状ヒータ100の平面視において、10mm以下であることが好ましく、3000μm以下であることがより好ましく、1500μm以下であることがさらに好ましい。なお、一方の電極が金属ワイヤーである場合には、電極の幅は、金属ワイヤーの直径であり、金属ワイヤーを2本以上用いた場合の一方の電極の幅とは、各金属ワイヤーの直径の和のことをいう。
 電極4の厚さは、2μm以上200μm以下であることが好ましく、2μm以上170μm以下であることがより好ましく、10μm以上150μm以下であることがさらに好ましい。電極4の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり疑似シート構造体との抵抗値を低く抑えられる。また、電極として十分な強度が得られる。なお、電極が金属ワイヤーである場合には、電極の厚さは、金属ワイヤーの直径である。
(検知モジュール)
 検知モジュール5は、導電性線状体21の抵抗値を検知できるものである。検知モジュール5は、例えば、図1に示すように、導電性線状体21の両端部に、検知モジュール5の端子が接触するように設ければよい。なお、検知モジュール5の端子を接触させる箇所は、導電性線状体21の両端部に限られず、導電性線状体21のいずれの箇所であってもよい。さらに、電極4は抵抗値が低く、大勢に影響がないため、検知モジュール5は、電極4そのものに接触するように設けてもよい。なお、検知モジュール5を、一対の電極4そのものに接触するように設けた場合、電極4に電気的に接続している複数の導電性線状体21の抵抗値を検知できる。この検知モジュール5により、導電性線状体21にかかる電圧値と、電流値とを検知でき、抵抗値を検知できる。
 検知モジュール5としては、電圧値及び電流値、或いは抵抗値を検知でき、受信送信手段を備えた部品である公知のものを適宜使用できる。検知モジュール5として、具体的には、受信送信手段を備えた抵抗値温度制御計等が挙げられる。受信送信手段により、検知した抵抗値を、後述する制御モジュール6に向けて信号を送信できる。
(シート状ヒータの製造方法)
 本実施形態に係るシート状ヒータ100の製造方法は、特に限定されない。シート状ヒータ100は、例えば、次の工程により、製造できる。
 まず、基材1の上に、樹脂層3の形成用組成物を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、樹脂層3を作製する。次に、樹脂層3上に、導電性線状体21を配列しながら配置して、疑似シート構造体2を形成する。例えば、ドラム部材の外周面に基材1付きの樹脂層3を配置した状態で、ドラム部材を回転させながら、樹脂層3上に導電性線状体21を螺旋状に巻き付ける。その後、螺旋状に巻き付けた導電性線状体21の束をドラム部材の軸方向に沿って切断する。これにより、疑似シート構造体2を形成すると共に、樹脂層3に配置する。そして、疑似シート構造体2が形成された基材1付きの樹脂層3をドラム部材から取り出し、シート状導電部材が得られる。この方法によれば、例えば、ドラム部材を回転させながら、導電性線状体21の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、疑似シート構造体2における隣り合う導電性線状体21の間隔Lを調整することが容易である。
 次に、一対の電極4を、シート状導電部材の疑似シート構造体2における導電性線状体21の両端部に、貼り合わせる。続いて、導電性線状体21のうちの少なくとも1本の両端部に、検知モジュール5の端子を接続して、シート状ヒータ100を作製できる。
(シート状ヒータの使用方法)
 次に、本実施形態に係るシート状ヒータ100の使用方法について説明する。
 本実施形態に係るシート状ヒータ100は、図3に示すように、電源7と、電源7の電圧又は電流を制御できる制御モジュール6とを用いて使用する。
 なお、使用するシート状ヒータ100については、導電性線状体21の温度係数を、予め測定しておく。
 導電性線状体21の温度係数は、3(10-3/℃)以上であることが好ましく、4(10-3/℃)以上であることがより好ましく、4.7(10-3/℃)以上であることが特に好ましい。導電性線状体21の温度係数が高いほど、より精度よく温度制御できる。また、温度係数の上限値は、特に制限はないが、例えば100(10-3/℃)以下であればよい。導電性線状体21の温度係数は、後述する実施例で説明する方法で測定できる。
 電源7は、シート状ヒータ100の一対の電極4に、端子により電気的に接続している。
 シート状ヒータ100の検知モジュール5は、導電性線状体21の抵抗値を検知したときに、制御モジュール6に向けて信号を送信する。この信号は、無線信号でもよく、有線信号でもよい。
 制御モジュール6は、検知モジュール5から送信された信号を受信する。そして、制御モジュール6は、受信した抵抗値と、導電性線状体21の温度係数とから、導電性線状体21の推定温度を算出する。そして、その算出値に応じて、電源7に向けて信号を送信する。
 電源7は、制御モジュール6から送信された信号を受信する。そして、電源7は、その信号に応じて、一対の電極4にかける電圧値又は電流値を変化させる。このようにして、シート状ヒータ100では、温度制御が可能となる。
(本実施形態の作用効果)
 本実施形態によれば、次のような作用効果を奏することができる。
(1)本実施形態に係るシート状ヒータ100によれば、温度センサ又は温度ヒューズ等を別途に設けることなく、温度制御が可能となる。
[実施形態の変形]
 本発明は前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 例えば、前述の実施形態では、シート状ヒータ100は、基材1を備えているが、これに限定されない。例えば、シート状ヒータ100は、基材1を備えていなくてもよい。このような場合には、樹脂層3により、シート状ヒータ100を被着体に貼り付けて使用できる。
 前述の実施形態では、シート状ヒータ100は、樹脂層3を備えているが、これに限定されない。例えば、シート状ヒータ100は、樹脂層3を備えていなくてもよい。このような場合には、基材1として編物を用い、導電性線状体21を基材1中に編み込むことで、疑似シート構造体2を形成してもよい。
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
[実施例1]
 剥離フィルム(リンテック株式会社製、商品名「SP-PET381130」)上に、アクリル系接着剤(リンテック株式会社製、商品名「PK」)を塗布し、乾燥し、乾燥後の厚みが25μmの樹脂層を形成した。形成された樹脂層にポリカーボネート(PC)フィルム(帝人株式会社製、製品名「L-100」、剥離剤層なし、厚さ:100μm)を貼付して、接着シートを得た。
 導電性線状体として、カーボン被膜付モリブデン線(直径:12μm、メーカー名:株式会社トクサイ製、製品名「TMG-BS」)を準備した。モリブデンの組成割合は、99.9%である。次に、接着シートの剥離フィルム(リンテック株式会社製、商品名「SP-PET381130」)を剥がし、樹脂層の表面を外側に向け、外周面がゴム製のドラム部材にしわのないように接着シートを巻きつけた。円周方向における接着シートの両端部を両面テープで固定した。ドラム部材を回転させながら、樹脂層上に導電性線状体を螺旋状に巻き付けた。導電性線状体は、間隔2mmに等間隔に設けられた。その後、螺旋状に巻き付けた導電性線状体の束をドラム部材の軸方向に沿って切断した。これにより、疑似シート構造体を形成すると共に、樹脂層に配置した。そして、疑似シート構造体が形成された接着シートをドラム部材から取り出し、シート状導電部材を得た。なお、シート状導電部材は、210mm×200mmの形状に裁断した。また、導電性線状体の性状を表1に示す。
