WO2023060989A1 - 一种沉积型磷酸铁钠正极材料及其制备方法和应用 - Google Patents

一种沉积型磷酸铁钠正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023060989A1
WO2023060989A1 PCT/CN2022/108662 CN2022108662W WO2023060989A1 WO 2023060989 A1 WO2023060989 A1 WO 2023060989A1 CN 2022108662 W CN2022108662 W CN 2022108662W WO 2023060989 A1 WO2023060989 A1 WO 2023060989A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
iron phosphate
phosphate
preparation
source
Prior art date
Application number
PCT/CN2022/108662
Other languages
English (en)
French (fr)
Inventor
余海军
李爱霞
谢英豪
钟应声
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022002475.5T priority Critical patent/DE112022002475T5/de
Priority to GB2314900.8A priority patent/GB2619674B/en
Publication of WO2023060989A1 publication Critical patent/WO2023060989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/1027Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a deposition type sodium iron phosphate cathode material and a preparation method and application thereof.
  • sodium-ion batteries and lithium-ion batteries have similar structures. Compared with lithium-ion batteries, sodium-ion batteries have unique advantages in terms of resources, safety, and cycle life. Therefore, sodium-ion batteries will be a reasonable alternative to lithium-ion batteries. Solutions, especially in the direction of non-mobile battery applications, such as battery storage power stations, charging stations in service areas, etc., but replacing lithium-ion with sodium-ion batteries is not a small problem.
  • the voltage of sodium ion batteries is lower than that of corresponding lithium ions, so that the quality and energy density of sodium ion batteries are not as good as lithium ion batteries, which restricts its Become the main factor that can replace lithium-ion batteries.
  • the cathode material is the core element that directly affects the electrochemical performance of sodium-ion batteries.
  • the structure of the sodium iron phosphate positive electrode material is not easy to change, so during charging and discharging, the sodium ion deintercalation process is limited by the lattice structure, lattice expansion and collapse. Small, so the stability and cycle performance of the battery are higher; at the same time, the sodium iron phosphate cathode material has a specific regular space shape, so the effect of increasing the energy density by depositing oxides is more obvious.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a deposition type sodium iron phosphate positive electrode material and its preparation method and application.
  • the deposition type sodium iron phosphate positive electrode material has good recycling performance.
  • the present invention adopts the following technical solutions:
  • a method for preparing a deposition type sodium iron phosphate cathode material comprising the following steps:
  • A is purged the sodium iron phosphate NaFePO 4-x B 2 O 3 in the form of gas to obtain a deposition type sodium iron phosphate; the A is Zn, Fe, Cu, Ni, Mn, Co, Cr, Ti , at least one of nano-oxides of Al, Mo, Zr or Ag elements.
  • the sodium source is at least one of sodium hydroxide, sodium formate, sodium acetate, sodium oxalate, sodium phosphate, sodium borate or sodium citrate.
  • the phosphorus source is at least one of phosphoric acid, sodium phosphate, ferric phosphate, ferrous phosphate, ammonium phosphate, ammonium dihydrogen phosphate, ferric phosphate or ammonium hydrogen phosphate.
  • the boron source is at least one of boron oxide, boric acid, sodium borate or iron borate.
  • the ferrous source is at least one of ferrous hydroxide, ferrous phosphate, ferrous oxalate or ferrous acetate.
  • the complex in the complexing agent is at least one of citric acid, oxalic acid or lactic acid.
  • the molar ratio of sodium, phosphate, iron, and boron in the sodium source, phosphorus source, ferrous source, and boron source is (0.01-110): (0.01-120): ( 0.01-110): (0.001-30).
  • the mass percentage of the complex in the complexing agent is 0.1-40wt%.
  • the alkali is at least one of sodium hydroxide, ferrous hydroxide, and ammonia water.
  • the atmosphere of the ball mill is an inert atmosphere.
  • the inert atmosphere is at least one of argon, helium, neon or xenon.
  • the gas flow for purging is 30-200mL/min.
  • a battery comprising the deposition type sodium iron phosphate cathode material.
  • the sodium ion diffusion distance is short and the transmission rate is faster when the battery prepared by the deposition type sodium iron phosphate cathode material of the present invention is charged and discharged; boron oxide and nano oxide in the deposition type sodium iron phosphate cathode material; The degree of structural change during the discharge process improves the conductivity of the sodium iron phosphate cathode material and improves the electrochemical performance; nano-oxides can effectively inhibit the shuttle effect existing in the sodium iron phosphate cathode material, and correspondingly improve the performance of the sodium iron phosphate cathode material. Recycling performance.
