WO2023054631A1 - 変性ジエン系重合体、その製造方法、及びそのゴム組成物 - Google Patents

変性ジエン系重合体、その製造方法、及びそのゴム組成物 Download PDF

Info

Publication number
WO2023054631A1
WO2023054631A1 PCT/JP2022/036555 JP2022036555W WO2023054631A1 WO 2023054631 A1 WO2023054631 A1 WO 2023054631A1 JP 2022036555 W JP2022036555 W JP 2022036555W WO 2023054631 A1 WO2023054631 A1 WO 2023054631A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
diene polymer
acrylate
diene
Prior art date
Application number
PCT/JP2022/036555
Other languages
English (en)
French (fr)
Inventor
久勝 ▲はま▼
雅英 坂田
堅二 渡邊
貴史 酒井
大雅 石井
晃徳 板東
大輔 山口
Original Assignee
Zsエラストマー株式会社
住友化学株式会社
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zsエラストマー株式会社, 住友化学株式会社, 日本ゼオン株式会社 filed Critical Zsエラストマー株式会社
Priority to JP2023551871A priority Critical patent/JPWO2023054631A1/ja
Publication of WO2023054631A1 publication Critical patent/WO2023054631A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/28Reaction with compounds containing carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a modified diene polymer, its production method, and its rubber composition.
  • One aspect of the present invention is to provide a modified diene polymer that can give a rubber composition excellent in breaking strength, breaking elongation and durability.
  • a diene polymer and 0.01 to 20 parts by mass of a metal salt of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid per 100 parts by mass of the diene polymer are , a method for producing a modified diene polymer obtained by melt-kneading, and a modified diene polymer obtained by such a production method.
  • the metal salt of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid is a metal salt group consisting of sodium acrylate, potassium acrylate, zinc acrylate, magnesium acrylate, calcium acrylate, copper acrylate, and aluminum acrylate.
  • An aqueous solution containing at least one metal salt selected from and containing 0.2 to 200 parts by mass of water per 1 part by mass of the metal salt of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid may be melt-kneaded in the presence of a radical initiator.
  • Yet another aspect of the present invention provides a rubber composition obtained by blending the modified diene-based polymer with a cross-linking agent, and a method for producing the rubber composition.
  • a modified diene polymer capable of giving a rubber composition excellent in breaking strength, breaking elongation and durability.
  • a diene-based polymer is a polymer having a diene-based structural unit (diene unit).
  • the diene may be a conjugated diene or a non-conjugated diene, such as 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 1,3-hexadiene, 5 -ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene and the like.
  • Preferred dienes are 1,3-butadiene, isoprene and 5-ethylidene-2-norbornene.
  • the diene-based polymer may have structural units based on other monomers in addition to diene units.
  • other monomers include vinyl aromatic compounds, vinyl nitriles, unsaturated carboxylic acid esters, ⁇ -olefins, and vinyl compounds having functional groups capable of interacting with silica.
  • vinyl aromatic compounds include styrene, ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene and divinylnaphthalene.
  • Examples of vinyl nitriles include acrylonitrile, and examples of unsaturated carboxylic acid esters include methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate.
  • ⁇ -olefins include linear olefins such as propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, and 1-decene; branched olefins such as 1-butene, 3-methyl-1-pentene, and 4-methyl-1-pentene; and vinylcyclohexane.
  • Vinyl compounds having functional groups capable of interacting with silica include bis(dimethylamino)methylvinylsilane, bis(diethylamino)methylvinylsilane, and bis(di-n-butylamino)methylvinylsilane.
  • Preferred are vinyl aromatic compounds, and more preferred is styrene.
  • diene polymer examples include diene polymers such as poly(1,3-butadiene), polyisoprene, 1,3-butadiene-isoprene copolymer; 1,3-butadiene-styrene copolymer, isoprene-styrene copolymer Diene-vinyl aromatic compound copolymers such as polymers; acrylonitrile-butadiene copolymers; isoprene-isobutylene copolymers; ethylene-propylene-diene copolymers; ethylene-butadiene copolymers; propylene-butadiene copolymers etc. Preferred are diene polymers and diene-vinyl aromatic compound copolymers.
  • the diene-based polymer preferably has structural units based on a vinyl aromatic compound (vinyl aromatic compound units) in order to increase the strength of the rubber composition.
  • the content of the vinyl aromatic compound unit is 0% by weight or more, preferably 10% by weight or more (the content of the diene unit is 90% by weight % or less), and more preferably 15% by weight or more (the content of diene units is 85% by weight or less).
  • the content of the vinyl aromatic compound unit is preferably 50% by weight or less (the content of the diene unit is 50% by weight or more), more preferably 45% by weight. % by weight or less (the content of diene units is 55% by weight or more).
  • the vinyl bond content of the diene polymer is preferably 10 mol% or more and 80 mol% or less, more preferably 10 mol% or more and 80 mol% or less, in order to further improve the tan ⁇ balance of the rubber composition when the diene unit content is 100 mol%. is 10 mol % or more and 70 mol % or less, more preferably 20 mol % or more and 70 mol % or less.
  • the amount of vinyl bond can be determined from the absorption intensity near 910 cm ⁇ 1 , which is the absorption peak of the vinyl group, by infrared spectroscopic analysis.
  • the Mooney viscosity (ML1+4) of the diene polymer is preferably 10 or more, more preferably 20 or more, in order to increase the strength of the rubber composition. In order to improve workability, it is preferably 200 or less, more preferably 150 or less.
  • the Mooney viscosity (ML1+4) is measured at 100°C or 125°C according to JIS K6300 (1994).
  • the diene-based polymer used in the present invention can be obtained, for example, by polymerizing a monomer mixture containing at least a diene in an inert solvent using a polymerization initiator.
  • the diene polymer used in the present invention is preferably polymerized by a solution polymerization method.
  • Examples of the diene contained in the monomer mixture include the same dienes as those exemplified as the diene that can be used to form the diene-based polymer. Furthermore, the monomer mixture may optionally contain the aforementioned vinyl aromatic compounds, vinyl compounds containing functional groups capable of interacting with silica, and other monomers.
  • the inert solvent used for polymerization is one commonly used in solution polymerization, and is not particularly limited as long as it does not inhibit the polymerization reaction.
  • specific examples of inert solvents include linear aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and cyclohexene; aromatic hydrocarbons; and the like. These inert solvents may be used singly or in combination of two or more.
  • the amount of the inert solvent used is such that the monomer concentration is, for example, 1 to 50% by weight, preferably 10 to 40% by weight.
  • the polymerization initiator used for polymerization is not particularly limited as long as it can polymerize a monomer mixture containing a diene.
  • Specific examples thereof include polymerization initiators using organic alkali metal compounds, organic alkaline earth metal compounds, lanthanide series metal compounds, etc. as main catalysts.
  • organic alkali metal compounds include organic lithium compounds, organic sodium compounds, organic potassium compounds, etc.
  • Specific examples include n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, and phenyllithium.
  • organic monolithium compounds such as stilbene lithium
  • organic polyvalent lithium compounds such as sodium naphthalene
  • organic sodium compounds such as sodium naphthalene
  • organic potassium compounds such as potassium naphthalene
  • Examples of organic alkaline earth metal compounds include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-t-butoxystrontium, diethoxybarium, and diisopropoxybarium.
  • diethylmercaptobarium di-t-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like.
  • polymerization initiators using lanthanum-based metal compounds as main catalysts include lanthanum-based metals such as lanthanum, cerium, praseodymium, neodymium, samarium, and gadolinium, and lanthanum-based metals composed of carboxylic acids, phosphorus-containing organic acids, and the like. and a polymerization initiator comprising a salt of the main catalyst and a co-catalyst such as an alkylaluminum compound, an organic aluminum hydride compound or an organic aluminum halide compound.
  • lanthanum-based metals such as lanthanum, cerium, praseodymium, neodymium, samarium, and gadolinium
  • lanthanum-based metals composed of carboxylic acids, phosphorus-containing organic acids, and the like.
  • a polymerization initiator comprising a salt of the main catalyst and a co-catalyst such as an alkylalum
  • organic monolithium compounds and organic polyvalent lithium compounds are preferably used, organic monolithium compounds are more preferably used, and n-butyllithium is particularly preferably used.
  • the organic alkali metal compound is used as an organic alkali metal amide compound by reacting with a secondary amine compound such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, piperidine, hexamethyleneimine, and heptamethyleneimine in advance. You may By using an organic alkali metal amide compound as a polymerization initiator, the resulting crosslinked rubber can be made more excellent in fuel efficiency and wear resistance.
  • One of these polymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the amount of the polymerization initiator to be used may be determined according to the molecular weight distribution curve of the desired diene polymer. It is preferably in the range of 2 to 15 millimoles.
  • the polymerization initiator may be additionally added to the polymerization system to continue the polymerization.
  • the timing of performing the additional addition operation of the polymerization initiator and the number of times of performing the additional addition operation of the polymerization initiator are not particularly limited, and may be determined according to the molecular weight distribution curve of the target diene polymer.
  • the timing of the addition operation is preferably at the stage when the polymerization conversion reaches 10 to 90%, more preferably at the stage when the polymerization conversion reaches 30 to 70%.
  • a vinyl compound containing a functional group capable of interacting with silica is preferably copolymerized after completion of the additional addition operation from the viewpoint of excellent workability.
  • the amount of the polymerization initiator used per additional addition operation is not particularly limited, and may be determined according to the molecular weight distribution curve of the desired diene polymer. , preferably 1 to 99 mol, more preferably 1.2 to 20 mol.
  • the polymerization temperature is usually -80 to +150°C, preferably 0 to 100°C, more preferably 30 to 90°C.
  • any mode such as a batch system and a continuous system can be adopted, but the batch system is preferable in that the randomness of the bond between the diene unit and the vinyl aromatic compound unit can be easily controlled.
  • a polar compound when polymerizing a monomer mixture containing a diene, it is preferable to add a polar compound to the inert organic solvent in order to adjust the amount of vinyl bonds in the diene units in the resulting diene-based polymer.
  • polar compounds include ether compounds such as dibutyl ether and tetrahydrofuran; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds; Among these, ether compounds and tertiary amines are preferred, tertiary amines are more preferred, and tetramethylethylenediamine is particularly preferred.
  • polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the polar compound to be used may be determined according to the desired vinyl bond content, and is preferably 0.001 to 100 mol, more preferably 0.01 to 10 mol, per 1 mol of the polymerization initiator. . When the amount of the polar compound used is within this range, the amount of vinyl bonds in the diene unit can be easily adjusted, and problems due to deactivation of the polymerization initiator are less likely to occur.
  • a diene polymer can be obtained in an inert solvent. Moreover, the diene-based polymer thus obtained usually has an active terminal.
  • a diene polymer containing an active terminal may be reacted with a coupling agent to form a coupling polymer chain.
  • the coupling agent is not particularly limited, but is silicon tetrachloride, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, tin tetrachloride, methyltrichlorotin, dimethyldichlorotin, trimethylchlorotin, tetramethoxysilane, methyltrimethoxysilane.
  • dimethoxydimethylsilane methyltriethoxysilane, ethyltrimethoxysilane, dimethoxydiethylsilane, diethoxydimethylsilane, tetraethoxysilane, ethyltriethoxysilane, diethoxydiethylsilane, bis(trichlorosilyl)methane, 1,2-bis (trichlorosilyl)ethane, 1,3-bis(trichlorosilyl)propane, 1,4-bis(trichlorosilyl)butane, 1,5-bis(trichlorosilyl)pentane, 1,6-bis(trichlorosilyl)hexane, etc.
  • the coupling agent may be selected according to the molecular weight distribution curve of the desired diene polymer. It is preferable to use a tri- or more functional coupling agent, and it is preferable to use a tetra- or more functional coupling agent. More preferred.
  • the amount of the coupling agent to be used is not particularly limited, and may be selected according to the molecular weight distribution curve of the target diene polymer. , preferably 0.01 to 0.4 mol, more preferably 0.02 to 0.3 mol, in terms of the functional group of the coupling agent.
  • a polymer chain having an active terminal undergoes a coupling reaction at the active terminal, and as a result, the active terminal of the polymer chain that has undergone the coupling reaction disappears, and the polymer chain does not have an active terminal.
  • the polymer chains that have not undergone the coupling reaction retain their active ends.
  • the active terminal contained in the diene-based polymer obtained by polymerization or the active terminal that may be contained in the diene-based polymer after the coupling reaction is composed of a compound containing a nitrogen atom or a compound containing a silicon atom. It is preferable to convert the diene polymer into a diene polymer having a modifying group derived from a compound containing a nitrogen atom or a compound containing a silicon atom by reacting with a modifier.
  • Modifiers include dimethylaminoethylacrylamide, diethylaminoethylacrylamide, dimethylaminopropylacrylamide, diethylaminopropylacrylamide, dimethylaminobutylacrylamide, diethylaminobutylacrylamide, dimethylaminoethylmethacrylamide, diethylaminoethylmethacrylamide, dimethylaminopropylmethacrylamide, diethylamino N,N-disubstituted aminoalkyl (meth)acrylamides such as propyl methacrylamide, dimethylaminobutyl methacrylamide, diethylaminobutyl methacrylamide; [3-(dimethylamino)propyl]trimethoxysilane, [3-(diethylamino)propyl ] Trimethoxysilane, [3-(dimethylamino)propyl]triethoxysilane, [3
  • the amount of the modifier used in reacting the active terminal of the diene polymer with the modifier consisting of the nitrogen atom-containing compound or the silicon atom-containing compound is not particularly limited, but the active terminal is The amount of modifier per 1 mol of the active terminal of the polymer chain having (when using an organic alkali metal compound as the polymerization initiator, the amount of modifier per 1 mol of metal atom in the organic alkali metal compound), 0 It is preferably from 0.01 to 10.0 mol, more preferably from 0.02 to 5.0 mol, and particularly preferably from 0.05 to 2.0 mol.
  • the above-mentioned modifiers can be used as modifiers, each of them may be used alone or in combination of two or more kinds.
