WO2023061197A1 - 吸振器及汽车 - Google Patents

吸振器及汽车 Download PDF

Info

Publication number
WO2023061197A1
WO2023061197A1 PCT/CN2022/121369 CN2022121369W WO2023061197A1 WO 2023061197 A1 WO2023061197 A1 WO 2023061197A1 CN 2022121369 W CN2022121369 W CN 2022121369W WO 2023061197 A1 WO2023061197 A1 WO 2023061197A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
rubber
wall
shock absorber
mass
Prior art date
Application number
PCT/CN2022/121369
Other languages
English (en)
French (fr)
Inventor
冯晓亮
岳志强
乔四洁
侯田平
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2023061197A1 publication Critical patent/WO2023061197A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/28Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/31Flywheels characterised by means for varying the moment of inertia

Definitions

  • the present disclosure relates to the technical field of automobile transmission, in particular to a vibration absorber. At the same time, the present disclosure also relates to an automobile to which the above-mentioned shock absorber is applied.
  • the noise of the automobile transmission system is one of the main noise sources in the automobile, especially the low-frequency interior roar caused by the resonance of the transmission system caused by the second-order excitation of the engine, which has become the main problem complained by automobile users.
  • Low-frequency roar can easily cause dizziness and nausea for drivers and passengers, and the presence of low-frequency roar for a long time will also increase driver fatigue.
  • the present disclosure aims to propose a vibration absorber capable of adapting to the torsional modes of different vehicle gears, which is beneficial to reduce the vibration and noise of the vehicle transmission system.
  • a vibration absorber comprising flanges, connecting rubber and inertia disks that are nested and connected sequentially from the inside to the outside; the inside of the connecting rubber is formed with a cavity along the circumference, and the cavity has a cavity close to the flange.
  • the mass ring has a plurality of mass blocks arranged along the circumference of the inner wall; each of the mass blocks is connected together by elastic connectors.
  • each of the mass blocks is set as an arc-shaped block conforming to the inner wall, and the elastic connector for connecting adjacent mass blocks in series adopts a spring, and each of the mass blocks is Evenly distributed along the circumferential direction of the inner wall, the springs constituting the elastic connector are made of corrugated and elastically deformable connecting plates.
  • the mass ring has a plurality of mass blocks arranged along the circumference of the inner wall; each of the mass blocks is connected to the inner wall through radially arranged springs, and when subjected to centrifugal force, each of the mass blocks The mass blocks move radially outward to squeeze the rubber protrusions, and when the centrifugal force disappears, each mass block is pulled back to its position by the corresponding spring.
  • the mass ring is composed of a plurality of mass blocks arranged circumferentially along the inner side wall, and the protruding tops of the rubber protrusions abut against the mass ring, and each of the mass blocks bears centrifugal force
  • the blocks can squeeze the rubber protrusions, and each mass block can return to its position when the centrifugal force disappears.
  • the mass ring is a stretchable elastic connector.
  • the elastic connecting piece is ring-shaped and sleeved on the inner side wall, and the elastic connecting piece is a corrugated and elastically deformable connecting plate.
  • the elastic connecting member is made of rubber, and the elastic connecting member is divided into multiple sections along the circumferential direction, and the rubber hardness of each section changes alternately from soft to hard.
  • the cross-sectional area of the rubber protrusion increases; and/or, there is a gap between the rubber protrusion and the quality ring.
  • the rubber protrusions are arranged in a continuous circle along the circumference of the outer wall; or, corresponding to the quality ring sleeved on the inner wall, the rubber protrusions are arranged along the outer wall A plurality of outer walls are distributed at intervals in the circumferential direction.
  • the distance between the cavity and the flange is greater than the distance between the cavity and the inertia plate.
  • the inertia plate includes an inertia ring connected to the outer peripheral wall of the connecting rubber; the number of the inertia ring is one, or the number of the inertia ring is distributed along the axial interval of the connecting rubber. indivual.
  • the inner side wall and the outer side wall are two circumferential surfaces opposite to each other in the radial direction of the vibration absorber, and the cavity is formed between the inner side wall and the outer side wall to form an annular space. Cavity structure;
  • the connecting rubber On two opposite sides in the axial direction of the vibration absorber, the connecting rubber respectively forms a block on both sides of the cavity, so that the cavity becomes a closed cavity structure inside the connecting rubber.
  • the connecting rubber is divided into two parts, the inner colloid and the outer colloid, which are nested and connected. , and connected to the inertia disk, the cavity is set in the outer colloid;
  • the flange is provided with a mounting hole for the installation of the vibration absorber, and the flange includes a mounting ring and a connecting ring fixedly connected with the mounting ring; the connecting ring is along the vibration absorber.
  • the axially arranged tubular shape, the inner colloid is nested and connected to the outer peripheral wall of the connecting ring, the installation ring is arranged along the radial direction of the vibration absorber, and the installation hole is located on the installation ring.
  • the present disclosure has the following advantages:
  • the vibration absorber described in the present disclosure is provided with a quality ring on the inner side wall and a rubber protrusion on the outer side wall, so that the diameter of the quality ring can be changed, and the diameter of the quality ring can be enlarged to squeeze the rubber protrusion,
  • the difference in diameter of the mass ring at different gears can be used, so that the shock absorber can adapt to the torsional mode of different gears, and at the same time, the mass ring can squeeze the rubber bumps to different degrees in different gears, so that the rubber bumps It has the stiffness and damping characteristics corresponding to the working condition of the gear, so that the shock absorber can adapt to the torsional mode of different gears, which is beneficial to reduce the vibration and noise of the automobile transmission system.
  • the present disclosure also proposes an automobile, the transmission system of which is installed with the above-mentioned shock absorber.
  • the automobile of the present disclosure has the same beneficial effects as the above-mentioned shock absorber, and will not be repeated here.
  • Fig. 1 is a front view of the vibration absorber described in Embodiment 1 of the present disclosure
  • Fig. 2 is the side view of Fig. 1;
  • Fig. 3 is the sectional view of A-A direction in Fig. 2;
  • Fig. 4 is an axonometric view of the structure shown in Fig. 3;
  • FIG. 5 is a schematic structural diagram of a flange according to Embodiment 1 of the present disclosure.
  • FIG. 6 is a simulation effect diagram of the vibration absorber described in Embodiment 1 of the present disclosure.
  • inner colloid 21, inner colloid; 211, material reduction hole; 22, outer colloid; 221, cavity; 221a, inner wall; 221b, outer wall; 222, rubber protrusion;
  • connection in the description of the present disclosure, unless otherwise clearly defined, the terms “installation”, “connection”, “connection” and “connector” should be interpreted broadly. For example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary; connected. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present disclosure in combination with specific situations.
  • the second-order excitation of the engine is caused by the combustion work of the engine and the mechanical rotation. It is the inherent physical characteristics of the engine, and is transmitted to the body through the transmission system, suspension system, intake system, exhaust system and suspension system, thereby causing a Boom problem.
  • the resonance of the transmission system caused by the second-order excitation of the engine is divided into bending resonance and torsional resonance.
  • the torsional resonance is mainly affected by the excitation force, the inertia of the transmission system, the stiffness of the transmission system, and the damping of the transmission system.
  • the transmission system in order to reduce the torsional resonance of the transmission system, is generally used to increase the dual-mass flywheel, reduce the torsional vibration excitation, adjust the torque distribution of the transmission system, reduce the torque output, reduce the excitation, increase the inertia of the transmission shaft, and reduce the torsional vibration response.
  • the transmission system increases the torsional vibration absorber to reduce the torsional vibration response, and improves the stiffness of the transmission path to reduce the transmission energy.
  • a dual-mass flywheel is added to the transmission system, so that the transmission system is changed from a single-mass flywheel to a dual-mass flywheel, which will increase the cost and weight of the vehicle. Adjusting the torque distribution of the transmission system and reducing the torque output will reduce power acceleration and four-wheel drive driving. Comfort, the inertia of the transmission shaft increases, the weight required is relatively large, and the effect is not ideal, and the chassis space is not allowed to increase the inertia blindly, and the transmission path is improved to reduce the transmission energy, not only the weight increases, but also due to There are many transmission paths and responses, and there will be more parts to be strengthened, and the final effect is not ideal.
