WO2023058088A1 - リグノセルロース溶液及び成形品並びにその製造方法 - Google Patents

リグノセルロース溶液及び成形品並びにその製造方法 Download PDF

Info

Publication number
WO2023058088A1
WO2023058088A1 PCT/JP2021/036631 JP2021036631W WO2023058088A1 WO 2023058088 A1 WO2023058088 A1 WO 2023058088A1 JP 2021036631 W JP2021036631 W JP 2021036631W WO 2023058088 A1 WO2023058088 A1 WO 2023058088A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignocellulose
molded article
coarse powder
organic acid
pressure
Prior art date
Application number
PCT/JP2021/036631
Other languages
English (en)
French (fr)
Inventor
隆司 渡辺
直子 小林
健司 北山
知弘 橋爪
Original Assignee
国立大学法人京都大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 株式会社ダイセル filed Critical 国立大学法人京都大学
Priority to PCT/JP2021/036631 priority Critical patent/WO2023058088A1/ja
Priority to JP2023552905A priority patent/JPWO2023058662A1/ja
Priority to CN202280066779.XA priority patent/CN118043404A/zh
Priority to PCT/JP2022/037190 priority patent/WO2023058662A1/ja
Publication of WO2023058088A1 publication Critical patent/WO2023058088A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse

Definitions

  • the present disclosure relates to a method for solubilizing lignocellulose, and a lignocellulose solution and molded article obtained by this method.
  • the main component of woody biomass is a natural polymer mixture called lignocellulose.
  • Lignocellulose forms a strong higher-order structure in which cellulose, hemicellulose, and lignin are intricately intertwined.
  • cellulose which is a linear polymer, forms a crystalline structure through intramolecular and intermolecular hydrogen bonding to form strong microfibrils, which are entangled with hemicellulose such as xylan and glucomannan
  • lignin which is a disordered aromatic polymer, fills the voids of these polysaccharide matrices to form a strong complex.
  • lignocellulose as a whole does not dissolve in solvents such as water and organic solvents under mild conditions.
  • solvents such as water and organic solvents under mild conditions.
  • a pretreatment to physically destroy the plant cell wall by grinding treatment such as ball milling, or a pretreatment to separate cell wall components by high-temperature reaction in a solvent containing a catalyst. is necessary. It has been a big problem in the use of woody biomass because the energy and cost required for the grinding process and high-temperature reaction are large.
  • Patent Document 1 Japanese Patent No. 3155603 discloses a method for producing a liquefied solution of a lignocellulosic material by heating a lignocellulosic material such as wood in the presence of an acid catalyst, a cyclic ester and a polyhydric alcohol. ing.
  • This method is a wood liquefaction method that promotes the acid decomposition of wood in chemicals, and uses acid catalysts such as sulfuric acid, polyhydric alcohol chemicals such as polyethylene glycol, and a reaction temperature of about 150 ° C. required heating to
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-181105 discloses pulp containing about 5% lignin. is pretreated with an alkaline aqueous solution, carbon disulfide is added and dissolved, and then coagulated and regenerated to produce a lignocellulose molded article.
  • Non-Patent Document 1 (Green Chemistry 16, 3569 (2014)) describes a method for solubilizing fine wood flour pulverized using a ball mill in formic acid. Specifically, it describes a method of dissolving wood pulverized by a ball mill in pyruvic acid, which is an ⁇ -keto acid, and glyoxylic acid and formic acid, which are aldehyde-based carboxylic acids, at room temperature.
  • Non-Patent Document 2 ACS Sustainable Chem. Eng. 5, 12, 11536 (2017)
  • finely ground beech wood is directly dissolved in formic acid at room temperature for 4-7 days.
  • a transparent flat woody film obtained by evaporating the solvent from this solution can be folded and used for origami.
  • the lignocellulose membrane disclosed in Patent Document 3 (Japanese Patent Application Laid-Open No. 4-33986) is typically obtained by adding a concentrated alkaline aqueous solution and carbon disulfide to lignocellulose fibers obtained by crushing hardwood chips. In addition, it is described that it is produced by solidifying and regenerating after melting.
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2003-104815
  • a soluble lignocellulose substance is obtained by adding phenols to a lignocellulose material and causing a heating reaction.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2008-308530
  • soluble lignocellulose is produced by grinding a lignocellulose fibrous material using a mechanical grinding means until the molecular weight of the lignocellulose is 10,000 or less. has been proposed to obtain
  • Patent Documents 1-4 chemicals such as organic solvents, which are concerned about environmental impact, are used to dissolve lignocellulose.
  • Patent Document 5 and Non-Patent Documents 1 and 2 such an organic solvent is not used.
  • J. Zehr, "Handbuch der Kunststoffexplosionen, planet IIb, compassion brennbar Staube und Nebel in Gut” p.164 (1965) as combustible fine powder, 70-150 ⁇ m for coniferous pine and 70-100 ⁇ m for beech
  • Ball mill pulverization may generate fine powder of combustible wood, and there is concern that scattering of this fine powder may affect the working environment. From the standpoint of improving energy efficiency and reducing costs, and furthermore, from the standpoint of improving worker safety, there is room for further improvement in the utilization technology of woody biomass.
  • the purpose of the present disclosure is to provide a method for producing a lignocellulose solution and a molded article, which is less burdensome on the environment and workers as a method of using woody biomass, and is also advantageous in terms of energy.
  • Another object of the present disclosure is to provide a lignocellulose solution and molded article with high industrial applicability and low environmental load.
  • the present disclosure has found that pressure fluctuations on biomass containing lignocellulose significantly improves the solubility in organic acids, and can solubilize even coarsely ground biomass. completed the molding.
  • the method for producing a lignocellulose solution of the present disclosure includes (1) A pulverizing step of coarsely pulverizing biomass containing lignocellulose to obtain a coarse powder (2) A mixing step of mixing the coarse powder and an organic acid, and (3) a dissolving step of dissolving the coarse powder in an organic acid.
  • the coarse powder contains particles with a particle size of 0.35 mm or more.
  • the organic acid is an ⁇ -keto acid or a carboxylic acid having a formyl group.
  • the organic acid is selected from the group consisting of formic acid, glyoxylic acid and pyruvic acid.
  • the dissolving step comprises an organic acid and a The indicated metal salt is used in combination.
  • the metal salt is aluminum potassium sulfate.
  • this production method further includes a pressure regulation step of reducing pressure or increasing pressure before and/or after the mixing step.
  • the pressure may be reduced within a range of 1.0 kPa or more and 10.0 kPa or less (absolute pressure).
  • pressure may be applied within a range of 200 kPa or more and 1000 kPa or less (gauge pressure).
  • the lignocellulose solution of the present disclosure is obtained by the production method described above.
  • the lignocellulose-containing shaped articles of the present disclosure are formed from this lignocellulose solution.
  • the lignocellulose molded article of the present disclosure contains lignocellulose as a main component.
  • the density of this molding is less than 1.2 g/cm 3 .
  • the lignocellulose-containing molded article may have functional groups derived from organic acids.
  • This molded article further contains a metal salt represented by the general formula M a M b (SO 4 ) 2 (wherein M a is a trivalent metal and M b is NH 4 or a monovalent metal). may contain.
  • the lignocellulose-containing molded article contains fibrous substances derived from lignocellulose.
  • the molded article is a sheet or film.
  • the lignocellulose-containing molding does not crack when bent at an angle of 90 degrees or more.
  • the glass transition temperature Tg of this molded article is 200° C. or higher.
  • Coarse powder obtained by coarsely pulverizing a molded article is mixed with 50 parts by weight of an organic acid per 1 part by weight of the coarse powder to dissolve, and the obtained solution is passed through a 20-mesh sieve.
  • the weight of the residue remaining on the sieve is measured, and the ratio (unit: weight %) of this residue to the coarse powder mixed with the organic acid is determined as the amount of insoluble matter. 5% by weight or less.
  • the production method of the present disclosure it is possible to obtain a lignocellulose solution and a molded product without pulverizing biomass as a raw material over a long period of time and without using chemicals that have a large impact on the environment. can.
  • the physical properties of cellulose, lignin, etc. that constitute lignocellulose can be exhibited.
  • FIG. 1 is a photograph showing coarse biomass powder obtained in a pulverization step of a production method according to an embodiment of the present disclosure.
  • FIG. 2 is a photograph showing a solubilized lignocellulose-containing solution obtained by dissolving the coarse powder of FIG.
  • FIG. 3 is a photograph of a solubilized lignocellulose-containing sheet formed from the solubilized lignocellulose-containing solution of FIG.
  • FIG. 4 is an electron micrograph showing the surface state of the sheet of FIG.
  • FIG. 5 is an electron micrograph showing a cross section of the sheet of FIG.
  • FIG. 6 is an electron micrograph showing the surface state of the sheet of Comparative Example 1, at a magnification of 6a: 500 times and 6b: 1000 times.
  • FIG. 7 is an electron micrograph showing the cross-sectional state of the sheet of Comparative Example 1, at a magnification of 7a: 300 times and 7b: 1000 times.
  • X to Y indicating the range means “X or more and Y or less”. Also, unless otherwise noted, all test temperatures are room temperature (20°C ⁇ 5°C).
  • the method for producing a lignocellulose solution of the present disclosure has a pulverizing step, a mixing step and a dissolving step.
  • the pulverization step is a step of coarsely pulverizing biomass containing lignocellulose as a raw material (hereinafter sometimes referred to as raw material biomass) to obtain coarse powder.
  • a mixing process is a process of mixing this coarse powder and an organic acid.
  • the dissolving step is a step of dissolving this coarse powder in an organic acid.
  • a lignocellulose solution with high utility value can be easily and safely produced without requiring a pulverization process that consumes a lot of energy and without using chemicals that have a large impact on the environment. Obtainable.
  • the biomass containing lignocellulose is not particularly limited, and woody biomass such as broadleaf trees and conifers, and herbaceous biomass such as rice straw and wheat bran are appropriately selected and used.
  • lignocellulose means a mixture of natural polymers consisting mainly of cellulose, hemicellulose and lignin. The content of cellulose, hemicellulose and lignin varies depending on the type of biomass selected, but the composition is not particularly limited in the production method of the present disclosure. Two or more types of biomass containing lignocellulose with different compositions can be used as raw materials.
  • raw biomass is coarsely pulverized to obtain a coarse powder containing lignocellulose.
  • a device that pulverizes crushed material with a size of several hundred mm or more to about several tens of mm is called a "crusher”, and crushes materials on the order of several tens of mm to about several mm to several hundred ⁇ m.
  • an apparatus intended to make fine particles to the order of several ⁇ m is called a “fine pulverizer”, and an apparatus intended to produce fine powder of several ⁇ m or less is called an “ultra-fine pulverizer”.
  • a powder containing particles with a particle size of 0.35 mm or more is referred to as "coarse powder", and pulverization to obtain this coarse powder is referred to as “coarse pulverization”. Therefore, in the pulverization step of the present disclosure, “coarse pulverization” is performed using a “pulverizer”.
  • the coarse powder obtained in the pulverization process of the present disclosure has not undergone advanced pulverization treatment using a “pulverizer” and an “ultra-pulverizer”. Therefore, the structural destruction of cellulose, lignin, etc. in the raw material biomass is less, and for example, the crystallinity of cellulose, the antibacterial properties unique to lignin, the ultraviolet absorbability, etc. are maintained even after pulverization.
  • advanced pulverization treatment by a "fine pulverizer” or “ultra fine pulverizer” is not required, generation of fine powder is suppressed.
  • the particle diameter of the particles contained in the coarse powder may be 0.10 mm to 3.0 mm, may be 0.15 mm to 2.0 mm, and may be 0.20 mm to 1.0 mm. 0.25 mm to 0.75 mm, 0.30 mm to 0.55 mm, 0.35 mm to 0.50 mm. From the viewpoint of improving safety, a coarse powder that does not contain particles with a particle size of less than 100 ⁇ m is preferable, and a coarse powder that does not contain particles with a particle size of 80 ⁇ m or less is more preferable.
  • the particle size of coarse powder is measured by a sieve classification method using a JIS standard sieve.
  • the method for coarsely pulverizing the raw biomass is not particularly limited, and known pulverizing methods such as compression pulverization, impact pulverization, and shear pulverization can be used. It may be dry pulverization or wet pulverization. As described above, according to the manufacturing method of the present disclosure, a pulverization method that can obtain a coarse powder is sufficient. Therefore, dry pulverization is preferably used because it is possible to pulverize at a micron level and at a low cost.
  • Preferable crushers from the viewpoint of energy and cost reduction in the crushing process include jaw crushers, gyratory crushers, crushing rolls, hammer mills, roller mills, cutter mills, hammer crushers, and Willey mills. Two or more types of pulverizers may be used in combination. Willey mills, which grind by shear and impact, are preferred.
  • Coarse pulverization of raw material biomass may be continuous or batchwise. Prior to the pulverization step of the present disclosure, the raw biomass may be cut into small pieces (chipped) using a known cutter, chipper, or the like.
  • the coarse powder containing lignocellulose and the organic acid are mixed. It is preferable that the coarse powder and the organic acid are uniformly mixed.
  • Organic acids that can be used in this step are not particularly limited, but typical organic acids are carboxylic acids. It may be an aliphatic carboxylic acid or an aromatic carboxylic acid. From the viewpoint of excellent solubility of the coarse powder, ⁇ -keto acids and formyl group-containing carboxylic acids are preferred, and organic acids selected from the group consisting of formic acid, glyoxylic acid and pyruvic acid are particularly preferred.
  • the amount of organic acid added is appropriately selected according to the type of raw material biomass, the particle size of the coarse powder, the type of organic acid, and so on. From the viewpoint of improving the dissolution efficiency, the amount of the organic acid added is preferably 4 parts by weight or more, more preferably 9 parts by weight or more, relative to 1 part by weight of the coarse powder. From the viewpoint that a molded article described later can be easily obtained, the amount of the organic acid added is preferably 200 parts by weight or less, more preferably 49 parts by weight or less, relative to 1 part by weight of the coarse powder. The amount of the organic acid relative to 1 part by weight of the coarse powder may be 4 to 200 parts by weight, may be 4 to 49 parts by weight, may be 9 to 200 parts by weight, or may be 9 to 49 parts by weight. good.
  • a solution containing lignocellulose is obtained by dissolving coarse powder containing lignocellulose in an organic acid.
  • the coarse powder may be partially dissolved in the organic acid.
  • the lignocellulose solution of the present disclosure is obtained by removing insoluble matter by filtration or the like.