  • the method of reacting the active terminal of the diene polymer with a modifying agent composed of a compound containing a nitrogen atom or a compound containing a silicon atom is not particularly limited, but a polymer chain having an active terminal, and a method of mixing the denaturant in a solvent capable of dissolving them.
  • a solvent to be used at this time those exemplified as the solvent to be used for the polymerization of the diene-based polymer can be used. In this case, it is simple and preferable to add the modifier to the polymer chain having the active terminal obtained above in the state of the polymerization solution used for the polymerization.
  • the modifier may be dissolved in the inert solvent used for the polymerization and added to the polymerization system, and the concentration of the solution is preferably in the range of 1 to 50% by weight.
  • the reaction temperature is not particularly limited, it is usually 0 to 120° C., and the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
  • the timing of adding a modifier comprising a compound containing a nitrogen atom or a compound containing a silicon atom to a solution containing a polymer chain having an active terminal is not particularly limited.
  • a state in which a solution containing a polymer chain having a terminal also contains a monomer more specifically, a solution containing a polymer chain having an active terminal has a concentration of 100 ppm or more, more preferably 300 to 50 ppm. It is desirable to add a modifier to this solution containing 1,000 ppm monomer.
  • a terminating agent is preferably added to deactivate unreacted active ends.
  • anti-aging agents such as phenol-based stabilizers, phosphorus-based stabilizers, and sulfur-based stabilizers may be added to the diene-based polymer solution obtained by the above method.
  • the amount of the anti-aging agent to be added may be appropriately determined depending on the type of anti-aging agent.
  • an extender oil may be blended to form an oil-extended rubber. Extensible oils include, for example, paraffinic, aromatic and naphthenic petroleum softeners, vegetable softeners, and fatty acids. When a petroleum-based softening agent is used, it is preferable that the polycyclic aromatic content extracted by the IP346 method (inspection method of THE INSTITUTE PETROLEUM, UK) is less than 3%. When an extender oil is used, the amount used is usually 5 to 100 parts by weight per 100 parts by weight of the diene polymer.
  • a metal salt of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid is a salt containing an unsaturated carboxylic acid and a metal element having a valence of 1 or higher.
  • the metal salt of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid may be, for example, a compound represented by the following formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group
  • M represents a metal element
  • n represents an integer of 1 or more.
  • the metal salt of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid represented by formula (1) may be a salt formed from n carboxylate ions and an n-valent metal cation M n+ , where n A portion of the carboxylate ions may be replaced with hydroxide ions.
  • the hydrocarbon group as R 1 or R 2 in formula (1) may be, for example, an alkyl group and may have 1 to 10 carbon atoms.
  • R 1 and R 2 may be hydrogen atoms.
  • n may be 1 to 3, or 2.
  • M may be, for example, sodium, potassium, zinc, magnesium, calcium, strontium, barium, manganese, iron, cobalt, nickel, copper, aluminum, and from the viewpoint of easily obtaining excellent mechanical strength and durability, zinc , magnesium, aluminum, and the unsaturated carboxylic acid of the metal salt of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid may be acrylic acid or methacrylic acid.
  • metal salts of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids include zinc acrylate, zinc methacrylate, magnesium acrylate, magnesium methacrylate, aluminum acrylate, aluminum methacrylate, sodium acrylate, sodium methacrylate, Potassium acrylate, potassium methacrylate, calcium acrylate, calcium methacrylate, copper acrylate and copper methacrylate.
  • the metal salts of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids may be used singly or in combination of two or more.
  • a modified diene polymer is produced by melt-kneading a diene polymer and a metal salt of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid.
  • a diene polymer and a metal salt of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid are melt-kneaded to add ⁇ , ⁇ -ethylenically unsaturated carboxylic acid to at least a part of the diene polymer.
  • a modified structure derived from a metal salt of a saturated carboxylic acid, more specifically a carboxylic acid metal base, can be introduced.
  • the amount of the metal salt of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid added to the diene polymer is 0.01 based on 100 parts by mass of the diene polymer, from the viewpoint of easily obtaining excellent mechanical strength and durability. It may be at least 0.2 parts by mass, at least 0.4 parts by mass, at least 0.8 parts by mass, or at least 1.0 parts by mass.
  • the amount of the metal salt of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid added to the diene polymer is 20 parts by mass or less, 10 parts by mass or less, 5 parts by mass or less, 3 parts by mass or less, based on 100 parts by mass of the diene polymer. It may be 1.5 parts by mass or less, 2 parts by mass or less.
  • the metal salt of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid may be added in the form of an aqueous solution during melt-kneading.
  • the proportion of water in the melt-kneading with the salt is 0.2 to 200 parts by mass per 1 part by mass of the metal salt of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid.
  • the proportion of water is 0.5 parts by mass or more, 1.0 parts by mass or more, 1.5 parts by mass or more, or 2.0 parts by mass or more. good.
  • the proportion of water may be 150 parts by mass or less, 100 parts by mass or less, 50 parts by mass or less, 20 parts by mass or less, or 5 parts by mass or less.
  • the temperature at which the diene polymer and the metal salt of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid are melt-kneaded may be a temperature at which melt-kneading is possible. 100-250°C, 120-200°C, 120-150°C. Further, the melt-kneading time may be 0.1 to 10 minutes or 0.5 to 5 minutes.
  • Melt-kneading is not subject to restrictions as long as it is a known kneading device.
  • kneading equipment include extruders, kneaders, Banbury mixers, roll kneaders and the like. Melt-kneading using an extruder or a Banbury mixer is preferred.
  • a kneading device equipped with a vent can also be used as the kneading device, and melt-kneading can also be performed by a method of devolatilizing volatile components including water from the vent during melt-kneading.
  • the pressure is reduced by a vacuum pump or the like, and volatile components such as the organic solvent, the monomer, and the solvent of the polyhydric alcohol solution are devolatilized.
  • Vent pressure may be 5-100 kPa-A, 10-95 kPa-A.
  • melt-kneading can also be performed in the presence of a radical initiator.
  • the radical initiator is not limited as long as it is a known radical initiator.
  • radical initiators include organic peroxides such as benzoyl peroxide, cumene hydroperoxide, paramenthane hydroperoxide, lauroyl peroxide, 1,1-di(t-butylperoxy)cyclohexane, and azoisobutyronitrile.
  • a diazo compound, an inorganic compound such as potassium peroxide, a redox catalyst represented by a combination of an organic compound and iron sulfate, and the like can be used.
  • melt-kneading may be performed in the presence of an antioxidant.
  • the modified diene polymer obtained by the method of the present invention may have a Mooney viscosity (ML1+4) of 10 or more, or 20 or more, in order to increase the mechanical strength of the rubber composition. Moreover, it may be 250 or less, or 200 or less in order to improve workability.
  • the Mooney viscosity (ML1+4) is measured at 100°C according to JIS K 6300 (1994).
  • the content of the diene unit is 100 mol%, and the vinyl bond content may be 10 mol% or more and 80 mol% or less, or 10 mol% or more and 70 mol% or less. It may be 20 mol % or more and 70 mol % or less.
  • the amount of vinyl bond can be determined from the absorption intensity near 910 cm ⁇ 1 , which is the absorption peak of the vinyl group, by infrared spectroscopic analysis.
  • the modified diene-based polymer may have structural units based on vinyl aromatic compounds (vinyl aromatic compound units) in order to increase the strength of the rubber composition.
  • the content of the vinyl aromatic compound unit may be 0% by mass or more, or 10% by mass or more (the content of the diene unit is 90% by mass). mass % or less), or 15 mass % or more (the diene unit content is 85 mass % or less).
  • the content of the vinyl aromatic compound unit is 50% by mass or less (the content of the diene unit is 50% by mass or more) and 45% by mass or less (the content of the diene unit is 85% by mass or more). good.
  • the dispersibility of the aggregate of carboxylate metal bases can be characterized by the small-angle X-ray scattering intensity.
  • the upper limit of r1 is not particularly limited, it is preferably 30,000 or less.
  • the upper limit of r2 is not particularly limited, it is preferably 500,000 or less.
  • r1 and r2 can be controlled by the combination of the diene polymer and the carboxylic acid metal salt during kneading modification and the formulation.
  • the modified diene-based polymer of the present invention can be used as a rubber composition by blending other polymer components and additives.
  • polymer components include conventional polybutadiene, polyisoprene, styrene-butadiene copolymers, isoprene-styrene copolymers, butadiene-isoprene copolymers, acrylonitrile-butadiene copolymers, isoprene-isobutylene copolymers, Ethylene-propylene-diene copolymer and butyl rubber can be mentioned.
  • Other examples include natural rubber, ethylene-propylene copolymers, and ethylene-octene copolymers. One or more of these polymer components are used.
  • additives can be used, and reinforcing agents such as silica, carbon black and microfibrillated plant fibers; fillers such as calcium carbonate, talc, alumina, clay, aluminum hydroxide and mica; silane cups; Ring agent; extender oil; cross-linking agent such as sulfur and organic peroxide; cross-linking aid; vulcanization accelerators such as stearic acid and zinc oxide; vulcanization activators such as stearic acid and zinc oxide; processing aids; anti-aging agents;
  • silica examples include dry silica (anhydrous silicic acid), wet silica (hydrous silicic acid), colloidal silica, precipitated silica, calcium silicate, and aluminum silicate. Two or more of these may be used.
  • the BET specific surface area of silica may be from 50 to 250 m2/g. The BET specific surface area is measured according to ASTM D1993-03.
  • Commercially available products include ULTRASIL 7000GR, VN-3 manufactured by Evonik, Nipsil VN3, AQ, ER, RS-150 manufactured by Tosoh Silica, and Zeosil 1115MP, 1165MP manufactured by Solvay. .
  • Channel carbon blacks such as EPC, MPC and CC; Furnace carbon blacks such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; FT and MT, etc. thermal carbon black; acetylene carbon black; graphite; Two or more of these may be used.
  • the carbon black may have a nitrogen adsorption specific surface area (N2SA) of 5-200 m 2 /g, and a dibutyl phthalate (DBP) absorption of 5-300 ml/100 g.
  • N2SA nitrogen adsorption specific surface area
  • DBP dibutyl phthalate
  • the nitrogen adsorption specific surface area is measured according to ASTM D4820-93
  • the DBP absorption is measured according to ASTM D2414-93.
  • Commercially available products include Diablack N339 (trade name) manufactured by Mitsubishi Chemical Co., Ltd., Seast 6, 7HM and KH (trade names) manufactured by Tokai Carbon Co., Asahi 70 and Asahi 60U (trade names) manufactured by Asahi Carbon Co., Ltd., and the like.
  • the microfibrillated plant fibers may be cellulose microfibrils from the viewpoint of obtaining good reinforcing properties.
  • Cellulose microfibrils are not particularly limited as long as they are derived from natural products. Examples include resource biomass such as fruits, grains, and root vegetables, wood, bamboo, hemp, jute, kenaf, and pulp obtained from these as raw materials.
  • resource biomass such as fruits, grains, and root vegetables, wood, bamboo, hemp, jute, kenaf, and pulp obtained from these as raw materials.
  • waste biomass such as paper, cloth, agricultural waste, food waste and sewage sludge, unused biomass such as rice straw, wheat straw, and thinned wood, those derived from cellulose produced by sea squirts, acetic acid bacteria, etc. be done.
  • waste biomass such as paper, cloth, agricultural waste, food waste and sewage sludge, unused biomass such as rice straw, wheat straw, and thinned wood, those derived from cellulose produced by sea
  • Cellulose microfibrils may be cellulose fibers having an average fiber diameter of 10 ⁇ m or less, or may be cellulose fibers having a microstructure having an average fiber diameter of 500 nm or less formed by aggregation of cellulose molecules. . Cellulose microfibrils may also be formed, for example, as aggregates of cellulose fibers having an average fiber diameter as described above.
  • the method for producing the microfibrillated plant fibers is not particularly limited, but for example, the raw material for the cellulose microfibrils is optionally chemically treated with an alkali such as sodium hydroxide, and then treated with a refiner, a twin-screw extruder, or a high-pressure homogenizer. , a medium agitating mill, stone mill, grinder, vibrating mill, sand grinder or the like to mechanically grind or beat.
  • lignin is separated from the raw material by chemical treatment, resulting in microfibrillated plant fibers substantially free of lignin.
  • microfibrillated plant fibers examples include those obtained by the above production method and further subjected to oxidation treatment and various chemical modification treatments, and natural products from which the cellulose microfibrils can be derived, such as wood, Pulp, bamboo, hemp, jute, kenaf, agricultural waste, cloth, paper, sea squirt cellulose, etc. are used as cellulose raw materials, and subjected to oxidation treatment and various chemical modification treatments, and then defibration treatment as necessary. can also be used.
  • the average fiber diameter of the microfibrillated plant fibers may be 10 ⁇ m or less. From the viewpoint that the average fiber diameter of the microfibrillated plant fibers can further improve the dispersibility of the microfibrillated plant fibers in the rubber, the average fiber diameter may be 500 nm or less, It may be 100 nm or less, or 50 nm or less.
  • the lower limit of the average fiber diameter of the microfibrillated plant fibers is not particularly limited, but it may be 4 nm or more, 10 nm or more, and 20 nm because the microfibrillated plant fibers are difficult to untangle and disperse. or more.
  • the average fiber length of the microfibrillated plant fibers may be 100 nm or longer, 300 nm or longer, or 500 nm or longer.
  • the average fiber length may be 5 mm or less, 1 mm or less, 50 ⁇ m or less, or 3 ⁇ m or less. When the average fiber length is less than the lower limit or exceeds the upper limit, there is a tendency similar to the aforementioned average fiber diameter.
  • the average fiber diameter and the average fiber length are calculated as the average of the microfibrillated plant fibers as a whole.
  • the blending amount of the reinforcing agent may be 10 to 150 parts by mass per 100 parts by mass of the modified diene polymer component.
  • the compounding amount may be 20 parts by mass or more and 30 parts by mass or more in order to increase the mechanical strength of the rubber composition.
  • it may be 120 parts by mass or less and 100 parts by mass or less.
  • the reinforcing agent preferably contains silica.
  • the content of silica may be 30% by mass or more, 50% by mass or more, 70% by mass or more, or 80% by mass or more when the total amount of the reinforcing agent is 100% by mass.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane.