 取り出し電極として、金めっきリボン(厚さ80μm、幅:2mm、金めっき厚:100nm)を取り出し電極間の距離が200mmとなるように、接着剤層の表面に付着させて、ポリカーボネート(PC)フィルム(帝人株式会社製、製品名「L-100」、剥離剤層なし、厚さ:100μm)を貼付して、シート状ヒータを作製した。なお、このシート状ヒータでは、いずれかの導電性線状体の抵抗値を測定できるようにした。検知モジュールとしては、株式会社エースエンジニアリング社製の抵抗値温度制御計を使用した。
[実施例2]
 導電性線状体として、金めっき銅ワイヤー(直径:25μm、メーカー名:株式会社トクサイ)を準備した。銅の組成割合は、99.9質量%である。次に、実施例1に記載の接着シートの基材を不織布(倉敷繊維加工株式会社製、商品名「TS60E」)に変更し、剥離フィルム(リンテック株式会社製、商品名「SP-PET381130」)を剥がし、樹脂層の表面を外側に向け、外周面がゴム製のドラム部材にしわのないように接着シートを巻きつけた。円周方向における接着シートの両端部を両面テープで固定した。ドラム部材を回転させながら、樹脂層上に導電性線状体を螺旋状に巻き付けた。導電性線状体は、間隔15mmに等間隔に設けられた。その後、螺旋状に巻き付けた導電性線状体の束をドラム部材の軸方向に沿って切断した。これにより、疑似シート構造体を形成すると共に、樹脂層に配置した。そして、疑似シート構造体が形成された接着シートをドラム部材から取り出し、シート状導電部材を得た。なお、シート状導電部材は、210mm×200mmの形状に裁断した。また、導電性線状体の性状を表1に示す。
 取り出し電極として、金めっきリボン(厚さ:80μm、幅:2mm、金めっき厚:100nm)を取り出し電極間の距離が200mmとなるように、接着剤層の表面に付着させて、不織布(倉敷繊維加工株式会社製、商品名「TS60E」)を貼付して、シート状ヒータを作製した。なお、このシート状ヒータでは、電極の金メッキリボン間の抵抗値を測定できるようにした。
[実施例3]
 導電性線状体として、銀めっきレニウムタングステンワイヤー(直径:14μm、メーカー名:株式会社トクサイ、製品名:Ag(0.1)-TWR)を準備した。組成割合は、タングステン97質量%、及びレニウム3質量%である。次に、実施例1に記載の接着シートの剥離フィルム(リンテック株式会社製、商品名「SP-PET381130」)を剥がし、樹脂層の表面を外側に向け、外周面がゴム製のドラム部材にしわのないように接着シートを巻きつけた。円周方向における接着シートの両端部を両面テープで固定した。ドラム部材を回転させながら、樹脂層上に導電性線状体を螺旋状に巻き付けた。導電性線状体は、間隔10mmに等間隔に設けられた。その後、螺旋状に巻き付けた導電性線状体の束をドラム部材の軸方向に沿って切断した。これにより、疑似シート構造体を形成すると共に、樹脂層に配置した。そして、疑似シート構造体が形成された接着シートをドラム部材から取り出し、シート状導電部材を得た。なお、シート状導電部材は、210mm×200mmの形状に裁断した。また、導電性線状体の性状を表1に示す。
 取り出し電極として、金めっきリボン(厚さ:80μm、幅:2mm、金めっき厚:100nm)を取り出し電極間の距離が200mmとなるように、接着剤層の表面に付着させて、ポリカーボネート(PC)フィルム(帝人株式会社製、製品名「L-100」、剥離剤層なし、厚さ:100μm)を貼付して、シート状ヒータを作製した。なお、このシート状ヒータでは、電極の金メッキリボン間の抵抗値を測定できるようにした。
[比較例1]
 導電性線状体として、ステンレスワイヤー(直径35μm、メーカー名:株式会社トクサイ、製品名:SUS304)を準備した。ステンレス中の鉄の割合は、72質量%である。次に、実施例1に記載の接着シートの剥離フィルム(リンテック株式会社製、商品名「SP-PET381130」)を剥がし、樹脂層の表面を外側に向け、外周面がゴム製のドラム部材にしわのないように接着シートを巻きつけた。円周方向における接着シートの両端部を両面テープで固定した。ドラム部材を回転させながら、樹脂層上に導電性線状体を螺旋状に巻き付けた。導電性線状体は、間隔20mmに等間隔に設けられた。その後、螺旋状に巻き付けた導電性線状体の束をドラム部材の軸方向に沿って切断した。これにより、疑似シート構造体を形成すると共に、樹脂層に配置した。そして、疑似シート構造体が形成された接着シートをドラム部材から取り出し、シート状導電部材を得た。なお、シート状導電部材は、210mm×200mmの形状に裁断した。また、導電性線状体の性状を表1に示す。
 取り出し電極として、銅リボン(厚さ:80μm、幅:2mm)を取り出し電極間の距離が200mmとなるように、接着剤層の表面に付着させて、ポリカーボネート(PC)フィルム(帝人株式会社製、製品名「L-100」、剥離剤層なし、厚さ:100μm)を貼付して、シート状ヒータを作製した。なお、このシート状ヒータでは、いずれかの導電性線状体の抵抗値を測定できるようにした。
[温度係数の算出]
 シート状ヒータに、直流電源を用いて、電圧を1~20Vに変化させながら、導電性線状体の直上の温度を、サーマルカメラ(FLIR社製 CAT S60)を用いて、シート状ヒータとカメラ間の距離を10cmとして、測定した。そして、下記数式(F1)に、抵抗値及び温度の値を代入して、温度係数を算出した。なお、少なくとも、3点以上測定及び算出を行い、その平均値を温度係数とした。得られた結果を表1に示す。
温度係数(10-3/℃)={(R-Ra)/Ra}/(T-Ta)×1000・・・(F1)
Ta:基準温度(25℃とする)
Ra:基準温度における抵抗値T:任意温度R:任意温度における抵抗値・抵抗値評価
 上記温度測定の際の導電性線状体の電圧値及び電流値を、デジタルマルチメーター(三和電気計器株式会社製、商品名「PC700」)を接続して測定し、抵抗値を算出した。
[発熱性評価]
 シート状ヒータに、直流電源を用いて、得られた温度係数から導電性線状体の推定温度が80℃になるように、電圧を印加した。その後、導電性線状体の直上の温度を、サーマルカメラ(FLIR社製 CAT S60)を用いて、シート状ヒータとカメラ間の距離を10cmとして、測定し、シート状ヒータ全体の平均温度を、サーマルカメラ(FLIR社製 CAT S60)を用いて、シート状ヒータとカメラ間の距離を60cmとして、測定した。そして、温度差(導電性線状体の直上の温度-平均温度)を算出した。なお、温度差が小さいほど、発熱性評価が良好であることを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、実施例1~3で得られたシート状ヒータは、比較例1で得られたシート状ヒータと比較して、発熱性評価が良好であり、より精度よく温度制御できることが分かった。
 1…基材、2…疑似シート構造体、21…導電性線状体、3…樹脂層、4…電極、5…検知モジュール、6…制御モジュール、7…電源、100…シート状ヒータ。