  • dissolution means a state in which the shape of the coarse powder in the organic acid cannot be visually recognized. Even when fibrous substances derived from lignocellulose are observed in the solution by microscopic observation or the like, when the shape of the coarse powder itself disappears, it is defined as “dissolution”. Also, such a liquid in a "dissolved” state is defined as a “solution” in the present disclosure.
  • the dissolution conditions in the dissolution step are not particularly limited, and are appropriately selected according to the type of raw material biomass, the particle size of coarse powder, the type of organic acid, and the like.
  • the dissolution temperature is preferably 20° C. or higher, more preferably 30° C. or higher.
  • the preferred melting temperature is 100°C or less.
  • a stirring process may be performed, or a stirring process accompanied by pulverization may be performed.
  • Dissolution of biomass under milder conditions becomes possible by performing a stirring treatment accompanied by pulverization in an organic acid.
  • the production method of the present disclosure includes pulverizing and stirring the coarse powder in the organic acid in the dissolution step.
  • the stirring treatment with pulverization may be continued until the lignocellulose solution is obtained, or after performing the agitation treatment with pulverization for a predetermined time, the agitation treatment without pulverization may be performed.
  • Apparatuses for agitating treatment accompanied by pulverization include, for example, a bead mill, a colloid mill, a disk refiner, a conical refiner, and the like.
  • metal salt Preferably, in the dissolution step , together with the organic acid , the indicated metal salt is used in combination.
  • the metal salt represented by this general formula is a double salt also called "alum". It may be a hydrate of a metal salt. The combined use of the organic acid and alum improves the solubility of the coarse powder in the organic acid.
  • trivalent metals include aluminum, iron, and chromium.
  • monovalent metals include sodium and potassium.
  • a preferred metal salt is aluminum potassium sulfate.
  • Aluminum potassium sulfate dodecahydrate may be used as the metal salt.
  • the amount of the metal salt added is preferably 1 part by weight or more, more preferably 2 parts by weight or more, and 5 parts by weight or more with respect to 100 parts by weight of the coarse powder. is more preferred.
  • the amount of metal salt added is preferably 30 parts by weight or less, more preferably 25 parts by weight or less, and even more preferably 20 parts by weight or less, from the viewpoint of obtaining a solution or molded article with a high lignocellulose content.
  • the production method of the present disclosure further includes a pressure adjusting step of pressurizing or depressurizing using a pressure adjusting means before mixing the coarse powder and the organic acid and/or after mixing the coarse powder and the organic acid.
  • a pressure adjusting step of pressurizing or depressurizing using a pressure adjusting means before mixing the coarse powder and the organic acid and/or after mixing the coarse powder and the organic acid.
  • the pressure adjusting means used in the pressure adjusting process is not particularly limited.
  • the pressure range described above is adjusted by known means such as an aspirator, ejector, compressor, and mechanical pump.
  • the lignocellulose solution obtained by the production method of the present disclosure contains solubilized lignocellulose.
  • the concentration of this lignocellulose solution is preferably 0.5% by weight or more, more preferably 2.0% by weight or more. From the viewpoint of ease of production, the concentration of the lignocellulose solution is preferably 20% by weight or less, more preferably 10% by weight or less.
  • the concentration of the lignocellulose solution may be from 0.5 to 20 wt%, from 0.5 to 10 wt%, from 2.0 to 20 wt%, from 2.0 to 10 wt%. can be
  • a lignocellulose solution contains a metal salt of the general formula M a M b (SO 4 ) 2 , where M a is a trivalent metal and M b is NH 4 or a monovalent metal. It's okay.
  • this metal salt include the metal salts described above with respect to the method of making the lignocellulose solution.
  • a preferred metal salt is aluminum potassium sulfate.
  • the content of the metal salt in the lignocellulose solution is preferably 1 part by weight or more, more preferably 2 parts by weight or more, and even more preferably 5 parts by weight or more with respect to 100 parts by weight of the raw material coarse powder.
  • the content of the metal salt is preferably 30 parts by weight or less, more preferably 25 parts by weight or less, and even more preferably 20 parts by weight or less.
  • the lignocellulose solution may further contain known additives such as pigments as long as the effects of the present disclosure are not impaired.
  • Molded articles of the present disclosure are formed from the lignocellulose solutions described above.
  • the main component of this molded article is lignocellulose.
  • "main component” means a component whose content is at least 50% by weight or more.
  • the content of lignocellulose in this lignocellulose-containing molded product is at least 50% by weight or more, preferably 60% by weight or more, more preferably 80% by weight or more, further preferably 90% by weight or more, and the upper limit is 100%. % by weight.
  • the lignocellulose contained in the lignocellulose-containing molded article of the present disclosure is obtained by solubilizing the lignocellulose in the raw material biomass without undergoing a pulverization treatment.
  • the molded article contains fibrous material derived from lignocellulose. Fibrous material derived from lignocellulose is considered to be cellulose fibers that have not been broken during the milling process. The presence of this fibrous substance can be confirmed by scanning electron microscopy.
  • the molded article may have a functional group derived from an organic acid to the extent that the effects of the present disclosure are not impaired.
  • this organic acid include the organic acids described above with respect to the method of making the lignocellulose solution.
  • functional groups derived from organic acids include formyl groups and carboxyl groups.
  • a functional group derived from an organic acid in a molded product is detected by an infrared absorption spectrum obtained by spectrophotometric analysis of a thin molded product.
  • the density of the lignocellulose-containing molded article of the present disclosure is less than 1.2 g/cm 3 , preferably 1.15 g/cm 3 or less, more preferably 1.1 g/cm 3 or less. From the viewpoint of excellent mechanical strength, the density of the molded product is preferably 0.2 g/cm 3 or more, more preferably 0.3 g/cm 3 or more. This density is an apparent density measured according to JIS Z 8807 "Method for measuring density and specific gravity of solid".
  • the lignocellulose-containing molded article of the present disclosure has mechanical properties that allow it to be deformed without cracking or the like.
  • the tensile properties of the lignocellulose-containing molded article are appropriately set according to its application and shape, but from the viewpoint of ease of deformation, the Young's modulus of this molded article is preferably 0.05 GPa or more, more preferably 1.0 GPa or more. . From the viewpoint of durability, the preferred Young's modulus is 4.0 GPa or less. From the viewpoint of durability, the maximum stress of this molded article is preferably 0.5 MPa or more, more preferably 5.0 MPa or more, still more preferably 10 MPa or more, and particularly preferably 20 MPa or more.
  • the preferred maximum stress is 80 MPa or less.
  • the maximum elongation of this molded product is preferably 0.5% or more, more preferably 1.5% or more.
  • the preferred maximum elongation is 5.0% or less.
  • the Young's modulus, maximum stress and maximum elongation of the lignocellulose-containing molded article are measured by a tensile test according to ISO527-1. Details of the measurement method and measurement conditions will be described later in Examples.
  • the glass transition temperature Tg of the lignocellulose-containing molded article of the present disclosure is preferably 200°C or higher, more preferably 210°C or higher, and even more preferably 220°C or higher.
  • the upper limit is not particularly limited, the preferred glass transition temperature Tg is 280° C. or lower.
  • the glass transition temperature of molded articles of the present disclosure is measured by dynamic viscoelasticity measurements. Details of the measurement method and measurement conditions will be described later in Examples.
  • the lignocellulose-containing shaped articles of the present disclosure have the general formula M a M b (SO 4 ) 2 , where M a is a trivalent metal and M b is NH 4 or a monovalent metal. It may also contain a metal salt that is Examples of this metal salt include the metal salts described above with respect to the method of making the lignocellulose solution.
  • the content of the metal salt in the molded article is preferably 1 part by weight or more, more preferably 5 parts by weight or more, per 100 parts by weight of the molded article. A preferred metal salt content is 20 parts by weight or less.
  • the lignocellulose-containing molded article may further contain known additives such as pigments as long as the effects of the present disclosure are not impaired.
  • the molded article of the present disclosure has excellent solubility in organic acids. Specifically, this molded article has an amount of insoluble matter in an organic acid of 5.0% by weight or less.
  • the amount of matter insoluble in an organic acid is obtained after mixing and dissolving a coarse powder obtained by coarsely pulverizing a molded article with 50 parts by weight of an organic acid per 1 part by weight of the coarse powder. It is determined by a dissolution test in which the weight of the residue remaining on the sieve is measured when the dissolved solution is passed through a 20-mesh sieve. The ratio (% by weight) of this residue to the coarse powder mixed with the organic acid is calculated as the amount of insolubles. In this dissolution test, before and/or after mixing the organic acid and the coarse powder, a pressure regulation step of reducing pressure or increasing pressure may be performed.
  • lignocellulose-containing molded article of the present disclosure are not particularly limited, representative molded articles include sheets and films. Sheets and films containing lignocellulose are obtained, for example, by a manufacturing method comprising the steps of casting a lignocellulose solution onto a substrate and drying the lignocellulose solution on the substrate.
  • sheets and films formed from lignocellulose obtained by pulverizing raw material biomass are brittle when dried and cracks occur when bent.
  • the sheets and films formed from the lignocellulose solutions of the present disclosure contain fibrous material derived from lignocellulose because the raw biomass has not undergone a pulverization process. By including this fibrous substance, the foldability of the sheet and film is improved. Sheets and films formed from the lignocellulose solutions of the present disclosure do not crack when bent at angles of 90 degrees or greater.
  • the lignocellulose-containing molded article of the present disclosure is a molded article having raw biomass as a main component and having physical properties derived from the raw biomass.
  • the molded article can have physical properties possessed by cellulose, hemicellulose and lignin.
  • This molded article can be applied to fields such as medical care, clothing, housing equipment, etc., as films, fibers, wallpaper, etc. that require functions such as antibacterial properties, ultraviolet absorbency, and metal adsorptivity.
  • Example 1 After pulverizing eucalyptus chips using a Wiley mill equipped with a 20-mesh sieve, the resulting wood flour was classified using a JIS standard sieve. Particles that passed through a sieve with an opening of 500 ⁇ m and did not pass through a sieve with an opening of 355 ⁇ m were collected to obtain eucalyptus wood powder (particle size: 355 ⁇ m to 500 ⁇ m). The coarse powder obtained is shown in FIG.
  • eucalyptus wood powder 100 mg was put into a flask with a capacity of 30 ml, and 10 ml of formic acid with a concentration of 80% by weight (manufactured by Nacalai Tesque) was added in a nitrogen gas atmosphere. Subsequently, a water aspirator was connected to the flask and the pressure was reduced for 30 minutes to adjust the pressure to 5 kPa (absolute pressure). After 7 days at 50° C., it was visually confirmed that the eucalyptus wood powder disappeared and the lignocellulose solution of Example 1 was obtained. The lignocellulose solution of Example 1 is shown in FIG.
  • Example 2-24 A lignocellulose solution of Example 2-24 was obtained in the same manner as in Example 1 except that the type of raw material biomass, dissolution conditions, etc. were changed to those shown in Table 1-6 below.
  • aluminum potassium sulfate dodecahydrate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was used as the metal salt. No remaining wood powder was visually observed in any of the solutions.
  • Comparative Example 2 A dissolution test was conducted in the same manner as in Comparative Example 1, except that cedar wood flour was used as the raw material biomass. After stirring for one day at room temperature, disappearance of the fine powder was visually confirmed.
  • a tensile test is performed in accordance with the provisions of ISO527-1 (tensile speed 10 mm / min, The distance between the grippers was 50 mm), and the Young's modulus (unit: GPa), maximum stress (unit: MPa) and maximum elongation (unit: %) of Example 1-24 were measured. The average of each of the 5 measurements is shown in Tables 1-6 below.
  • Glass-transition temperature The glass transition temperatures of the lignocellulose-containing sheets of Examples 1-24 and Comparative Examples 1-2 were measured using a dynamic viscoelasticity measuring device (trade name “RSA G2” manufactured by TA Instruments). The measurement was carried out in a nitrogen atmosphere at a temperature range of ⁇ 90 to 200° C., a heating rate of 3° C./min, an applied strain of 0.1%, and a frequency of 1 Hz.
  • the temperatures at which the storage modulus, loss modulus, and loss tangent tan ⁇ showed maximum values are shown in Table 1-6 below as Tg(1), Tg(2), and Tg(3), respectively.
  • FIG. 4 shows the surface state of Example 1 (magnification of 500 times (4a) and 1000 times (4b)).
  • FIG. 5 shows the cross-sectional state of Example 1 (magnifications of 100 times (5a) and 300 times (5b)).
  • FIG. 6 shows the surface state of Comparative Example 1 (magnification of 500 times (6a) and 1000 times (6b)).
  • FIG. 7 shows the cross-sectional state of Comparative Example 1 (300-fold magnification (7a) and 1000-fold magnification (7b)).
  • the lignocellulose-containing sheet of the example contains fibrous substances derived from lignocellulose in the raw material biomass, unlike the comparative example. It is believed that this is why the lignocellulose-containing sheets of Examples achieved lightness due to the low density, excellent heat resistance due to the high glass transition temperature, and good bending resistance as compared with the Comparative Examples.
  • the production method of the present disclosure can be applied to use various biomass, including lignocellulose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