  • the NaFePO 4 -xB 2 O 3 cathode material prepared by introducing boron oxide is prepared into a battery with short diffusion distance and faster transmission rate of sodium ions during charge and discharge; in Fig. 2, NaFePO 4-3.86
  • the substrate surface of B 2 O 3 @ZnO obtains a dense film of about 15nm, which improves the Coulombic efficiency of the sodium iron phosphate cathode material, which is close to 100%.
  • the present invention uses nano-oxide to deposit sodium iron phosphate, because nano-oxide not only has higher electrical conductivity and high chemical stability, and with respect to nickel, cobalt, manganese etc., part metal (such as Al, Zn , Cu, Fe, Ti) reserves are large, and the prepared nano-oxides have a large amount of preparation and are non-toxic, so it has a positive role in promoting the improvement of sodium iron phosphate cathode materials and is conducive to the commercial application of sodium iron phosphate cathode materials.
  • part metal such as Al, Zn , Cu, Fe, Ti
  • Fig. 1 is the flowchart of embodiment 1 of the present invention
  • Fig. 2 is a TEM image of the ZnO deposition type sodium iron phosphate prepared in Example 1 of the present invention.
  • the chemical formula of the deposited sodium iron phosphate cathode material in this embodiment is NaFePO 4 -0.14B 2 O 3 @ZnO.
  • Synthetic gel Dissolve 65g sodium hydroxide, 173g ammonium dihydrogen phosphate, and 8.7g boric acid respectively, then mix, add 215.9g ferrous oxalate, the molar ratio of sodium, phosphoric acid, ferrous and boron is 1.63: 1.5:1.5:0.14, add 5.17w% 0.8L citric acid solution, and control the temperature at about 55°C, add ammonia dropwise and stir to control the pH at 8.38, mix, age for 6h and 4min, remove the slag, and obtain a gel ;
  • ZnO deposition put 80gNaFePO 4 -0.14B 2 O 3 into the deposition reactor, fill with N 2 to exhaust, heat to 60°C, pass in N 2 -H 2 at 60mL/min for purging, 0.97g nano ZnO was loaded by He and reacted for 57min.
  • the synthesized ZnO was washed with NaFePO 4 -0.14B 2 O 3 and dried at 80°C for 2h to obtain ZnO deposited NaFePO 4 -0.14B 2 O 3 @ZnO.
  • Fig. 2 is a TEM image of NaFePO 4 -0.14B 2 O 3 @ZnO prepared in Example 1 of the present invention.
  • the chemical formula of the deposited sodium iron phosphate cathode material in this embodiment is NaFePO 4 -0.23B 2 O 3 @ZnO.
  • Synthetic gel Dissolve 88g sodium hydroxide, 242g ammonium dihydrogen phosphate, and 12.2g boric acid respectively, then mix, add 302.2g ferrous oxalate, the molar ratio of sodium, phosphoric acid, ferrous and boron is 2.21: 2.1:2.1:0.23, add 6.20w% 1L citric acid solution, and control the temperature at about 55°C, add ammonia dropwise and stir to control the pH at 8.37, mix, age for 6h4min, remove slag, and obtain a gel;
  • ZnO deposition put 80gNaFePO 4 -0.23B 2 O 3 into the deposition reactor, fill with N 2 and exhaust, heat to 65°C, and purge with N 2 -H 2 at 75mL/min, 1.22g nano ZnO was loaded by He and reacted for 62min.
  • the synthesized ZnO was washed with NaFePO 4 -0.23B 2 O 3 and dried at 80°C for 2h to obtain ZnO deposited NaFePO 4 -0.23B 2 O 3 @ZnO.
  • the chemical formula of the deposited sodium iron phosphate cathode material in this embodiment is NaFePO 4 -0.05B 2 O 3 @CuO.
  • Synthetic gel Dissolve 27g sodium citrate, 34.5g ammonium dihydrogen phosphate, and 4.9g boric acid respectively, then mix, add 43.2g ferrous oxalate, the molar ratio of sodium, phosphoric acid, ferrous and boron is 0.315 : 0.3: 0.3: 0.05, add 1L of oxalic acid solution with a mass fraction of 4.03w%, and control the temperature at about 55°C, add ammonia dropwise and stir to control the pH at 8.72, mix, age for 6h4min, remove slag, and obtain a gel ;
  • CuO deposition put 100gNaFePO 4 -0.05B 2 O 3 into the deposition reactor, fill with N 2 to exhaust, heat to 60°C, and purge with N 2 -H 2 at 75mL/min, 0.79g nano CuO was loaded by He and reacted for 61min.