  • ⁇ -methacryloxypropyltrimethoxysilane N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, N-phenyl- ⁇ - aminopropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, bis(3-(triethoxysilyl)propyl)disulfide, bis(3-(triethoxy silyl)propyl)tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyltetrasulfide and ⁇ -trimethoxysilylpropylbenzothiazyltetrasulf
  • the amount of the silane coupling agent is 1 to 20 parts by mass, or 2 to 15 parts by mass, or 5 to 20 parts by mass per 100 parts by mass of silica. It may be 10 parts by mass.
  • aromatic mineral oil viscosity specific gravity constant (VGC value) 0.900 to 1.049
  • naphthenic mineral oil VCC value 0.850 to 0.899
  • paraffinic mineral oils VCC value 0.790 to 0.849
  • the polycyclic aromatic content of the extender oil may be less than 3% by weight and less than 1% by weight.
  • the polyaromatic content is measured according to the British Petroleum Institute method 346/92.
  • the aromatic compound content (CA) of the extender oil may be 20% by weight or more. Two or more of these extender oils may be used.
  • the sulfur includes powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur, and may be powdered sulfur or insoluble sulfur.
  • organic peroxides examples include ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, peroxycarbonates, peroxydicarbonates, and peroxyesters.
  • dicumyl peroxide 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne , 1,3-bis(t-butylperoxyisopropyl)benzene, t-butylcumyl peroxide, di-t-butyl peroxide, 2,2,4-trimethylpentyl-2-hydroperoxide, diisopropylbenzohydroperoxide oxide, cumene peroxide, t-butyl peroxide, 1,1-di(t-butylperoxy)3,5,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, o-methylbenzoyl peroxide, bis-3,5,5-trimethylhexan
  • the cross-linking aid may be, for example, a compound having two or more double bonds in the molecule.
  • crosslinking aids include N,N'-m-phenylenebismaleimide, toluylenebismaleimide, triallyl isocyanurate, triallyl cyanurate, p-quinonedioxime, nitrobenzene, diphenylguanidine, divinylbenzene, ethylene glycol. Dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, allyl methacrylate. You may use these individually or in combination of 2 or more types.
  • the amount of the cross-linking aid compounded in the rubber composition may be 0.05 parts by mass or more, or may be 0.1 parts by mass or more, and may be 20 parts by mass or less, or It may be 8 parts by mass or less.
  • the amount of the cross-linking agent is 0.1 to 15 parts by mass, or 0.3 to 10 parts by mass, per 100 parts by mass of the modified diene polymer. parts, 0.5 to 5 parts by mass.
  • vulcanization accelerator examples include thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyldisulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram monosulfide, tetramethylthiuram Thiuram-based vulcanization accelerators such as disulfide; N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N - Sulfenamide-based vulcanization accelerators such as oxyethylene-2-benzothiazolesulfenamide and N,N'-diisopropyl-2-benzothiazolesulfenamide; guanidine-based vulcanization accelerators.
  • thiazole-based vulcanization accelerators such as 2-mercaptobenzothi
  • the amount of the vulcanization accelerator is 0.1 to 5 parts by mass, or 0.2 to 0.2 parts by mass per 100 parts by mass of the polymer component. It may be 3 parts by mass.
  • a method for producing a rubber composition by blending a modified diene polymer with other polymer components, additives, etc. there are known methods, for example, mixing each component with a known mixer such as a roll or a Banbury. A kneading method can be used.
  • the kneading temperature may be 50 to 200° C. or 80 to 190° C., and the kneading time is 30 seconds to 30 minutes. , or from 1 minute to 30 minutes.
  • the kneading temperature may be 100°C or lower, or room temperature to 80°C.
  • a composition containing a cross-linking agent and a vulcanization accelerator is used after undergoing cross-linking treatment such as press cross-linking.
  • the cross-linking temperature may be 120-200° C. or 140-180° C., and the cross-linking time may be 0.5-90 minutes or 2-60 minutes.
  • Modified diene-based polymers and rubber compositions of modified diene-based polymers are used for tires, shoe soles, flooring materials, anti-vibration materials, and the like. In particular, it is preferably used for tires.
  • a diene polymer (A) was obtained by evaporating most of the volatile matter of the resulting polymerization solution a2 at normal temperature for 24 hours and then drying under reduced pressure at 55° C. for 12 hours.
  • the diene polymer (A) had a styrene unit content of 39 mass %, a vinyl bond content of 38.4 mol %, a Mooney viscosity (ML1+4 (125° C.)) of 70, and contained 25 mass parts of extender oil.
  • n-hexane solution containing 1.60 mmol of n-butyllithium (n-BuLi) was charged into the polymerization reactor, and the mixture was stirred at a stirring speed of 130 rpm and a temperature inside the polymerization reactor of 65°C. .
  • a diene polymer (B) was obtained by evaporating most of the volatile matter of the resulting polymerization solution b2 at normal temperature for 24 hours and drying under reduced pressure at 55° C. for 12 hours.
  • the diene polymer (B) had a styrene unit content of 40% by mass, a vinyl bond content of 65% by mass, a Mooney viscosity (ML1+4 (100° C.)) of 62, and contained 37.5 parts by mass of extender oil.
  • n-hexane solution containing 2.03 mmol of n-butyllithium (n-BuLi) was charged into the polymerization reactor, and the mixture was stirred at a stirring speed of 130 rpm and a temperature inside the polymerization reactor of 43°C. .
  • the diene polymer (C) had a styrene unit content of 26.4 mass %, a vinyl bond content of 36.4 mol %, and a Mooney viscosity (ML1+4 (125° C.)) of 57.
  • n-hexane solution containing 30.2 mmol of n-butyllithium (n-BuLi) was charged into the polymerization reactor, and the mixture was stirred at a stirring speed of 120 rpm and a temperature inside the polymerization reactor of 50°C. .
  • the solvent of the resulting polymerization solution d2 was removed by steam stripping, and dried with hot air to obtain a diene polymer (D).
  • the diene polymer (D) had a vinyl bond content of 10.0 mol % and a Mooney viscosity (ML1+4 (100° C.)) of 50.
  • Example 1 With respect to 125 parts by mass of the diene polymer (A), 6-tert-butyl-4-[3-[(2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3 , 2]Dioxaphosphepin-6-yl)oxy]propyl]-2-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name: SUMILIZER GP) and 0.2 parts by mass of zinc acrylate (powder, purity : 98%) (manufactured by Sigma-Aldrich) and 2.0 parts by mass were melt-kneaded at 80 rpm for 4 minutes in a 100 cc lab plastomill set at 130 ° C. to obtain an ⁇ , ⁇ -ethylenic hetero A saturated carboxylic acid metal salt-modified diene polymer was prepared.
  • the rubber composition (uncrosslinked) was press-crosslinked in a mold (75 mm x 150 mm x 2.0 mm) at 160°C for 20 minutes to obtain a crosslinked rubber sheet.
  • Example 2 ⁇ , ⁇ -ethylenic An unsaturated carboxylic acid metal salt-modified diene copolymer, a rubber composition, and a crosslinked rubber sheet were prepared.
  • Example 3 With respect to 125 parts by mass of the diene polymer (A), 6-tert-butyl-4-[3-[(2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3 , 2]Dioxaphosphepin-6-yl)oxy]propyl]-2-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name: SUMILIZER GP) and 0.2 parts by mass of zinc acrylate aqueous solution (30% by mass ) (manufactured by Asada Chemical Industry Co., Ltd., trade name: ZA30) and 5.0 parts by mass are melt-kneaded at 80 rpm for 4 minutes in a 100 cc lab plastomill set at 130 ° C., ⁇ , ⁇ -ethylene A rubber composition and a crosslinked rubber sheet were produced in the same manner as in Example 1, except that a polyunsaturated carboxylic acid metal salt
  • Example 4 With respect to 125 parts by mass of the diene polymer (A), 6-tert-butyl-4-[3-[(2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3 , 2]Dioxaphosphepin-6-yl)oxy]propyl]-2-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name: SUMILIZER GP) and 0.2 parts by mass of zinc acrylate aqueous solution (30% by mass ) (manufactured by Asada Chemical Industry Co., Ltd., trade name: ZA30) is 5.0 parts by mass, and 1,1-di(t-butylperoxy)cyclohexane (manufactured by NOF Corporation, trade name: Perhexa C-40) is 0.1.
  • Example 5 With respect to 137.5 parts by mass of the diene polymer (B), 6-tert-butyl-4-[3-[(2,4,8,10-tetra-tert-butyldibenzo[d,f][1 ,3,2]dioxaphosphepin-6-yl)oxy]propyl]-2-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name: SUMILIZER GP) and 0.2 parts by mass of zinc acrylate aqueous solution (30 % by mass) (manufactured by Asada Chemical Industry Co., Ltd., trade name: ZA30) and 5.0 parts by mass are melted and kneaded at 80 rpm for 4 minutes in a 100 cc lab plastomill set at 130 ° C., and ⁇ , ⁇ - A rubber composition was obtained in the same manner as in Example 1, except that an ethylenically unsaturated carboxylic acid metal salt
  • the rubber composition (uncrosslinked) was press-crosslinked in a mold (75 mm x 150 mm x 2.0 mm) at 160°C for 30 minutes to obtain a crosslinked rubber sheet.
  • Example 6 To 139.2 parts by mass of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt-modified diene-based polymer obtained in the same manner as in Example 5, 80 parts of silica (manufactured by Evonik, trade name: ULTRASIL 7000GR) was added. Parts by mass, 6.4 parts by mass of a silane coupling agent (manufactured by Evonik, trade name: Si75), and 3.0 parts by mass of zinc oxide (manufactured by Seido Chemical Industry Co., Ltd., trade name: zinc oxide type 2).
  • silica manufactured by Evonik, trade name: ULTRASIL 7000GR
  • stearic acid manufactured by Shin Nippon Rika, trade name: stearic acid 50S
  • N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine Ouchi Shinko 2.0 parts by mass of Nocrac 6C manufactured by Kagaku Kogyo Co., Ltd. was kneaded at 80 rpm for 4 minutes in a 100 cc Laboplastomill set at 130° C. to obtain a masterbatch.
  • the rubber composition (uncrosslinked) was press-crosslinked in a mold (75 mm x 150 mm x 2.0 mm) at 160°C for 50 minutes to obtain a crosslinked rubber sheet.
  • Example 7 With respect to 137.5 parts by mass of the diene polymer (B), 6-tert-butyl-4-[3-[(2,4,8,10-tetra-tert-butyldibenzo[d,f][1 ,3,2]dioxaphosphepin-6-yl)oxy]propyl]-2-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name: SUMILIZER GP) and 0.2 parts by mass of zinc acrylate aqueous solution (30 %) (manufactured by Asada Chemical Industry Co., Ltd., trade name: ZA30) is 5.0 parts by mass, and 1,1-di(t-butylperoxy)cyclohexane (manufactured by NOF Corporation, trade name: Perhexa C-40) is 0.
  • Example 8 15 g of magnesium acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name: magnesium acrylate) and 35 g of pure water were placed in a beaker in advance, and stirred at room temperature for 4 hours to obtain 30% by mass. An aqueous solution of magnesium acrylate was obtained.
  • the rubber composition (uncrosslinked) was press-crosslinked in a mold (75 mm x 150 mm x 2.0 mm) at 160°C for 40 minutes to obtain a crosslinked rubber sheet.
  • Example 9 With respect to 100 parts by mass of the diene polymer (C), 6-tert-butyl-4-[3-[(2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3 , 2]Dioxaphosphepin-6-yl)oxy]propyl]-2-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name: SUMILIZER GP) and 0.2 parts by mass of zinc acrylate aqueous solution (30% by mass ) (manufactured by Asada Chemical Industry Co., Ltd., trade name: ZA30) and 5.0 parts by mass are melt-kneaded at 80 rpm for 4 minutes in a 100 cc lab plastomill set at 130 ° C., ⁇ , ⁇ -ethylene A rubber composition was obtained in the same manner as in Example 1, except that a polyunsaturated carboxylic acid metal salt-modified diene polymer
  • the rubber composition (uncrosslinked) was press-crosslinked in a mold (75 mm x 150 mm x 2.0 mm) at 160°C for 10 minutes to obtain a crosslinked rubber sheet.
  • Example 10 With respect to 100 parts by mass of the diene polymer (C), 6-tert-butyl-4-[3-[(2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3 , 2]Dioxaphosphepin-6-yl)oxy]propyl]-2-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name: SUMILIZER GP) and 0.2 parts by mass of zinc acrylate aqueous solution (30%) (manufactured by Asada Chemical Industry Co., Ltd., product name: ZA30) and 5.0 parts by mass were melt-kneaded at 80 rpm for 4 minutes in a 100 cc lab plastomill set at 130 ° C. to obtain an ⁇ , ⁇ -ethylenic An unsaturated carboxylic acid metal salt-modified diene polymer was prepared.
  • silica manufactured by Evonik, trade name: ULTRASIL 7000GR
  • silane coupling agent manufactured by Evonik, trade name: Si75
  • 4 parts by mass, 3.0 parts by mass of zinc oxide manufactured by Seido Chemical Industry Co., Ltd., trade name: zinc oxide Type 2
  • 2.0 parts by mass of stearic acid manufactured by Shin Nihon Rika Co., Ltd., trade name: stearic acid 50S.
  • N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name: Nocrack 6C
  • an aroma system 37.5 parts by mass of process oil manufactured by H&R, trade name: VivaTec 500 was kneaded at 80 rpm for 4 minutes in a 100 cc lab plastomill set at 130°C to obtain a masterbatch.
  • the rubber composition (uncrosslinked) was press-crosslinked in a mold (75 mm x 150 mm x 2.0 mm) at 160°C for 50 minutes to obtain a crosslinked rubber sheet.
  • the rubber composition (uncrosslinked) was press-crosslinked in a mold (75 mm x 150 mm x 2.0 mm) at 160°C for 6 minutes to obtain a crosslinked rubber sheet.
  • Example 12 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate (Sumitomo Chemical Co., Ltd.) with respect to 137.5 parts by mass of the diene polymer (B) 0.5 parts by mass of pentaerythrityl tetrakis (3-laurylthiopropionate) (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumilizer TP-D) and 0.25 parts by mass of , 3.3 parts by mass of an aqueous solution of zinc acrylate (30% by mass) (trade name: ZA30, manufactured by Asada Chemical Industry Co., Ltd.) with a 20 mm ⁇ twin-screw extruder set at 170 ° C.
  • a rubber composition and a crosslinked rubber sheet were prepared in the same manner as in Example 6, except that melt-kneading was performed at a rate of 5 kg/hour to prepare an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt-modified diene polymer. made respectively.
  • X-ray wavelength is 0.128 nm
  • camera length is 8000 mm
  • Pilatus 1M manufactured by Dectris Inc. is used as a detector
  • room temperature is 25°C.
  • X-rays were incident in the direction parallel to the thickness direction of the sheet, and the total two-dimensional scattering image Ms was obtained by changing the irradiation position for an exposure time of 1 second and measuring 64 times. Simultaneously with the photographing of the two-dimensional scattering image, the transmitted light intensity fs was measured in the ion chamber downstream of the sheet.
  • Measurement was performed under the same conditions except that the sheet was not used, and a two-dimensional scattered image Mb of the background and transmitted light intensity fb were obtained.
  • a two-dimensional scattering image M after background subtraction was obtained by Equation (3).
  • M Ms/fs-Mb/fb Formula (3)
  • a one-dimensional profile I in the radial direction was obtained from the two-dimensional scattering image M by circular averaging. At this time, the range in which the scattered X-rays were blocked by a beam stop or the like provided to prevent the direct beam from entering the detector was excluded from the one-dimensional profile.
  • the horizontal axis was calibrated to the scattering vector magnitude q using the standard substance collagen.
  • the intensity ratio r2 was obtained by equation (5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明によれば、ジエン系重合体と、α,β-エチレン性不飽和カルボン酸の金属塩とを、溶融混練して得られる変性ジエン系重合体の製造方法であって、当該α,β-エチレン性不飽和カルボン酸の金属塩は、アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸亜鉛、アクリル酸マグネシウム、アクリル酸カルシウム、アクリル酸銅、および、アクリル酸アルミからなる金属塩群から選ばれる少なくとも1種以上の金属塩であることを特徴とする変性ジエン系重合体の製造方法が提供される。また、本発明によれば、q=0.04nm-1とq=0.7nm-1の小角X線散乱強度の比が3000以上である、変性ジエン系重合体も提供される。