リグノセルロースを含むバイオマスを粗粉砕して、粗粉末を得る粉砕工程、粗粉末と有機酸とを混合する混合工程、及び、粗粉末を有機酸に溶解する溶解工程を有する製造方法により、リグノセルロース溶液が得られる。この溶液から、リグノセルロースを主成分とする成形品が形成される。この成形品の密度は1.2g/cm未満である。

Description

リグノセルロース溶液及び成形品並びにその製造方法
 本開示は、リグノセルロースの可溶化方法、並びに、この方法により得られるリグノセルロース溶液及び成形品に関する。
 近年、環境問題への関心の高まりから、石油資源由来の材料に代えて、バイオマス資源由来の材料開発が求められている。特に、食糧との競合がなく、大気中の二酸化炭素を増加させない木質系バイオマスの利用が要望されている。
 木質系バイオマスの主成分は、リグノセルロースと称される天然高分子混合物である。リグノセルロースは、セルロース、ヘミセルロース及びリグニンが複雑に絡み合った強固な高次構造を形成している。詳細には、リグノセルロースでは、直鎖高分子であるセルロースが分子内及び分子間水素結合により結晶構造を形成して強固なミクロフィブリルを構成し、これにキシランやグルコマンナン等のヘミセルロースが絡み合い、さらに不規則芳香族高分子であるリグニンがこれら多糖類のマトリックスの空隙に充填されて、強固な複合体を形成している。そのため、リグノセルロース全体は、温和な条件では、水、有機溶媒等の溶媒に溶解しない。これらの溶媒にリグノセルロース全体を溶解させるためには、ボールミル等の摩砕処理により植物細胞壁を物理的に破壊する前処理、又は、触媒を含む溶媒中での高温反応による細胞壁成分の分離前処理が必要である。摩砕処理や高温反応に要するエネルギー及びコストへの負荷が大きいことから、木質系バイオマス利用上の大きな問題となっていた。
 このように、従来、リグノセルロースの溶解を目的として、高温での化学的分解により水素結合を緩和して分解反応を促進する検討がなされてきた。例えば、有機溶媒中での高温加熱処理、酸又はアルカリによる分解反応、高温下での水熱反応等を利用して、リグノセルロースを溶解する試みがなされてきた。
 特許文献1(特許第3155603号公報)には、木材等のリグノセルロース物質を酸触媒、環状エステル及び多価アルコールの存在下で加熱することによる、リグノセルロース物質の液化溶液の製造方法が開示されている。この方法は、化学薬品中で木材の酸分解を促進する木材液化法であり、硫酸等の酸触媒、及び、ポリエチレングリコール等の多価アルコール系の化学薬品の使用と、150℃程度の反応温度への加熱が必要であった。
 リグニンが結合したセルロースの成形性を改善して、任意の形状のリグノセルロース成形体を得るための技術として、特許文献2(特開平11-181105号公報)では、リグニンを5%程度含有するパルプをアルカリ水溶液で前処理し、二硫化炭素を添加して溶解した後、凝固・再生することによるリグノセルロース成形体の製造方法が提案されている。
 また、リグニンの構造解析のために、木材からリグニンを天然に近い状態で取り出す方法として、ボールミルを用いた磨砕リグニン又はミルドウッドリグニン取得法と称される分析技術が知られている。例えば、非特許文献1(Green Chemistry 16,3569 (2014) )には、ボールミルを用いて粉砕した微細木粉のギ酸への可溶化方法が記載されている。具体的には、ボールミルで微粉砕した木材を、α-ケト酸であるピルビン酸と、アルデヒド系カルボン酸であるグリオキシル酸及びギ酸に室温で溶解する方法が記載されている。また、得られた木材溶液から透明フィルムが得られたとの記載がある。非特許文献2(ACS Sustainable Chem. Eng. 5, 12, 11536 (2017) )では、微粉砕したブナ材が、室温で4~7日間かけてギ酸に直接溶解されている。また、この溶液から溶媒を蒸発さて得られる透明な平板状木質フィルムは、折り曲げることができ、折り紙に使用できるとの記載がある。
 特許文献3(特開平4-33986号公報)に開示されたリグノセルロース膜は、代表的には、広葉樹材チップを解砕等して得たリグノセルロース繊維に、濃厚アルカリ水溶液及び二硫化炭素を加えて溶解した後、凝固・再生することにより製造されると記載されている。特許文献4(特開2003-104815号公報)では、リグノセルロース材料にフェノール類を加えて加熱反応させることにより、可溶性リグノセルロース物質が得られている。特許文献5(特開2008-308530号公報)では、リグノセルロース繊維材料を、リグノセルロースの分子量が10,000以下になるまで、機械的摩砕手段を用いて摩砕することにより、可溶性リグノセルロースを得る方法が提案されている。
特許第3155603号公報 特開平11-181105号公報 特開平4-33986号公報 特開2003-104815号公報 特開2008-308530号公報
Yuri Nishiwaki-Akine and Takashi Watanabe, "Dissolution of wood in α-keto acid and aldehydic carboxylic acids and fractionation at room temperature", Green Chemistry, 16, 3569 (2014) Y. Nishiwaki-Akine, S. Kanazawa, T. Uneyama, K. Nitta, R. Yamamoto-Ikemoto, and Takashi Watanabe, "Transparent woody film made by dissolution of finely divided Japanese beech in formic acid at room temperature", ACS Sustainable Chem. Eng. 5, 12, 11536 (2017)
 特許文献1-4では、リグノセルロースの溶解に、環境への負荷が懸念される有機溶媒等の化学薬品が用いられている。特許文献5並びに非特許文献1-2では、このような有機溶媒は使用されないが、リグノセルロースを低分子量化して可溶化するために、ボールミルを用いた長時間の粉砕が必要であり、工業的に困難である。また、J.Zehr著“Handbuch der Raumexplosionen,Abschnitt IIb, Eigenschaften brennbar Staube und Nebel in Luft” p.164 (1965)では、可燃性の微粉末として、針葉樹の松で70~150μm、ブナで70~100μm以下の粒径が記載されている。ボールミル粉砕によれば、可燃性である木材の微粉末が発生する場合があり、この微粉末の飛散による作業環境への影響が懸念される。エネルギー効率向上及びコスト低減の観点から、さらには、作業者の安全性向上の観点から、木質系バイオマスの利用技術には、さらなる改良の余地がある。
 本開示の目的は、木質系バイオマスの利用方法として、環境及び作業者への負荷が少なく、エネルギー的にも有利なリグノセルロース溶液及び成形品の製造方法の提供である。本開示の他の目的は、産業上利用性が高く、かつ環境負荷の少ないリグノセルロース溶液及び成形品の提供である。
 本開示者らは、リグノセルロースを含むバイオマスに対する圧力変動が、有機酸への溶解性を顕著に向上させ、粗粉砕したバイオマスであっても可溶化させうることを見出し、本開示の製造方法及び成形品を完成させた。
 即ち、本開示のリグノセルロース溶液の製造方法は、
 (1)リグノセルロースを含むバイオマスを粗粉砕して、粗粉末を得る粉砕工程
 (2)粗粉末と有機酸とを混合する混合工程、
及び
 (3)粗粉末を有機酸に溶解する溶解工程
を有している。好ましくは、粗粉末は、粒子径0.35mm以上の粒子を含む。
 好ましくは、有機酸は、α-ケト酸、又は、ホルミル基を有するカルボン酸である。好ましくは、有機酸は、ギ酸、グリオキシル酸及びピルビン酸からなる群から選択される。
 好ましくは、溶解工程では、有機酸と、一般式M(SO(式中、Mは3価の金属であり、MはNH又は1価の金属である)で示される金属塩とが併用される。好ましくは、この金属塩は、硫酸アルミニウムカリウムである。
 好ましくは、この製造方法は、混合工程前及び/又は混合工程後に、減圧又は加圧する調圧工程をさらに含んでいる。調圧工程では、1.0kPa以上10.0kPa以下(絶対圧)の範囲で減圧してもよい。調圧工程では、200kPa以上1000kPa以下(ゲージ圧)の範囲で加圧してもよい。
 前述した製造方法により、本開示のリグノセルロース溶液が得られる。このリグノセルロース溶液から、本開示のリグノセルロース含有成形品が形成される。
 他の観点から、本開示のリグノセルロース成形品は、リグノセルロースを主成分として含む。この成形品の密度は1.2g/cm未満である。
 このリグノセルロース含有成形品が、有機酸に由来する官能基を有してもよい。この成形品が、一般式M(SO(式中、Mは3価の金属であり、MはNH又は1価の金属である)で示される金属塩をさらに含んでもよい。
 好ましくは、このリグノセルロース含有成形品はリグノセルロースに由来する繊維状物質を含んでいる。好ましくは、この成形品は、シート又はフィルムである。
 好ましくは、このリグノセルロース含有成形品は、90度以上の角度で折り曲げたときに亀裂が生じない。好ましくは、この成形品のガラス転移温度Tgは200℃以上である。
 成形品を粗粉砕して得られる粗粉末を、この粗粉末1重量部に対して50重量部の有機酸と混合して溶解し、得られた溶解液を20メッシュの篩に通した後、篩上の残る残渣の重量を測定し、この残渣の、有機酸と混合した粗粉末に対する割合(単位:重量%)を、不溶物量として求める溶解試験において、好ましくは、この成形品の不溶物量は5重量%以下である。
 本開示の製造方法によれば、原料であるバイオマスを長時間かけて微粉砕することなく、しかも、環境への負荷が大きい化学薬品を使用せずに、リグノセルロース溶液及び成形品を得ることができる。この製造方法により得られるリグノセルロース溶液及び成形品では、リグノセルロースを構成するセルロース、リグニン等の物性が発揮されうる。
図1は、本開示の一実施形態に係る製造方法の粉砕工程で得られる、バイオマスの粗粉末が示された写真である。 図2は、図1の粗粉末を溶解して得られる可溶化リグノセルロース含有溶液が示された写真である。 図3は、図2の可溶化リグノセルロース含有溶液から形成された可溶化リグノセルロース含有シートの写真である。 図4は、図3のシートの表面状態が示された電子顕微鏡写真であり、倍率4a:500倍、4b:1000倍である。 図5は、図3のシートの断面が示された電子顕微鏡写真であり、倍率5a:100倍、5b:300倍である。 図6は、比較例1のシートの表面状態が示された電子顕微鏡写真であり、倍率6a:500倍、6b:1000倍である。 図7は、比較例1のシートの断面状態が示された電子顕微鏡写真であり、倍率7a:300倍、7b:1000倍である。
 以下、好ましい実施形態の一例を具体的に説明する。各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。また、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