  • the vibration absorbers currently used are single-frequency vibration absorbers. Since the torsional vibration mode of the transmission system is related to the inertia of the transmission system, the inertia to be borne by the transmission system is different in different gears. Therefore, the torsional vibration mode will also be different.
  • the single-frequency vibration absorber can only be aimed at a certain fixed gear, and the torsional vibration of other gears needs to be reduced, and the vibration absorber can only be added, but the number of vibration absorbers that can be added due to the limited space of the transmission system is limited, and the vibration absorber The increase in quantity also doubles the cost and weight.
  • This embodiment relates to a vibration absorber, which is generally used in the transmission system of automobiles, and is specifically a torsional vibration absorber connected with the transmission shaft, so as to reduce the vibration noise of the transmission system caused by engine excitation and the like.
  • the vibration absorber of this embodiment includes a flange plate 1 , a connecting rubber 2 and an inertia plate 3 which are sequentially nested and connected along the radial direction of the transmission shaft from inside to outside.
  • the flange 1 is used for connecting with the transmission shaft, so as to install the shock absorber into the automobile transmission system.
  • the connecting rubber 2 connects the flange plate 1 and the inertia plate 3, and as one of the main invention points of this embodiment, a cavity 221 extending along the circumferential direction of the connecting rubber 2 itself is formed in the connecting rubber 2, and the cavity 221 It has an inner wall 221a close to the side of the flange 1 and an outer wall 221b away from the flange 1 .
  • the mass ring 4 is sheathed on the inner wall 221a, and the rubber protrusion 222 protruding toward the side of the mass ring 3 is provided on the outer wall 221b, and the diameter of the mass ring 4 can also be changed.
  • the quality ring 4 is provided on the inner side wall 221a, and the rubber protrusion 222 is provided on the outer side wall 221b, and the diameter of the quality ring 4 can be changed, so that the mass at different gears can be used.
  • the difference in diameter of the ring 4 enables the shock absorber to adapt to the torsional modes of different gears, which is beneficial to reduce the vibration and noise of the automobile transmission system.
  • the vibration absorber of this embodiment is an exemplary structure of the vibration absorber of this embodiment.
  • the cavity 221 is formed between the inner wall 221a and the outer wall 221b to form an annular cavity structure.
  • the connecting rubber 2 also constitutes to block both sides of the cavity 221 , thus making the cavity 221 a closed cavity structure located inside the connecting rubber 2 .
  • the connecting rubber 2 is divided into two parts, the inner rubber 21 and the outer rubber 22 , which are nested and connected.
  • the inner colloid 21 is located inside along the radial direction of the shock absorber and connected to the flange 1 , and correspondingly, the outer colloid 22 is located outside and connected to the outermost inertial disk 3 of the shock absorber.
  • the cavity 221 is disposed in the outer glue 22 .
  • the mass ring 4 when no external force acts on the shock absorber, the mass ring 4 and the inner side wall 221a remain relatively static, and when a centrifugal force acts on the shock absorber, the diameter of the mass ring 4 able to change.
  • Fig. 3 and Fig. 4 as a structural form of the mass ring 4, it has a plurality of mass blocks 41 arranged along the circumferential direction of the inner side wall 221a, and each mass block 41 is also passed through a number of stretchable elastic Connectors 42 are connected together. In this way, the mass ring 4 is jointly formed by each mass block 41 and the elastic connecting piece 42 for connecting adjacent mass blocks 41 .
  • each mass block 41 stretches the elastic connector 42 due to the centrifugal force and moves radially outward, which can also cause the radial expansion of the mass ring 4 to change in diameter.
  • this embodiment also enables the diameter of the mass ring 4 to expand to the extent that the rubber protrusion 222 is squeezed when centrifugal force acts on the shock absorber. Specifically, under the action of centrifugal force, the radially expanding mass ring 4 can expand to contact with the rubber protrusion 222 and can press the rubber protrusion 222 . When the above centrifugal force disappears, of course, each mass block 41 will radially shrink back under the reset force of the elastic connector 42, so that the mass ring 4 returns to a relatively static state with the inner side wall 221a, and the Squeeze against the rubber bump 222 .
  • each mass block 41 of this embodiment can be set as an arc-shaped block conforming to the inner side wall 221a, and used as an elastic connecting member connected in series between adjacent mass blocks 41 42 can adopt spring.
  • the number of mass blocks 41 connected together by elastic connectors 42 can generally be set to 3-5, for example, 4 can be used, and each mass block 41 is preferably evenly distributed along the circumferential direction of the inner wall 221a .
  • the above spring constituting the elastic connecting member 42 can be made of a corrugated and elastically deformable connecting plate as shown in FIG. 3 or FIG. 4 , for example.
  • the connecting plate adopts a thin elastic steel plate with better elasticity, and the above-mentioned mass blocks 41 adopt an arc-shaped steel block structure.
  • mass block 41 in addition to setting the mass block 41 to the above-mentioned number range, in actual implementation, based on the adaptation requirements of a specific vehicle model and the stiffness of the elastic connector 42 used, other numbers of mass blocks 41 can also be used. , such as 2, 6 or more. When the number of mass blocks 41 changes, the number of elastic connectors 42 used can be adjusted accordingly.
  • the mass block 41 can also be designed as other shapes such as rectangles, but when it is a rectangle, in order to ensure the extrusion effect of the rubber protrusion 222, the mass block 41
  • the quantity of 41 should be set more, so that the length of each mass block 41 along the circumferential direction of the inner wall 221a is relatively small.
  • the elastic connecting piece 42 used to connect the mass blocks 41 in series can also use other elastically deformable connecting structures, such as rubber connections. structure or connection structure made of elastic nylon, etc.
  • the mass ring 4 of this embodiment can also expand radially to a certain extent when subjected to centrifugal force, and can recover when the centrifugal force disappears. other structural forms.
  • each mass block 41 in the mass ring 4 can be respectively connected on the inner side wall 221a through radially arranged springs.
  • each mass block 41 moves radially outward to squeeze the rubber protrusion 222.
  • the quality ring 4 may only be composed of a plurality of mass blocks 41 arranged circumferentially along the inner sidewall 221a.
  • each mass block 41 can squeeze the rubber protrusion 222 when subjected to centrifugal force, and each mass block 41 can return to its position when the centrifugal force disappears.
  • the mass ring 4 may only be composed of a stretchable elastic connector 42 .
  • the stretchable elastic connector 42 constituting the mass ring 4 is ring-shaped and sleeved on the inner wall 221a.
  • the elastic connecting member 42 can be made of, for example, the above-mentioned corrugated and elastically deformable connecting plate.
  • the stretchable elastic connector 42 constituting the mass ring 4 can also be made of rubber, and at this time, the hardness of the rubber used to make the elastic connector 42 can be set to be slightly larger than the rubber protrusion 222 as a whole, In order to be able to squeeze the rubber protrusion 222 better.
  • the elastic connecting member 42 when the elastic connecting member 42 is made of rubber, preferably, the elastic connecting member 42 can also be divided into multiple sections along the circumferential direction, and the rubber hardness of each section is alternately soft and hard. In this way, the softer part mainly plays the role of elastic connection, while the harder part is mainly used to squeeze the rubber protrusion 222, so that a better use effect can also be obtained.
  • the rubber protrusion 222 there may be only one rubber protrusion 222 on the outer wall 221b, that is, the rubber protrusion 222 is provided in a continuous circle along the circumference of the outer wall 221b.
  • the rubber protrusions 222 in this embodiment are also distributed at intervals along the outer wall 221b circumferential direction
  • a plurality of rubber protrusions 222 arranged at intervals can facilitate corresponding deformation of the rubber protrusions 222 when subjected to the extrusion of the mass ring 4 , so as to adjust their own stiffness and damping characteristics.
  • each rubber protrusion 222 provided on the outer wall 221b, in the direction from the radially inner side to the radially outer side, the cross section of each rubber protrusion 222 The area increases.
  • the cross-section of each rubber protrusion 222 can be designed as a triangle, for example, along the protruding direction of the rubber protrusion 222 .
  • other shapes are also possible so that the cross-section of each rubber protrusion 222 increases from the inside to the outside, but it is still preferable to adopt a triangle cross-section.
  • the rubber protrusions 222 distributed along the outer wall 221b at intervals in the circumferential direction may adopt the same structure and be uniformly distributed along the outer wall 221b's circumferential direction.
  • the specific cross-sectional shape of each rubber protrusion 222, as well as the number of rubber protrusions 222 and the spacing between adjacent rubber protrusions 222, etc. can also be adjusted based on the simulated vibration absorption test of the shock absorber, so as to match the specific vehicle model. match.
  • the top of the rubber protrusion 222 protruding toward the quality ring 4 can be in contact with the quality ring 4, that is, the protruding end of the rubber protrusion 222 abuts against each mass block 41 .
