WO2023093180A1 - 富镍高压钠离子电池正极材料及其制备方法和应用 - Google Patents

富镍高压钠离子电池正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023093180A1
WO2023093180A1 PCT/CN2022/115953 CN2022115953W WO2023093180A1 WO 2023093180 A1 WO2023093180 A1 WO 2023093180A1 CN 2022115953 W CN2022115953 W CN 2022115953W WO 2023093180 A1 WO2023093180 A1 WO 2023093180A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
nickel
sulfate
positive electrode
electrode material
Prior art date
Application number
PCT/CN2022/115953
Other languages
English (en)
French (fr)
Inventor
余海军
张学梅
谢英豪
李爱霞
钟应声
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2313956.1A priority Critical patent/GB2619230A/en
Publication of WO2023093180A1 publication Critical patent/WO2023093180A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Lithium-ion batteries have satisfactory properties, such as high energy density and excellent cycle life, and are successfully applied in mobile electronic devices, transportation electric and energy storage power, etc.
  • HEV hybrid electric vehicles
  • EV electric vehicles
  • smart grids the current challenge is that the cost of lithium and the materials associated with lithium battery manufacturing has risen sharply, leading to an increase in the price of lithium-ion batteries, so the lack of prospect and uneven distribution of lithium resources has prompted research into more sustainable and cost-effective. Options.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a nickel-rich high-voltage sodium ion positive electrode material and its preparation method and application.
  • the sodium ion positive electrode material has excellent cycle performance, high specific capacity and initial working voltage up to 3.8V.
  • a sodium ion cathode material the general formula of which is Na s Ni t (PO 4 )(SO 4 )/F@MC, 2 ⁇ s ⁇ 4, 0.5 ⁇ t ⁇ 1.5; said M is zinc, nickel, aluminum, An oxide of at least one of manganese, chromium, molybdenum, manganese, copper, and calcium.
  • the value range of s is 2.5 ⁇ s ⁇ 3.5, and the value range of t is 0.5 ⁇ t ⁇ 1.2.
  • the sodium ion positive electrode material has a formula of Na 2.6 Ni 1.2 (PO 4 )(SO 4 )/F@Al 2 O 3 -C, Na 3.4 Ni 0.8 (PO 4 )(SO 4 )/F@ At least one of CuO—C, Na 3 Ni(PO 4 )(SO 4 )/F@ZnO—C.
  • a preparation method of a sodium ion positive electrode material comprising the following steps:
  • the organic acid is at least one of tartaric acid, oxalic acid, citric acid, formic acid or acetic acid.
  • the concentration of the organic acid is 0.01-12wt%.
  • the nickel source is at least one of nickel sulfate, nickel hydroxide, nickel nitrate, nickel chloride or nickel carbonate.
  • the sulfuric acid source is at least one of sulfuric acid, sodium sulfate, ammonium sulfate, ammonium bisulfate, sodium bisulfate or nickel sulfate.
  • the phosphoric acid source is at least one of phosphoric acid, sodium phosphate, ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium hydrogen phosphate or nickel phosphate.
  • the fluorine source is at least one of ammonium fluoride, potassium fluoride, sodium fluoride or hydrogen fluoride.
  • the temperature of the microwave hydrothermal reaction is 100-300°C, and the time of the microwave hydrothermal reaction is 1-60min; the temperature is preferably 120-240°C, and the time is preferably 5-300min.
  • the concentration also includes soaking and drying the trisalt precursor.
  • the mixing also includes ball milling the trisalt salt precursor for 0.5-12 hours, and the size of the particles after ball milling is ⁇ 50 ⁇ m.
  • the sodium source is at least one of sodium hydroxide, sodium citrate, sodium oxalate, sodium acetate, sodium phosphate, sodium sulfate, sodium carbonate or sodium chloride.
  • the stabilizer is 1,4-phthalic acid, 2,5-dipropoxy-1,4-dihydrazide, N,N,N',N'-tetrakis(4-methoxy At least one of phenyl)-9H-carbazole-3,6-diamine, 4,4',4-trimethyl-2,2':6',2-terpyridine.
  • the stabilizer is 0.01-5wt% of the total mass of the trisalt salt precursor and the sodium source.
  • drying is also included after the soaking, and the drying temperature is 60-150°C.
  • the temperature of the heating reaction is 300-800°C, and the time of the heating reaction is 0.5-24h.
  • the solid-to-liquid ratio of Na s Nit (PO 4 )(SO 4 )/F to the sodium detergent is (0.1-3): (1-5) g/ml.
  • the sodium detergent is at least one of zinc sulfate, nickel sulfate, aluminum sulfate, manganese sulfate, chromium sulfate, molybdenum sulfate, copper sulfate or calcium sulfate.
  • the sodium washing agent can wash away the residual sodium hydroxide on the surface of the positive electrode material, reduce the residual sodium in the positive electrode material, and reduce the side reactions on the surface of the positive electrode material.
  • the sodium ions in the sodium hydroxide on the surface of the positive electrode material are exchanged by acid salt, and some metal ions are added to hydrolyze and deposit on the surface of the positive electrode material. After drying, they are dehydrated and become metal oxides and deposit on the surface of the positive electrode material.
  • the sintering temperature is 400-800° C.
  • the sintering atmosphere is an inert gas.
  • a battery comprising the sodium ion positive electrode material.
  • the working plateau voltage of the battery made of the sodium ion positive electrode material is greater than 3.8V at the first discharge.