Description

変性ジエン系重合体、その製造方法、及びそのゴム組成物
 本発明は、変性ジエン系重合体、その製造方法、及びそのゴム組成物に関する。
 近年、省資源や軽量化などの観点から、タイヤを始めとするゴム材料の機械強度や耐久性が重要視されている。ゴム材料の機械強度や耐久性を向上させる1つの手法として、ジエン系ゴムの主鎖および末端にカルボン酸金属塩基を導入する試みがなされている(例えば特許文献1)。
 これらジエン系ゴムは、重合工程後期に変性処理を行うため、変性率の制御性に優れる。しかしながら、変性処理に多段工程を要するため、生産性の向上を求められる場合もあった。
国際公開第2020/230803号
 本発明の一側面は、変性ジエン系重合体であって、破断強度、破断伸び、耐久性に優れるゴム組成物を与えることのできる変性ジエン系重合体を提供することである。
 本発明の一側面は、q=0.04nm-1とq=0.7nm-1の小角X線散乱強度の比が3000以上である変性ジエン系重合体を提供する。
 本発明の別の一側面は、ジエン系重合体と、該ジエン系重合体100質量部に対して、0.01~20質量部のα,β-エチレン性不飽和カルボン酸の金属塩とを、溶融混練して得られる変性ジエン系重合体の製造方法、およびこのような製造方法により得られる変性ジエン系重合体を提供する。当該α,β-エチレン性不飽和カルボン酸の金属塩は、アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸亜鉛、アクリル酸マグネシウム、アクリル酸カルシウム、アクリル酸銅、および、アクリル酸アルミニウムからなる金属塩群から選ばれる少なくとも1種以上の金属塩であって、当該α,β-エチレン性不飽和カルボン酸の金属塩1質量部に対して、0.2~200質量部の水を含む水溶液であってもよく、ラジカル開始剤存在下に溶融混練してもよい。
 本発明のさらに別の一側面は、当該変性ジエン系重合体に対して、架橋剤を配合してなるゴム組成物およびその製造方法を提供する。
 本発明の一側面によれば、破断強度、破断伸び、耐久性に優れるゴム組成物を与えることのできる変性ジエン系重合体が提供される。
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
(ジエン系重合体)
 ジエン系重合体は、ジエンに基づく構成単位(ジエン単位)を有する重合体である。該ジエンとしては、共役ジエン、非共役ジエンであってもよく、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネンなどがあげられる。これらは、1種以上用いられる。ジエンとして、好ましくは、1,3-ブタジエン、イソプレン、5-エチリデン-2-ノルボルネンである。
 ジエン系重合体は、ジエン単位に加え、他の単量体に基づく構成単位を有していてもよい。該他の単量体としては、ビニル芳香族化合物、ビニルニトリル、不飽和カルボン酸エステル、α-オレフィン、シリカに対して相互作用可能な官能基を有するビニル化合物があげられる。ビニル芳香族化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンがあげられる。また、ビニルニトリルとしては、アクリロニトリルがあげられ、不飽和カルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、メタアクリル酸メチル、メタアクリル酸エチルがあげられる。また、α-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、及び1-デセンのような直鎖状オレフィン;3-メチル-1-ブテン、3-メチル-1-ペンテン、及び4-メチル-1-ペンテンのような分岐オレフィン;ビニルシクロヘキサンがあげられる。シリカに対して相互作用可能な官能基を有するビニル化合物としては、ビス(ジメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ-n-ブチルアミノ)メチルビニルシランがあげられる。好ましくは、ビニル芳香族化合物であり、より好ましくは、スチレンである。
 ジエン系重合体としては、ポリ(1,3-ブタジエン)、ポリイソプレン、1,3-ブタジエン-イソプレン共重合体などのジエン重合体;1,3-ブタジエン-スチレン共重合体、イソプレン-スチレン共重合体などのジエン-ビニル芳香族化合物共重合体;アクリロニトリル-ブタジエン共重合体;イソプレン-イソブチレン共重合体;エチレン-プロピレン-ジエン共重合体;エチレン-ブタジエン共重合体;プロピレン-ブタジエン共重合体等があげられる。好ましくは、ジエン重合体およびジエン-ビニル芳香族化合物共重合体である。
 ジエン系重合体は、ゴム組成物の強度を高めるために、ビニル芳香族化合物に基づく構成単位(ビニル芳香族化合物単位)を有していることが好ましい。ビニル芳香族化合物単位の含有量としては、ジエン単位とビニル芳香族化合物単位との総量を100重量%として、0重量%以上であり、好ましくは10重量%以上(ジエン単位の含有量は90重量%以下)であり、より好ましくは15重量%以上(ジエン単位の含有量は85重量%以下)である。また、ゴム組成物のtanδバランスをより改良するために、ビニル芳香族化合物単位の含有量は、好ましくは50重量%以下(ジエン単位の含有量は50重量%以上)であり、より好ましくは45重量%以下(ジエン単位の含有量は55重量%以上)である。
 ジエン系重合体のビニル結合量は、ジエン単位の含有量を100モル%として、ゴム組成物のtanδバランスをより改良するために、好ましくは、10モル%以上80モル%以下であり、より好ましくは、10モル%以上70モル%以下であり、さらに好ましくは20モル%以上70モル%以下である。該ビニル結合量は、赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より求められる。
 ジエン系重合体のムーニー粘度(ML1+4)は、ゴム組成物の強度を高めるために、好ましくは10以上であり、より好ましくは20以上である。また、加工性を高めるために、好ましくは200以下であり、より好ましくは150以下である。該ムーニー粘度(ML1+4)は、JIS K6300(1994)に従って、100℃または125℃にて測定される。
(ジエン系重合体の製造方法)
 本発明に用いるジエン系重合体は、たとえば、不活性溶媒中で、重合開始剤を用いて、少なくともジエンを含む単量体混合物を重合することにより得ることができる。本発明に用いるジエン系重合体は、溶液重合法により重合されることが好ましい。
 単量体混合物に含まれるジエンとしては、前述した、ジエン系重合体を構成するために用いうるジエンとして例示したものと同じものが挙げられる。さらに、単量体混合物は、必要に応じて、上述したビニル芳香族化合物、シリカに対して相互作用可能な官能基を含有するビニル化合物、その他の単量体を含んでもよい。
 重合に用いられる不活性溶媒としては、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、ブタン、ペンタン、ヘキサン、ヘプタン、2-ブテン等の鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘキセン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;等が挙げられる。これらの不活性溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不活性溶媒の使用量は、単量体濃度が、たとえば、1~50重量%であり、好ましくは10~40重量%となる量である。
 また、重合に用いる重合開始剤としては、ジエンを含む単量体混合物を重合させることができるものであれば、特に限定されない。その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤を挙げることができる。有機アルカリ金属化合物としては、たとえば、有機リチウム化合物、有機ナトリウム化合物、有機カリウム化合物などが挙げられ、具体的には、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、例えば、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ-t-ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ-t-ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、たとえば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく用いられ、有機モノリチウム化合物がより好ましく用いられ、n-ブチルリチウムが特に好ましく用いられる。なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ピペリジン、ヘキサメチレンイミン、およびヘプタメチレンイミンなどの2級アミン化合物と反応させて、有機アルカリ金属アミド化合物として使用してもよい。有機アルカリ金属アミド化合物を重合開始剤として用いることにより、得られるゴム架橋物を、より低燃費特性および耐摩耗特性に優れたものとすることができる。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 重合開始剤の使用量は、目的とするジエン系重合体の分子量分布曲線に応じて決定すればよいが、単量体1000g当り、通常1~50ミリモル、好ましくは1.5~20ミリモル、より好ましくは2~15ミリモルの範囲である。
 重合開始剤を用いて重合を開始した後に、さらに重合開始剤を重合系に添加し、重合を継続するという重合開始剤の追添加操作を行ってもよい。重合開始剤の追添加操作を行うタイミングや、重合開始剤の追添加操作を行う回数は、特に限定されず、目的とするジエン系重合体の分子量分布曲線に応じて決定すればよいが、追添加操作を行うタイミングは、重合転化率が10~90%に達した段階とすることが好ましく、重合転化率が30~70%に達した段階とすることがより好ましい。シリカに対して相互作用可能な官能基を含有するビニル化合物は、加工性に優れるという観点から、追添加操作完了後に共重合させるのが好ましい。追添加操作1回あたりの重合開始剤の使用量は、特に限定されず、目的とするジエン系重合体の分子量分布曲線に応じて決定すればよいが、重合開始時に使用した重合開始剤1モルに対して、好ましくは1~99モル、より好ましくは1.2~20モルである。
 重合温度は、通常-80~+150℃、好ましくは0~100℃、より好ましくは30~90℃の範囲である。重合様式としては、回分式、連続式などのいずれの様式をも採用できるが、ジエン単位とビニル芳香族化合物単位との結合のランダム性を制御しやすい点で、回分式が好ましい。
 また、ジエンを含む単量体混合物を重合するにあたり、得られるジエン系重合体におけるジエン単位中のビニル結合量を調節するために、不活性有機溶媒に極性化合物を添加することが好ましい。極性化合物としては、たとえば、ジブチルエーテル、テトラヒドロフランなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらのなかでも、エーテル化合物、および第三級アミンが好ましく、第三級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、目的とするビニル結合量に応じて決定すればよく、重合開始剤1モルに対して、好ましくは0.001~100モル、より好ましくは0.01~10モルである。極性化合物の使用量がこの範囲にあると、ジエン単位中のビニル結合量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。
 以上のようにして、不活性溶媒中に、ジエン系重合体を得ることができる。また、このようにして得られるジエン系重合体は、通常、活性末端を有するものとなる。
 活性末端を含むジエン系重合体について、カップリング剤と反応させることにより、カップリング重合体鎖を形成させてもよい。カップリング剤としては、特に限定されないが、四塩化ケイ素、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、四塩化スズ、メチルトリクロロスズ、ジメチルジクロロスズ、トリメチルクロロスズ、テトラメトキシシラン、メチルトリメトキシシラン、ジメトキシジメチルシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、テトラエトキシシラン、エチルトリエトキシシラン、ジエトキシジエチルシラン、ビス(トリクロロシリル)メタン、1,2-ビス(トリクロロシリル)エタン、1,3-ビス(トリクロロシリル)プロパン、1,4-ビス(トリクロロシリル)ブタン、1,5-ビス(トリクロロシリル)ペンタン、1,6-ビス(トリクロロシリル)ヘキサンなどが挙げられる。カップリング剤としては、目的とするジエン系重合体の分子量分布曲線に応じて選択すればよいが、3官能以上のカップリング剤を用いることが好ましく、4官能以上のカップリング剤を用いることがさらに好ましい。
 カップリング剤を用いる場合には、上記の重合方法により得られた活性末端を有する重合体鎖の一部について、カップリング反応を行うことで、カップリング重合体鎖を形成させ、活性末端を有する重合体鎖と、カップリング重合体鎖とを含有する溶液を得ることが好ましい。この場合における、カップリング剤の使用量としては、特に限定されないが、目的とするジエン系重合体の分子量分布曲線に応じて選択すればよいが、重合時に使用した重合開始剤1モルに対して、カップリング剤の官能基換算で、好ましくは0.01~0.4モル、より好ましくは0.02~0.3モルである。カップリング剤の添加により、活性末端を有する重合体鎖は、活性末端においてカップリング反応し、これにより、カップリング反応した重合体鎖は、活性末端が消失することとなり、活性末端を有しないものとなる一方で、カップリング反応しなかった重合体鎖は活性末端を維持したままとなる。
 重合により得られたジエン系重合体に含まれる活性末端、または、カップリング反応後のジエン系重合体に含まれ得る活性末端に対し、窒素原子を含有する化合物やケイ素原子を含有する化合物からなる変性剤を反応させることにより、ジエン系重合体を、窒素原子を含有する化合物やケイ素原子を含有する化合物に由来の変性基を有するジエン系重合体とすることが好ましい。
 変性剤としては、ジメチルアミノエチルアクリルアミド、ジエチルアミノエチルアクリルアミド、ジメチルアミノプロピルアクリルアミド、ジエチルアミノプロピルアクリルアミド、ジメチルアミノブチルアクリルアミド、ジエチルアミノブチルアクリルアミド、ジメチルアミノエチルメタクリルアミド、ジエチルアミノエチルメタクリルアミド、ジメチルアミノプロピルメタクリルアミド、ジエチルアミノプロピルメタクリルアミド、ジメチルアミノブチルメタクリルアミド、ジエチルアミノブチルメタクリルアミドなどのN,N-ジ置換アミノアルキル(メタ)アクリルアミド類;[3-(ジメチルアミノ)プロピル]トリメトキシシラン、[3-(ジエチルアミノ)プロピル]トリメトキシシラン、[3-(ジメチルアミノ)プロピル]トリエトキシシラン、[3-(ジエチルアミノ)プロピル]トリエトキシシラン、[3-(エチルメチルアミノ)プロピル]トリメトキシシラン、[3-(エチルメチルアミノ)プロピル]トリエトキシシランなどのアミノ基を有するアルコキシシラン化合物、シロキサン化合物、ヒドロカルビルオキシシラン化合物など;があげられる。
 ジエン系重合体の活性末端に対し、上記した窒素原子を含有する化合物やケイ素原子を含有する化合物からなる変性剤を反応させる際における、変性剤の使用量は、特に限定されないが、活性末端を有する重合体鎖の活性末端1モルに対する変性剤の量(重合開始剤として、有機アルカリ金属化合物を使用した場合には、有機アルカリ金属化合物中の金属原子1モルに対する変性剤の量)として、0.01~10.0モルであることが好ましく、0.02~5.0モルであることがより好ましく、0.05~2.0モルであることが特に好ましい。なお、変性剤としては、上述したものを用いることができるが、それぞれ単独で、あるいは2種以上を組合わせて用いてもよい。
 また、ジエン系重合体の活性末端に対し、窒素原子を含有する化合物やケイ素原子を含有する化合物からなる変性剤を反応させる方法としては、特に限定されないが、活性末端を有する重合体鎖と、変性剤とを、これらを溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述したジエン系重合体の重合に用いる溶媒として例示したものなどを用いることができる。また、この際においては、上記にて得られた活性末端を有する重合体鎖を、その重合に用いた重合溶液のままの状態とし、ここに変性剤を添加する方法が簡便であり好ましい。なお、この際において、変性剤は、上述した重合に用いる不活性溶媒に溶解して重合系内に添加してもよく、その溶液濃度は、1~50重量%の範囲とすることが好ましい。反応温度は、特に限定されないが、通常、0~120℃であり、反応時間は、特に限定されないが、通常、1分~1時間である。
 活性末端を有する重合体鎖を含有する溶液に、窒素原子を含有する化合物やケイ素原子を含有する化合物からなる変性剤を添加する時期は特に限定されないが、重合反応が完結しておらず、活性末端を有する重合体鎖を含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する重合体鎖を含有する溶液が、100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液に変性剤を添加することが望ましい。変性剤の添加をこのように行なうことにより、活性末端を有する重合体鎖と重合系中に含まれる不純物等との副反応を抑制して、反応を良好に制御することが可能となる。
 重合により得られたジエン系重合体の活性末端、または、必要に応じてカップリング剤や変性剤と反応させた後に残存し得る活性末端に対して、メタノールおよびイソプロパノールなどのアルコールまたは水などの重合停止剤を添加して、未反応の活性末端を失活させることが好ましい。
 以上の方法により得られるジエン系重合体の溶液には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合して、油展ゴムとしてもよい。伸展油としては、たとえば、パラフィン系、芳香族系及びナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸等が挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、ジエン系重合体100重量部に対して、通常5~100重量部である。
(α,β-エチレン性不飽和カルボン酸の金属塩)
 α,β-エチレン性不飽和カルボン酸の金属塩は、不飽和カルボン酸と1価以上の金属元素とを含む塩である。α,β-エチレン性不飽和カルボン酸の金属塩は、例えば、下記式(1)で表される化合物であってもよい。式(1)中、R及びRは、それぞれ独立に水素原子又は炭化水素基を示し、Mは金属元素を示し、nは1以上の整数を示す。式(1)で表されるα,β-エチレン性不飽和カルボン酸の金属塩は、n個のカルボキシラートイオンとn価の金属カチオンMn+とから形成された塩であってもよく、n個のカルボキシラートイオンのうち一部が水酸化物イオンに置き換わっていてもよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中のR又はRとしての炭化水素基は、例えばアルキル基であってもよく、その炭素数が1~10であってもよい。R及びRは、水素原子であってもよい。nは1~3であってもよく、2であってもよい。Mは、例えば、ナトリウム、カリウム、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、マンガン、鉄、コバルト、ニッケル、銅、アルミニウムであってもよく、優れた機械強度と耐久性を得やすい観点から、亜鉛、マグネシウム、アルミニウムであってもよく、α,β-エチレン性不飽和カルボン酸の金属塩の不飽和カルボン酸は、アクリル酸またはメタクリル酸であってもよい。
 α,β-エチレン性不飽和カルボン酸の金属塩の例としては、アクリル酸亜鉛、メタクリル酸亜鉛、アクリル酸マグネシウム、メタクリル酸マグネシウム、アクリル酸アルミニウム、メタクリル酸アルミニウム、アクリル酸ナトリウム、メタクリル酸ナトリウム、アクリル酸カリウム、メタクリル酸カリウム、アクリル酸カルシウム、メタクリル酸カルシウム、アクリル酸銅、メタクリル酸銅が挙げられる。α,β-エチレン性不飽和カルボン酸の金属塩は、一種単独で使用してもよいし、二種以上を併用してもよい。
(変性ジエン系重合体の製造方法)
 変性ジエン系重合体は、ジエン系重合体とα,β-エチレン性不飽和カルボン酸の金属塩とを、溶融混練することにより製造される。