  • the gap can be adjusted according to the simulated vibration absorption test of the shock absorber to match the specific car model.
  • the mass ring 4 expands radially under the action of centrifugal force, the mass ring 4 in the expanded state abuts against the rubber protrusion 222 through the above-mentioned gap, and through the setting of the above-mentioned interval, it is beneficial to the diameter of the mass ring 4 under the centrifugal force.
  • different extrusion forces can be applied to the rubber protrusion 222, and it is also convenient for the preparation of the shock absorber.
  • the cavity 221 is arranged in the outer rubber 22, so that from the perspective of the entire connecting rubber 2, the cavity 221 is arranged on the side close to the inertia plate 3, so that the distance between the cavity 221 and the flange 1 The distance is greater than the distance from the inertia disk 3 .
  • the inner colloid 21 part is a solid colloid structure that plays a connecting role, and the solid inner colloid 21 also mainly plays a common role of stiffness and damping.
  • connection rubber 2 inside the cavity 221 that is, the inner rubber body 21 is provided with a material reducing hole 211 .
  • the material reduction holes 211 are a plurality of spaced distributions along the inner colloid 21 circumferential direction, and the cross section of each material reduction hole 211 can be set as a polygon shown in FIG. 1 , FIG. 3 or FIG. 4 , or each material reduction hole 211 The cross section can also be provided in other shapes.
  • the flange 1 includes a mounting ring 11 and a connecting ring 12 fixedly connected to the mounting ring 11 .
  • the connecting ring 12 is in the shape of a tube arranged along the axial direction of the shock absorber, and the inner colloid 21 in the connecting rubber 2 is nested and connected to the outer peripheral wall of the connecting ring 12 .
  • the mounting ring 11 is arranged along the radial direction of the shock absorber, the above-mentioned mounting hole 14 is located on the mounting ring 11 , and a through hole 13 is formed in the middle of the mounting ring 11 .
  • the installation holes 14 are a plurality of intervals distributed along the circumferential direction of the installation ring 11, and in practice, the installation ring 11 can be arranged at one end of the connection ring 12 as shown in Figure 4 or Figure 5, or, It is also possible to arrange the mounting ring 11 at a position such as in the middle of the connecting ring 12 in the axial direction.
  • the mounting ring 11 is arranged eccentrically, that is, the mounting ring 11 is arranged at one end of the connecting ring 12, and During assembly, one end of the drive shaft extends into the flange 1.
  • the inertia disk 3 of this embodiment includes an inertia ring 31 connected to the outer peripheral wall of the connecting rubber 2 .
  • the number of the inertia ring 31 can be only one, and along the axial direction of the shock absorber, the inertia ring 31 has the same thickness as the connecting rubber 2 and the flange 1 .
  • the number of inertia rings 31 constituting the inertia disk 3 is specifically along the axial direction of the connecting rubber 2 A plurality of the inertia rings 31 are distributed at intervals, and the adjacent inertia rings 31 are separated by a partition h, and the partition h penetrates to the outer peripheral wall of the connecting rubber 2 , so that each inertia ring 31 becomes a separate entity.
  • the quantity of the inertia rings 31 arranged separately above can also be adjusted according to the simulated vibration absorption test of the shock absorber, so as to match the specific vehicle type, and in addition to the adjustment on the quantity, for each inertia ring 31
  • the thickness in the axial direction of the device is also adjusted based on the simulated vibration absorption test, so that the thickness of at least one inertia ring 31 is different from that of the other inertia rings 31 .
  • the design and type selection of each inertia ring 31 can match the vibration and noise reduction requirements of specific models.
  • the flange plate 1 and the inertia plate 3 can be vulcanized and fixedly connected with the connecting rubber 2, and the rubber protrusion 222 in the molding cavity 221 and the quality ring 4 sets After being disposed on the inner wall 221 a of the cavity 221 , the cavity 221 can be sealed by vulcanization or bonding to form the entire connection rubber 2 .
  • the shock absorber of this embodiment is also installed between the transmission shaft in the automobile transmission system and the flange of the final reducer, and at this time, a part of the mounting ring 11 in the flange 1 One side of the drive shaft abuts against the flange, and one end of the transmission shaft extends into the connecting ring 12 and abuts against the other side of the mounting ring 11 .
  • the mounting ring 11 is clamped and fixed between the transmission shaft and the flange, and the whole shock absorber is installed in the transmission system. in the installation.
  • the engine excitation is transmitted to the transmission system, and in different gears, the speed of the transmission shaft and the vibration absorber connected to it is different, and the frequency of the excitation transmitted is also different.
  • the mass ring 4 by arranging the mass ring 4 on the inner wall 221a and the rubber protrusion 222 on the outer wall 221b, and making the mass ring 4 match the difference in the centrifugal force it bears, the corresponding radial expansion can be carried out to squeeze the rubber raised 222 .
  • the difference in centrifugal force borne by the mass ring 4 at different gears can be used to squeeze the rubber protrusions 222 to different degrees, so that the rubber protrusions 222 have rigidity and damping characteristics corresponding to the working conditions of the gears, which can
  • the vibration absorber of this embodiment is adapted to the torsional modes of different gears, and becomes a multi-frequency torsional vibration absorber, which is beneficial to reduce the vibration noise of the automobile transmission system.
  • FIG. 6 it is a comparison diagram of the simulation effect of the vibration absorber adopting the illustrated structure of this embodiment and the existing single-frequency vibration absorber.
  • the flange plate 1, mass ring 4 and inertia plate 3 all adopt Made of steel, the outer diameter of the flange 1 is 140mm, the diameter of the inner side wall 221a is 160mm, the outer diameter of the connecting rubber 2 is 208mm, and the radial thickness of the inertia disk 3 is 4mm.
  • each material reducing hole 211 in the connecting rubber 2 are 8 evenly distributed, each material reducing hole 211 is a regular pentagon with a side length of 3 mm, the center of each material reducing hole 211 is on the same circle, and the diameter of the circle is 150mm.
  • the thickness of each mass block 41 is 2 mm, each mass block 41 is evenly distributed, and the central angle corresponding to each mass block 41 is 60°, and the elastic connector 42 between adjacent mass blocks 41 adopts The elastic steel plate is bent and connected with the mass block 41 by welding.
  • the number of rubber protrusions 222 in the cavity 211 is 37 evenly distributed, and the cross-section of each rubber protrusion 222 is an isosceles triangle structure, and the protrusion height of the rubber protrusions 222 with a triangular cross-section is 15mm.
  • the included angle near the end of the quality ring 4 is 30°, and the distance between the rubber protrusion 222 and the quality ring 4 is 1mm.
  • the axial width of the inertia disk 3, that is, the axial width of the connecting rubber 2 and the flange 1 is 70mm
  • the inertia disk 3 is composed of five inertia rings 31 shown in FIG. 2, and the five inertia rings 31
  • the inertia rings 31 There are two kinds of axial widths, and the inertia rings 31 of two widths are arranged alternately along the axial direction.
  • the axial width of the wider inertia ring 31 is 13 mm
  • the axial width of the narrower inertia ring 31 is 9 mm.
  • the axial widths of the partitions h between adjacent inertia rings 31 are the same.
  • the existing single-frequency vibration absorber used in the simulation it is also composed of a connected flange 1, a connecting rubber 2 and an inertia plate 3, and the overall axial thickness of the existing vibration absorber is the same as that of the present embodiment used in the simulation.
  • the vibration absorber is the same, and the radial dimensions of the flange 1, the connecting rubber 2 and the inertia disk 3 are also consistent with the vibration absorber of this embodiment used in the simulation.
  • the difference between this existing vibration absorber and the vibration absorber of this embodiment used in the simulation is that the vibration absorber of this embodiment also has a cavity 221, as well as a mass ring 4 and a rubber protrusion 222 located in it.
  • this embodiment The inertia disk 3 of the example is also divided into five inertia rings 31.
  • the simulation software used is the finite element simulation software MSC Nastran
  • the model used in the simulation is the Great Wall Cannon
  • the specific model is the 2020 2.0T manual diesel version GW4D20M.
  • the vibration absorber of this embodiment can further reduce the vibration noise under the working conditions of each gear compared with the existing single-frequency vibration absorber, so that the vibration absorber of this embodiment can be more efficient. It can effectively reduce the vibration and noise of the automobile transmission system.
  • This embodiment relates to an automobile, the transmission system of the automobile is installed with the vibration absorber in the first embodiment, and as described in the first embodiment, the vibration absorber is specifically installed on the transmission shaft and the main reduction gear in the transmission system between the flanges.
  • the automobile of this embodiment adopts the vibration absorber of Embodiment 1, which can adapt to the torsional modes of different gears, which is beneficial to reduce the vibration and noise of the automobile transmission system, and has good practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Gears, Cams (AREA)