 なお、本願明細書において、範囲を示す「X~Y」は「X以上Y以下」の意味である。また、特に注釈のない限り、試験温度は全て室温(20℃±5℃)である。
 [リグノセルロース溶液の製造方法]
 本開示のリグノセルロース溶液の製造方法は、粉砕工程、混合工程及び溶解工程を有している。粉砕工程は、原料であるリグノセルロースを含むバイオマス(以下、原料バイオマスと称する場合がある)を粗粉砕して、粗粉末を得る工程である。混合工程は、この粗粉末と有機酸とを混合する工程である。溶解工程は、この粗粉末を有機酸に溶解する工程である。
 本開示の製造方法によれば、多大なエネルギーを消費する微粉砕処理を要することなく、しかも、環境への負荷が大きい化学薬品を用いずに、利用価値の高いリグノセルロース溶液を容易かつ安全に得ることができる。
 (原料バイオマス)
 リグノセルロースを含むバイオマスとしては特に限定はなく、広葉樹、針葉樹等の木質系バイオマス、稲わら、フスマ等の草本系バイオマスが適宜選択されて用いられる。ここで、リグノセルロースとは、主としてセルロース、ヘミセルロース及びリグニンからなる天然高分子の混合物を意味する。選択するバイオマスの種類により、セルロース、ヘミセルロース及びリグニンの含有量は異なるが、本開示の製造方法においてはその組成は特に限定されない。組成の異なるリグノセルロースを含む2種以上のバイオマスを原料として用いることができる。
 (粉砕工程)
 本開示の粉砕工程では、原料バイオマスが粗粉砕されてリグノセルロースを含む粗粉末が得られる。一般的に、粉砕では、数百mm以上のサイズである砕料を数十mm程度まで粉砕する装置を「粗砕機」と称し、数十mmオーダーの材料を数mmから数百μm程度に粉砕する装置を「中砕機」と称する。単に「粉砕機」と言う場合には、この「中砕機」を意味する。また、数μmオーダーまで微細化することを目的とする装置を「微粉砕機」と称し、数μm以下の微粉生成を目的とする装置を「超微粉砕機」と称する。
 本明細書において、粒子径0.35mm以上の粒子を含む粉末が「粗粉末」と称され、この粗粉末を得るための粉砕が「粗粉砕」と称される。従って、本開示の粉砕工程では、「粉砕機」を用いて「粗粉砕」がなされる。本開示の粉砕工程で得られる粗粉末は、「微粉砕機」及び「超微粉砕機」を用いた高度の微粉砕処理がなされていない。そのため、原料バイオマス中のセルロース、リグニン等の構造破壊が少なく、例えば、セルロースの結晶性や、リグニン特有の抗菌性、紫外線吸収性等が、粉砕後においても維持される。また、「微粉砕機」又は「超微粉砕機」による高度の微粉砕処理が不要であるため、微粉末の発生が抑制される。
 本開示の製造方法において、粗粉末に含まれる粒子の粒子径は、0.10mm~3.0mmであってよく、0.15mm~2.0mmであってよく、0.20mm~1.0mmであってよく、0.25mm~0.75mmであってよく、0.30mm~0.55mmであってよく、0.35mm~0.50mmであってよい。安全性向上の観点から、粒子径100μm未満の粒子を含まない粗粉末が好ましく、粒子径80μm以下の粒子を含まない粗粉末がより好ましい。粗粉末の粒子径は、JIS標準ふるいを用いた篩分級法により測定される。
 前述した粗粉末が得られる限り、原料バイオマスを粗粉砕する方法は特に限定されず、圧縮粉砕、衝撃粉砕、せん断粉砕等既知の粉砕方法が用いられ得る。乾式粉砕であってもよく、湿式粉砕であってもよい。前述した通り、本開示の製造方法によれば、粗粉末が得られる程度の粉砕方法で十分である。従って、ミクロンレベルの粉砕が可能で、かつ低コストである乾式粉砕が好適に用いられる。
 粉砕工程におけるエネルギー及びコスト低減の観点から好ましい粉砕機として、ジョークラッシャー、ジャイレトリクラッシャー、クラッシングロール、ハンマーミル、ローラーミル、カッターミル、ハンマークラッシャー、ウィレーミル等が挙げられる。2種以上の粉砕機を併用してもよい。せん断及び衝撃によって粉砕するウィレーミルが好ましい。原料バイオマスの粗粉砕は、連続式であってもよく、バッチ式であってもよい。本開示の粉砕工程前に、既知の切断機、チッパー等を用いて原料バイオマスを小片化(チップ化)してもよい。
 (混合工程)
 混合工程では、リグノセルロースを含む粗粉末と有機酸とが混合される。粗粉末と有機酸とが均一に混合されることが好ましい。
 (有機酸)
 本工程で使用可能な有機酸は特に限定されないが、代表的な有機酸は、カルボン酸である。脂肪族カルボン酸であってもよく、芳香族カルボン酸であってもよい。粗粉末の溶解性に優れるとの観点から、α-ケト酸及びホルミル基を有するカルボン酸が好ましく、ギ酸、グリオキシル酸及びピルビン酸からなる群から選択される有機酸が特に好ましい。
 有機酸の添加量は、原料バイオマスの種類、粗粉末の粒度、有機酸の種類等に応じて適宜選択される。溶解効率が向上するとの観点から、有機酸の添加量は、粗粉末1重量部に対して、4重量部以上が好ましく、9重量部以上がより好ましい。後述する成形品が得られやすいとの観点から、有機酸の添加量は、粗粉末1重量部に対して、200重量部以下が好ましく、49重量部以下がより好ましい。粗粉末1重量部に対する有機酸の量は、4~200重量部であってよく、4~49重量部であってよく、9~200重量部であってよく、9~49重量部であってよい。
 (溶解工程)
 溶解工程では、リグノセルロースを含む粗粉末が有機酸に溶解することにより、リグノセルロースを含む溶液が得られる。溶解工程では、粗粉末が有機酸に部分溶解してもよい。部分溶解の場合、ろ過等により不溶解分を除去することにより、本開示のリグノセルロース溶液が得られる。なお、本明細書において、「溶解」とは、目視にて、有機酸中の粗粉末の形状を認識できない状態を意味する。顕微鏡観察等により、溶液中にリグノセルロースに由来する繊維状物質が観察される場合も、粗粉末自体の形状が消失している場合は、「溶解」と定義される。また、このような「溶解」状態の液体を、本開示において「溶液」と定義する。
 本開示のリグノセルロース溶液が得られる限り、溶解工程における溶解条件は特に限定されず、原料バイオマスの種類、粗粉末の粒度、有機酸の種類等に応じて適宜選択される。溶解効率が高いとの観点から、溶解温度は20℃以上が好ましく、30℃以上がより好ましい。エネルギー削減の観点から、好ましい溶解温度は100℃以下である。
 溶解を促進する観点から、溶解工程において、撹拌処理をおこなってもよく、粉砕を伴う撹拌処理をおこなってもよい。有機酸中での粉砕を伴う撹拌処理をおこなうことで、より温和な条件によるバイオマスの溶解が可能になる。換言すれば、本開示の製造方法は、溶解工程において、有機酸中で粗粉末を粉砕しつつ撹拌することを含む。溶解工程において、リグノセルロース溶液が得られるまで、粉砕を伴う撹拌処理を継続してもよく、粉砕を伴う撹拌処理を所定時間おこなった後、粉砕を伴わない撹拌処理に移行してもよい。粉砕を伴う撹拌処理のための装置として、例えば、ビーズミル、コロイドミル、ディズクリファイナー、コニカルリファイナー等が挙げられる。
 (金属塩)
 好ましくは、溶解工程では、有機酸とともに、一般式M(SO(式中、Mは3価の金属であり、MはNH又は1価の金属である)で示される金属塩とが併用される。この一般式で示される金属塩は、「ミョウバン」とも称される複塩である。金属塩の水和物であってもよい。有機酸とミョウバンとの併用により、粗粉末の有機酸への溶解性が向上する。
 3価の金属の具体例として、アルミニウム、鉄、クロム等が挙げられる。1価の金属の具体例として、ナトリウム、カリウム等が挙げられる。好ましい金属塩は、硫酸アルミニウムカリウムである。硫酸アルミニウムカリウムの12水和物が金属塩として用いられてもよい。
 有機酸との併用効果が顕著であるとの観点から、金属塩の添加量は、粗粉末100重量部に対して、1重量部以上が好ましく、2重量部以上がより好ましく、5重量部以上がさらに好ましい。リグノセルロース含有率の高い溶液又は成形品が得られるとの観点から、金属塩の添加量は、30重量部以下が好ましく、25重量部以下がより好ましく、20重量部以下がさらに好ましい。
 (調圧工程)
 本開示の製造方法では、粗粉末と有機酸とを混合する前、及び/又は、粗粉末と有機酸とを混合した後に、圧力調整手段を用いて加圧又は減圧する調圧工程をさらに有してもよい。この調圧工程において、原料バイオマス(粗粉末)に加えられる圧力変動が、リグノセルロースの強固な高次構造を緩和して、有機酸への溶解性を顕著に向上するものと推測される。この調圧工程をおこなうことにより、比較的低温での溶解が可能になり、溶解工程における加熱及び/保温に要するエネルギーが削減される。圧力変動によって、粗粉末の組織内に有機酸が効率的に導入されるとの観点から、粗粉末に有機酸を添加後に加圧又は減圧することが好ましい。
 調圧工程において減圧する場合には、1.0kPa以上10.0kPa(絶対圧)の範囲で減圧することが好ましい。また、調圧工程において加圧する場合には、200kPa以上1000kPa以下(ゲージ圧)の範囲で加圧することが好ましい。本明細書中、減圧処理によって大気圧より低い圧力を示す場合は絶対圧を使用し、加圧処理によって大気圧より高い圧力を示す場合は、大気圧を基準としたゲージ圧を使用する。
 調圧工程において用いる圧力調整手段は特に限定されない。アスピレーター、エジェクター、コンプレッサー、機械式ポンプ等既知の手段により、前述した圧力範囲に調整される。
 (リグノセルロース溶液)
 本開示の製造方法により得られるリグノセルロース溶液は、可溶化したリグノセルロースを含む。このリグノセルロース溶液の濃度は0.5重量%以上が好ましく、2.0重量%以上がより好ましい。製造容易との観点から、リグノセルロース溶液の濃度は、20重量%以下が好ましく、10重量%以下がより好ましい。リグノセルロース溶液の濃度は、0.5~20重量%であってよく、0.5~10重量%であってよく、2.0~20重量%であってよく、2.0~10重量%であってよい。
 リグノセルロース溶液が、一般式M(SO(式中、Mは3価の金属であり、MはNH又は1価の金属である)で示される金属塩を含んでもよい。この金属塩の例として、リグノセルロース溶液の製造方法に関して前述した金属塩が挙げられる。好ましい金属塩は、硫酸アルミニウムカリウムである。リグノセルロース溶液中の金属塩の含有量は、原料である粗粉末100重量部に対して、1重量部以上が好ましく、2重量部以上がより好ましく、5重量部以上がさらに好ましい。金属塩の含有量は30重量部以下が好ましく、25重量部以下がより好ましく、20重量部以下がさらに好ましい。本開示の効果が阻害されない範囲で、リグノセルロース溶液が、色素等既知の添加剤をさらに含んでもよい。
 (成形品)
 本開示の成形品は、前述したリグノセルロース溶液から形成される。この成形品の主成分は、リグノセルロースである。本明細書において、「主成分」とは、その含有量が少なくとも50重量%以上である成分を意味する。このリグノセルロース含有成形品における、リグノセルロースの含有量は、少なくとも50重量%以上であり、60重量%以上が好ましく、80重量%以上がより好ましく、90重量%以上がさらに好ましく、上限値は100重量%である。