  • the synthesized CuO was washed with NaFePO 4 -0.05B 2 O 3 and dried at 80°C for 2h to obtain CuO-deposited NaFePO 4 -0.05B 2 O 3 @CuO.
  • the chemical formula of the deposited sodium iron phosphate cathode material in this embodiment is NaFePO 4 -0.16B 2 O 3 @CuO.
  • CuO deposition put 100gNaFePO 4 -0.16B 2 O 3 into the deposition reactor, fill with N 2 to exhaust, heat to 65°C, and purge with N 2 -H 2 at 80mL/min, 1.27g nano CuO was loaded by He and reacted for 66 minutes.
  • the synthesized CuO was deposited with NaFePO 4 -0.16B 2 O 3 and washed with NaFePO 4 -0.16B 2 O 3 , and dried at 80°C for 2 hours to obtain CuO deposited NaFePO 4 -0.16B 2 O 3 @CuO.
  • step (1) 63g of sodium hydroxide and 173g of ammonium dihydrogen phosphate are dissolved respectively, and then mixed, and 215.9g of ferrous oxalate is added, and the molar ratio of sodium, phosphoric acid, and ferrous is 1.58:1.5 : 1.5, adding 5.17w% 0.8L citric acid solution, finally obtained NaFePO 4 .
  • Synthetic gel Dissolve 65g sodium hydroxide, 173g ammonium dihydrogen phosphate, and 8.7g boric acid respectively, then mix, add 215.9g ferrous oxalate, the molar ratio of sodium, phosphoric acid, ferrous and boron is 1.63: 1.5:1.5:0.14, add 5.17w% 0.8L citric acid solution, and control the temperature at about 55°C, add ammonia dropwise and stir to control the pH at 8.38, mix, age for 6h4min, remove slag, and obtain a gel;
  • Example 1-4 and Comparative Example 1-2 Dissolve the positive electrode material, carbon black conductive agent and polytetrafluoroethylene in Example 1-4 and Comparative Example 1-2 in deionized water at a mass ratio of 80:15:5 to form a slurry, and then coat A pole piece was prepared on the current collector, and the pole piece was dried in a drying oven at 65°C for 8h36min.
  • the sodium flake was used as the counter electrode, the electrolyte was 1.2 mol/L NaClO 4 , and Celgard2400 was used as the diaphragm, and the battery was assembled in a vacuum glove box under an argon atmosphere.