Abstract

一种吸振器及汽车,吸振器包括由内至外依次嵌套相连的法兰盘(1)、连接橡胶(2)和惯量盘(3);连接橡胶(2)使法兰盘(1)与惯量盘(3)连接,并且形成有沿周向延伸的腔体(221),腔体(221)具有内侧壁(221a)和比内侧壁(221a)远离法兰盘(1)的外侧壁(221b);内侧壁(221a)上套设有质量环(4),外侧壁(221b)上设有向质量环(4)凸出的橡胶凸起(222),质量环(4)的直径能够发生变化,吸振器能够适应不同档位的扭转模态,而有利于降低汽车传动系统振动噪声。

Description

吸振器及汽车
本公开要求在2021年10月13日提交中国专利局、申请号为202111192637.1、专利申请名称为“吸振器及汽车”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及汽车传动技术领域,特别涉及一种吸振器。同时,本公开还涉及一种应用有上述吸振器的汽车。
背景技术
随着汽车技术不断发展,消费者对汽车驾驶舒适性的要求日益提高,汽车振动噪声便是提升汽车驾驶舒适性首要解决的问题。汽车传动系统噪声是汽车中的主要噪声源之一,尤其是发动机二阶激励导致传动系统共振引起的低频车内轰鸣声,已成为汽车用户抱怨的主要问题。低频轰鸣声容易导致驾乘人员头晕、恶心,长时间存在低频轰鸣声也会增加驾驶员疲劳感。
发明内容
有鉴于此,本公开旨在提出一种吸振器,以能够适应不同汽车档位的扭转模态,利于降低汽车传动系统的振动噪声。
为达到上述目的,本公开的技术方案是这样实现的:
一种吸振器,包括由内至外依次嵌套相连的法兰盘、连接橡胶和惯量盘; 所述连接橡胶的内部沿周向形成有腔体,所述腔体具有靠近所述法兰盘的内侧壁和远离所述法兰盘的外侧壁;所述内侧壁上套设有质量环,所述外侧壁上设有向所述质量环凸出的橡胶凸起;当有离心力作用于所述吸振器时,所述质量环的直径能够发生变化,且能够挤压所述橡胶凸起。
进一步的,所述质量环具有沿所述内侧壁的周向布置的多个质量块;各所述质量块通过弹性连接件连接在一起。
进一步的,各所述质量块设置为随形于所述内侧壁的弧形块,用于相邻所述质量块之间串连的所述弹性连接件采用弹簧,且各所述质量块为沿所述内侧壁的圆周方向均匀分布,构成所述弹性连接件的所述弹簧由呈波纹状而可弹性变形的连接板制成。
进一步的,所述质量环具有沿所述内侧壁的周向布置的多个质量块;各所述质量块分别通过径向布置的弹簧连接在所述内侧壁上,当承受离心力时,各所述质量块径向外移挤压所述橡胶凸起,当离心力消失时,各所述质量块被对应的所述弹簧拉动回位。
进一步的,所述质量环由沿所述内侧壁周向布置的多个所述质量块构成,所述橡胶凸起外凸的顶部和所述质量环抵接,在承受离心力时各所述质量块能够挤压所述橡胶凸起,离心力消失时各所述质量块可回位。
进一步的,所述质量环为能够伸缩的弹性连接件。
进一步的,所述弹性连接件为环形,并套设在所述内侧壁上,且所述弹性连接件为波纹状且能够弹性变形的连接板。
进一步的,所述弹性连接件采用橡胶制成,且沿周向将所述弹性连接件划分为多段,并使得各段的橡胶硬度为软硬交替变化。
进一步的,在从径向内侧朝向径向外侧的方向上,所述橡胶凸起的横截面 积增大;和/或,所述橡胶凸起与所述质量环之间存在间隙。
进一步的,所述橡胶凸起为沿所述外侧壁周向设置的连续的一整圈;或者,对应于套设在所述内侧壁上的所述质量环,所述橡胶凸起为沿所述外侧壁周向间隔分布的多个。
进一步的,所述腔体距所述法兰盘的距离大于距所述惯量盘的距离。
进一步的,所述惯量盘包括连接在所述连接橡胶外周壁上的惯量环;所述惯量环的数量为一个,或者所述惯量环的数量为沿所述连接橡胶的轴向间隔分布的多个。
进一步的,所述内侧壁和所述外侧壁为所述吸振器径向上的两个相对布置的圆周面,所述腔体形成在所述内侧壁和所述外侧壁之间,而成为环形空腔结构;
在所述吸振器轴向的两相对侧,所述连接橡胶分别构成对所述腔体两侧的封堵,使得所述腔体成为位于所述连接橡胶内部的封闭的腔体结构。
进一步的,所述连接橡胶划分为嵌套相连的内侧胶体和外侧胶体两部分,所述内侧胶体沿所述吸振器径向位于内部,并与所述法兰盘连接,所述外侧胶体位于外部,且与所述惯量盘相连,所述腔体设置在所述外侧胶体中;
所述法兰盘上设置有用于所述吸振器安装的安装孔,且所述法兰盘包括安装环,以及与所述安装环固连的连接环;所述连接环呈沿所述吸振器轴向布置的管状,所述内侧胶体嵌套连接在所述连接环的外周壁上,所述安装环沿所述吸振器的径向布置,所述安装孔位于所述安装环上。
相对于现有技术,本公开具有以下优势:
本公开所述的吸振器,通过在内侧壁上设置质量环,以及在外侧壁上设置橡胶凸起,并使得质量环的直径能够变化,且质量环的直径能够扩大到挤压橡 胶凸起,由此可利用不同挡位时质量环直径的不同,使得吸振器能够适应不同档位的扭转模态,同时也能够通过不同挡位时质量环对橡胶凸起不同程度的挤压,使得橡胶凸起具有与该挡位工况对应的刚度及阻尼特性,由此使得吸振器能够适应不同档位的扭转模态,而有利于降低汽车传动系统的振动噪声。
本公开同时也提出了一种汽车,所述汽车的传动系统中安装有如上所述的吸振器。
本公开的汽车与上述吸振器相较于现有技术具有的有益效果相同,在此不再赘述。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例一所述的吸振器的主视图;
图2为图1的侧视图;
图3为图2中A-A方向的剖视图;
图4为图3所示结构的轴测图;
图5为本公开实施例一所述的法兰盘的结构示意图;
图6为本公开实施例一所述的吸振器的仿真效果图;
附图标记说明:
1、法兰盘;2、连接橡胶;3、惯量盘;4、质量环;
11、安装环;12、连接环;13、通孔;14、安装孔;
21、内侧胶体;211、减料孔;22、外侧胶体;221、腔体;221a、内侧壁; 221b、外侧壁;222、橡胶凸起;
31、惯量环;
41、质量块;42、弹性连接件;
h、分隔缝。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
在本公开的描述中,需要说明的是,若出现“上”、“下”、“内”、“外”等指示方位或位置关系的术语,其为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。另外,若出现“第一”、“第二”等术语,其也仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,在本公开的描述中,除非另有明确的限定,术语“安装”、“相连”、“连接”“连接件”应做广义理解。例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以结合具体情况理解上述术语在本公开中的具体含义。
发动机二阶激励是发动机燃烧做功和机械旋转共同造成,是发动机的固有物理特性,并通过传动系统、悬置系统、进气系统、排气系统和悬架系统等传递至车身,从而引起车内轰鸣声问题。其中,发动机二阶激励导致的传动系统共振分为弯曲共振和扭转共振,扭转共振主要受激励力、传动系统惯量、传动 系统刚度以及传动系统阻尼的影响。