Claims (5)

  1.  複数の導電性線状体が間隔をもって配列された疑似シート構造体と、
     前記導電性線状体に電気的に接続する一対の電極と、
     前記導電性線状体の抵抗値を検知できる検知モジュールと、を備えるシート状ヒータであって、
     前記導電性線状体は、金属ワイヤー、或いは、前記金属ワイヤーに導電性被覆が施された線状体であり、
     前記金属ワイヤーは、単一の金属元素の比率が97質量%以上の金属からなる、
     シート状ヒータ。
  2.  請求項1に記載のシート状ヒータにおいて、
     前記導電性線状体の平均間隔が、15mm以下である、
     シート状ヒータ。
  3.  請求項1又は請求項2に記載のシート状ヒータにおいて、
     前記導電性線状体の直径が、0.03mm以下である、
     シート状ヒータ。
  4.  請求項1又は請求項2に記載のシート状ヒータにおいて、
     前記単一の金属元素が、タングステン、モリブデン、銅、ニッケル、鉄、金、銀、チタン、及びアルミニウムからなる群から選択される少なくとも1つの金属元素である、
     シート状ヒータ。
  5.  請求項1又は請求項2に記載のシート状ヒータにおいて、
     前記導電性線状体は、前記金属ワイヤーに導電性被覆が施された線状体である、
     シート状ヒータ。
PCT/JP2022/040715 2021-11-02 2022-10-31 シート状ヒータ WO2023080112A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179437 2021-11-02
JP2021-179437 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080112A1 true WO2023080112A1 (ja) 2023-05-11