  • the cycle performance is tested with an electrochemical workstation, the current density of the test is 250mA g -1 , the charge and discharge range is 2.5-3.0V, and the test is performed at a rate of 0.5C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种沉积型磷酸铁钠正极材料,其化学式为NaFePO4-xB2O3@A,x=0.001-0.3;A为Zn、Fe、Cu、Ni、Mn、Co、Cr、Ti、Al、Mo、Zr或Ag元素的纳米氧化物中的至少一种。采用沉积型磷酸铁钠正极材料制备的电池充放电时钠离子扩散距离短、传输速率更快;沉积型磷酸铁钠正极材料包括氧化硼和纳米氧化物;氧化硼可减轻磷酸铁钠正极材料充放电过程中结构的改变程度,提高磷酸铁钠正极材料的导电性,改善电化学性能;纳米氧化物能够有效地抑制磷酸铁钠正极材料中存在的穿梭效应,提高磷酸铁钠正极材料的循环性能。

Description

一种沉积型磷酸铁钠正极材料及其制备方法和应用 技术领域
本发明属于钠离子电池技术领域,具体涉及一种沉积型磷酸铁钠正极材料及其制备方法和应用。
背景技术
钠离子电池与锂离子电池的材料都有相似的结构,相对于锂离子电池,钠离子电池在资源、安全、循环寿命等方面有独特的优势,因此钠离子电池将是锂离子电池的合理替代方案,特别是在非移动式电池应用方向,如电池存储电站、服务区充电站等目前,但用钠离子电池取代锂离子并不是一个小问题。
鉴于钠离子质量和半径较大,标准电位较高,电负性较低,因此钠离子电池比相应的锂离子的电压低,使钠离子电池的质量和能量密度不如锂离子电池,制约了其成为可替代锂离子电池主要因素。而提升钠离子电池性能的关键部分之一就是正极材料方面,正极材料是直接影响钠离子电池电化学性能的核心要素。
目前,研究的钠离子电池电极材料中,磷酸铁钠正极材料由于结构不容易变化,因此在充放电时,钠离子脱嵌过程中受晶格结构的限制、晶格膨胀和塌缩的影响很小,因而电池的稳定性、循环性能更高;同时,磷酸铁钠正极材料具有特定的规则空间形状,因此通过沉积氧化物提升能量密度的效应更明显。
因此,亟需提供一种沉积型磷酸铁钠正极材料的制备方法,为高性能钠离子电池的制备以及钠离子电池的实际应用提供基础和技术支撑。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种沉积型磷酸铁钠正极材料及其制备方法和应用,该沉积型磷酸铁钠正极材料循环利用性能好。
为实现上述目的,本发明采用以下技术方案:
一种沉积型磷酸铁钠正极材料,其化学式为NaFePO 4-xB 2O 3@A,x=0.001-0.3;所述A为Zn、Fe、Cu、Ni、Mn、Co、Cr、Ti、Al、Mo、Zr或Ag元素的纳米氧化物中 的至少一种。
一种沉积型磷酸铁钠正极材料的制备方法,包括以下步骤:
(1)将钠源、磷源、亚铁源、硼源、络合剂混合,反应,加碱调pH,固液分离,取液相浓缩,得到凝胶物;
(2)将所述凝胶物进行热处理、球磨,得到磷酸铁钠NaFePO 4-xB 2O 3,x=0.001-0.3;
(3)将A以气体形式吹扫所述磷酸铁钠NaFePO 4-xB 2O 3,得到沉积型磷酸铁钠;所述A为Zn、Fe、Cu、Ni、Mn、Co、Cr、Ti、Al、Mo、Zr或Ag元素的纳米氧化物中的至少一种。
优选地,步骤(1)中,所述钠源为氢氧化钠、甲酸钠、乙酸钠、草酸钠、磷酸钠、硼酸钠或柠檬酸钠中的至少一种。
优选地,步骤(1)中,所述磷源为磷酸、磷酸钠、磷酸铁、磷酸亚铁、磷酸铵、磷酸二氢铵、磷酸铁或磷酸氢铵中的至少一种。
优选地,步骤(1)中,所述硼源为氧化硼、硼酸、硼酸钠或硼酸铁中的至少一种。
优选地,步骤(1)中,所述亚铁源为氢氧化亚铁、磷酸亚铁、草酸亚铁或乙酸亚铁中的至少一种。
优选地,步骤(1)中,所述络合剂中络合物为柠檬酸、草酸或乳酸的至少一种。
优选地,步骤(1)中,所述钠源、磷源、亚铁源、硼源中的钠、磷酸根、铁、硼的摩尔比为(0.01-110):(0.01-120):(0.01-110):(0.001-30)。
优选地,步骤(1)中,所述络合剂中的络合物质量百分比为0.1-40wt%。
优选地,步骤(2)中,所述碱为氢氧化钠或氢氧化亚铁、氨水的至少一种。
优选地,步骤(2)中,所述球磨的氛围为惰性气氛。
进一步优选地,所述惰性气氛为氩、氦、氖或氙中的至少一种。
优选地,步骤(3)中,所述吹扫的气流为30-200mL/min。
一种电池,包括所述的沉积型磷酸铁钠正极材料。
相对于现有技术,本发明的有益效果如下:
1.本发明的沉积型磷酸铁钠正极材料制备的电池充放电时钠离子扩散距离短、传输速率更快;沉积型磷酸铁钠正极材料中的氧化硼和纳米氧化物;氧化硼可减轻充放电过程中结构的改变程度,提高磷酸铁钠正极材料导电性,改善电化学性能;纳米氧化物能 够有效地抑制磷酸铁钠正极材料中存在的穿梭效应,也相应提高了磷酸铁钠正极材料的循环利用性能。
2.本发明的制备方法中通过引入氧化硼制备的NaFePO 4-xB 2O 3正极材料,制备成电池充放电时钠离子扩散距离短、传输速率更快;图2中,得到NaFePO 4-3.86B 2O 3@ZnO的基底表面获得了约一层15nm致密的薄膜,提高了磷酸铁钠正极材料的库仑效率更高,接近100%。
3.本发明使用纳米氧化物沉积磷酸铁钠,是因为纳米氧化物不仅具有较高的导电率和高化学稳定性,而且相对于镍、钴、锰等来说,部分金属(例如Al、Zn、Cu、Fe、Ti)储量多,制备得到的纳米氧化物制备量大、无毒,因此对于磷酸铁钠正极材料的改进具有积极的推动作用,利于磷酸铁钠正极材料商业化应用。
附图说明
图1为本发明实施例1的流程图;