  • the cladding layer in the sodium ion cathode material (after the sodium washing agent is processed, metal ion is hydrolytically deposited on The surface of the positive electrode material, after dehydration, becomes metal oxidation, and the metal oxide is tightly combined with the positive electrode material), which can improve the ion and electron transport kinetics of the material, improve the cycle performance of the positive electrode material, and hinder the nickel-rich high-pressure sodium
  • the ionic cathode material continues to agglomerate and grow, controlling the particle size.
  • the internal particle distribution of the trisalt salt precursor synthesized by the microwave method is more uniform, and then the electron transfer rate and heat transfer efficiency of the nickel-rich high-voltage positive electrode material are highly consistent. , which is conducive to the stability of the internal structure of the material; and then using the stabilizer's stable structure and good heat dissipation characteristics, adding a stabilizer to the positive electrode material can strengthen the structural stability of the positive electrode material and improve the cycle discharge performance of the material.
  • the present invention uses microwaves to synthesize the trisalt precursor in the preparation of nickel-rich high-pressure sodium ion positive electrode material precursors, and the temperature rises rapidly.
  • the reaction can be completed in 3-20 minutes, so the reaction process is very fast, shortening the reaction by more than 90% time; and, the synthesis temperature is controlled at 100-300°C, which is much lower than the conventional high-temperature treatment at 400-800°C, so the reaction temperature of the microwave-synthesized trisalt precursor is lower; in a controllable electromagnetic environment, the trisalt precursor
  • the crystal nucleation and growth of the body are accelerated, the grain shape is controllable, and the homogeneity of the trisalt precursor is good, which is conducive to the synthesis of materials with high crystallinity and uniform and complete particles.
  • Fig. 1 is the process flow diagram of preparing sodium ion positive electrode material in embodiment 1 of the present invention
  • Fig. 2 is the schematic diagram of the sodium ion cathode material prepared in Example 1 of the present invention.
  • Fig. 3 is the SEM picture of the sodium ion positive electrode material prepared in Example 1 of the present invention.
  • FIG. 4 is a TEM image of the sodium ion cathode material prepared in Example 1 of the present invention.
  • the sodium ion cathode material in this embodiment has a formula of Na 2.6 Ni 1.2 (PO 4 )(SO 4 )/F@Al 2 O 3 -C.
  • the process flow diagram of the sodium ion cathode material prepared in this embodiment is as shown in Figure 1.
  • nickel hydroxide and citric acid are mixed to obtain solution A
  • ammonium sulfate, phosphoric acid and ammonium fluoride are mixed to obtain solution B
  • stirred add solution B to solution A to obtain solution C
  • put solution C in a ceramic crucible send it to a microwave reactor, heat and lower the temperature, and obtain a trisalt salt precursor.
  • Microwave hydrothermal synthesis of trisalt precursor Mix 1.12g nickel hydroxide with 150mL 5.5w% citric acid to obtain solution A, mix 19mL 0.53mol/L ammonium sulfate, 14.9mL 0.67mol/L phosphoric acid, 9mL 0.17 Mix mol/L ammonium fluoride to obtain solution B, stir, gradually add solution B to solution A to obtain solution C, take 20mL of solution C, put solution C in a ceramic crucible, send it to the microwave reactor, and fill the microwave reactor with Argon gas, under 350W, setting: the first stage of heating is 110°C, and the steady evaporation is 6 minutes; the second stage heating temperature is 275°C, and the steady evaporation is 25 minutes; the heating time between the two stages is 180s;
  • the sodium ion cathode material in this embodiment has a formula of Na 3.4 Ni 0.8 (PO 4 )(SO 4 )/F@CuO—C.
  • the preparation method of the sodium ion positive electrode material of the present embodiment, concrete steps are as follows:
  • the sodium ion cathode material in this embodiment has a formula of Na 3 Ni(PO 4 )(SO 4 )/F@ZnO—C.
  • the preparation method of the sodium ion positive electrode material of the present embodiment, concrete steps are as follows:
  • Microwave hydrothermal synthesis of trisalt precursor 1.3g nickel chloride was dissolved in 500mL 0.317mol/Lw% citric acid to obtain solution A, 19mL 0.53mol/L ammonium sulfate, 1.33g diammonium hydrogen phosphate, 17mL Mix 0.18mol/L ammonium fluoride to obtain solution B, stir, gradually add solution B to solution A to obtain solution C, take 200mL solution C, put solution C in a ceramic crucible, send it to a microwave reactor, and inject it into the microwave reactor Filled with argon, under 350W, set: the first heating temperature is 115°C, steady evaporation for 3 minutes, the second heating temperature is 275°C, steady evaporation for 20 minutes, the heating time between the two stages is 180s, and the temperature is lowered to obtain the trisalt salt precursor.
  • the sodium ion cathode material of this comparative example has a formula of Na 3.4 Ni 0.8 (PO 4 )(SO 4 )/F@Al 2 O 3 .
  • the sodium ion cathode material of this comparative example has a formula of Na 3.4 Ni 0.8 (PO 4 )(SO 4 )/F@Al 2 O 3 .
  • Microwave hydrothermal synthesis of trisalt precursor 1.24g nickel sulfate was dissolved in 50mL5.5w% citric acid to obtain solution A, 19mL 0.53mol/L ammonium sulfate, 1.42g diammonium hydrogen phosphate, 12mL 0.18mol/L Mix L ammonium fluoride to obtain solution B, stir, gradually add solution B dropwise to solution A to obtain solution C, take 200mL solution C, put solution C in a ceramic crucible, heat under argon atmosphere at 540°C for 8h, and cool down to obtain Trisalt precursor.
  • the sodium ion cathode material of this comparative example has a formula of Na 3 Ni(PO 4 )(SO 4 )/F.