Family

ID=86241098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040715 WO2023080112A1 (ja) 2021-11-02 2022-10-31 シート状ヒータ

Country Status (1)

Country Link
WO (1) WO2023080112A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145084A (ja) * 1981-09-18 1983-08-29 国際技術開発株式会社 発熱体の温度制御方式
JPH07153550A (ja) * 1993-12-02 1995-06-16 Chubu Electric Power Co Inc 電気ヒ−タの温度制御方法
JP2006313653A (ja) * 2005-05-06 2006-11-16 Takazono Sangyo Co Ltd ヒータの温度調節装置およびそれを備えた薬剤分包装置
JP2021163723A (ja) * 2020-04-03 2021-10-11 リンテック株式会社 配線シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145084A (ja) * 1981-09-18 1983-08-29 国際技術開発株式会社 発熱体の温度制御方式
JPH07153550A (ja) * 1993-12-02 1995-06-16 Chubu Electric Power Co Inc 電気ヒ−タの温度制御方法
JP2006313653A (ja) * 2005-05-06 2006-11-16 Takazono Sangyo Co Ltd ヒータの温度調節装置およびそれを備えた薬剤分包装置
JP2021163723A (ja) * 2020-04-03 2021-10-11 リンテック株式会社 配線シート

Similar Documents

Publication Publication Date Title
JP7063817B2 (ja) 三次元成形用発熱シート、および表面発熱物品
WO2017086395A1 (ja) シート、発熱体、及び発熱装置
WO2021192775A1 (ja) 配線シート及びシート状ヒーター
JP2020119856A (ja) シート状導電部材の製造方法、及びシート状導電部材
JP2021163723A (ja) 配線シート
WO2023080112A1 (ja) シート状ヒータ
US20230147333A1 (en) Wiring sheet, and sheet-like heater
JP7308210B2 (ja) シート状導電部材
WO2022202230A1 (ja) 配線シート
JP7411636B2 (ja) シート状導電部材の製造方法
WO2023063377A1 (ja) 接触センサ、及び配線シート
WO2024070718A1 (ja) 配線シート及びシート状ヒータ
WO2023063378A1 (ja) 配線シート
JP2022149123A (ja) 配線シート
JP2023059085A (ja) 面状発熱体
WO2022070481A1 (ja) 配線シート、及び配線シートの製造方法
WO2023188122A1 (ja) 配線シート
WO2023063379A1 (ja) 配線シート
WO2021172150A1 (ja) 配線シート
JP2024052310A (ja) 配線シート及びシート状ヒータ
US20230413389A1 (en) Wiring sheet and sheet-form heater
US20230156868A1 (en) Sheet-like conductive member and sheet-like heater
JP2023059087A (ja) 配線シート
JP2024052337A (ja) 配線シート及びシート状ヒータ
JP2022085213A (ja) 配線シート及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023558029

Country of ref document: JP

Kind code of ref document: A