现有技术中,为降低传动系统的扭转共振,一般采用传动系统增加双质量飞轮,降低扭振激励,调整传动系统扭矩分配,降低扭矩输出,降低激励,增加传动轴惯量,降低扭振响应,传动系统增加扭转吸振器,降低扭振响应,以及提升传递路径刚度,降低传递能量等方式。
上述方式中,传动系统增加双质量飞轮,使得传动系统由单质量飞轮改为双质量飞轮,会造成汽车成本及重量,调整传动系统扭矩分配,降低扭矩输出,会降低动力加速性和四驱驾驶舒适性,传动轴增加惯量,所需增加的重量较大,且效果不理想,并且一味增大惯量,底盘空间也不允许,而提升传递路径,降低传递能量,不仅重量增加较大,同时由于传递路径、响应较多,需加强的部位会较多,最终效果也不理想。
此外,对于传动系统增加扭转吸振器的方式,目前所采用的吸振器多为单频吸振器,由于传动系统扭振模态与传动系统惯量相关,不同档位时传动系统需承担的惯量不同,故扭振模态也会不同。而单频吸振器只能针对固定的某一档位,需降低其它档位的扭转振动,只能再增加吸振器,但因传动系统空间受限能再增加的吸振器数量有限,并且吸振器数量的增多也会导致成本及重量翻倍增加。
下面将参考附图并结合实施例来详细说明本公开。
实施例一
本实施例涉及一种吸振器,其一般应用于汽车传动系统中,并具体为与传动轴相连的扭转吸振器,以降低因发动机激励等造成的传动系统振动噪声。
整体构成上,本实施例的吸振器包括沿传动轴的径向由内至外依次嵌套相连的法兰盘1、连接橡胶2和惯量盘3。
其中,法兰盘1用于和传动轴连接,以将该吸振器安装至汽车传动系统中。连接橡胶2使法兰盘1和惯量盘3连接,并且作为本实施例的主要发明点之一,在连接橡胶2内形成有沿连接橡胶2自身周向延伸的腔体221,该腔体221具有靠近法兰盘1一侧的内侧壁221a,以及远离法兰盘1的外侧壁221b。在内侧壁221a上套设有质量环4,在外侧壁221b上则设置有向质量环3一侧凸出的橡胶凸起222,同时质量环4的直径也能够发生变化。
本实施例的吸振器,通过在内侧壁221a上设置质量环4,以及在外侧壁221b上设置橡胶凸起222,并使得质量环4的直径能够变化,由此,可利用不同挡位时质量环4直径的不同,使得吸振器能够适应不同档位的扭转模态,进而有利于降低汽车传动系统振动噪声。
基于上述整体设计,如图1至图4所示,为本实施例的吸振器的一种示例性结构,此时,结合于各图中所示的,以上腔体221中的内侧壁221a和外侧壁221b具体为本实施例吸振器径向上的两个相对布置的圆周面,腔体221形成在该内侧壁221a和外侧壁221b之间,而成为环形空腔结构。并且在本实施例吸振器轴向的两相对侧,连接橡胶2也分别构成对腔体221两侧的封堵,由此使得腔体221成为位于连接橡胶2内部的封闭的腔体结构。
仍参考图1所示,为便于描述,在本实施例中将连接橡胶2划分为嵌套相连的内侧胶体21和外侧胶体22两部分。内侧胶体21沿吸振器径向位于内部,并与法兰盘1连接,相应的,外侧胶体22位于外部,且与吸振器最外侧的惯量盘3相连。此外,上述腔体221即设置在外侧胶体22中。
本实施例中,针对于上述的质量环4,当无外力作用于吸振器时,质量环4与内侧壁221a之间保持相对静止,而当有离心力作用于吸振器时,质量环4的直径能够发生变化。此时,仍参考图3和图4,作为质量环4的一种结构形 式,其有沿内侧壁221a的周向布置的多个质量块41,并且各质量块41也通过若干能够伸缩的弹性连接件42连接在一起。如此,由各质量块41及用于相邻质量块41间连接的弹性连接件42共同构成了质量环4。
其中,当吸振器、也即传动轴没有转动时,没有外力作用在吸振器,上述质量环4中的各质量块41以及弹性连接件42与内侧壁221a之间保持相对静止。而当传动轴转动,产生了所述离心力时,各质量块41因离心作用拉伸弹性连接件42并发生径向外移,也便能够使得质量环4径向扩张而发生直径的变化。
作为一种优选实施形式,在质量环4直径可变化的基础上,本实施例也使得当有离心力作用于吸振器时,质量环4的直径能够扩大到挤压橡胶凸起222的程度。具体的,其也即在离心力作用下,径向扩张的质量环4能够扩张到与橡胶凸起222接触,并且能够对橡胶凸起222进行挤压。而在上述离心力消失时,当然各质量块41在弹性连接件42的复位作用力下则会径向收缩回位,以使得质量环4恢复至与内侧壁221a之间相对静止的状态,而解除对橡胶凸起222的挤压。
需要说明的是,具体实施时,优选的,本实施例的各质量块41可设置为随形于内侧壁221a的弧形块,且用于相邻质量块41之间串连的弹性连接件42可采用弹簧。
此时,通过弹性连接件42连接在一起的质量块41的数量一般可设置为3-5个,例如可采用4个,并且各质量块41优选的也为沿内侧壁221a的圆周方向均匀分布。与此同时,以上构成弹性连接件42的弹簧例如可如图3或图4所示的,使其由呈波纹状而可弹性变形的连接板制成。该连接板采用有着较好弹性的薄弹性钢钢板便可,而上述各质量块41则采用呈弧形的钢块结构即 可。
需要说明的是,当然除了将质量块41设置为上述的数量范围,具体实施中,基于具体车型的适配要求,以及所采用的弹性连接件42的刚度,也可使得质量块41为其它数量,例如2个、6个或更多个。在质量块41的数量发生变化时,所使用的弹性连接件42的数量进行相应调整即可。而且除了采用上述的随形于内侧壁221a设置的弧形结构,质量块41也可设计为如矩形等其它形状,但在为矩形时,为保证对橡胶凸起222的挤压效果,质量块41的数量应设置的较多,以使得每个质量块41沿内侧壁221a周向的长度较小。
此外,除了采用以上所述的由波纹状并能够弹性变形的连接板制成弹簧,当然用于串连各质量块41的弹性连接件42也可采用其它能够弹性变形的连接结构,例如橡胶连接结构或者由弹性尼龙制成的连接结构等。
另外,除了采用由质量块41和弹性连接件42构成的质量环4,当然本实施例的质量环4也能够采用在承受离心力时可进行相应程度的径向扩张,并且在离心力消失时能够恢复的其它结构形式。
例如,质量环4中的各质量块41可分别通过径向布置的弹簧连接在内侧壁221a上,当承受离心力时,各质量块41径向外移挤压橡胶凸起222,当离心力消失时,各质量块41被对应的弹簧拉动回位。或者,质量环4也可仅由沿内侧壁221a周向布置的多个质量块41构成,此时需指出的是,优选的应使橡胶凸起222外凸的顶部和质量环4抵接,以保持质量环4的稳定性,并且同样的,在承受离心力时各质量块41能够挤压橡胶凸起222,离心力消失时各质量块41可回位。
或者,本实施例还可使得质量环4仅由一个能够伸缩的弹性连接件42构成。此时,该构成质量环4的可伸缩的弹性连接件42为环形,并套设在内侧 壁221a上。同时,该弹性连接件42例如可采用上述为波纹状,且能够弹性变形的连接板制成。又例如,该构成质量环4的可伸缩的弹性连接件42也可采用橡胶制成,并且此时用于制成弹性连接件42的橡胶的硬度可设置的整体比橡胶凸起222略大,以能够较好地挤压橡胶凸起222。
另外,在由橡胶制成弹性连接件42时,优选的,还可沿周向将弹性连接件42划分为多段,并使得各段的橡胶硬度为软硬交替变化。这样,较软的部分主要起到弹性连接的作用,而较硬的部分则主要用于挤压橡胶凸起222,如此也能够获得较好的使用效果。