  • Microwave hydrothermal synthesis of trisalt precursor 1.55g of nickel sulfate was dissolved in 50mL of 5.5w% citric acid to obtain solution A, 19mL of 0.53mol/L ammonium sulfate, 1.53g of diammonium hydrogen phosphate, 12mL of 0.18mol/L Mix L ammonium fluoride to obtain solution B, stir, gradually add solution B dropwise to solution A to obtain solution C, take 200mL solution C, put solution C in a ceramic crucible, send it to a microwave reactor, and fill the microwave reactor with argon , at 350W, set: heating at 90°C in the first stage, steady evaporation for 6 minutes, heating at 275°C in the second stage, steady evaporation for 25 minutes, heating time between the two stages is 180s, and cooling down to obtain the trisalt salt precursor.
  • Embodiment 1-3 and comparative example 1-3 analysis :
  • Example 1-3 and Comparative Example 1-3 The sodium ion anode material prepared in Example 1-3 and Comparative Example 1-3, carbon black conductive agent, and polytetrafluoroethylene were mixed and dissolved in deionized water at a mass ratio of 80:10:10 to form a slurry, and then Coated on aluminum foil to form a pole piece, put the pole piece in a drying oven and dry at 80°C for 12 hours, punch it into a disc; cut the disc into a counter electrode pole piece with a diameter of 10mm; add it to the carbonic acid ester Add 1.0mol/L NaClO 4 as the electrolyte, Celgard2400 as the diaphragm, and assemble the battery in a vacuum glove box under an argon atmosphere.
  • the AC impedance and cyclic voltammetry tests were carried out on the coin cell with an electrochemical workstation, and the charge and discharge tests were carried out on the coin cell with a LAND battery test system.
  • the current density of the test was 30mA ⁇ g -1 .
  • the initial discharge capacity of Examples 1-3 is 128.3-132.6mAh ⁇ g -1
  • the plateau voltage is 3.8V at the first discharge
  • the initial discharge capacity of Comparative Examples 1-3 is 115.6-117.7mAh ⁇ g -1
  • the first The plateau voltage is 3.6-3.7V during discharge, and when the 100th discharge is performed
  • the discharge capacity of Example 1-3 is still 107.5-108.7mAh ⁇ g -1
  • the first discharge capacity of Comparative Example 1-3 is 89.8-93.2mAh g ⁇ 1
  • the battery obtained by the positive electrode material prepared in Example 1-3 is also higher than the battery obtained by the positive electrode material prepared by Comparative Example 1-3 at the first time, the 10th time, and the 100th time. 10th, 100th discharge efficiency. It shows that the electrochemical performance of nickel-rich high-pressure sodium ion positive electrode materials has been improved after microwave hydrothermal treatment, adding stabilizer, and soaking with sodium washing agent.