图2为本发明实施例1制备得到的ZnO沉积型磷酸铁钠TEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的沉积型磷酸铁钠正极材料的化学式为NaFePO 4-0.14B 2O 3@ZnO。
本实施例的沉积型磷酸铁钠正极材料的制备方法,具体步骤如下:
(1)合成凝胶物:将65g氢氧化钠、173g磷酸二氢铵、8.7g硼酸分别溶解,再混合,加入215.9g草酸亚铁,钠、磷酸、亚铁和硼的摩尔比为1.63:1.5:1.5:0.14,加入5.17w%0.8L的柠檬酸溶液,并将温度控制在55℃左右,滴加氨搅拌控制pH在8.38、混合、陈化6h又4min、除去渣,得到凝胶物;
(2)热处理:将凝胶物在He气氛和530℃下加热7h4min,再在He气氛下用球磨机球磨8h26min,得到磷酸铁钠NaFePO 4-0.14B 2O 3
(3)ZnO沉积:将80gNaFePO 4-0.14B 2O 3装入沉积反应器中,充N 2排气,加热至60℃,以60mL/min通入N 2-H 2吹扫,0.97g纳米ZnO通过He载入,反应57min,合成 的ZnO沉积NaFePO 4-0.14B 2O 3洗涤,在80℃下干燥2h,得到ZnO沉积的NaFePO 4-0.14B 2O 3@ZnO。
图2为本发明实施例1制备得到的NaFePO 4-0.14B 2O 3@ZnO的TEM图。
实施例2
本实施例的沉积型磷酸铁钠正极材料的化学式为NaFePO 4-0.23B 2O 3@ZnO。
本实施例的沉积型磷酸铁钠正极材料的制备方法,具体步骤如下:
(1)合成凝胶物:将88g氢氧化钠、242g磷酸二氢铵、12.2g硼酸分别溶解,再混合,加入302.2g草酸亚铁,钠、磷酸、亚铁和硼的摩尔比为2.21:2.1:2.1:0.23,加入6.20w%1L的柠檬酸溶液,并将温度控制在55℃左右,滴加氨搅拌控制pH在8.37、混合、陈化6h4min、除去渣,得到凝胶物;
(2)热处理:将凝胶物在He气氛和560℃下加热6h30min,再在He气氛下用球磨机球磨8h19min,得到磷酸铁钠NaFePO 4-0.23B 2O 3
(3)ZnO沉积:将80gNaFePO 4-0.23B 2O 3装入沉积反应器中,充N 2排气,加热至65℃,以75mL/min通入N 2-H 2吹扫,1.22g纳米ZnO通过He载入,反应62min,合成的ZnO沉积NaFePO 4-0.23B 2O 3洗涤,在80℃下干燥2h,得到ZnO沉积的NaFePO 4-0.23B 2O 3@ZnO。
实施例3
本实施例的沉积型磷酸铁钠正极材料的化学式为NaFePO 4-0.05B 2O 3@CuO。
本实施例的沉积型磷酸铁钠正极材料的制备方法,具体步骤如下:
(1)合成凝胶物:将27g柠檬酸钠、34.5g磷酸二氢铵、4.9g硼酸分别溶解,再混合,加入43.2g草酸亚铁,钠、磷酸、亚铁和硼的摩尔比为0.315:0.3:0.3:0.05,加入1L质量分数为4.03w%的草酸溶液,并将温度控制在55℃左右,滴加氨搅拌控制pH在8.72、混合、陈化6h4min、除去渣,得到凝胶物;
(2)热处理:将凝胶物在He气氛和480℃下加热8.0h44min,再在He气氛下用球磨机球磨8h34min,得到磷酸铁钠NaFePO 4-0.05B 2O 3
(3)CuO沉积:将100gNaFePO 4-0.05B 2O 3装入沉积反应器中,充N 2排气,加热至60℃,以75mL/min通入N 2-H 2吹扫,0.79g纳米CuO通过He载入,反应61min,合成的CuO沉积NaFePO 4-0.05B 2O 3洗涤、在80℃下干燥2h,得到CuO沉积的NaFePO 4-0.05B 2O 3@CuO。
实施例4
本实施例的沉积型磷酸铁钠正极材料的化学式为NaFePO 4-0.16B 2O 3@CuO。
本实施例的沉积型磷酸铁钠正极材料的制备方法,具体步骤如下:
(1)合成凝胶物:将108g柠檬酸钠、138g磷酸二氢铵、15.7g硼酸分别溶解,再混合,加入172g草酸亚铁,钠、磷酸、亚铁和硼的摩尔比为1.26:1.2:1.2:0.16,加入1L质量分数为5.49w%的草酸溶液,并将温度控制在60℃左右,滴加氨搅拌控制pH在8.57、混合、陈化6h4min、除去渣,得到凝胶物;
(2)热处理:将凝胶物在He气氛和440℃下加热10h12min,再在He气氛下用球磨机球磨8h17min,得到磷酸铁钠NaFePO 4-0.16B 2O 3
(3)CuO沉积:将100gNaFePO 4-0.16B 2O 3装入沉积反应器中,充N 2排气,加热至65℃,以80mL/min通入N 2-H 2吹扫,1.27g纳米CuO通过He载入,反应66min,合成的CuO沉积NaFePO 4-0.16B 2O 3洗涤、在80℃下干燥2h,得到CuO沉积的NaFePO 4-0.16B 2O 3@CuO。
对比例1
本对比例的磷酸铁钠正极材料的制备方法,具体步骤如下:
与实施例1的区别在于:步骤(1)中将63g氢氧化钠、173g磷酸二氢铵分别溶解,再混合,加入215.9g草酸亚铁,钠、磷酸、亚铁的摩尔比为1.58:1.5:1.5,加入5.17w%0.8L的柠檬酸溶液,最终得到的是NaFePO 4
对比例2
本对比例的磷酸铁钠正极材料的制备方法,具体步骤如下:
(1)合成凝胶物:将65g氢氧化钠、173g磷酸二氢铵、8.7g硼酸分别溶解,再混合,加入215.9g草酸亚铁,钠、磷酸、亚铁和硼的摩尔比为1.63:1.5:1.5:0.14,加入5.17w%0.8L的柠檬酸溶液,并将温度控制在55℃左右,滴加氨搅拌控制pH在8.38、混合、陈化6h4min、除去渣,得到凝胶物;
(2)热处理:将凝胶物在He气氛和530℃下加热7h17min,再在He气氛下用球磨机球磨8h,得到磷酸铁钠NaFePO 4-0.14B 2O 3
试验例:
将实施例1-4与对比例1-2中的正极材料、碳黑导电剂以及聚四氟乙烯以80:15:5的质量比配比溶于去离子水中配成浆料,然后涂布在集流体上制备成极片,极片放于干 燥箱中在65℃下干燥8h36min。将钠薄片作为对电极,电解液为1.2mol/L NaClO 4,Celgard2400为隔膜,在氩气氛围下的真空手套箱中进行电池组装。循环性能用电化学工作站进行测试,测试的电流密度为250mA g -1,充放电区间为2.5-3.0V,0.5C倍率下测试。
表1 实施例1-4与对比例1-2数据
Figure PCTCN2022108662-appb-000001
从表1可得,经过300次循环后,实施例1和实施例3的库伦效率可达99.9,实施例1-4首次放电比容量高达114.5mAh·g -1、118.9mAh·g -1、115.4mAh·g -1、117.8mAh·g -1,而对比例1和对比例2的放电比容量为90.6mAh·g -1和92.3mAh·g -1,远小于本发明的实施例。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种沉积型磷酸铁钠正极材料,其特征在于,所述沉积型磷酸铁钠正极材料的化学式为NaFePO 4-xB 2O 3@A,x=0.001-0.3;所述A为Zn、Fe、Cu、Ni、Mn、Co、Cr、Ti、Al、Mo、Zr或Ag元素的纳米氧化物中的至少一种。
  2. 权利要求1所述的沉积型磷酸铁钠正极材料的制备方法,其特征在于,包括以下步骤:
    (1)将钠源、磷源、亚铁源、硼源、络合剂混合,反应,加碱调pH,固液分离,取液相浓缩,得到凝胶物;
    (2)将所述凝胶物进行热处理、球磨,得到磷酸铁钠NaFePO 4-xB 2O 3,x=0.001-0.3;
    (3)将A以气体形式吹扫所述磷酸铁钠NaFePO 4-xB 2O 3,得到沉积型磷酸铁钠;所述A为Zn、Fe、Cu、Ni、Mn、Co、Cr、Ti、Al、Mo、Zr或Ag元素的纳米氧化物中的至少一种。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述钠源为氢氧化钠、甲酸钠、乙酸钠、草酸钠、磷酸钠、硼酸钠或柠檬酸钠中的至少一种。
  4. 根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述磷源为磷酸、磷酸钠、磷酸铁、磷酸亚铁、磷酸铵、磷酸二氢铵、磷酸铁或磷酸氢二铵中的至少一种。
  5. 根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述硼源为氧化硼、硼酸、硼酸钠或硼酸铁中的至少一种。
  6. 根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述亚铁源为氢氧化亚铁、磷酸亚铁、草酸亚铁或乙酸亚铁中的至少一种。
  7. 根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述钠源、磷源、亚铁源、硼源中的钠、磷酸根、铁、硼的摩尔比为(0.01-110):(0.01-120):(0.01-110):(0.001-30)。
  8. 根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述络合剂中络合物为柠檬酸、草酸或乳酸中的至少一种。
  9. 根据权利要求2所述的制备方法,其特征在于,步骤(3)中,所述A的载入量为NaFePO 4-xB 2O 3质量的0.0001-0.1。
  10. 一种电池,其特征在于,包括权利要求1所述的沉积型磷酸铁钠正极材料。
PCT/CN2022/108662 2021-10-15 2022-07-28 一种沉积型磷酸铁钠正极材料及其制备方法和应用 WO2023060989A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022002475.5T DE112022002475T5 (de) 2021-10-15 2022-07-28 Abgeschiedenes natriumeisenphosphatmaterial für die positive elektrode, verfahren zu seiner herstellung und seine verwendung
GB2314900.8A GB2619674B (en) 2021-10-15 2022-07-28 Deposited sodium iron phosphate positive electrode material, and preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111201841.5 2021-10-15