本实施例中,位于外侧壁221b上的橡胶凸起222例如可仅为一个,也即该橡胶凸起222为沿外侧壁221b周向设置的连续的一整圈。不过,作为优选的实施形式,仍如图3和图4所示,对应于套设在内侧壁221a上的质量环4,本实施例的橡胶凸起222也为沿外侧壁221b周向间隔分布的多个,各橡胶凸起222向质量环4一侧凸出。使得橡胶凸起222为间隔布置的多个,能够在承受质量环4的挤压时,有利于橡胶凸起222产生相应的变形,以调整自身的刚度及阻尼特性。
作为一种优选的实施形式,需要注意的是,对于设置在外侧壁221b上的各橡胶凸起222来说,在从径向内侧朝向径向外侧的方向上,各橡胶凸起222的横截面积增大。具体实施时,各橡胶凸起222的横截面例如可设计为沿橡胶凸起222凸出方向设置的三角形。不过,除了三角形,使得各橡胶凸起222的横截面为由内朝外横截面积增大的其它形状也是可以的,但优选的仍为采用三角形的横截面。
本实施例中,同样作为优选的实施形式,沿外侧壁221b周向间隔分布的各橡胶凸起222可采用相同的结构,并沿外侧壁221b的周向均布。而且,各 橡胶凸起222的具体截面造型,以及橡胶凸起222的数量和相邻橡胶凸起222之间的间距等,其也基于吸振器的仿真吸振测试进行调整便可,以与具体车型相匹配。
需要注意的是,具体实施时,可使得向质量环4一侧外凸的橡胶凸起222的顶部与质量环4接触,也即使得橡胶凸起222的外凸端和各质量块41抵接。而除了使得橡胶凸起222和质量环4相接,当然继续如图3或图4所示,本实施例也可使得橡胶凸起222与质量环4之间存在间隔。
以上所述的位于橡胶凸起222和质量环3之间的间隔,也即在各橡胶凸起222的顶端与质量环4(主要是质量块41)的外侧壁之间有着一定的间隙,该间隙可根据吸振器的仿真吸振测试进行调整,以与具体车型相匹配。当质量环4整体在离心力作用下径向扩张时,扩张状态下的质量环4经过上述间隙抵接在橡胶凸起222上,并且通过上述间隔的设置,有利于离心作用下质量环4的径向变形,以基于各档位下离心力的不同,对橡胶凸起222施加不同的挤压力,而且也便于吸振器的制备。
此外,基于以上所述的使得腔体221设置在外侧胶体22中,如此从整个连接橡胶2来看,腔体221即为靠近惯量盘3一侧布置,使得腔体221距法兰盘1的距离大于距惯量盘3的距离。而内侧胶体21部分为起到连接作用的实心胶体结构,且实心的内侧胶体21也主要起到普通的刚度及阻尼作用。
此时,为利于整体吸振器的减重,在腔体221内侧的连接橡胶2,也即内侧胶体21上设置有减料孔211。减料孔211为沿内侧胶体21周向间隔分布的多个,且各减料孔211的截面可设置为图1、图3或图4中所示的多边形,或者,各减料孔211的截面也能够设置为其它形状。
继续由图1、图4并结合图5所示的,本实施例在法兰盘1上设置有安装 孔14,以用于吸振器的安装。具体的,法兰盘1包括安装环11,以及与安装环11固连的连接环12。连接环12呈沿吸振器轴向布置的管状,连接橡胶2中的内侧胶体21即嵌套连接在连接环12的外周壁上。安装环11则沿吸振器的径向布置,上述的安装孔14位于安装环11上,并且在安装环11的中部形成有通孔13。
本实施例中,安装孔14为沿安装环11周向间隔分布的多个,并且具体实施时,安装环11例如可如图4或图5所示的布置在连接环12的一端,或者,也可使得安装环11布置在连接环12轴向的中部等位置。而一般的,由于汽车传动系统中与传动轴相连的主减速器一侧空间受限,故优选的,多为使得安装环11偏心布置,也即将安装环11布置在连接环12的一端,并且装配时,传动轴的一端伸入法兰盘1内。
仍由图2并结合图4所示,本实施例的惯量盘3包括连接在连接橡胶2外周壁上的惯量环31。其中,惯量环31的数量可仅为一个,并沿吸振器的轴向,使得该惯量环31具有与连接橡胶2及法兰盘1相同的厚度。不过,为便于本实施例的吸振器能够更好地匹配各档位下传动系统扭转模态,作为优选的实施形式,构成惯量盘3的惯量环31的数量具体为沿连接橡胶2的轴向间隔分布的多个,相邻惯量环31之间通过分隔缝h分隔,且分隔缝h贯穿至连接橡胶2的外周壁,而使得各惯量环31成为单独的个体。
本实施例中,上述分隔设置的惯量环31的数量,也根据吸振器的仿真吸振测试进行调整即可,以与具体车型相匹配,并且除了数量上的调整,对于各惯量环31的沿吸振器轴向的厚度,其同样基于仿真吸振测试进行调整,以可选择具有相同的厚度,或者使得至少一个惯量环31的厚度与其它惯量环31不同。各惯量环31的设计选型,以能够匹配具体车型的减振降噪需要便可。
本实施例的吸振器,制备时,法兰盘1和惯量盘3可与连接橡胶2硫化固连在一起,且在成型腔体221以及其内的橡胶凸起222,并将质量环4套设于腔体221中的内侧壁221a上后,可再通过硫化或粘接的方式封堵腔体221,以形成整个连接橡胶2。
而在使用时,优选的,也将本实施例的吸振器安装在汽车传动系统中的传动轴和主减速器的突缘之间,且此时,法兰盘1中的安装环11的一侧抵接在突缘上,传动轴的一端则伸入连接环12内,并抵接在安装环11的另一侧。再通过穿经各安装孔14的螺栓将传动轴和主减速器的突缘固连后,安装环11被夹持固定在传动轴与突缘之间,也便实现了整体吸振器在传动系统中的安装。
安装后,在汽车启动时,发动机激励传递至传递系统,且不同档位时,传动轴及与其相连的吸振器的转速不同,传递过来的激励频率也不同。此时,通过在内侧壁221a上设置质量环4,以及在外侧壁221b上设置橡胶凸起222,并使得质量环4匹配于承受的离心力的不同,能够进行相应的径向扩张以挤压橡胶凸起222。由此可利用不同挡位时质量环4所承受离心力的不同,实现对橡胶凸起222不同程度的挤压,使得橡胶凸起222具有与该挡位工况对应的刚度及阻尼特性,其能够使得本实施例的吸振器适应不同档位的扭转模态,成为多频扭转吸振器,而有利于降低汽车传动系统振动噪声。
如图6所示,为采用本实施例图示结构的吸振器与采用现有单频吸振器的仿真效果对比图。
其中,所采用的本实施例的吸振器与现有单频吸振器中,对于本实施例的吸振器,仍结合图1至图3,法兰盘1、质量环4和惯量盘3均采用钢质材料制成,并且法兰盘1的外径为140mm,内侧壁221a所处位置的直径为160mm,连接橡胶2的外径为208mm,惯量盘3的径向厚度为4mm。
此外,连接橡胶2中的减料孔211为均布的8个,各减料孔211为正五边形,边长为3mm,各减料孔211的中心在同一圆上,且该圆直径为150mm。质量环4中,各质量块41的厚度为2mm,各质量块41均布,且每个质量块41所对应的圆心角均为60°,相邻质量块41之间的弹性连接件42采用弹性钢钢板弯曲制成,并与质量块41焊接相连。腔体211中的橡胶凸起222的数量为均布的37个,各橡胶凸起222的横截面均为等腰三角形结构,且横截面呈三角形的橡胶凸起222的凸出高度为15mm,靠近质量环4一端的夹角为30°,而橡胶凸起222与质量环4之间的间隔为1mm。
另外,惯量盘3的轴向宽度,也即连接橡胶2及法兰盘1的轴向宽度为70mm,并且惯量盘3由图2示出的5个惯量环31构成,该5个惯量环31的轴向宽度分为两种,两种宽度的惯量环31沿轴向交替设置,同时,较宽的惯量环31的轴向宽度为13mm,较窄的惯量环31的轴向宽度为9mm,各相邻惯量环31之间的分隔缝h的轴线宽度相同。