 本発明方法においては、ジエン系重合体とα,β-エチレン性不飽和カルボン酸の金属塩とを、溶融混練することにより、少なくとも一部のジエン系重合体に、α,β-エチレン性不飽和カルボン酸の金属塩に由来の変性構造、より具体的には、カルボン酸金属塩基を導入することができる。
 ジエン系重合体に対するα,β-エチレン性不飽和カルボン酸の金属塩の添加量は、優れた機械強度と耐久性を得やすい観点から、ジエン系重合体100質量部を基準として、0.01質量部以上、0.2質量部以上、0.4質量部以上、0.8質量部以上、1.0質量部以上であってもよい。ジエン系重合体におけるα,β-エチレン性不飽和カルボン酸の金属塩の添加量は、ジエン系重合体100質量部を基準として、20質量部以下、10質量部以下、5質量部以下、3質量部以下、2質量部以下、1.5質量部以下であってもよい。
 分散性を向上させる観点から、α,β-エチレン性不飽和カルボン酸の金属塩は溶融混練時に水溶液で添加されてもよく、ジエン系重合体とα,β-エチレン性不飽和カルボン酸の金属塩との溶融混練における水の割合は、α,β-エチレン性不飽和カルボン酸の金属塩1質量部あたり0.2~200質量部である。ジエン系重合体への分散性を向上させる観点から、水の割合は、0.5質量部以上、1.0質量部以上、1.5質量部以上、2.0質量部以上であってもよい。また、経済性の観点から、水の割合は、150質量部以下、100質量部以下、50質量部以下、20質量部以下、5質量部以下であってもよい。
 ジエン系重合体とα,β-エチレン性不飽和カルボン酸の金属塩とを溶融混練する温度は、溶融混練が可能となる温度とすればよく、たとえば、ジエン系重合体が溶融する温度以上とすることができ、100~250℃、120~200℃、120~150℃であってもよい。また、溶融混練する時間は、0.1~10分、0.5~5分であってもよい。
 溶融混練は、公知の混練装置であれば制限を受けない。混練装置の例としては、押出機、ニーダー、バンバリーミキサー、ロール混練機などがある。好ましくは、押出機、バンバリーミキサーによる溶融混練である。
 混練装置は、ベントを備えた混練装置を用いることもでき、溶融混練時にベントから水を含む揮発成分を脱揮する方法で、溶融混練することもできる。ベントでは、真空ポンプ等で減圧、有機溶媒、モノマー、多価アルコール溶液の溶媒等の揮発成分を脱揮する。ベント圧力は、5~100kPa-A、10~95kPa-Aであってもよい。
 溶融混練時のα,β-エチレン性不飽和カルボン酸の金属塩の変性率を向上させるという観点から、ラジカル開始剤存在下で溶融混練することもできる。
 ラジカル開始剤は、公知のラジカル開始剤であれば制限を受けない。ラジカル開始剤の例としては、ベンゾイルぺルオキシド、クメンハイドロペルオキシド、パラメンタンハイドロペルオキシド、ラウロイルペルオキシド、1,1-ジ(t-ブチルペロキシ)シクロヘキサン等の有機過酸化物、アゾイソブチロニトリルをはじめとするジアゾ化合物、過酸化カリウムをはじめとする無機化合物、有機化合物と硫酸鉄との組み合わせに代表されるレドックス系触媒等を用いることができる。これらは、1種以上用いられ、溶融混練開始時に全量を添加してもよいし、溶融混練開始後に数回に分けて段階的にまたは連続的に添加してもよい。また、溶融混練は、老化防止剤の存在下で行ってもよい。
 本発明方法により得られた変性ジエン系重合体のムーニー粘度(ML1+4)は、ゴム組成物の機械強度を高めるために、10以上、20以上であってもよい。また、加工性を高めるために、250以下、200以下であってもよい。該ムーニー粘度(ML1+4)は、JIS K 6300(1994)に従って、100℃測定される。
 変性ジエン系重合体にビニル結合部位を有する場合は、ジエン単位の含有量を100mol%として、ビニル結合量は10mol%以上80mol%以下であってもよく、10mol%以上70mol%以下であってもよく、また、20mol%以上70mol%以下であってもよい。該ビニル結合量は、赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より求められる。
 変性ジエン系重合体は、ゴム組成物の強度を高めるために、ビニル芳香族化合物に基づく構成単位(ビニル芳香族化合物単位)を有していてもよい。ビニル芳香族化合物単位の含有量としては、ジエン単位とビニル芳香族化合物単位との総量を100質量%として、0質量%以上であってもよく、10質量%以上(ジエン単位の含有量は90質量%以下)、15質量%以上(ジエン単位の含有量は85質量%以下)であってもよい。また、ビニル芳香族化合物単位の含有量としては、50質量%以下(ジエン単位の含有量は50質量%以上)、45質量%以下(ジエン単位の含有量は85質量%以上)であってもよい。
 本発明により得られた変性ジエン系重合体は溶融混錬することにより、カルボン酸金属塩基の会合体を適度な大きさで分散させることができ、抗張積や耐久性を向上させる効果を示す。カルボン酸金属塩基の会合体の分散性は小角X線散乱強度で特徴づけることができる。q=0.04nm-1とq=0.7nm-1の小角X線散乱強度の比r1(r1は、q=0.04nm-1の小角X線散乱強度/q=0.7nm-1の小角X線散乱強度)が大きいほど約150nmのサイズの会合体が多いことを示しており、抗張積と耐久性を高めるために、r1は3000以上であることが好ましい。すなわち、本発明によれば、q=0.04nm-1とq=0.7nm-1の小角X線散乱強度の比r1が、3000以上である変性ジエン系重合体が提供される。r1の上限は、特に限定されないが、好ましくは30000以下である。また、変性ジエン系重合体のq=0.015nm-1とq=0.7nm-1の小角X線散乱強度の比r2(r2は、q=0.015nm-1の小角X線散乱強度/q=0.7nm-1の小角X線散乱強度)が大きいほど約400nmのサイズの会合体が多いことを示しており、抗張積と耐久性を高めるために、70000以上であることがより好ましい。すなわち、本発明の変性ジエン系重合体は、q=0.015nm-1とq=0.7nm-1の小角X線散乱強度の比r2が70000以上であることが好ましい。r2の上限は、特に限定されないが、好ましくは500000以下である。混錬変性の際のジエン系重合体とカルボン酸金属塩の組み合わせ、配合処方によりr1やr2を制御することができる。
 本発明の変性ジエン系重合体は、他の重合体成分や添加剤などを配合して、ゴム組成物にして用いることができる。
 他の重合体成分としては、従来のポリブタジエン、ポリイソプレン、スチレン-ブタジエン共重合体、イソプレン-スチレン共重合体、ブタジエン-イソプレン共重合体、アクリロニトリル-ブタジエン共重合体、イソプレン-イソブチレン共重合体、エチレン-プロピレン-ジエン共重合体、ブチルゴムがあげられる。また、天然ゴム、エチレン-プロピレン共重合体、エチレン-オクテン共重合体もあげられる。これらの重合体成分は、1種以上用いられる。
 添加剤としては、公知のものを用いることができ、シリカ、カーボンブラック、ミクロフィブリル化植物繊維などの補強剤;炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどの充填剤;シランカップリング剤;伸展油;硫黄、有機過酸化物などの架橋剤;架橋助剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;加工助剤;老化防止剤;滑剤があげられる。
 上記シリカとしては、乾式シリカ(無水ケイ酸)、湿式シリカ(含水ケイ酸)、コロイダルシリカ、沈降シリカ、ケイ酸カルシウム、ケイ酸アルミニウムがあげられる。これらは2種以上用いてもよい。シリカのBET比表面積は、50~250m2/gであってもよい。該BET比表面積は、ASTM D1993-03に従って測定される。市販品としては、Evonik社製 商品名 ULTRASIL 7000GR、VN-3、東ソー・シリカ社製 商品名 Nipsil VN3、AQ、ER、RS-150、Solvay社製 商品名 Zeosil 1115MP、1165MP等を用いることができる。
 上記カーボンブラックとしては、EPC、MPCおよびCCなどのチャンネルカーボンブラック;SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCFおよびECFなどのファーネスカーボンブラック;FTおよびMTなどのサーマルカーボンブラック;アセチレンカーボンブラック;グラファイト等があげられる。これらは2種以上用いてもよい。
 カーボンブラックの窒素吸着比表面積(N2SA)は、5~200m/gであってもよく、カーボンブラックのジブチルフタレート(DBP)吸収量は、5~300ml/100gであってもよい。該窒素吸着比表面積は、ASTM D4820-93に従って測定され、該DBP吸収量は、ASTM D2414-93に従って測定される。市販品としては、三菱化学社製 商品名 ダイヤブラックN339、東海カーボン社製 商品名 シースト6、シースト7HM、シーストKH、旭カーボン社製 商品名 旭70、旭60U等を用いることができる。
 上記ミクロフィブリル化植物繊維としては、良好な補強性が得られるという点から、セルロースミクロフィブリルであってもよい。セルロースミクロフィブリルとしては、天然物由来のものであれば特に制限されず、例えば、果実、穀物、根菜などの資源バイオマス、木材、竹、麻、ジュート、ケナフ、及びこれらを原料として得られるパルプや紙、布、農作物残廃物、食品廃棄物や下水汚泥などの廃棄バイオマス、稲わら、麦わら、間伐材などの未使用バイオマスの他、ホヤ、酢酸菌等の生産するセルロースなどに由来するものが挙げられる。これらミクロフィブリル化植物繊維は、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。
 セルロースミクロフィブリルは、平均繊維径が10μm以下の範囲内であるセルロース繊維であってもよく、セルロース分子の集合により形成されている平均繊維径500nm以下の微小構造を有するセルロース繊維であってもよい。また、セルロースミクロフィブリルは、例えば、上記のような平均繊維径を有するセルロース繊維の集合体として形成されていてもよい。
 上記ミクロフィブリル化植物繊維の製造方法としては特に限定されないが、例えば、上記セルロースミクロフィブリルの原料を必要に応じて水酸化ナトリウム等のアルカリで化学処理した後、リファイナー、二軸押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。これらの方法では、化学処理によって原料からリグニンが分離されるため、リグニンを実質的に含有しないミクロフィブリル化植物繊維が得られる。また、その他の方法として、上記セルロースミクロフィブリルの原料を超高圧処理する方法なども挙げられる。
 上記ミクロフィブリル化植物繊維としては、上記製造方法により得られたものに更に、酸化処理や種々の化学変性処理などを施したものや、上記セルロースミクロフィブリルの由来となり得る天然物、例えば、木材、パルプ、竹、麻、ジュート、ケナフ、農作物残廃物、布、紙、ホヤセルロース等をセルロース原料として、酸化処理や種々の化学変性処理などを行い、その後に必要に応じて解繊処理を行ったものも用いることもできる。
 上記ミクロフィブリル化植物繊維の平均繊維径は、10μm以下であってもよい。上記ミクロフィブリル化植物繊維の平均繊維径が、ゴム中でのミクロフィブリル化植物繊維の分散性をより向上させることができるという観点から、該平均繊維径としては、500nm以下であってもよく、100nm以下、50nm以下であっても良い。また、上記ミクロフィブリル化植物繊維の平均繊維径の下限は特に制限されないが、ミクロフィブリル化植物繊維の絡まりがほどけにくく、分散し難いという理由から、4nm以上であってもよく、10nm以上、20nm以上であってもよい。
 上記ミクロフィブリル化植物繊維の平均繊維長は、100nm以上であってもよく、300nm以上、500nm以上であってもよい。また、該平均繊維長としては、5mm以下であってもよく、1mm以下、50μm以下、3μm以下であってもよい。平均繊維長が下限未満の場合や上限を超える場合は、前述の平均繊維径と同様の傾向がある。
 また、上記ミクロフィブリル化植物繊維が2種以上の組み合わせからなる場合、上記平均繊維径、上記平均繊維長は、ミクロフィブリル化植物繊維全体での平均として算出される。
 変性ジエン系重合体に補強剤を配合したゴム組成物とする場合、補強剤の配合量は、変性ジエン系重合体成分100質量部あたり、10~150質量部であってもよい。また、該配合量は、ゴム組成物の機械強度を高めるために、20質量部以上、30質量部以上であってもよい。また、ゴム組成物の加工性を高めるために、120質量部以下、100質量部以下であってもよい。
 補強剤としては、シリカを含有していることが好ましい。シリカの含有量は、補強剤の総量を100質量%として、30質量%以上、50質量%以上、70質量%以上、80質量%以上であってもよい。
 上記シランカップリング剤としては、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドがあげられる。これらは2種以上用いてもよい。市販品としては、Evonik社製 商品名 Si69、Si75等を用いることができる。
 変性ジエン系重合体にシランカップリング剤を配合したゴム組成物とする場合、シランカップリング剤の配合量は、シリカ100質量部あたり、1~20質量部、または2~15質量部、5~10質量部であってもよい。
 上記伸展油としては、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900~1.049)、ナフテン系鉱物油(V.G.C.値0.850~0.899)、パラフィン系鉱物油(V.G.C.値0.790~0.849)があげられる。伸展油の多環芳香族含有量は、3質量%未満、1重量%未満であってもよい。該多環芳香族含有量は、英国石油学会346/92法に従って測定される。また、伸展油の芳香族化合物含有量(CA)は、20重量%以上であってもよい。これらの伸展油は、2種以上用いてもよい。
 上記硫黄としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄があげられ、粉末硫黄、不溶性硫黄であってもよい。
 有機過酸化物としては、ケトンパーオキサイド、ジアシルパーオキサイド、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシケタール、アルキルパーエステル、パーカーボネート、パーオキシジカーボネート、パーオキシエステルが挙げられる。より具体的には、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,2,4-トリメチルペンチル-2-ハイドロパ-オキサイド、ジイソプロピルベンゾハイドロパーオキサイド、クメンパーオキサイド、t-ブチルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)3,5,5-トリメチルシクロヘキサン、1,1-ジ-t-ブチルパーオキシシクロヘキサン、イソブチルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド等があげられる。これらは単独で又は2種以上を組み合わせて用いられる。
 架橋助剤は、例えば、分子内に2個以上の二重結合を有する化合物であってもよい。架橋助剤の例としては、N,N’-m-フェニレンビスマレイミド、トルイレンビスマレイミド、トリアリルイソシアヌレート、トリアリルシアヌレート、p-キノンジオキシム、ニトロベンゼン、ジフェニルグアニジン、ジビニルベンゼン、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、アリルメタクリレートが挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。ゴム組成物における架橋助剤の配合量は、変性ジエン系重合体100質量部に対して、0.05質量部以上、または0.1質量部以上であってもよく、20質量部以下、または8質量部以下であってもよい。
 変性ジエン系重合体に架橋剤を配合したゴム組成物とする場合、架橋剤の配合量は、変性ジエン系重合体100質量部あたり、0.1~15質量部、または0.3~10質量部、0.5~5質量部であってもよい。
 上記加硫促進剤としては、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤があげられる。
 変性ジエン系重合体に加硫促進剤を配合したゴム組成物とする場合、加硫促進剤の配合量は、重合体成分100質量部あたり、0.1~5質量部、または0.2~3質量部であってもよい。
 変性ジエン系重合体に、他の重合体成分や添加剤などを配合してゴム組成物を製造する方法としては、公知の方法、例えば、各成分をロールやバンバリーのような公知の混合機で混練する方法を用いることができる。
 混練条件としては、架橋剤および加硫促進剤以外の添加剤を配合する場合、混練温度は、50~200℃、または80~190℃であってもよく、混練時間は、30秒~30分、または1分~30分であってもよい。架橋剤、加硫促進剤を配合する場合、混練温度は、100℃以下、または室温~80℃であってもよい。また、架橋剤、加硫促進剤を配合した組成物は、プレス架橋などの架橋処理を行って用いられる。架橋温度としては、120~200℃、または140~180℃であってもよく、架橋時間としては、0.5~90分、または2~60分であってもよい。
 変性ジエン系重合体および変性ジエン系重合体のゴム組成物は、タイヤ、靴底、床材、防振材などに用いられる。特に、タイヤに好適に用いられる。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
(重合例1[ジエン系重合体(A)])
 内容積20Lの撹拌装置付きステンレス製重合反応器の中を、乾燥窒素で置換した。次に、工業用ヘキサン(住友化学社製、商品名:ヘキサン(一般品)、密度0.68g/mL)8.16kg、シクロヘキサン2.34kg、1,3-ブタジエン238g、スチレン444g、テトラヒドロフラン8.14mL、エチレングリコールジエチルエーテル1.16mL、エチレングリコールジブチルエーテル1.10mLを上記重合反応器内に投入した。次に、n-ブチルリチウム(n-BuLi)を1.85mmol含量するn-ヘキサン溶液を重合反応器内に投入し、撹拌速度130rpm、重合反応器内温度65℃の条件で混合液を撹拌した。
 上記混合液に、1,3-ブタジエン454gを連続的に供給しながら、上記条件で、更に4時間混合液の撹拌を行い、重合溶液を得た。次に、得られた重合溶液に、ジメチルアミノプロピルアクリルアミド1.85mmolを添加して15分間撹拌した後、メタノール0.81mLを含むヘキサン溶液20mLを加え、重合溶液を更に5分間撹拌し、重合溶液a1を得た。
 重合溶液a1に、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学社製、商品名:スミライザーGM)5.0g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学社製、商品名:スミライザーTP-D)2.5gおよび伸展油(ENEOS社製、商品名:プロセス NC140) 284gを加え、ジエン系重合体(A)を含む重合溶液a2を得た。
(重合体組成物)
 得られた重合溶液a2の揮発分の大部分を常温、24時間で蒸発させ、さらに、55℃で12時間減圧乾燥することで、ジエン系重合体(A)を得た。ジエン系重合体(A)は、スチレン単位量39質量%、ビニル結合量38.4モル%、ムーニー粘度(ML1+4(125℃))70であり、伸展油を25質量部含むものであった。
(重合例2[ジエン系重合体(B)])
 内容積20Lの撹拌装置付きステンレス製重合反応器の中を、乾燥窒素で置換した。次に、工業用ヘキサン(住友化学社製、商品名:ヘキサン(一般品)、密度0.68g/mL)10.2kg、1,3-ブタジエン357g、スチレン244g、テトラヒドロフラン11.25mL、エチレングリコールジエチルエーテル10.94mLを上記重合反応器内に投入した。次に、n-ブチルリチウム(n-BuLi)を1.60mmol含量するn-ヘキサン溶液を重合反応器内に投入し、撹拌速度130rpm、重合反応器内温度65℃の条件で混合液を撹拌した。
 上記混合液に、1,3-ブタジエン238g、スチレン162gを連続的に供給しながら、上記条件で、更に4時間混合液の撹拌を行い、重合溶液を得た。次に、得られた重合溶液に、四塩化ケイ素0.19mmolを添加して15分間撹拌した後、ジメチルアミノプロピルアクリルアミド0.36mmolを添加して15分間撹拌した後、メタノール0.81mLを含むヘキサン溶液20mLを加え、重合溶液を更に5分間撹拌し、重合溶液b1を得た。