CN202111201841.5A CN114068906B (zh) 2021-10-15 2021-10-15 一种沉积型磷酸铁纳正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023060989A1 true WO2023060989A1 (zh) 2023-04-20

Family

ID=80234596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108662 WO2023060989A1 (zh) 2021-10-15 2022-07-28 一种沉积型磷酸铁钠正极材料及其制备方法和应用

Country Status (4)

Country Link
CN (1) CN114068906B (zh)
DE (1) DE112022002475T5 (zh)
GB (1) GB2619674B (zh)
WO (1) WO2023060989A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068906B (zh) * 2021-10-15 2023-07-07 广东邦普循环科技有限公司 一种沉积型磷酸铁纳正极材料及其制备方法和应用
CN114956031B (zh) * 2022-05-13 2023-10-20 乐普钠电(上海)技术有限公司 一种磷铁钠矿型磷酸铁钠复合材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178835A (ja) * 2002-11-25 2004-06-24 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
CN101304083A (zh) * 2006-05-11 2008-11-12 立凯电能科技股份有限公司 适用于制作二次电池的正极的复合材料及以其制得的电池
CN101364643A (zh) * 2008-07-18 2009-02-11 杭州赛诺索欧电池有限公司 一种含硼的磷酸铁锂/炭复合材料及其制备方法
CN102020260A (zh) * 2009-07-17 2011-04-20 中国科学院成都有机化学有限公司 一种磷酸铁锂复合材料及其制备方法
CN108054385A (zh) * 2017-12-30 2018-05-18 山东精工电子科技有限公司 一种纳米金属氧化物包覆 LiFePO4微晶及其制备方法
CN112340721A (zh) * 2020-11-06 2021-02-09 桑顿新能源科技有限公司 一种磷酸铁锂正极材料的制备方法及正极材料与电池
CN114068906A (zh) * 2021-10-15 2022-02-18 广东邦普循环科技有限公司 一种沉积型磷酸铁纳正极材料及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244100A1 (en) * 2012-03-15 2013-09-19 Imra America, Inc. Iron phosphates: negative electrode materials for aqueous rechargeable sodium ion energy storage devices
JP6460316B2 (ja) * 2013-12-09 2019-01-30 日本電気硝子株式会社 ナトリウムイオン電池用電極合材、及びその製造方法並びにナトリウム全固体電池
WO2016084573A1 (ja) * 2014-11-26 2016-06-02 日本電気硝子株式会社 蓄電デバイス用正極材料の製造方法
CN105140489B (zh) * 2015-09-25 2018-01-02 中南大学 一种钛掺杂的碳包覆磷酸铁钠材料及其制备方法
CN105845974A (zh) * 2016-06-06 2016-08-10 四川国润新材料有限公司 一种钠离子电池正极材料NaFePO4/C的制备方法
CN108039482A (zh) * 2017-12-27 2018-05-15 东莞理工学院 磷酸铁及磷酸铁复合材料作为负极材料在钠离子电池中的应用
CN108123129A (zh) * 2018-01-04 2018-06-05 中南大学 一种碳包覆焦磷酸铁钠材料及其制备方法和作为钠离子电池正极材料的应用
CN109449417B (zh) * 2018-11-01 2021-11-16 中科廊坊过程工程研究院 一种磷酸铁钠复合正极材料及其制备方法和应用
CN110085862A (zh) * 2019-04-26 2019-08-02 北京金羽新能科技有限公司 一种钠电池电极材料Na1+xFexTi2-x(PO4)3及其制备方法和应用
CN110078041A (zh) * 2019-04-26 2019-08-02 北京金羽新能科技有限公司 一种钠离子超导材料Na1+xAlxTi2-x(PO4)3及其制备方法和应用
CN112768673B (zh) * 2021-02-04 2022-06-03 武汉大学 一种Na4Fe3-x(PO4)2P2O7/C钠离子电池正极材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178835A (ja) * 2002-11-25 2004-06-24 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
CN101304083A (zh) * 2006-05-11 2008-11-12 立凯电能科技股份有限公司 适用于制作二次电池的正极的复合材料及以其制得的电池
CN101364643A (zh) * 2008-07-18 2009-02-11 杭州赛诺索欧电池有限公司 一种含硼的磷酸铁锂/炭复合材料及其制备方法
CN102020260A (zh) * 2009-07-17 2011-04-20 中国科学院成都有机化学有限公司 一种磷酸铁锂复合材料及其制备方法
CN108054385A (zh) * 2017-12-30 2018-05-18 山东精工电子科技有限公司 一种纳米金属氧化物包覆 LiFePO4微晶及其制备方法
CN112340721A (zh) * 2020-11-06 2021-02-09 桑顿新能源科技有限公司 一种磷酸铁锂正极材料的制备方法及正极材料与电池
CN114068906A (zh) * 2021-10-15 2022-02-18 广东邦普循环科技有限公司 一种沉积型磷酸铁纳正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114068906B (zh) 2023-07-07
GB202314900D0 (en) 2023-11-15
DE112022002475T5 (de) 2024-03-14
GB2619674A (en) 2023-12-13
GB2619674B (en) 2024-05-08
CN114068906A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2023060989A1 (zh) 一种沉积型磷酸铁钠正极材料及其制备方法和应用
CN106410157B (zh) 一种高倍率长寿命正极材料及其制备方法
CN111082058B (zh) 一种Nasicon结构磷酸钛钠表面修饰P2型锰基钠离子电池正极材料及其制备方法
CN107845796B (zh) 一种碳掺杂磷酸钒钠正极材料及其制备方法和应用
CN107658442B (zh) 氢镍二次电池负极板及其制备方法和使用该负极板的氢镍二次电池
CN104755429B (zh) 氧化铁纳米粒子的制备方法
WO2022062320A1 (zh) 一种含有金属元素梯度掺杂的负极材料及其应用
CN113363492A (zh) 一种复合包覆改性的高镍nca正极材料及其制备方法
CN109713255B (zh) 一种高性能二维金属元素掺杂SnS2-石墨烯-S复合材料及其制备方法和应用
CN112289994B (zh) 一种包覆型高镍三元材料及其制备方法和应用
CN109473637B (zh) 一种长循环寿命锂负极的保护方法
WO2023245898A1 (zh) 一种磷酸铁锂废旧电池的回收利用方法
CN115132981A (zh) 一种二元掺杂的铁基氟磷酸盐钠离子正极材料及其制备方法
WO2023097937A1 (zh) 一种用于固态电池的高压实高镍层状正极材料的复合包覆方法
CN114349051A (zh) 多金属钼酸盐、其制备方法及锂离子电池
CN113937262A (zh) 一种用于钠离子电池的金属氧化物改性的正极材料及其制备方法和应用
CN110676440A (zh) 复合材料及其制备方法
CN112952063A (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN116826014A (zh) 包覆型钠基层状氧化物复合材料及其制备方法和钠离子电池
WO2023093180A1 (zh) 富镍高压钠离子电池正极材料及其制备方法和应用
CN110931750A (zh) 一种铜掺杂氧化钴多孔纳米片复合材料及储能应用
CN114744186B (zh) 一种层状富锂锰基复合正极材料、制备方法及电池
CN112553690A (zh) 一种高压制备片状单晶高镍镍钴锰三元材料的方法
CN112993246A (zh) 一种高性能钠离子电池负极材料及其制备方法
CN111180722B (zh) 一种锂离子电池正极材料镍钴铝酸锂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202314900

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220728

WWE Wipo information: entry into national phase

Ref document number: P202390197

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022002475

Country of ref document: DE