 本開示のリグノセルロース含有成形品に含まれるリグノセルロースは、原料バイオマス中のリグノセルロースが微粉砕処理を経ることなく可溶化されたものである。この成形品は、リグノセルロースに由来する繊維状物質を含んでいる。リグノセルロースに由来する繊維状物質とは、粉砕工程において破壊されなかったセルロース繊維であると考えられる。この繊維状物質の存在は、走査型電子顕微鏡観察により確認することができる。
 本開示の効果が阻害されない範囲で、成形品が、有機酸に由来する官能基を有してもよい。この有機酸の例として、リグノセルロース溶液の製造方法に関して前述した有機酸が挙げられる。有機酸に由来する官能基の例として、ホルミル基、カルボキシル基等が挙げられる。成形品中の有機酸に由来する官能基は、薄膜化した成形品を吸光分析して得られる赤外線吸収スペクトルにより検出される。
 本開示のリグノセルロース含有成形品の密度は、1.2g/cm未満であるところ、1.15g/cm以下が好ましく、1.1g/cm以下がより好ましい。機械的強度に優れるとの観点から、成形品の密度は、0.2g/cm以上が好ましく、0.3g/cm以上がより好ましい。この密度は、JIS Z 8807「固体の密度及び比重の測定方法」に準じて測定される見掛け密度である。
 本開示のリグノセルロース含有成形品は、亀裂等を生じることなく変形可能な機械的物性を有している。リグノセルロース含有成形品が有する引張特性は、その用途及び形状により適宜設定されるが、変形容易との観点から、この成形品のヤング率は0.05GPa以上が好ましく、1.0GPa以上がより好ましい。耐久性の観点から、好ましいヤング率は4.0GPa以下である。耐久性の観点から、この成形品の最大応力は、0.5MPa以上が好ましく、5.0MPa以上がより好ましく、10MPa以上がさらに好ましく、20MPa以上が特に好ましい。変形容易との観点から、好ましい最大応力は80MPa以下である。変形容易との観点から、この成形品の最大伸度は0.5%以上が好ましく、1.5%以上がより好ましい。耐久性の観点から、好ましい最大伸度は5.0%以下である。なお、リグノセルロース含有成形品のヤング率、最大応力及び最大伸度は、ISO527-1の規定に準拠した引張試験により測定される。測定方法及び測定条件の詳細は、実施例にて後述する。
 高い耐熱性が得られるとの観点から、本開示のリグノセルロース含有成形品のガラス転移温度Tgは、200℃以上が好ましく、210℃以上がより好ましく、220℃以上がさらに好ましい。上限値は特に限定されないが、好ましいガラス転移温度Tgは280℃以下である。本開示の成形品のガラス転移温度は、動的粘弾性測定により測定される。測定方法及び測定条件の詳細は、実施例にて後述する。
 本開示のリグノセルロース含有成形品が、一般式M(SO(式中、Mは3価の金属であり、MはNH又は1価の金属である)で示される金属塩を含んでもよい。この金属塩の例として、リグノセルロース溶液の製造方法に関して前述した金属塩が挙げられる。この成形品中の金属塩の含有量は、成形品100重量部に対して、1重量部以上が好ましく、5重量部以上がより好ましい。好ましい金属塩の含有量は20重量部以下である。本開示の効果が阻害されない範囲で、リグノセルロース含有成形品が、色素等既知の添加剤をさらに含んでもよい。
 本開示の成形品は、有機酸に対する溶解性に優れている。詳細には、この成形品は、有機酸に対する不溶物量が5.0重量%以下である。本願明細書において、有機酸に対する不溶物量は、成形品を粗粉砕して得られる粗粉末を、この粗粉末1重量部に対して50重量部の有機酸と混合して溶解した後、得られた溶解液を20メッシュの篩に通した際に、篩上の残る残渣の重量を測定する溶解試験により求められる。この残渣の、有機酸と混合した粗粉末に対する割合(重量%)が、不溶物量として算出される。この溶解試験において、有機酸と粗粉末とを混合する前及び/又は混合した後に、減圧又は加圧する調圧工程をおこなってもよい。
 本開示のリグノセルロース含有成形品の形状等は特に限定されないが、代表的な成形品としてシート又はフィルムが挙げられる。リグノセルロースを含むシート及びフィルムは、例えば、リグノセルロース溶液を基材上に流延する工程と、基材上のリグノセルロース溶液を乾燥する工程とを含む製造方法により得られる。
 従来、原料バイオマスを微粉砕して得られるリグノセルロースから形成されたシート及びフィルムは、乾燥時に脆く、折曲げにより亀裂が生じる。これに対し、本開示のリグノセルロース溶液から形成されたシート及びフィルムは、原料バイオマスの微粉砕処理を経ていないため、リグノセルロースに由来する繊維状物質を含む。この繊維状物質を含むことにより、シート及びフィルムの折り曲げ性が向上する。本開示のリグノセルロース溶液から形成されたシート及びフィルムは、90度以上の角度で折り曲げたときに亀裂が生じない。
 また、本開示のリグノセルロース含有成形品とは、換言すれば、原料バイオマスに由来する物性を備えた、原料バイオマスを主成分とする成形品である。この成形品は、セルロース、ヘミセルロース及びリグニンが有する物性を備えることができる。この成形品は、例えば、抗菌性、紫外線吸収性、金属吸着能等の機能が求められるフィルム、繊維、壁紙等として、医療、衣服、住宅設備等の分野に適用することができる。
 以下、実施例によって本開示の効果が明らかにされるが、この実施例の記載に基づいて本開示が限定的に解釈されるべきではない。
 [溶解試験]
 [実施例1]
 ユーカリのチップを、20メッシュの篩を装着したウィレーミルを用いて粉砕した後、得られた木粉を、JIS標準篩を用いて分級した。目開き500μmの篩を通過し、目開き355μmの篩を通過しない粒子を採取して、ユーカリ木粉(粒子径355μ~500μm)を得た。得られた粗粉末が図1に示されている。
 次に、100mgのユーカリ木粉を容量30mlのフラスコに投入し、窒素ガス雰囲気下で、濃度80重量%のギ酸(ナカライテスク社製)を10ml添加した。続いて、フラスコに水流アスピレーターを接続して30分間減圧することにより5kPa(絶対圧)に調整した後、2分間窒素ガスを添加し、撹拌しながら50℃に昇温した。50℃で7日間経過後、目視にて、ユーカリ木粉が消失し、実施例1のリグノセルロース溶液が得られたことを確認した。実施例1のリグノセルロース溶液が、図2に示されている。
 [実施例2-24]
 原料バイオマスの種類、溶解条件等を下表1-6に示すものに変更した以外は実施例1と同様にして、実施例2-24のリグノセルロース溶液を得た。実施例22及び24では、金属塩として硫酸アルミニウムカリウム12水和物(富士フィルム和光純薬株式会社製)を使用した。いずれの溶液中にも木粉の残存は視認されなかった。
 [比較例1]
 ユーカリのチップをボールミルに投入して48時間粉砕することにより、微粉末を得た。この微粉末が、目開き75μmのJIS標準篩を全量通過することを確認した。得られた微粉末100mgを容量30mlのフラスコに投入し、窒素ガス雰囲気下で、濃度80重量%のギ酸(ナカライテスク社製)を10ml添加した。室温で1日間撹拌した後、微粉末の消失を目視にて確認した。
 [比較例2]
 原料バイオマスとしてスギの木粉を用いた以外は比較例1と同様にして溶解試験をおこなった。室温で1日間撹拌した後、微粉末の消失を目視にて確認した。
 [製膜試験]
 実施例1-24及び比較例1-2のリグノセルロース溶液を、それぞれ、セロファン上に流延した後、室温下、蓋付きの培養皿に一晩静置した後、3時間減圧することにより、リグノセルロース含有シートを得た。実施例1のリグノセルロース含有シートの外観が、図3に示されている。各シートの物性を以下の方法にて評価した。
 [密度]
 JIS Z 8807「固体の密度及び比重の測定方法」に準じて、実施例1-24及び比較例1-2のリグノセルロース含有シートの見掛け密度(g/cm)を測定した。各5回の測定値の平均が、下表1-6に示されている。
 [引張特性評価]
 実施例1-24及び比較例1-2のリグノセルロース含有シートを打ち抜いてダンベル形状の試験片を作成した。比較例1及び2は、打ち抜き時に破損して試験片を作成することができなかったため、以下の引張試験はおこなわなかった。
 引張試験機(エー・アンド・デイ社製の商品名「万能引張試験機(テンシロン)RTG-1310」)を使用して、ISO527-1の規定に準拠して引張試験(引張速度10mm/min、つかみ具間距離50mm)をおこない、実施例1-24のヤング率(単位:GPa)、最大応力(単位:MPa)及び最大伸度(単位:%)を測定した。各5回の測定値の平均が、下表1-6に示されている。
 [ガラス転移温度]
 動的粘弾性測定装置(TA instruments社製の商品名「RSA G2」)を使用して、実施例1-24及び比較例1-2のリグノセルロース含有シートのガラス転移温度を測定した。測定は、窒素雰囲気下、温度範囲-90~200℃、昇温速度3℃/分、印加歪0.1%、周波数1Hzでおこなった。貯蔵弾性率、損失弾性率及び損失正接tanδが極大値を示した温度が、それぞれTg(1)、Tg(2)及びTg(3)として、下表1-6に示されている。
 [折れ曲げ性]
 実施例1-16及び比較例1-2のリグノセルロース含有シートを90度以上の角度で折り曲げたときの状態を評価した。評価結果が下表1-4に示されている。表中、折り曲げ性「G」は、90度以上折り曲げても亀裂が生じなかったことを示し、折り曲げ性「B」は、90度まで折り曲げる際に亀裂、白化等が生じたことを示す。
 [走査型電子顕微鏡観察]
 走査型電子顕微鏡を用いて、実施例1及び比較例1のリグノセルロース含有シートの表面状態及び断面状態を観察した。断面状態は、各シートから採取した試験片を樹脂に包埋後、ミクロトームを用いて断面を切り出すことにより観察した。図4に、実施例1の表面状態(倍率500倍(4a)、1000倍(4b))が示されている。図5に、実施例1の断面状態(倍率100倍(5a)、300倍(5b))が示されている。図6に、比較例1の表面状態(倍率500倍(6a)、1000倍(6b))が示されている。図7に、比較例1の断面状態(倍率300倍(7a)、1000倍(7b))が示されている。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
 表1-6に示されるように、実施例の製造方法によれば、環境負荷の大きい化学薬品を用いることなく、かつ、原料バイオマスの微粉砕を要することなく、リグノセルロース溶液及び成形品を得ることができる。また、図4-6に示されるように、実施例のリグノセルロース含有シートには、比較例とは異なり、原料バイオマス中のリグノセルロースに由来する繊維状物質が存在する。これにより、実施例のリグノセルロース含有シートでは、比較例と比べて、低い密度による軽量性、高いガラス転移温度による優れた耐熱性、及び、良好な耐折れ曲げ性が達成されたと考えられる。
 以上の評価結果から、本開示の優位性は明らかである。本開示の製造方法は、リグノセルロースを含む種々のバイオマスの利用に適用されうる。