对于仿真所采用的现有单频吸振器,其同样由相连的法兰盘1、连接橡胶2和惯量盘3构成,并且该现有吸振器的整体轴向厚度与仿真采用的本实施例的吸振器相同,法兰盘1、连接橡胶2和惯量盘3的径向尺寸也与仿真采用的本实施例的吸振器一致。该现有吸振器和仿真采用的本实施例吸振器的不同之处在于,本实施例的吸振器还具有腔体221,以及位于其内的质量环4和橡胶凸起222,同时,本实施例的惯量盘3也分隔为5个惯量环31。
仿真时,使用的仿真软件为有限元仿真软件MSC Nastran,仿真采用的车型为长城炮,且具体型号为2020款2.0T手动柴油版GW4D20M。以该车型的数据作为输入参数,频率输入为发动机二阶激励频率,具体仿真中分别对4挡、6挡和7挡三个挡位下传动系统的噪声进行了分析。在图6中,曲线a4、 a6、a7分别为二阶激励频率下,采用现有单频吸振器时的噪声曲线,曲线b4、b6、b7分别为二阶激励频率下,采用本实施例吸振器时的噪声曲线。
由图6能够看出,采用本实施例的吸振器,相较于采用现有单频吸振器,能够进一步降低各挡位工况下的振动噪声,从而可使得本实施例的吸振器能够更好地降低汽车传动系统振动噪声。
实施例二
本实施例涉及一种汽车,该汽车的传动系统中即安装有实施例一中的吸振器,并且如实施例一中所描述的,该吸振器具体安装在传动系统中的传动轴与主减速器突缘之间。
本实施例的汽车通过采用实施例一的吸振器,能够适应不同档位的扭转模态,有利于降低汽车传动系统振动噪声,而具有很好的实用性。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种吸振器,其特征在于:
    包括由内至外依次嵌套相连的法兰盘(1)、连接橡胶(2)和惯量盘(3);
    所述连接橡胶(2)的内部沿周向形成有腔体(221),所述腔体(221)具有靠近所述法兰盘(1)的内侧壁(221a)和远离所述法兰盘(1)的外侧壁(221b);
    所述内侧壁(221a)上套设有质量环(4),所述外侧壁(221b)上设有向所述质量环(4)凸出的橡胶凸起(222);
    当有离心力作用于所述吸振器时,所述质量环(4)的直径能够发生变化,且能够挤压所述橡胶凸起(222)。
  2. 根据权利要求1所述的吸振器,其特征在于:
    所述质量环(4)具有沿所述内侧壁(221a)的周向布置的多个质量块(41);
    各所述质量块(41)通过弹性连接件(42)连接在一起。
  3. 根据权利要求2所述的吸振器,其特征在于:
    各所述质量块(41)设置为随形于所述内侧壁(221a)的弧形块,用于相邻所述质量块(41)之间串连的所述弹性连接件(42)采用弹簧,且各所述质量块(41)为沿所述内侧壁(221a)的圆周方向均匀分布,构成所述弹性连接件(42)的所述弹簧由呈波纹状而可弹性变形的连接板制成。
  4. 根据权利要求1所述的吸振器,其特征在于:
    所述质量环(4)具有沿所述内侧壁(221a)的周向布置的多个质量块(41); 各所述质量块(41)分别通过径向布置的弹簧连接在所述内侧壁(221a)上,当承受离心力时,各所述质量块(41)径向外移挤压所述橡胶凸起(222),当离心力消失时,各所述质量块(41)被对应的所述弹簧拉动回位。
  5. 根据权利要求1所述的吸振器,其特征在于:
    所述质量环(4)由沿所述内侧壁(221a)周向布置的多个所述质量块(41)构成,所述橡胶凸起(222)外凸的顶部和所述质量环(4)抵接,在承受离心力时各所述质量块(41)能够挤压所述橡胶凸起(222),离心力消失时各所述质量块(41)可回位。
  6. 根据权利要求1所述的吸振器,其特征在于:
    所述质量环(4)为能够伸缩的弹性连接件(42)。
  7. 根据权利要求6所述的吸振器,其特征在于:
    所述弹性连接件(42)为环形,并套设在所述内侧壁(221a)上,且所述弹性连接件(42)为波纹状且能够弹性变形的连接板。
  8. 根据权利要求6所述的吸振器,其特征在于:
    所述弹性连接件(42)采用橡胶制成,且沿周向将所述弹性连接件(42)划分为多段,并使得各段的橡胶硬度为软硬交替变化。
  9. 根据权利要求1所述的吸振器,其特征在于:
    在从径向内侧朝向径向外侧的方向上,所述橡胶凸起(222)的横截面积 增大;和/或,所述橡胶凸起(222)与所述质量环(4)之间存在间隙。
  10. 根据权利要求1所述的吸振器,其特征在于:
    所述橡胶凸起(222)为沿所述外侧壁(221b)周向设置的连续的一整圈;或者,对应于套设在所述内侧壁(221a)上的所述质量环(4),所述橡胶凸起(222)为沿所述外侧壁(221b)周向间隔分布的多个。
  11. 根据权利要求1所述的吸振器,其特征在于:
    所述腔体(221)距所述法兰盘(1)的距离大于距所述惯量盘(3)的距离。
  12. 根据权利要求1所述的吸振器,其特征在于:
    所述惯量盘(3)包括连接在所述连接橡胶(2)外周壁上的惯量环(31);
    所述惯量环(31)的数量为一个,或者所述惯量环(31)的数量为沿所述连接橡胶(2)的轴向间隔分布的多个。
  13. 根据权利要求1所述的吸振器,其特征在于:
    所述内侧壁(221a)和所述外侧壁(221b)为所述吸振器径向上的两个相对布置的圆周面,所述腔体(221)形成在所述内侧壁(221a)和所述外侧壁(221b)之间,而成为环形空腔结构;
    在所述吸振器轴向的两相对侧,所述连接橡胶(2)分别构成对所述腔体(221)两侧的封堵,使得所述腔体(221)成为位于所述连接橡胶(2)内部的封闭的腔体结构。
  14. 根据权利要求1所述的吸振器,其特征在于:
    所述连接橡胶(2)划分为嵌套相连的内侧胶体(21)和外侧胶体(22)两部分,所述内侧胶体(21)沿所述吸振器径向位于内部,并与所述法兰盘(1)连接,所述外侧胶体(22)位于外部,且与所述惯量盘(3)相连,所述腔体(221)设置在所述外侧胶体(22)中;
    所述法兰盘(1)上设置有用于所述吸振器安装的安装孔(14),且所述法兰盘(1)包括安装环(11),以及与所述安装环(11)固连的连接环(12);所述连接环(12)呈沿所述吸振器轴向布置的管状,所述内侧胶体(21)嵌套连接在所述连接环(12)的外周壁上,所述安装环(11)沿所述吸振器的径向布置,所述安装孔(14)位于所述安装环(11)上。
  15. 一种汽车,其特征在于:所述汽车安装有权利要求1至14中任一项所述的吸振器。
PCT/CN2022/121369 2021-10-13 2022-09-26 吸振器及汽车 WO2023061197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111192637.1 2021-10-13
CN202111192637.1A CN115045957B (zh) 2021-10-13 2021-10-13 吸振器及汽车