 重合溶液b1に、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学社製、商品名:スミライザーGM)4.5g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学社製、商品名:スミライザーTP-D)2.3gおよび伸展油(ENEOS社製、商品名:プロセス NC140) 375gを加え、ジエン系重合体Bを含む重合溶液b2を得た。
(重合体組成物)
 得られた重合溶液b2の揮発分の大部分を常温、24時間で蒸発させ、さらに、55℃で12時間減圧乾燥することで、ジエン系重合体(B)を得た。ジエン系重合体(B)は、スチレン単位量40質量%、ビニル結合量65モル%、ムーニー粘度(ML1+4(100℃))62であり、伸展油を37.5質量部含むものであった。
(重合例3[ジエン系重合体(C)])
 内容積30Lの撹拌装置付きステンレス製重合反応器の中を、乾燥窒素で置換した。次に、工業用ヘキサン(住友化学社製、商品名:ヘキサン(一般品)、密度0.68g/mL)15.3kg、テトラヒドロフラン13.22mL、エチレングリコールジブチルエーテル2.73mL、1,3-ブタジエン497g、およびスチレン452gを上記重合反応器内に投入した。次に、n-ブチルリチウム(n-BuLi)を2.03mmol含量するn-ヘキサン溶液を重合反応器内に投入し、撹拌速度130rpm、重合反応器内温度43℃の条件で混合液を撹拌した。
 重合反応開始20分後から上記混合液に、1,3-ブタジエン755gを200分かけて連続的に添加した。その後、重合転化率が60%に達した時間に、n-ブチルリチウム(n-BuLi)を2.03mmol含量するn-ヘキサン溶液を重合反応器内に投入した。その後、重合転化率が95%から100%の範囲になったことを確認してから20分経過後に、[3-(ジエチルアミノ)プロピル]トリメトキシシラン10.15mmolを添加し、15分間撹拌した。その後、重合停止剤として、重合反応器内のリチウム総量に対して1.5当量のメタノールを添加して重合溶液を更に5分間撹拌し、重合溶液c1を得た。
 重合溶液c1に、2,4-ビス(オクチルチオメチル)-6-メチルフェノール(BASFジャパン株式会社製、商品名:Irganox1520L)9.54gを加え、ジエン系重合体Cを含む重合溶液c2を得た。
(重合体組成物)
 得られた重合溶液c2の揮発分の大部分を常温、24時間で蒸発させ、さらに、55℃で12時間減圧乾燥することで、ジエン系重合体(C)を得た。ジエン系重合体(C)は、スチレン単位量26.4質量%、ビニル結合量36.4モル%、ムーニー粘度(ML1+4(125℃))57であった。
(重合例4[ジエン系重合体(D)])
 内容積30Lの撹拌装置付きステンレス製重合反応器の中を、乾燥窒素で置換した。次に、工業用ヘキサン(住友化学社製、商品名:ヘキサン(一般品)、密度0.68g/mL)15.3kg、1,3-ブタジエン1810gを上記重合反応器内に投入した。次に、n-ブチルリチウム(n-BuLi)を30.2mmol含量するn-ヘキサン溶液を重合反応器内に投入し、撹拌速度120rpm、重合反応器内温度50℃の条件で混合液を撹拌した。
 重合反応開始30分後から上記混合液に、1,3-ブタジエン1810gを50分かけて連続的に添加した。重合転化率が95%から100%の範囲になったことを確認してから10分経過後に、1,6-ビス(トリクロロシリル)ヘキサン1.2mmolを添加し10分間撹拌した後、下記式(2)で表されるポリオルガノシロキサンを、エポキシ基の含有量が10.3mmolとなるように添加し、20分間反応させた。さらに、トリメトキシシランを24.8mol添加し15分間撹拌した。その後、重合停止剤として、重合反応器内のリチウム総量に対して2.0当量のメタノールを添加して重合溶液を更に5分間撹拌し、重合溶液d1を得た。
Figure JPOXMLDOC01-appb-C000002
 重合溶液d1に、2,4-ビス(オクチルチオメチル)-6-メチルフェノール10.86g(BASFジャパン株式会社製、商品名:Irganox1520L)を加え、ジエン系重合体Dを含む重合溶液d2を得た。
(重合体組成物)
 得られた重合溶液d2の溶媒をスチームストリッピングにより除去し、温風乾燥によりジエン系重合体(D)を得た。ジエン系重合体(D)は、ビニル結合量10.0モル%、ムーニー粘度(ML1+4(100℃))50であった。
(実施例1)
 ジエン系重合体(A)125質量部に対して、6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール(住友化学社製、商品名:SUMILIZER GP)を0.2質量部と、アクリル酸亜鉛(粉体、純度:98%)(Sigma-Aldrich社製)を2.0質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製した。
 当該変性ジエン系重合体127.2質量部に対して、酸化亜鉛(正同化学工業社製、商品名:酸化亜鉛 2種)を3.0質量部と、ステアリン酸(新日本理化社製、商品名:ステアリン酸 50S)を2.0質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で混錬し、マスターバッチを得た。当該マスターバッチ132.2質量部に対して、硫黄(鶴見化学工業社製、商品名:金華印微粉硫黄 200mesh)を1.5質量部と、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名:ノクセラー CZ-G)を1.5質量部と、1,3-ジフェニルグアニジン(大内新興化学工業社製、商品名:ノクセラーD)を2.0質量部とを40℃に設定されたオープンロールで混錬し、ゴム組成物を得た。
 当該ゴム組成物(未架橋)を金型(75mm×150mm×2.0mm)中、160℃で20分間プレス架橋して、架橋ゴムシートを得た。
 (実施例2)
 溶融混練時のアクリル酸亜鉛添加量を125質量部のジエン系重合体(A)に対して4.0質量部に変更したこと以外は、実施例1と同様にして、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系共重合体、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (実施例3)
 ジエン系重合体(A)125質量部に対して、6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール(住友化学社製、商品名:SUMILIZER GP)を0.2質量部と、アクリル酸亜鉛水溶液(30質量%)(浅田化学工業社製、商品名:ZA30)を5.0質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製したこと以外は、実施例1と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (実施例4)
 ジエン系重合体(A)125質量部に対して、6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール(住友化学社製、商品名:SUMILIZER GP)を0.2質量部と、アクリル酸亜鉛水溶液(30質量%)(浅田化学工業社製、商品名:ZA30)を5.0質量部と、1,1-ジ(t-ブチルペロキシ)シクロヘキサン(日本油脂社製、商品名:パーヘキサC―40)を0.1質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製したこと以外は、実施例1と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (実施例5)
 ジエン系重合体(B)137.5質量部に対して、6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール(住友化学社製、商品名:SUMILIZER GP)を0.2質量部と、アクリル酸亜鉛水溶液(30質量%)(浅田化学工業社製、商品名:ZA30)を5.0質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製したこと以外は、実施例1と同様にして、ゴム組成物を得た。
 当該ゴム組成物(未架橋)を金型(75mm×150mm×2.0mm)中、160℃で30分間プレス架橋して、架橋ゴムシートを得た。
 (実施例6)
 実施例5と同様にして得られたα,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体139.2質量部に対して、シリカ(Evonik社製、商品名:ULTRASIL 7000GR)を80質量部と、シランカップリング剤(Evonik社製、商品名:Si75)を6.4質量部と、酸化亜鉛(正同化学工業社製、商品名:酸化亜鉛 2種)を3.0質量部と、ステアリン酸(新日本理化社製、商品名:ステアリン酸 50S)を2.0質量部と、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業社製、商品名:ノクラック6C)を2.0質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で混錬し、マスターバッチを得た。当該マスターバッチ132.2質量部に対して、硫黄(鶴見化学工業社製、商品名:金華印微粉硫黄 200mesh)を1.5質量部と、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名:ノクセラー CZ-G)を1.5質量部と、1,3-ジフェニルグアニジン(大内新興化学工業社製、商品名:ノクセラーD)を2.0質量部とを40℃に設定されたオープンロールで混錬し、ゴム組成物を得た。
 当該ゴム組成物(未架橋)を金型(75mm×150mm×2.0mm)中、160℃で50分間プレス架橋して、架橋ゴムシートを得た。
 (実施例7)
 ジエン系重合体(B)137.5質量部に対して、6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール(住友化学社製、商品名:SUMILIZER GP)を0.2質量部と、アクリル酸亜鉛水溶液(30質量%)(浅田化学工業社製、商品名:ZA30)を5.0質量部と、1,1-ジ(t-ブチルペロキシ)シクロヘキサン(日本油脂社製、商品名:パーヘキサC―40)を0.1質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製したこと以外は、実施例6と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (実施例8)
 事前にアクリル酸マグネシウム(富士フイルム和光純薬社製、商品名:アクリル酸マグネシウム)を15gと、純水を35gとを、ビーカーに入れ、室温で、4時間かく拌することで、30質量%アクリル酸マグネシウム水溶液を得た。
 ジエン系重合体(B)137.5質量部に対して、6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール(住友化学社製、商品名:SUMILIZER GP)を0.2質量部と、当該アクリル酸マグネシウム水溶液(30質量%)を5.0質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製したこと以外は、実施例5と同様にして、ゴム組成物を得た。
 当該ゴム組成物(未架橋)を金型(75mm×150mm×2.0mm)中、160℃で40分間プレス架橋して、架橋ゴムシートを得た。
 (実施例9)
 ジエン系重合体(C)100質量部に対して、6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール(住友化学社製、商品名:SUMILIZER GP)を0.2質量部と、アクリル酸亜鉛水溶液(30質量%)(浅田化学工業社製、商品名:ZA30)を5.0質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製したこと以外は、実施例1と同様にして、ゴム組成物を得た。
 当該ゴム組成物(未架橋)を金型(75mm×150mm×2.0mm)中、160℃で10分間プレス架橋して、架橋ゴムシートを得た。
 (実施例10)
 ジエン系重合体(C)100質量部に対して、6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール(住友化学社製、商品名:SUMILIZER GP)を0.2質量部と、アクリル酸亜鉛水溶液(30%)(浅田化学工業社製、商品名:ZA30)を5.0質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製した。
 当該変性ジエン系重合体101.7質量部に対して、シリカ(Evonik社製、商品名:ULTRASIL 7000GR)を80質量部と、シランカップリング剤(Evonik社製、商品名:Si75)を6.4質量部と、酸化亜鉛(正同化学工業社製、商品名:酸化亜鉛 2種)を3.0質量部と、ステアリン酸(新日本理化社製、商品名:ステアリン酸 50S)を2.0質量部と、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業社製、商品名:ノクラック6C)を2.0質量部と、アロマ系プロセスオイル(H&R社製、商品名:VivaTec 500)を37.5質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で混錬し、マスターバッチを得た。当該マスターバッチ232.6質量部に対して、硫黄(鶴見化学工業社製、商品名:金華印微粉硫黄 200mesh)を1.5質量部と、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名:ノクセラー CZ-G)を1.5質量部と、1,3-ジフェニルグアニジン(大内新興化学工業社製、商品名:ノクセラーD)を2.0質量部とを40℃に設定されたオープンロールで混錬し、ゴム組成物を得た。
 当該ゴム組成物(未架橋)を金型(75mm×150mm×2.0mm)中、160℃で50分間プレス架橋して、架橋ゴムシートを得た。
 (実施例11)
 ジエン系重合体(D)50質量部に対して、2,4-ビス(オクチルチオメチル)-6-メチルフェノール(BASFジャパン株式会社製、商品名:Irganox1520L)を0.25質量部と、アクリル酸亜鉛水溶液(30%)(浅田化学工業社製、商品名:ZA30)を1.67質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作製した。
 当該変性ジエン系重合体51.92質量部に対して、天然ゴムを50質量部と、カーボンブラック(東海カーボン社製、商品名「シーストSO」、BET法により測定される窒素吸着比表面積:42m/g、よう素吸着量:44mg/g、A法により測定されるDBP吸収量:115cm/100g)を45質量部と、パラフィンワックス(日本精蝋株式会社製 商品名「パラフィンワックス135」)を1質量部と、酸化亜鉛(正同化学工業社製、商品名:酸化亜鉛 2種)を3.0質量部と、ステアリン酸(新日本理化社製、商品名:ステアリン酸 50S)を2.0質量部と、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業社製、商品名:ノクラック6C)を2.0質量部と、アロマ系プロセスオイル(H&R社製、商品名:VivaTec 500)を5質量部とを、130℃に設定された100ccラボプラストミルにて、80rpm、4分間で混錬し、マスターバッチを得た。当該マスターバッチ158.75質量部に対して、硫黄(鶴見化学工業社製、商品名:金華印微粉硫黄 200mesh)を1.8質量部と、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名:ノクセラー CZ-G)を1.5質量部を40℃に設定されたオープンロールで混錬し、ゴム組成物を得た。
 当該ゴム組成物(未架橋)を金型(75mm×150mm×2.0mm)中、160℃で6分間プレス架橋して、架橋ゴムシートを得た。
 (実施例12)
 ジエン系重合体(B)137.5質量部に対して、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学社製、商品名:スミライザーGM)を0.5質量部と、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学社製、商品名:スミライザーTP-D)を0.25質量部と、アクリル酸亜鉛水溶液(30質量%)(浅田化学工業社製、商品名:ZA30)を3.3質量部とを、170℃に設定された20mmφ二軸押出機にて、170rpm、時間当たり処理量5kg/時間で溶融混練を行い、α,β-エチレン性不飽和カルボン酸金属塩変性ジエン系重合体を作成した以外は、実施例6と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (比較例1)
 アクリル酸亜鉛を含有させなかったこと以外は実施例1と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (比較例2)
 アクリル酸亜鉛を含有させなかったこと以外は実施例5と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (比較例3)
 アクリル酸亜鉛を含有させなかったこと以外は実施例6と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (比較例4)
 アクリル酸亜鉛を含有させなかったこと以外は実施例7と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (比較例5)
 アクリル酸亜鉛を含有させなかったこと以外は実施例9と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (比較例6)
 アクリル酸亜鉛を含有させなかったこと以外は実施例10と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
 (比較例7)
 アクリル酸亜鉛を含有させなかったこと以外は実施例11と同様にして、ゴム組成物、および架橋ゴムシートをそれぞれ作製した。
<評価>
[引張試験]
 作製した架橋ゴムシートをJIS K6251:2010に準拠し、JIS3号ダンベル型試験片(厚さ:2mm)を打ち抜き、温度:23℃、引張速度:500mm/分の条件で破断強度および破断伸びを評価した。破断強度と破断伸びの積を抗張積と定義し、各々の抗張積は、比較例1の結果を100として指数化した。当該抗張積の値が大きいほど、破壊に至るまでのエネルギーが大きく、機械強度に優れることをしめす。
[耐久性試験]
 作製した架橋ゴムシートをJIS-K 6270に従い、厚み2mmの3号ダンベル各2個を定伸長疲労試験機(マイズ試験機社製)のチャックに取り付け、温度:40℃で、伸長110%の伸縮を5Hzで破断するまで繰り返した。破断するまでの回数を測定し、各々平均した値を耐久性の指標とした。各々の測定値は、比較例1の結果を100として指数化した。指数が大きいほど耐久性に優れることを示す。
[小角X線散乱測定] 
 作製した変性ジエン系重合体の厚み3mmのシートを小角X線散乱法を用いて測定した。小角X線散乱法は、「高分子X線回折 角戸 正夫 笠井 暢民、丸善株式会社、1968年」や「高分子X線回折 第3.3版 増子 徹、山形大学生協、1995年」の記載に準じて行われた。より具体的には、放射光実験施設SPring-8のビームラインBL03XUにおいて、X線の波長0.128nm、カメラ長8000mmで、検出器にDectris社製Pilatus1Mを用いて、室温25℃で行った。シートの厚み方向と平行な方向にX線を入射し、露光時間1秒で照射位置を変えて64回測定し、トータルの二次元散乱像Msを得た。また、二次元散乱像の撮影と同時にシートの下流のイオンチャンバーで透過光強度fsを測定した。シートがないこと以外は同じ条件で測定して、バックグラウンドの二次元散乱像Mbと透過光強度fbを得た。式(3)により、バックグラウンド控除後の二次元散乱像Mを得た。
  M=Ms/fs―Mb/fb  式(3) 
 二次元散乱像Mから円環平均により動径方向の一次元プロファイルIを得た。このとき、ダイレクトビームが検出器に入射するのを防ぐために設けられたビームストップなどによって散乱X線が遮られた範囲は一次元プロファイルから除いた。横軸は標準物質コラーゲンを用いて散乱ベクトルの大きさqに較正した。q=0.04nm-1とq=0.7nm-1の小角X線散乱強度の比r1は式(4)、q=0.015nm-1とq=0.7nm-1の小角X線散乱強度の比r2は式(5)により得られた。
  r1=I(q=0.04nm-1)/I(q=0.7nm-1) 式(4) 
  r2=I(q=0.015nm-1)/I(q=0.7nm-1) 式(5)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (14)