Claims (19)

  1.  リグノセルロースを含むバイオマスを粗粉砕して、粗粉末を得る粉砕工程と、
     上記粗粉末と有機酸とを混合する混合工程と、
     上記粗粉末を上記有機酸に溶解する溶解工程と、
    を有している、リグノセルロース溶液の製造方法。
  2.  上記粗粉末が、粒子径0.35mm以上の粒子を含む、請求項1に記載の製造方法。
  3.  上記有機酸が、α-ケト酸、又は、ホルミル基を有するカルボン酸である、請求項1又は2に記載の製造方法。
  4.  上記有機酸が、ギ酸、グリオキシル酸及びピルビン酸からなる群から選択される、請求項1から3のいずれかに記載の製造方法。
  5.  上記溶解工程で、上記有機酸と、一般式M(SO(式中、Mは3価の金属であり、MはNH又は1価の金属である)で示される金属塩とが併用される、請求項1から4のいずれかに記載の製造方法。
  6.  上記金属塩が硫酸アルミニウムカリウムである、請求項5に記載の製造方法。
  7.  上記混合工程前及び/又は混合工程後に、減圧又は加圧する調圧工程をさらに含む、請求項1から6のいずれかに記載のリグノセルロース溶液の製造方法。
  8.  上記調圧工程において1.0kPa以上10.0kPa以下(絶対圧)の範囲で減圧する、請求項7に記載の製造方法。
  9.  上記調圧工程において200kPa以上1000kPa以下(ゲージ圧)の範囲で加圧する、請求項7に記載の製造方法。
  10.  請求項1から9のいずれかに記載の製造方法により得られるリグノセルロース溶液。
  11.  請求項10に記載のリグノセルロース溶液から形成される、リグノセルロース含有成形品。
  12.  リグノセルロースを主成分として含み、その密度が1.2g/cm未満である、リグノセルロース含有成形品。
  13.  有機酸に由来する官能基を有する、請求項12に記載の成形品。
  14.  一般式M(SO(式中、Mは3価の金属であり、MはNH又は1価の金属である)で示される金属塩をさらに含む、請求項12又は13に記載の成形品。
  15.  上記リグノセルロースに由来する繊維状物質を含む、請求項12から14のいずれかに記載の成形品。
  16.  シート又はフィルムである、請求項12から15のいずれかに記載の成形品。
  17.  90度以上の角度で折り曲げたときに亀裂が生じない、請求項16に記載の成形品。
  18.  ガラス転移温度Tgが200℃以上である、請求項12から17のいずれかに記載の成形品。
  19.  以下の溶解試験により求められる不溶物量が5重量%以下である、請求項12から18のいずれかに記載の成形品。
     (溶解試験)
     成形品を粗粉砕して得られる粗粉末を、この粗粉末1重量部に対して50重量部の有機酸と混合して溶解する。得られた溶解液を20メッシュの篩に通した後、篩上の残る残渣の重量を測定し、この残渣の、上記有機酸と混合した粗粉末に対する割合(単位:重量%)を、不溶物量として求める。
PCT/JP2021/036631 2021-10-04 2021-10-04 リグノセルロース溶液及び成形品並びにその製造方法 WO2023058088A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/036631 WO2023058088A1 (ja) 2021-10-04 2021-10-04 リグノセルロース溶液及び成形品並びにその製造方法
JP2023552905A JPWO2023058662A1 (ja) 2021-10-04 2022-10-04
CN202280066779.XA CN118043404A (zh) 2021-10-04 2022-10-04 木质纤维素溶液和成型品及其制造方法
PCT/JP2022/037190 WO2023058662A1 (ja) 2021-10-04 2022-10-04 リグノセルロース溶液及び成形品並びにその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036631 WO2023058088A1 (ja) 2021-10-04 2021-10-04 リグノセルロース溶液及び成形品並びにその製造方法