Publications (1)

Publication Number Publication Date
WO2023061197A1 true WO2023061197A1 (zh) 2023-04-20

Family

ID=83156179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121369 WO2023061197A1 (zh) 2021-10-13 2022-09-26 吸振器及汽车

Country Status (2)

Country Link
CN (1) CN115045957B (zh)
WO (1) WO2023061197A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115045957B (zh) * 2021-10-13 2024-08-30 长城汽车股份有限公司 吸振器及汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB913925A (en) * 1955-03-21 1962-12-28 Metalastik Ltd Improvements in or relating to torsional vibration dampers
JPH0921446A (ja) * 1995-07-06 1997-01-21 Nok Megurasutikku Kk トーショナルダンパ
CN103727174A (zh) * 2014-01-03 2014-04-16 上汽通用五菱汽车股份有限公司 一种扭转减振器
CN103758916A (zh) * 2014-01-06 2014-04-30 潍柴动力股份有限公司 一种阻尼减振器
CN108859644A (zh) * 2017-05-09 2018-11-23 上海汽车集团股份有限公司 汽车、旋转减振器、用于旋转减振器的控制器及控制方法
CN115045957A (zh) * 2021-10-13 2022-09-13 长城汽车股份有限公司 吸振器及汽车

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984858B2 (ja) * 1991-03-19 1999-11-29 エヌ・オー・ケー・メグラスティック株式会社 ダンパの製造方法
JP2006090530A (ja) * 2004-09-27 2006-04-06 Tokai Rubber Ind Ltd 回転軸用制振装置
CN106337897B (zh) * 2016-11-15 2018-06-01 安徽江淮汽车集团股份有限公司 一种传动轴扭转吸振器
CN209067764U (zh) * 2018-08-22 2019-07-05 潍柴动力股份有限公司 扭转减振器及车辆
CN213744695U (zh) * 2020-11-23 2021-07-20 长城汽车股份有限公司 吸振器和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB913925A (en) * 1955-03-21 1962-12-28 Metalastik Ltd Improvements in or relating to torsional vibration dampers
JPH0921446A (ja) * 1995-07-06 1997-01-21 Nok Megurasutikku Kk トーショナルダンパ
CN103727174A (zh) * 2014-01-03 2014-04-16 上汽通用五菱汽车股份有限公司 一种扭转减振器
CN103758916A (zh) * 2014-01-06 2014-04-30 潍柴动力股份有限公司 一种阻尼减振器
CN108859644A (zh) * 2017-05-09 2018-11-23 上海汽车集团股份有限公司 汽车、旋转减振器、用于旋转减振器的控制器及控制方法
CN115045957A (zh) * 2021-10-13 2022-09-13 长城汽车股份有限公司 吸振器及汽车

Also Published As

Publication number Publication date
CN115045957B (zh) 2024-08-30
CN115045957A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
JP2599059B2 (ja) 中空ドライブシャフト用ダイナミックダンパ
WO2023061197A1 (zh) 吸振器及汽车
CN111412249B (zh) 集成限扭装置的飞轮减振器
CN105240420A (zh) 一种低刚度离合器及用于其中的从动机构
AU2012324411A1 (en) Improved dual mass flywheel
CN214945878U (zh) 紧凑型离合器从动盘总成扭转减振器
US10443700B2 (en) Torsional vibration damper spoke design
CN102678820A (zh) 液压式扭振减振器
CN104455198A (zh) 减振器及汽车
JP2838060B2 (ja) ねじり振動ダンパー一体型ねじり弾性継手
CN214197104U (zh) 集成径向双减振器的飞轮减振器
CN111674252A (zh) 用于车辆的悬置
CN212338026U (zh) 集成限扭装置的飞轮减振器
JP7390872B2 (ja) ダイナミックダンパおよびその製造方法
KR20070108670A (ko) 드라이브 샤프트의 다이나믹 댐퍼
CN110966348B (zh) 一种采用双层减振弹簧的汽车双质量飞轮
CN211343872U (zh) 可变阻尼与可变旋转半径的离心摆摆锤机构
JPH11236928A (ja) 弾性的なクラッチ
CN112443627A (zh) 集成径向双减振器的飞轮减振器
JP2006090528A (ja) 回転軸用制振装置
CN107304794B (zh) 车辆及其扭转减振器
CN205173273U (zh) 一种低刚度离合器及用于其中的从动机构
JP6774261B2 (ja) 遠心振子動吸振装置
CN220826466U (zh) 一种带有异形硫化体的发动机悬置用衬套及其发动机悬置
US20190383352A1 (en) Torsion damper and motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22880137

Country of ref document: EP

Kind code of ref document: A1