  1.  ジエン系重合体と、該ジエン系重合体100質量部に対して、0.01~20質量部のα,β-エチレン性不飽和カルボン酸の金属塩とを、溶融混練して得られる変性ジエン系重合体の製造方法。
  2.  α,β-エチレン性不飽和カルボン酸の金属塩が、アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸亜鉛、アクリル酸マグネシウム、アクリル酸カルシウム、アクリル酸銅、および、アクリル酸アルミニウムからなる金属塩群から選ばれる少なくとも1種以上の金属塩である請求項1に記載の変性ジエン系重合体の製造方法。
  3.  α,β-エチレン性不飽和カルボン酸の金属塩1質量部に対して、0.2~200質量部の水を含む水溶液と、ジエン系重合体とを、溶融混練することを特徴とする請求項1または2に記載の変性ジエン系重合体の製造方法。
  4.  ラジカル開始剤存在下に溶融混練することを特徴とする請求項1~3のいずれかに記載の変性ジエン系重合体の製造方法。
  5.  ジエン系重合体が、スチレン-ブタジエン共重合体、イソプレン-ブタジエン共重合体、イソブチレン-イソプレン共重合体、エチレン-ブタジエン共重合体、プロピレン-ブタジエン共重合体、エチレン-プロピレン-ジエン共重合体、ブタジエン-アクリロニトリル共重合体、ポリイソプレン、ポリブタジエン、またはそれらの混合物を含むことを特徴とする請求項1~4のいずれかに記載の変性ジエン系重合体の製造方法。
  6.  請求項1~5のいずれかに記載の方法で製造された変性ジエン系重合体。
  7.  請求項1~5のいずれかに記載の方法で変性ジエン系重合体を製造し、該変性ジエン系重合体に対して、架橋剤を配合するゴム組成物の製造方法。
  8.  更に補強剤を配合する請求項7に記載のゴム組成物の製造方法。
  9.  該架橋剤が硫黄または有機過酸化物の少なくとも一方である請求項7または8に記載のゴム組成物の製造方法。
  10.  該補強剤がシリカ、カーボンブラックまたはミクロフィブリル化植物繊維の少なくともいずれか一つである請求項8または9に記載のゴム組成物の製造方法。
  11.  請求項7~10のいずれかに記載の方法で製造されたゴム組成物。
  12.  q=0.04nm-1とq=0.7nm-1の小角X線散乱強度の比が3000以上である、変性ジエン系重合体。
  13.  q=0.015nm-1とq=0.7nm-1の小角X線散乱強度の比が70000以上である、請求項12に記載の変性ジエン系重合体。
  14.  ジエン系重合体が、スチレン-ブタジエン共重合体、イソプレン-ブタジエン共重合体、イソブチレン-イソプレン共重合体、エチレン-ブタジエン共重合体、プロピレン-ブタジエン共重合体、エチレン-プロピレン-ジエン共重合体、ブタジエン-アクリロニトリル共重合体、ポリイソプレン、ポリブタジエン、またはそれらの混合物を含むことを特徴とする請求項12または13に記載の変性ジエン系重合体。
PCT/JP2022/036555 2021-09-30 2022-09-29 変性ジエン系重合体、その製造方法、及びそのゴム組成物 WO2023054631A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551871A JPWO2023054631A1 (ja) 2021-09-30 2022-09-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021162238 2021-09-30
JP2021-162238 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054631A1 true WO2023054631A1 (ja) 2023-04-06

Family

ID=85782904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036555 WO2023054631A1 (ja) 2021-09-30 2022-09-29 変性ジエン系重合体、その製造方法、及びそのゴム組成物

Country Status (3)

Country Link
JP (1) JPWO2023054631A1 (ja)
TW (1) TW202330676A (ja)
WO (1) WO2023054631A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763338A (en) * 1980-10-02 1982-04-16 Sumitomo Chem Co Ltd Rubber composition
JP2000290431A (ja) * 1999-02-01 2000-10-17 Sumitomo Rubber Ind Ltd ゴム組成物の製造方法
JP2004339451A (ja) * 2003-05-19 2004-12-02 Jsr Corp 難燃性ゴム組成物、ゴム製品及び電線被覆材
JP2006206661A (ja) * 2005-01-26 2006-08-10 Nippon Zeon Co Ltd ゴム組成物、加硫性ゴム組成物および加硫物
JP2012036321A (ja) * 2010-08-10 2012-02-23 Sumitomo Chemical Co Ltd 変性共役ジエン系重合体、重合体組成物、及び、変性共役ジエン系重合体の製造方法
JP2013018803A (ja) * 2011-07-07 2013-01-31 Bridgestone Corp 防振ゴム組成物及び防振ゴム
CN103131088A (zh) * 2011-11-30 2013-06-05 天津昕中和胶业有限公司 不饱和羧酸金属盐改性三元乙丙橡胶及其制备方法
WO2020230803A1 (ja) * 2019-05-13 2020-11-19 横浜ゴム株式会社 ゴム組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763338A (en) * 1980-10-02 1982-04-16 Sumitomo Chem Co Ltd Rubber composition
JP2000290431A (ja) * 1999-02-01 2000-10-17 Sumitomo Rubber Ind Ltd ゴム組成物の製造方法
JP2004339451A (ja) * 2003-05-19 2004-12-02 Jsr Corp 難燃性ゴム組成物、ゴム製品及び電線被覆材
JP2006206661A (ja) * 2005-01-26 2006-08-10 Nippon Zeon Co Ltd ゴム組成物、加硫性ゴム組成物および加硫物
JP2012036321A (ja) * 2010-08-10 2012-02-23 Sumitomo Chemical Co Ltd 変性共役ジエン系重合体、重合体組成物、及び、変性共役ジエン系重合体の製造方法
JP2013018803A (ja) * 2011-07-07 2013-01-31 Bridgestone Corp 防振ゴム組成物及び防振ゴム
CN103131088A (zh) * 2011-11-30 2013-06-05 天津昕中和胶业有限公司 不饱和羧酸金属盐改性三元乙丙橡胶及其制备方法
WO2020230803A1 (ja) * 2019-05-13 2020-11-19 横浜ゴム株式会社 ゴム組成物

Also Published As

Publication number Publication date
TW202330676A (zh) 2023-08-01
JPWO2023054631A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
JP6333812B2 (ja) 高ムーニー値のNdBR
KR102270433B1 (ko) 몰 질량 감소를 가지는 NdBR
TWI681008B (zh) 官能化之聚合物組成物及其製造方法
WO2019207925A1 (ja) ゴム用添加剤、未架橋ゴム組成物、架橋ゴム及びタイヤ
JP7081222B2 (ja) ミクロフィブリル化植物繊維・ゴム複合体の製造方法
US9045622B2 (en) Modified conjugated diene-based polymer, polymer composition, and process for producing modified conjugated diene-based polymer
JP2009030033A (ja) 共役ジエン系重合体の製造方法、共役ジエン系重合体および重合体組成物
KR20240008376A (ko) 석유 수지, 고무용 첨가제, 미가교 고무 조성물 및 가교 고무
EP3805309A1 (en) Rubber composition and tire using same
JP2020041076A (ja) タイヤ用ゴム組成物及びタイヤ
JP4909491B2 (ja) ゴム組成物
JP2021001253A (ja) ゴム・フィラー複合体の製造方法
WO2022080236A1 (ja) 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ
JP2009263479A (ja) ゴム組成物及びそれを用いたタイヤ
WO2023054631A1 (ja) 変性ジエン系重合体、その製造方法、及びそのゴム組成物
KR20210140755A (ko) 고무 조성물 및 고무 조성물을 제조하는 방법
WO2022249636A1 (ja) タイヤ用ゴム組成物、トレッドゴム及びタイヤ
WO2014112654A1 (ja) ゴム組成物
JP2020026467A (ja) 加硫ゴム
WO2023063188A1 (ja) 架橋ゴム組成物及び架橋ゴム組成物の製造方法
TW202231668A (zh) 部分氫化之二烯聚合物
WO2024203767A1 (ja) 重合体組成物およびゴム製品
WO2022249765A1 (ja) タイヤ用ゴム組成物、トレッドゴム及びタイヤ
WO2024203764A1 (ja) 重合体組成物およびゴム製品
Rajan et al. Studies on peroxide vulcanization of natural rubber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551871

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22876494

Country of ref document: EP

Kind code of ref document: A1