  • the surface of the sodium ion positive electrode material prepared in Example 1 has a layer of aluminum oxide attached to it, which is closely combined with the sodium ion positive electrode material.
  • Fig. is 12 ⁇ m.

Abstract

本发明属于钠离子电池技术领域,公开了富镍高压钠离子正极材料及其制备方法和应用,该钠离子正极材料的通式为NasNit(PO4)(SO4)/F@M-C,2≤s≤4,0.5≤t≤1.5;M为锌、镍、铝、锰、铬、钼、锰、铜、钙中至少一种的氧化物。本发明的钠离子正极材料中通过加入稳定剂,强化正极材料结构稳定性、提高材料的循环放电性能;钠离子正极材料中的包覆层(金属氧化物与正极材料紧紧结合形成的),能稳定材料的离子和电子传输动力学性能,改善正极材料的循环性能,阻碍材料继续团聚,控制颗粒尺寸。

Description

富镍高压钠离子电池正极材料及其制备方法和应用 技术领域
本发明属于钠离子电池技术领域,具体涉及富镍高压钠离子电池正极材料及其制备方法和应用。
背景技术
锂离子电池具有令人满意的性能,例如高能量密度和出色的循环寿命,成功地应用于移动电子设备、交通电动和储能电力等。当前,得益于新能源的蓬勃发展,混合动力电动汽车(HEV)、电动汽车(EV)、智能电网等领域的锂电储能设备需求更多。而当前难题是,锂以及与锂电池制造相关的材料成本急剧上升,导致锂离子电池价格上涨,因此锂的资源前景不足和分布不均促使研究更具可持续性和成本更低效益更高的选择方案。
钠离子电池将是一种合适的可代替方案。钠在地壳中更为丰富;钠的标准氧化还原电位仅比锂金属高0.326V,其电负性仅比锂低0.05V,但锂的理论质量比容量(3860mAh·g -1)、理论体积比容量(2060mAh·cm -3)均远高于钠的理论质量比容量(1160mAh·g -1)、理论体积比容量(1130mAh·cm -3)可见钠离子电池性能逊色于锂离子电池,因此,自2001年以来,研究者对提升钠的电化学性能进行了大量的研究,例如研发高性能电极材料、提供优越的工作电压、探明电极在电解液分解反应和形成产物、加强电化学循环稳定性等方面,将有利于解决钠离子电池的能量密度和寿命问题。
近几年,随着锂离子电池价格的持续升高,尤其是锂资源的消耗和在全球锂储量并不丰富,将来不得不面临缺锂的困境,研究发现,化学性质与锂相似的钠非常有望成为继锂离子电池之后的下一代二次电池,但由于钠离子半径越大,原子量越重,加上钠的标准电位较高,通常会导致可逆能力较差和较低的能量密度,因此通常情况下钠离子电池性能不如锂离子电池,例如磷酸铁钠正极材料容量、电压、循环能力等各方面的电化学性能均低于磷酸铁锂正极材料。
目前,Na 4MP 2O 7(M=Fe、Co、Mn、Cu、PO4、SO 4、CO 3)聚阴离子正极材料能在>3.5V(vs Na +/Na)高的电压下工作,并表现出优异的循环稳定性,是一种很有潜力的正极材料。例如,Na 4Co 3(PO 4) 2P 2O 7它在3.0-4.4V(vs Na +/Na)电压窗口中以0.2C倍率下提供95mAh·g -1的容量,并且在100次循环中容量保持率>95%;Na 4Fe 3(PO 4) 2(P 2O 7)作为钠离子电池正极材料释放出129mAh·g -1的可逆容量,且平均工作电压超过3.2V(vs Na +/Na)电极,但对于Na 4MPO 4 型钠离子电池来说,能量密度低、循环性能差仍然是其最大短板之处,而电池的能量密度取决于材料的比容量和工作电压,因此亟需研发一种比容量高和首次工作电压高的正极材料。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种富镍高压钠离子正极材料及其制备方法和应用,该钠离子正极材料的循环性能优异比容量高和首次工作电压可达3.8V。
为实现上述目的,本发明采用以下技术方案:
一种钠离子正极材料,其通式为Na sNi t(PO 4)(SO 4)/F@M-C,2≤s≤4,0.5≤t≤1.5;所述M为锌、镍、铝、锰、铬、钼、锰、铜、钙中至少一种的氧化物。
优选地,所述s的取值范围为2.5≤s≤3.5,t的取值范围为0.5≤t≤1.2。
优选地,所述钠离子正极材料,其式为Na 2.6Ni 1.2(PO 4)(SO 4)/F@Al 2O 3-C、Na 3.4Ni 0.8(PO 4)(SO 4)/F@CuO-C、Na 3Ni(PO 4)(SO 4)/F@ZnO-C中的至少一种。
一种钠离子正极材料的制备方法,包括以下步骤:
将镍源溶液、硫酸源、磷酸源和氟源混合,进行微波水热反应,浓缩,得到三酸盐前驱体;
将所述三酸盐前驱体与钠源、稳定剂混合、加热反应,得到Na sNi t(PO 4)(SO 4)/F;
向所述Na sNi t(PO 4)(SO 4)/F中加入洗钠剂浸润,烧结,即得所述钠离子正极材料。
优选地,所述镍源溶液是由镍源与有机酸混合得到。
进一步优选地,所述有机酸为酒石酸、草酸、柠檬酸、甲酸或醋酸中的至少一种。
进一步优选地,所述有机酸的浓度为0.01-12wt%。
进一步优选地,所述镍源为硫酸镍、氢氧化镍、硝酸镍、氯化镍或碳酸镍中的至少一种。
优选地,所述硫酸源为硫酸、硫酸钠、硫酸铵、硫酸氢铵、硫酸氢钠或硫酸镍中的至少一种。
优选地,所述磷酸源为磷酸、磷酸钠、磷酸铵、磷酸氢二铵、磷酸二氢铵、磷酸氢钠或磷酸镍中的至少一种。
优选地,所述氟源为氟化铵、氟化钾、氟化钠或氟化氢中的至少一种。
优选地,所述微波水热反应的温度为100-300℃,微波水热反应的时间为1-60min;温度优选为120-240℃,时间优选为5-300min。
优选地,所述浓缩后还包括对三酸盐前驱体进行浸润和干燥。
优选地,所述混合前还包括将三酸盐前驱体进行球磨0.5-12h,球磨后颗粒的大小<50μm。
优选地,所述钠源为氢氧化钠、柠檬酸钠、草酸钠、乙酸钠、磷酸钠、硫酸钠、碳酸钠或氯化钠中的至少一种。
优选地,所述稳定剂为1,4-苯二甲酸,2,5-二丙氧基-1,4-二酰肼、N,N,N',N'-四(4-甲氧基苯基)-9H-咔唑-3,6-二胺、4,4',4-三甲基-2,2':6',2-三联吡啶中的至少一种。
优选地,所述稳定剂为三酸盐前驱体与钠源总质量的0.01-5wt%。
优选地,所述浸润后还包括干燥,干燥的温度为60-150℃。
优选地,所述加热反应的温度为300-800℃,加热反应的时间为0.5-24h。
优选地,所述Na sNi t(PO 4)(SO 4)/F与洗钠剂的固液比为(0.1-3):(1-5)g/ml。
优选地,所述洗钠剂为硫酸锌、硫酸镍、硫酸铝、硫酸锰、硫酸铬、硫酸钼、硫酸铜或硫酸钙中的至少一种。
洗钠剂一方面可以洗去正极材料表面的残留的氢氧化钠,降低正极材料中的残留的钠,减少正极材料表面的副反应。另一方面,通过酸盐交换掉正极材料表面的氢氧化钠中的钠离子,添加部分金属离子水解沉积于正极材料表面,干燥后脱水,变为金属氧化物沉积于正极材料表面。
优选地,所述烧结的温度为400-800℃,烧结的氛围为惰性气体。
一种电池,包括所述的钠离子正极材料。
优选地,所述钠离子正极材料制备的电池的首次放电时工作平台电压大于3.8V。
相对于现有技术,本发明的有益效果如下:
1、本发明的钠离子正极材料中通过加入稳定剂,强化正极材料结构稳定性、提高材料的循环放电性能;钠离子正极材料中的包覆层(洗钠剂处理后,金属离子水解沉积于正极材料表面,脱水后,变为金属氧化,金属氧化物与正极材料紧紧结合形成的),能提高材料的离子和电子传输动力学性能,改善正极材料的循环性能,阻碍了富镍高压钠离子正极材料继续团聚和长大,控制了颗粒尺寸。
2、本发明的制备方法中通过微波法合成的三酸盐前驱体的内部颗粒分布更均匀,进而制得的富镍高压正极材料内部各处电子传输速率、热量的传递效的一致性很高,有利于材料内部结构稳定性;再利用稳定剂稳定的结构以及良好的散热特性,通过正极材料中通过加入稳定剂,强化正极材料结构稳定性、提高材料的循环放电性能。
3、本发明在制备富镍高压钠离子正极材料前驱体的时候利用微波合成三酸盐前驱体升温迅速,一般3-20min即可反应完全,因此反应过程很快,缩短了90%以上的反应时间;并且,合成温度控制在100-300℃,远低于常规的400-800℃高温处理,因此微波合成三酸盐前驱体反应温度更低;在可控的电磁环境下,三酸盐前驱体的晶核与生长加快,晶粒形貌可控,同时三酸盐前驱体的匀一性较好,有利于合成具有高结晶度、颗粒均匀完整的材料。
附图说明
图1为本发明实施例1制备钠离子正极材料的工艺流程图;
图2为本发明实施例1制备的钠离子正极材料的示意图;
图3为本发明实施例1制备的钠离子正极材料的SEM图;
图4为本发明实施例1制备的钠离子正极材料的TEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的钠离子正极材料,其式为Na 2.6Ni 1.2(PO 4)(SO 4)/F@Al 2O 3-C。
本实施例制备的钠离子正极材料的工艺流程图如图1所示,图1中,将氢氧化镍与柠檬酸混合得到溶液A,将硫酸铵、磷酸、氟化铵混合得到溶液B,搅拌,向溶液A中加溶液B得到溶液C,溶液C置于陶瓷坩埚,送至微波反应器,加热降温,得到三酸盐前驱体。将三酸盐前驱体进行球磨后,与氢氧化钠、N,N,N',N'-四(4-甲氧基苯基)-9H-咔唑-3,6-二胺浆料混合均匀,加热,得到Na 2.6Ni 1.2(PO 4)(SO 4)/F。硫酸铝与Na 2.6Ni 1.2(PO 4)(SO 4)/F浸润、加热、降温,得到Na 2.6Ni 1.2(PO 4)(SO 4)/F@Al 2O 3-C。
本实施例的钠离子正极材料制备的具体步骤如下:
(1)微波水热合成三酸盐前驱体:将1.12g氢氧化镍与150mL 5.5w%柠檬酸混合得到溶液A,将19mL 0.53mol/L硫酸铵、14.9mL 0.67mol/L磷酸、9mL 0.17mol/L氟化铵混合得到溶液B,搅拌,向溶液A中逐渐滴加溶液B得到溶液C,取20mL溶液C,溶液C置于陶瓷坩埚,送至微波反应器,微波反应器中注满氩气,350W下,设定:一段加热110℃,稳定蒸发6min,二段加热温度为275℃,稳定蒸发25min,两段之间升温时间为180s,降温,得到三酸盐前驱体。
(2)合成Na 2.6Ni 1.2(PO 4)(SO 4)/F:将三酸盐前驱体进行球磨7.5h后,与17.5mL的1.5mol/L氢氧化钠、18mL 1.66wt%的N,N,N',N'-四(4-甲氧基苯基)-9H-咔唑-3,6-二胺浆料搅拌、混合均匀,加热炉氩气环境下,设定300℃下加热8h,得到钠离子正极材料Na 2.6Ni 1.2(PO 4)(SO 4)/F。
(3)洗钠处理:将4.5mL的0.019mol/L的硫酸铝均分为三份,与1.5g的钠离子正极材料Na 2.6Ni 1.2(PO 4)(SO 4)/F混合,浸润三次,烘箱110℃干燥10h过夜,加热炉氩气环境下,470℃下烧结8h、降温,得到钠离子正极材料—Na 2.6Ni 1.2(PO 4)(SO 4)/F@Al 2O 3-C。
实施例2
本实施例的钠离子正极材料,其式为Na 3.4Ni 0.8(PO 4)(SO 4)/F@CuO-C。
本实施例的钠离子正极材料的制备方法,具体步骤如下:
(1)微波水热合成三酸盐前驱体:将1.24g硫酸镍溶于150mL7.1w%草酸得到溶液A,将19mL 0.53mol/L硫酸铵、1.33g磷酸氢二铵、12mL 0.18mol/L氟化铵混合得到溶液B,搅拌,向溶液A中逐渐滴加溶液B得到溶液C,取20mL溶液C,溶液C置于陶瓷坩埚,送至微波反应器,微波反应器中注满氩气,500W下,设定:一段加热115℃,稳定3min,二段加热温度为240℃,稳定20min,两段之间升温时间为180s,降温,得到三酸盐前驱体。
(2)合成Na 3.4Ni 0.8(PO 4)(SO 4)/F:将三酸盐前驱体进行球磨至粒径<50μm,与22.7mL的1.5mol/L氢氧化钠、18mL 1.5wt%的1,4-苯二甲酸,2,5-二丙氧基-1,4-二酰肼浆料搅拌、混合均匀,加热炉氩气环境下,设定540℃下加热6.5h,得到钠离子正极材料—Na 3.4Ni 0.8(PO 4)(SO 4)/F。
(3)洗钠处理:将4.5mL的0.032mol/L的硫酸铜均分为三份,与1.5g的钠离子正极材料Na 3.4Ni 0.8(PO 4)(SO 4)/F混合,浸润三次,烘箱150℃干燥4h,加热炉氩气环境下,设定590℃下烧结6.5h、降温,得到钠离子正极材料—Na 3.4Ni 0.8(PO 4)(SO 4)/F@CuO-C。
实施例3
本实施例的钠离子正极材料,其式为Na 3Ni(PO 4)(SO 4)/F@ZnO-C。
本实施例的钠离子正极材料的制备方法,具体步骤如下:
(1)微波水热合成三酸盐前驱体:将1.3g氯化镍溶于500mL 0.317mol/Lw%柠檬酸得到溶液A,将19mL 0.53mol/L硫酸铵、1.33g磷酸氢二铵、17mL 0.18mol/L氟化铵混合得到溶液B,搅拌,向溶液A中逐渐滴加溶液B得到溶液C,取200mL溶液C,溶液C置于陶瓷坩埚,送至微波反应器,微波反应器中注满氩气,350W下,设定:一段加热115℃,稳定蒸 发3min,二段加热温度为275℃,稳定蒸发20min,两段之间升温时间为180s,降温,得到三酸盐前驱体。
(2)合成Na 3Ni(PO 4)(SO 4)/F:将三酸盐前驱体球磨至粒径<50μm,与20mL的1.5mol/L氢氧化钠、22mL 1.5wt%的4,4',4-三甲基-2,2':6',2-三联吡啶浆料搅拌、混合均匀,加热炉氩气环境下,设定620℃下加热8h,得到钠离子正极材料Na 3Ni(PO 4)(SO 4)/F。
(3)洗钠处理:将6mL的0.063mol/L的硫酸锌均分为三份,与2.0g的钠离子正极材料Na 3Ni(PO 4)(SO 4)/F混合,浸润三次,烘箱125℃干燥3h,加热炉氩气环境下,设定470℃下烧结6.5h、降温,得到钠离子正极材料—Na 3Ni(PO 4)(SO 4)/F@ZnO-C。
对比例1
本对比例的钠离子正极材料,其式为Na 3.4Ni 0.8(PO 4)(SO 4)/F@Al 2O 3
本对比例的钠离子正极材料的制备方法,具体步骤如下:
(1)微波水热合成三酸盐前驱体:将1.24g硫酸镍溶于50mL5.5w%柠檬酸得到溶液A,将19mL 0.53mol/L硫酸铵、16mL 0.67mol/L磷酸、12mL 0.18mol/L氟化铵混合得到溶液B,搅拌,向溶液A中逐渐滴加溶液B得到溶液C,取200mL溶液C,溶液C置于陶瓷坩埚,在氩气环境和540℃下加热8h,降温,得到三酸盐前驱体。
(2)合成Na 3.4Ni 0.8(PO 4)(SO 4)/F:将三酸盐前驱体球磨至粒径<50μm,与22.7mL的1.5mol/L氢氧化钠、18mL 1.5wt%的4,4',4-三甲基-2,2':6',2-三联吡啶浆料搅拌混合均匀、混合均匀,加热炉氩气环境下,设定540℃下加热6.5h,得到钠离子正极材料—Na 3.4Ni 0.8(PO 4)(SO 4)/F-C。
对比例2
本对比例的钠离子正极材料,其式为Na 3.4Ni 0.8(PO 4)(SO 4)/F@Al 2O 3
本对比例的钠离子正极材料的制备方法,具体步骤如下:
(1)微波水热合成三酸盐前驱体:将1.24g硫酸镍溶于50mL5.5w%柠檬酸得到溶液A,将19mL 0.53mol/L硫酸铵、1.42g磷酸氢二铵、12mL 0.18mol/L氟化铵混合得到溶液B,搅拌,向溶液A中逐渐滴加溶液B得到溶液C,取200mL溶液C,溶液C置于陶瓷坩埚,在氩气环境和540℃下加热8h,降温,得到三酸盐前驱体。
(2)合成Na 3.4Ni 0.8(PO 4)(SO 4)/F:将三酸盐前驱体球磨至粒径<50μm,与22.7mL的1.5mol/L氢氧化钠混合均匀,加热炉氩气环境下,设定540℃下加热6.5h,得到钠离子正极材料Na 3.4Ni 0.8(PO 4)(SO 4)/F。
(3)洗钠处理:将6mL的0.022mol/L的硫酸铝均分为三份,与2.0g的钠离子正极材料Na 3.4Ni 0.8(PO 4)(SO 4)/F混合浸润三次,烘箱95℃干燥至恒重,加热炉氩气环境下,设定540℃下烧结6.5h、降温,得到钠离子正极材料—Na 3.4Ni 0.8(PO 4)(SO 4)/F@Al 2O 3
对比例3
本对比例的钠离子正极材料,其式为Na 3Ni(PO 4)(SO 4)/F。
本对比例的钠离子正极材料的制备方法,具体步骤如下:
(1)微波水热合成三酸盐前驱体:将1.55g硫酸镍溶于50mL5.5w%柠檬酸得到溶液A,将19mL 0.53mol/L硫酸铵、1.53g磷酸氢二铵、12mL0.18mol/L氟化铵混合得到溶液B,搅拌,向溶液A中逐渐滴加溶液B得到溶液C,取200mL溶液C,溶液C置于陶瓷坩埚,送至微波反应器,微波反应器中注满氩气,350W下,设定:一段加热90℃,稳定蒸发6min,二段加热温度为275℃,稳定蒸发25min,两段之间升温时间为180s,降温,得到三酸盐前驱体。
(2)合成Na 3Ni(PO 4)(SO 4)/F:将三酸盐前驱体球磨至粒径<50μm,与20mL的1.5mol/L氢氧化钠混合均匀,烘箱125℃干燥3h,加热炉氩气环境下,设定540℃下加热8h,得到钠离子正极材料—Na 3Ni(PO 4)(SO 4)/F。
实施例1-3与对比例1-3分析:
将实施例1-3与对比例1-3制备得到的钠离子正极材料、碳黑导电剂、聚四氟乙烯以质量比为80:10:10混合溶于去离子水中配成浆料,然后涂布在铝箔上,形成极片,将极片放于干燥箱中在80℃下干燥12h,模具冲压制成圆片;将圆片剪成直径为10mm的对电极极片;向碳酸酯中加入1.0mol/L NaClO 4为电解液,Celgard2400为隔膜,在氩气氛围下的真空手套箱中进行电池组装。用电化学工作站对扣式电池进行交流阻抗、循环伏安测试,用LAND电池测试系统对扣式电池进行充放电测试,测试的电流密度为30mA·g -1
表1实施例1-3与对比例1-3制备的正极材料得到的电池测试数据
Figure PCTCN2022115953-appb-000001
Figure PCTCN2022115953-appb-000002
表1中,实施例1-3首次放电容量在128.3-132.6mAh·g -1,首次放电时平台电压在3.8V,对比例1-3首次放电容量在115.6-117.7mAh·g -1,首次放电时平台电压在3.6-3.7V,且当第100次放电时;实施例1-3放电容量仍有在107.5-108.7mAh·g -1,对比例1-3首次放电容量在89.8-93.2mAh·g -1;实施例1-3制备的正极材料得到的电池在首次、第10次、第100次放电效率也均分别高于对比例1-3制备的正极材料得到的电池在首次、第10次、第100次放电效率。说明富镍高压钠离子正极材料经过微波水热、加入稳定剂、洗钠剂浸润处理电化学性能均有所提升。
从图2、图4中,实施例1制备得到的钠离子正极材料表面附着有一层氧化铝,与钠离子正极材料紧密结合,图3中富镍高压钠离子正极材料表面较粗糙,粒径大小约为12μm。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种钠离子正极材料,其特征在于,所述钠离子正极材料的通式为Na sNi t(PO 4)(SO 4)/F@M-C;所述M为锌、镍、铝、锰、铬、钼、锰、铜、钙中至少一种氧化物,其中,2≤s≤4,0.5≤t≤1.5。
  2. 根据权利要求1所述的钠离子正极材料,其特征在于,所述s的取值范围为2.5≤s≤3.5,t的取值范围为0.5≤t≤1.2。
  3. 权利要求1-2任一项所述的钠离子正极材料的制备方法,其特征在于,包括以下步骤:
    将镍源溶液、硫酸源、磷酸源和氟源混合,进行微波水热反应,浓缩,得到三酸盐前驱体;
    将所述三酸盐前驱体与钠源、稳定剂混合、加热反应,得到Na sNi t(PO 4)(SO 4)/F;
    向所述Na sNi t(PO 4)(SO 4)/F中加入洗钠剂浸润,烧结,即得所述钠离子正极材料。
  4. 根据权利要求3所述的制备方法,其特征在于,所述镍源溶液是由镍源溶于有机酸中得到;所述有机酸为酒石酸、草酸、柠檬酸、甲酸、醋酸中的至少一种;所述镍源为硫酸镍、氢氧化镍、硝酸镍、氯化镍或碳酸镍中的至少一种。
  5. 根据权利要求3所述的制备方法,其特征在于,所述硫酸源为硫酸、硫酸钠、硫酸铵、硫酸氢铵、硫酸氢钠或硫酸镍中的至少一种。
  6. 根据权利要求3所述的制备方法,其特征在于,所述磷酸源为磷酸、磷酸钠、磷酸铵、磷酸氢二铵、磷酸二氢铵、磷酸氢钠或磷酸镍中的至少一种。
  7. 根据权利要求3所述的制备方法,其特征在于,所述氟源为氟化铵、氟化钾、氟化钠或氟化氢中的至少一种;所述钠源为氢氧化钠、柠檬酸钠、草酸钠、乙酸钠、磷酸钠、硫酸钠、碳酸钠或氯化钠中的至少一种;所述稳定剂为1,4-苯二甲酸,2,5-二丙氧基-1,4-二酰肼、N,N,N',N'-四(4-甲氧基苯基)-9H-咔唑-3,6-二胺、4,4',4-三甲基-2,2':6',2-三联吡啶中的至少一种。
  8. 根据权利要求3所述的制备方法,其特征在于,所述微波水热反应的温度为100-300℃,微波水热反应的时间为1-60min;所述Na sNi t(PO 4)(SO 4)/F与洗钠剂的固液比为(0.1-3):(1-5)g/ml。
  9. 根据权利要求3所述的制备方法,其特征在于,所述洗钠剂为硫酸锌、硫酸镍、硫酸铝、硫酸锰、硫酸铬、硫酸钼、硫酸铜或硫酸钙中的至少一种。
  10. 一种电池,其特征在于,包括权利要求1-2任一项所述的钠离子正极材料。
PCT/CN2022/115953 2021-11-26 2022-08-30 富镍高压钠离子电池正极材料及其制备方法和应用 WO2023093180A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2313956.1A GB2619230A (en) 2021-11-26 2022-08-30 Nickel-rich high-voltage sodium-ion positive electrode material for battery, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111424144.6A CN114242972A (zh) 2021-11-26 2021-11-26 富镍高压钠离子电池正极材料及其制备方法和应用
CN202111424144.6 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023093180A1 true WO2023093180A1 (zh) 2023-06-01

Family

ID=80751465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115953 WO2023093180A1 (zh) 2021-11-26 2022-08-30 富镍高压钠离子电池正极材料及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN114242972A (zh)
GB (1) GB2619230A (zh)
WO (1) WO2023093180A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242972A (zh) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 富镍高压钠离子电池正极材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364946A (zh) * 2012-06-12 2015-02-18 丰田自动车株式会社 钠电池用正极材料及其制造方法
CN106328911A (zh) * 2016-11-30 2017-01-11 合肥工业大学 一种阴阳离子掺杂碳包覆磷酸钒钠正极材料及其制备方法
CN109065855A (zh) * 2018-07-12 2018-12-21 合肥国轩高科动力能源有限公司 一种氧化物与碳共包覆阳离子掺杂的钠离子电池正极材料磷酸钒钠及其制备方法
JP2020027734A (ja) * 2018-08-10 2020-02-20 太平洋セメント株式会社 ナトリウムイオン二次電池用負極活物質粒子及びその製造方法
CN110875473A (zh) * 2018-09-03 2020-03-10 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法及钠离子电池
CN112447947A (zh) * 2019-08-28 2021-03-05 宁德时代新能源科技股份有限公司 钠离子电池用正极材料及其制备方法
CN113422043A (zh) * 2021-07-19 2021-09-21 中国科学院过程工程研究所 一种改性磷酸钛锰钠正极材料及其制备方法和应用
CN114242972A (zh) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 富镍高压钠离子电池正极材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364946A (zh) * 2012-06-12 2015-02-18 丰田自动车株式会社 钠电池用正极材料及其制造方法
CN106328911A (zh) * 2016-11-30 2017-01-11 合肥工业大学 一种阴阳离子掺杂碳包覆磷酸钒钠正极材料及其制备方法
CN109065855A (zh) * 2018-07-12 2018-12-21 合肥国轩高科动力能源有限公司 一种氧化物与碳共包覆阳离子掺杂的钠离子电池正极材料磷酸钒钠及其制备方法
JP2020027734A (ja) * 2018-08-10 2020-02-20 太平洋セメント株式会社 ナトリウムイオン二次電池用負極活物質粒子及びその製造方法
CN110875473A (zh) * 2018-09-03 2020-03-10 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法及钠离子电池
CN112447947A (zh) * 2019-08-28 2021-03-05 宁德时代新能源科技股份有限公司 钠离子电池用正极材料及其制备方法
CN113422043A (zh) * 2021-07-19 2021-09-21 中国科学院过程工程研究所 一种改性磷酸钛锰钠正极材料及其制备方法和应用
CN114242972A (zh) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 富镍高压钠离子电池正极材料及其制备方法和应用

Also Published As

Publication number Publication date
GB2619230A (en) 2023-11-29
GB202313956D0 (en) 2023-10-25
CN114242972A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN105161705B (zh) 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法
WO2018032569A1 (zh) 核壳结构LiMn1-xFexPO4正极材料及其制备方法、锂离子电池
CN102738458B (zh) 一种富锂正极材料的表面改性方法
CN100448772C (zh) 高密度超微复合型磷酸铁锂正极材料的制备方法
CN108023078A (zh) 一种单晶形貌高镍三元正极材料及其制备方法
CN103956485B (zh) 一种三维分级结构的磷酸铁锂电极材料及其制备方法
CN111180709B (zh) 碳纳米管、金属铜共掺杂草酸亚铁锂电池复合负极材料及其制备方法
CN107403913A (zh) 一种表面修饰的镍钴铝酸锂正极材料及其制备方法
CN101752562B (zh) 一种复合掺杂改性锂离子电池正极材料及其制备方法
CN106711414A (zh) 一种锂离子电池811型三元正极改性材料及其制备方法
CN111162256A (zh) 一种混合聚阴离子型钠离子电池正极材料及其制备
CN103943848A (zh) 一种多孔棒状结构钴基锂离子电池正极材料的制备方法
WO2023193372A1 (zh) 一种二元掺杂的铁基氟磷酸盐钠离子正极材料及其制备方法
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN111029560A (zh) 钠离子梯度掺杂的尖晶石结构正极活性材料及其制备方法
CN109546101A (zh) 镍钴铝酸锂正极材料的制备方法及锂离子电池
CN112599765A (zh) 一种钠/钾掺杂的高性能富锂锰镍基正极材料及其制备方法
CN105576236A (zh) 锂离子电池442型三元正极改性材料及其制备方法
CN108400296B (zh) 异质元素掺杂四氧化三铁/石墨烯负极材料
CN115763766A (zh) Na2MnPO4F包覆的O3型层状钠离子电池正极材料及其制备方法
WO2023093180A1 (zh) 富镍高压钠离子电池正极材料及其制备方法和应用
CN111403703A (zh) 一种氟化物和硫化物双重包覆三元正极材料的方法
CN109473674B (zh) 一种石墨烯负载纳米磷酸镍锂锂电池正极材料及制备方法
CN112938952A (zh) 二维结构三氧化钨包覆石墨烯的负极材料的制备与应用
CN107170976A (zh) 一种钴掺杂钛酸锂纳米复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202313956

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220830

WWE Wipo information: entry into national phase

Ref document number: P202390196

Country of ref document: ES