Publications (1)

Publication Number Publication Date
WO2023058088A1 true WO2023058088A1 (ja) 2023-04-13

Family

ID=85803495

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/036631 WO2023058088A1 (ja) 2021-10-04 2021-10-04 リグノセルロース溶液及び成形品並びにその製造方法
PCT/JP2022/037190 WO2023058662A1 (ja) 2021-10-04 2022-10-04 リグノセルロース溶液及び成形品並びにその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037190 WO2023058662A1 (ja) 2021-10-04 2022-10-04 リグノセルロース溶液及び成形品並びにその製造方法

Country Status (3)

Country Link
JP (1) JPWO2023058662A1 (ja)
CN (1) CN118043404A (ja)
WO (2) WO2023058088A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161835A (ja) * 2010-02-12 2011-08-25 Nara Prefecture リグノセルロース系充填材の製造方法、その方法を用いて製造したリグノセルロース系充填材、そのリグノセルロース系充填材を用いたリグノセルロース・熱可塑性樹脂複合材料及びそのリグノセルロース・熱可塑性樹脂複合材料を用いた成形体
JP2013215187A (ja) * 2012-03-15 2013-10-24 Kao Corp 糖の製造方法
JP2016059368A (ja) * 2014-09-22 2016-04-25 本田技研工業株式会社 アルコールの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560221B2 (ja) 1990-05-29 1996-12-04 農林水産省森林総合研究所長 紫外線吸収性を有するリグノセルロース膜
JP3155603B2 (ja) 1992-03-17 2001-04-16 信夫 白石 リグノセルロース物質の液化溶液の製造法
JP2635520B2 (ja) * 1994-09-16 1997-07-30 三郎 井本 リグノセルロース系軽量成形物
JPH11181105A (ja) 1997-12-19 1999-07-06 Rengo Co Ltd リグノセルロース成形体及びその製造法
JP2001342353A (ja) * 2000-03-31 2001-12-14 Masamitsu Funaoka リグノフェノール誘導体とセルロース成分とから成るリグノセルロース系組成物
JP4081579B2 (ja) * 2001-09-14 2008-04-30 愛知県 リグノセルロース系材料及びその利用
JP4741765B2 (ja) 2001-09-28 2011-08-10 住友林業株式会社 抗菌剤
JP2008531800A (ja) * 2005-03-04 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア リグノセルロースをベースとする微粒状材料からなる成形体の製造
JP2008104404A (ja) * 2006-10-25 2008-05-08 Juon:Kk 糖化液製造方法及びエタノールの製造方法
JP2008308530A (ja) 2007-06-13 2008-12-25 Forestry & Forest Products Research Institute 可溶性リグノセルロースの製造方法
JP5604613B2 (ja) * 2008-02-01 2014-10-08 ホクト株式会社 エタノールの製造方法
JP2011050359A (ja) * 2009-09-04 2011-03-17 Musashino Chemical Laboratory Ltd 新規微生物および該微生物由来の酵素、ならびにこれらを用いた糖化液の製造方法
JP6137525B2 (ja) 2011-12-08 2017-05-31 昭博 西岡 非晶化セルロースの製造方法
JP2014128234A (ja) * 2012-12-28 2014-07-10 Kao Corp 糖の製造方法
CN103540149A (zh) * 2013-10-14 2014-01-29 东北林业大学 一种良好界面相容性的环境友好型复合材料制造方法
WO2016195099A1 (ja) * 2015-06-05 2016-12-08 三菱化学株式会社 脂肪族ポリエステル粒子
JP7024953B2 (ja) * 2017-03-10 2022-02-24 国立大学法人京都大学 化学修飾リグノセルロースの熱圧成形体、及びその製造方法
CN111943917A (zh) * 2020-08-11 2020-11-17 浙江大学 一种甲酸预处理木质纤维素高效制备5-羟甲基糠醛的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161835A (ja) * 2010-02-12 2011-08-25 Nara Prefecture リグノセルロース系充填材の製造方法、その方法を用いて製造したリグノセルロース系充填材、そのリグノセルロース系充填材を用いたリグノセルロース・熱可塑性樹脂複合材料及びそのリグノセルロース・熱可塑性樹脂複合材料を用いた成形体
JP2013215187A (ja) * 2012-03-15 2013-10-24 Kao Corp 糖の製造方法
JP2016059368A (ja) * 2014-09-22 2016-04-25 本田技研工業株式会社 アルコールの製造方法

Also Published As

Publication number Publication date
WO2023058662A1 (ja) 2023-04-13
CN118043404A (zh) 2024-05-14
JPWO2023058662A1 (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
Ravindran et al. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): structure-property relationships
Meng et al. Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue
Mehanny et al. Extraction and characterization of nanocellulose from three types of palm residues
Azrina et al. Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis
Rambabu et al. Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films
Liu et al. Starch composites reinforced by bamboo cellulosic crystals
Lu et al. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue
Rajan et al. Investigating the effects of hemicellulose pre-extraction on the production and characterization of loblolly pine nanocellulose
Bilatto et al. Lignocellulose nanocrystals from sugarcane straw
Chen et al. Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr (III)-catalyzed hydrolysis: Response surface methodology
JP6787136B2 (ja) 微細セルロース繊維含有樹脂組成物及びその製造方法
US9724702B2 (en) Method for manufacturing pulverized material and vibrating pulverizer
Krishnan et al. Synthesis and characterization of cellulose nanofibers from coconut coir fibers
Perera et al. Synthesis and characterization of lignin nanoparticles isolated from oil palm empty fruit bunch and application in biocomposites
Wahib et al. Insight into the extraction and characterization of cellulose nanocrystals from date pits
Jongaroontaprangsee et al. Production of nanocellulose from lime residues using chemical-free technology
Ghasemi et al. Extraction and characterization of nanocellulose structures from linter dissolving pulp using ultrafine grinder
Yeganeh et al. Hydrothermal pretreatment of biomass-waste-garlic skins in the cellulose nanofiber production process
Swantomo et al. Preparation of microcrystalline cellulose from waste cotton fabrics using gamma irradiation
Borsoi et al. Isolation and characterisation of cellulose nanowhiskers from microcrystalline cellulose using mechanical processing
JP2012046848A (ja) 微細繊維状セルロースの製造方法
WO2023058088A1 (ja) リグノセルロース溶液及び成形品並びにその製造方法
Ismail et al. Preparation of microcrystalline cellulose from oil palm empty fruit bunch fibre using steam-assisted acid hydrolysis
Kaur et al. Extraction of reinforced epoxy nanocomposite using agricultural waste biomass
WO2023199402A1 (ja) 木質成形品及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE