WO2023054507A1 - カラムクロマトグラフィー用固定相の製造方法 - Google Patents

カラムクロマトグラフィー用固定相の製造方法 Download PDF

Info

Publication number
WO2023054507A1
WO2023054507A1 PCT/JP2022/036248 JP2022036248W WO2023054507A1 WO 2023054507 A1 WO2023054507 A1 WO 2023054507A1 JP 2022036248 W JP2022036248 W JP 2022036248W WO 2023054507 A1 WO2023054507 A1 WO 2023054507A1
Authority
WO
WIPO (PCT)
Prior art keywords
radically polymerizable
polymerizable functional
functional group
group
monomer
Prior art date
Application number
PCT/JP2022/036248
Other languages
English (en)
French (fr)
Inventor
晃介 魚▲崎▼
卓典 上田
海里 横尾
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2023551623A priority Critical patent/JPWO2023054507A1/ja
Priority to CN202280063839.2A priority patent/CN117980066A/zh
Publication of WO2023054507A1 publication Critical patent/WO2023054507A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers

Definitions

  • the present disclosure relates to a method for producing a stationary phase for column chromatography.
  • Chromatography is the most effective method for analyzing and separating and purifying the components of mixtures and their contents. This is the distribution ratio (also known as adsorption equilibrium) of a substance to a solid (stationary phase) that is spatially fixed in a tube called a column or capillary and a fluid (mobile phase) that moves through the gap. It is used to separate different substances.
  • Patent Document 1 a polymerizable polysaccharide derivative obtained by introducing a polymerizable unsaturated group into a polysaccharide derivative and another polymerizable unsaturated monomer different therefrom are radically copolymerized to form a copolymer.
  • Methods have been disclosed for immobilizing polymers on porous supports such as silica gel.
  • Patent Document 2 discloses a method of immobilizing a polysaccharide derivative on a carrier by supporting a polymerizable polysaccharide derivative on a carrier having a polymerizable functional group and then copolymerizing it with a polymerizable monomer.
  • Patent Document 3 by copolymerizing a vinyl monomer having a nitrogen-containing aromatic ring or an isopropenyl monomer containing a nitrogen-containing aromatic ring with silica gel having a polymerizable functional group introduced with a silane coupling agent, A method of immobilizing a polymer of a vinyl monomer having a nitrogen aromatic ring or an isopropenyl monomer containing a nitrogen-containing aromatic ring on a silica gel carrier is disclosed.
  • An object of the present disclosure is to provide a method capable of producing a chromatographic stationary phase with a high separation agent immobilization rate and separation performance.
  • the present inventors have made extensive studies. As a result, by radically copolymerizing a substrate having a radically polymerizable functional group and a monomer having a radically polymerizable functional group in a solvent in which the monomer having a radically polymerizable functional group is not completely dissolved, the separating agent can be obtained. It was found that a stationary phase with high immobilization rate and separation performance can be obtained. That is, the gist of the present disclosure is as follows.
  • [1] Including a radical copolymerization step of radically copolymerizing a substrate having a radically polymerizable functional group and a monomer having a radically polymerizable functional group in the presence of a radical initiator, The method for producing a stationary phase for chromatography, wherein the radical copolymerization step is performed in a heterogeneous system including a phase of the monomer having the radically polymerizable functional group and a phase of a solvent.
  • the substrate having a radically polymerizable functional group includes a carrier and a polymer having a radically polymerizable functional group.
  • the solvent is water or a mixed solvent obtained by mixing 10 parts by volume or more and 300 parts by volume or less of a water-soluble solvent with respect to 100 parts by volume of water.
  • the monomer having a radically polymerizable functional group is a group consisting of butadiene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-butadiene, divinylbenzene, allyl (meth)acrylate, and styrene.
  • the solvent is water or a mixed solvent obtained by mixing 10 parts by volume or more and 300 parts by volume or less of a water-soluble solvent with respect to 100 parts by volume of water.
  • the monomer having a radically polymerizable functional group is 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 9-vinylcarbazole, 2-isopropenylpyridine, 3-isopropenylpyridine, 4-isopropenylpyridine, and
  • the solvent is a fat-soluble solvent having a water/1-octanol partition coefficient (logPow) of 0.5 or more.
  • the monomer having a radically polymerizable functional group is 2-((meth)acryloyloxy)ethyl-2'-(trimethylammonio)ethyl phosphate, 2-(N-3-sulfopropyl-N,N-dimethylammonium) one or more selected from the group consisting of ethyl methacrylate, 3-(methacryloylamino)propyltrimethylammonium chloride, 3-(methacryloyloxy)potassium propanesulfonate, 2-hydroxyethyl methacrylate, and acrylamide, in [9] Method of manufacture as described.
  • a method for producing a stationary phase for chromatography comprises radical copolymerization of a substrate having a radically polymerizable functional group and a monomer having a radically polymerizable functional group in the presence of a radical initiator.
  • the radical copolymerization step is carried out in a heterogeneous system including a monomer phase having the radically polymerizable functional group and a solvent phase.
  • the method for producing a stationary phase for chromatography according to this embodiment may include other steps such as a washing step and a drying step in addition to the radical copolymerization step.
  • the radical copolymerization reaction is carried out in a solvent in which the monomer having a radically polymerizable functional group is not completely dissolved. Therefore, the reaction system of the radical copolymerization reaction is carried out in a heterogeneous system including a monomer phase having a radically polymerizable functional group and a solvent phase. As shown in Examples described later, the case of using a solvent in which the monomer having a radically polymerizable functional group does not dissolve completely and the case of using a solvent in which the monomer having a radically polymerizable functional group dissolves are compared. Then, the former can provide a stationary phase with a higher separation agent immobilization rate and separation performance.
  • the immobilization rate of the separating agent and the separation performance of the stationary phase can be improved. It is conceivable that. Reagents, reaction conditions, and the like used in the radical copolymerization step are described below.
  • the stationary phase for chromatography obtained by the production method according to the present embodiment (hereinafter sometimes simply referred to as "stationary phase") is a separation agent having molecular recognition ability immobilized on a carrier. .
  • the substrate having a radically polymerizable functional group in this embodiment contains a carrier and has a radically polymerizable group.
  • the radically polymerizable functional group of the substrate having a radically polymerizable functional group is not particularly limited, it is preferably a functional group having an ethylenically unsaturated bond group.
  • the functional group having an ethylenically unsaturated bond group specifically includes a hydrocarbon group having 2 to 12 carbon atoms and a double bond at the end, such as a vinyl group, an allyl group, and an iso-propenyl group; (meth)acryloyl group; and the like, preferably a vinyl group or a (meth)acryloyl group.
  • “(meth)acryloyl” means acryloyl and/or methacryloyl
  • (meth)acryl means acryl and/or methacryl.
  • Examples of the carrier include organic carriers, inorganic carriers, organic-inorganic hybrid carriers, etc., and inorganic carriers are preferred.
  • examples of organic carriers include polystyrene, poly(meth)acrylamide, poly(meth)acrylic acid ester, and the like.
  • examples of inorganic carriers include silica, alumina, magnesia, glass, kaolin, titanium oxide, zirconium oxide, silicates, hydroxyapatite and the like, preferably silica gel. When silica gel is used as the carrier, only the surface layer may be made porous, which is called core-shell or peripheral.
  • organic-inorganic hybrid carrier examples include an organic-inorganic hybrid carrier formed by a sol-gel reaction between an alkoxysilane and an alkyl-substituted or alkylene-substituted alkoxysilane compound.
  • the shape of the carrier is not particularly limited, but from the viewpoint of homogenizing the separation performance of the stationary phase, particles are preferred, and spherical particles are particularly preferred.
  • the term "spherical” does not mean only the shape of a true sphere, but also includes shapes having circular, substantially circular, elliptical, and substantially elliptical cross-sectional shapes such as long spheroids and oblate spheroids.
  • the median diameter of the particles is not particularly limited, and may be 1.5 ⁇ m or more, 3.0 ⁇ m or more, or 4.0 ⁇ m or more. It may be 8.0 ⁇ m or less. That is, the median diameter of the carrier particles may be, for example, 1.5 ⁇ m or more and 15.0 ⁇ m or less, 3.0 ⁇ m or more and 10.0 ⁇ m or less, or 4.0 ⁇ m or more and 8.0 ⁇ m or less.
  • the median diameter means the diameter corresponding to the 50% cumulative value of the cumulative volume distribution curve measured with a laser diffraction/scattering particle size distribution analyzer, that is, the volume-based cumulative 50% diameter (D50). do.
  • the substrate having a radically polymerizable functional group is a substrate containing a carrier and a polymer having a radically polymerizable functional group (hereinafter sometimes referred to as a “radically polymerizable polymer”), or a substrate having the radically polymerizable functional group on its surface. It is preferably a carrier into which a functional group has been introduced.
  • the substrate having a radically polymerizable functional group is a substrate containing a carrier and a radically polymerizable polymer
  • the substrate is such that the radically polymerizable polymer physically adsorbs over at least a portion, preferably the entire surface of the carrier.
  • the Such a substrate can be produced by applying a coating liquid in which a radically polymerizable polymer is dissolved in a solvent to a carrier according to a known manufacturing method, for example, the method described in JP-A-8-231489, and then distilling off the solvent. can be obtained by
  • the carrier is surface-treated from the viewpoint of improving the durability of the carrier.
  • the introduction of an aminoalkylsilyl group allows the radically polymerizable polymer to be better physically adsorbed onto the carrier surface, thereby improving the durability of the carrier.
  • the aminoalkylsilyl group can be introduced into the carrier by a known method, for example, using a surface treatment agent having an aminoalkylsilyl group such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane.
  • radically polymerizable polymers examples include polysaccharide derivatives having radically polymerizable functional groups.
  • Polysaccharide derivatives are known as chiral separation selectors, and therefore, substrates containing radically polymerizable polymers as substrates having radically polymerizable functional groups are preferred when preparing chiral stationary phases. Applicable.
  • the polysaccharide of the polysaccharide derivative having a radically polymerizable functional group is preferably amylose or cellulose. Moreover, it is preferable that the polysaccharide derivative having a radically polymerizable functional group is obtained by converting a part of the hydroxy groups of the polysaccharide into a radically polymerizable functional group.
  • groups that have not been converted to radically polymerizable functional groups may be converted to phenyl carbamate derivatives with, for example, substituted or unsubstituted phenyl isocyanate, and acids such as 4-methylbenzoyl chloride. It may be converted to an ester derivative with a halide.
  • Examples of the substituted or unsubstituted phenyl isocyanate include phenyl isocyanate, 3-chlorophenyl isocyanate, 4-chlorophenyl isocyanate, 3,5-dichlorophenyl isocyanate, 3-methylphenyl isocyanate, 4-methylphenyl isocyanate, 3,5-dimethylphenyl isocyanate, 3-chloro-5-methylphenyl isocyanate and the like.
  • Examples of the acid halide include benzoyl chloride, 4-methylbenzoyl chloride, benzoyl bromide, 4-methylbenzoyl bromide and the like.
  • a polysaccharide derivative having a radically polymerizable functional group can be produced according to a known production method.
  • Known methods include, for example, the following method described in International Publication No. 03/091185.
  • a protection step for protecting a part of the hydroxy groups of the polysaccharide, and an unprotected hydroxy group of the polysaccharide. is modified with a substituted or unsubstituted phenyl isocyanate, deprotecting the protected hydroxy group, and deprotected with a compound having a substituted or unsubstituted phenyl isocyanate and a radically polymerizable functional group and modifying the hydroxy group.
  • a step of modifying the hydroxy group of the polysaccharide with a substituted or unsubstituted phenyl isocyanate without including the above protection step, and a compound having a radically polymerizable functional group to convert the radically polymerizable functional group into the polysaccharide can be carried out at the same time.
  • Examples of the compound having a radically polymerizable functional group include (meth)acrylic acid chloride; unsaturated acid halides such as 4-vinylbenzoic acid chloride; vinylphenyl isocyanate, 2-isocyanatoethyl (meth)acrylate, and the like. unsaturated isocyanates; and the like.
  • the protective group introduced in the protective step includes, for example, a triphenylmethyl group (trityl group), diphenylmethyl group, tosyl group, mesyl group, trimethylsilyl group, dimethyl(t-butyl)silyl group, and the like. groups.
  • the protective group is preferably a trityl group or a trimethylsilyl group.
  • Examples of the carrier having a radically polymerizable functional group introduced onto its surface include a carrier surface-treated with a silane coupling agent represented by the following formula (I).
  • Silica gel is preferred as the carrier.
  • a silane coupling agent represented by the following formula (I) can be produced according to a known production method. Known methods include, for example, the method described in International Publication No. 2017/164289.
  • W is a radically polymerizable functional group
  • X is -NR'CO-, -CONR'-, -CO 2 -, -OCO-, -O-, -SO 2 -, —SO 3 —, —OSO 2 —, —S—, an arylene group having 6 to 20 carbon atoms, or a phosphate ester group
  • R′ is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms; is an alkylene group having 1 to 30 carbon atoms;
  • R is each independently an alkyl group having 1 to 3 carbon atoms;
  • Z is each independently a silicon atom in formula (I) and a carrier; is a leaving group that can create a bond between;
  • n is an integer from 1 to 3.
  • the radically polymerizable functional group represented by W is defined in the same manner as the radically polymerizable functional group of the substrate having the radically polymerizable functional group, and the preferred embodiments are also the same.
  • X is part of the linker connecting W and Z, and is preferably -NR'CO-, -CONR'-, -CO 2 -, -OCO- or a phenylene group.
  • R' is preferably hydrogen or an alkyl group having 1 to 3 carbon atoms, more preferably hydrogen or a methyl group.
  • Y is preferably an alkylene having 1 to 5 carbon atoms, more preferably a methylene group, an ethylene group, or a trimethylene group.
  • R is preferably a methyl group or an ethyl group.
  • Z is not particularly limited as long as it is a group that leaves in the reaction that forms a bond between the silicon atom in formula (I) and the carrier.
  • Z is an alkoxy group having 1 to 5 carbon atoms; a halogen atom; an alkylmercaptyl group having 1 to 20 carbon atoms; a nitrogen-containing group such as a dimethylamino group, a diethylamino group, a pyrrolidino group, an imidazolyl group; methyl-2-propenyl group; and the like.
  • Z is preferably an alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group, from the viewpoint of ease of handling and reactivity.
  • n is preferably 2 or 3, more preferably 3.
  • a monomer having a radically polymerizable functional group (hereinafter sometimes referred to as a “radically polymerizable monomer”) used in the radical copolymerization step is a compound having at least one radically polymerizable functional group.
  • the radically polymerizable monomer acts as a cross-linking agent that crosslinks the radically polymerizable polymer.
  • the substrate having a radically polymerizable functional group has a radically polymerizable polymer physically adsorbed on part or the entire surface of the carrier, the radically polymerizable polymer is crosslinked with the radically polymerizable monomer. It is preferable because it is firmly immobilized on the carrier by forming a three-dimensional network structure.
  • the substrate having a radically polymerizable functional group is a carrier having a radically polymerizable functional group introduced to its surface
  • the radically polymerizable monomer is compatible with the carrier having a radically polymerizable functional group introduced to its surface.
  • the polymer is immobilized on the carrier.
  • the radically polymerizable functional group of the radically polymerizable monomer is defined in the same manner as the radically polymerizable functional group of the substrate having the radically polymerizable functional group, and preferred embodiments are also the same.
  • the radically polymerizable functional group of the radically polymerizable monomer and the radically polymerizable functional group of the substrate having the radically polymerizable functional group may be the same group or different groups.
  • the radically polymerizable monomers may be used singly, or two or more of them may be used in any combination and ratio.
  • the radical copolymerization step is carried out in a heterogeneous system containing a radically polymerizable monomer phase and a solvent phase
  • the radically polymerizable monomer is appropriately selected from those that phase-separate from the solvent used.
  • the radically polymerizable monomer is preferably combined with a solvent to form a heterogeneous system (A) or (B), for example, as follows.
  • B Radically polymerizable monomer: Hydrophilic monomer
  • Solvent Fat-soluble solvent
  • the fat-soluble monomer in the heterogeneous system (A) and the hydrophilic monomer in the heterogeneous system (B) are described below.
  • the "fat-soluble monomer” in the heterogeneous system (A) refers to a radically polymerizable monomer having a water/1-octanol partition coefficient (logPow) of 1.0 or more, and the upper limit of the water/1-octanol partition coefficient is , preferably 5.0 or less.
  • the solubility of the fat-soluble monomer in water at 20° C. is preferably 3.0 g/100 mL or less, more preferably 1.0 g/100 mL or less, and even more preferably 0.1 g/100 mL or less.
  • fat-soluble monomers examples include butadiene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-butadiene, divinylbenzene, allyl (meth)acrylate, styrene, and the like. ,3-dimethyl-1,3-butadiene or 2-methyl-1,3-butadiene, and more preferably 2,3-dimethyl-1,3-butadiene.
  • the above fat-soluble monomer is suitable when the radical copolymerization step is performed in a heterogeneous system (A) using a substrate containing a carrier and a radically polymerizable polymer.
  • the fat-soluble monomer a polymer having molecular recognition ability by polymerization (that is, a separating agent), for example, a monomer that produces a basic polymer, because it is possible to impart molecular recognition ability to the stationary phase.
  • a polymer having molecular recognition ability by polymerization that is, a separating agent
  • a monomer that produces a basic polymer because it is possible to impart molecular recognition ability to the stationary phase.
  • a separating agent a monomer that produces a basic polymer
  • substituents include alkyl groups having 1 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, cyano groups, halogen atoms, hydroxy groups, amino groups and nitro groups.
  • the substituent is preferably a methyl group or a halogen atom from the viewpoint of improving the molecular recognition ability of the basic polymer and thus improving the separation performance of the stationary phase.
  • the above fat-soluble monomer is suitable when a radical copolymerization step is performed in a heterogeneous system (A) using a carrier having a radically polymerizable functional group introduced on its surface.
  • styrene, ⁇ -methylstyrene, and (meth)acrylic acid can be used in addition to the fat-soluble monomers as long as they do not inhibit the molecular recognition ability of the stationary phase.
  • Any fat-soluble monomer such as derivatives and (meth)acrylamide derivatives may be used.
  • the “hydrophilic monomer” in the heterogeneous system (B) refers to a radically polymerizable monomer having a water/1-octanol partition coefficient (logPow) of less than 1.0, and the lower limit of the water/1-octanol partition coefficient is , preferably -10.0 or more.
  • the solubility of the hydrophilic monomer in a fat-soluble solvent at 20 ° C. is preferably 3.0 g / 100 mL or less, more preferably 1.0 g / 100 mL or less, and 0.1 g / 100 mL or less. preferable.
  • hydrophilic monomers examples include 2-((meth)acryloyloxy)ethyl-2′-(trimethylammonio)ethyl phosphate, 2-(N-3-sulfopropyl-N,N-dimethylammonium)ethyl methacrylate, 3 -(methacryloylamino)propyltrimethylammonium chloride, potassium 3-(methacryloyloxy)propanesulfonate, 2-hydroxyethyl methacrylate, acrylamide and the like.
  • the above hydrophilic monomer is suitable when a radical copolymerization step is performed in a heterogeneous system (B) using a carrier having a radically polymerizable functional group introduced on its surface.
  • the weight-average molecular weight (Mw) of the polymer produced by radical copolymerization of the radically polymerizable monomer and the carrier whose surface is modified with the radically polymerizable functional group is not particularly limited, and is usually 1,000 to 5,000. , 000 or less.
  • the weight average molecular weight of the polymer refers to the weight average molecular weight of the site having repeating units derived from the radically polymerizable functional group of the radically polymerizable monomer.
  • the weight-average molecular weight of the polymer is estimated from the supernatant of the reaction mixture after the radical copolymerization reaction, because the production of the polymer and the immobilization of the polymer on the carrier occur simultaneously; At least one of these methods may be within the above range.
  • the solvent used in the radical copolymerization step does not completely dissolve the monomer
  • the reaction system may be a heterogeneous system containing a phase of a monomer having a radically polymerizable functional group and a phase of a solvent.
  • it is not particularly limited as much as possible, it is preferably an aqueous solvent or fat-soluble solvent that constitutes the heterogeneous system (A) or (B).
  • Aqueous solvent in the case where the heterogeneous system is the heterogeneous system (A) above refers to a solvent containing water, and refers to water or a mixed solvent of water and a water-soluble solvent.
  • the amount of the water-soluble solvent mixed with 100 parts by volume of water is usually 10 parts by volume or more, preferably 50 parts by volume or more, more preferably 100 parts by volume or more. and is usually 300 parts by volume or less, preferably 200 parts by volume or less, more preferably 150 parts by volume or less.
  • the preferable range of the amount of the water-soluble solvent to be mixed with 100 parts by volume of water is, for example, 10 parts by volume or more and 200 parts by volume or less, 50 parts by volume or more and 300 parts by volume or less, and 100 parts by volume or more and 150 parts by volume or less. range.
  • Water-soluble solvents contained in the aqueous solvent include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, iso-butanol, tert-butanol, n-pentanol, neopentyl alcohol, Alkyl alcohols having 1 to 6 carbon atoms such as n-hexanol; ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene Glycols such as glycol, 2,3-butylene glycol, 1,2-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 2,4-pentanediol, 1,
  • the water-soluble solvent is preferably an alkyl alcohol having 1 to 6 carbon atoms, more preferably an alkyl alcohol having 1 to 4 carbon atoms, and more preferably ethanol.
  • the "fat-soluble solvent” refers to a solvent having a water/1-octanol partition coefficient (logPow) of 0.5 or more, and the water/1-octanol
  • the upper limit of the partition coefficient (logPow) is preferably 5.0 or less.
  • fat-soluble solvents include hydrocarbon solvents such as n-hexane, n-heptane, n-octane, isooctane, cyclohexane, methylcyclohexane, benzene, toluene, and xylene; and tert-butyl methyl ether and diisopropyl.
  • Ether solvents such as ether; and the like are preferred.
  • the radical initiator used in the radical copolymerization step is not particularly limited, and can be appropriately selected from known radical initiators according to the type of the radically polymerizable substrate, the type of the radically polymerizable monomer, the reaction conditions, and the like. .
  • known radical initiators include thermal radical initiators and photoradical initiators, preferably thermal radical initiators.
  • Thermal radical initiators include organic peroxides such as benzoyl peroxide, methyl ethyl ketone peroxide, tert-butyl hydroperoxide, tert-butyl peroxybenzoate, dicumyl peroxide, cumene hydroxyperoxide, lauroyl peroxide; 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, 2,2′-azobis(isobutyronitrile), 2,2′-azobis(2,4-dimethylvalero nitrile) and other azo compounds;
  • the thermal radical initiator is preferably an azo compound.
  • a thermal radical initiator may be used individually by 1 type, and may use 2 or more types by arbitrary combinations and ratios.
  • photoradical initiators examples include acetophenone, benzophenone, benzoin, benzyl, benzoylbenzoic acid, methyl-2-benzoylbenzoate, 2-ethylanthraquinone, thioxanthone, 2-isopropylthioxanthone and the like.
  • a photoradical initiator may be used individually by 1 type, and may use 2 or more types by arbitrary combinations and ratios.
  • the amount of the radical initiator used is not particularly limited, and is usually 0.1 parts by mass or more, preferably 0.2 parts by mass or more, more preferably 0.3 parts by mass or more with respect to 100 parts by mass of the radically polymerizable monomer. Yes, and usually 25.0 parts by mass or less, preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less. Therefore, the preferred range of the amount of the radical initiator used relative to 100 parts by mass of the radically polymerizable monomer is, for example, 0.1 parts by mass or more and 5.0 parts by mass or less, 0.2 parts by mass or more and 25.0 parts by mass or less, and A range of 0.3 parts by mass or more and 3.0 parts by mass or less can be mentioned.
  • the amount shown as the usage amount of each component refers to the total amount when two or more of the components are used.
  • the radical copolymerization method is not particularly limited. while heating or active energy ray irradiation.
  • the reaction temperature and reaction time should be appropriately selected according to the type of radical polymerizable monomer, the amount of radical polymerizable monomer used, the type of solvent, and the like. can be done.
  • the reaction temperature is generally 40° C. or higher, preferably 50° C. or higher, and generally 100° C. or lower, preferably 80° C. or lower, more preferably 70° C. or lower. Therefore, preferable ranges of the reaction temperature include, for example, 40°C to 80°C, preferably 50°C to 100°C, and 50°C to 70°C.
  • the reaction time is generally 1 hour or longer, preferably 5 hours or longer, more preferably 20 hours or longer, and generally 60 hours or shorter, preferably 48 hours or shorter. Therefore, preferable ranges of the reaction time include, for example, 1 hour to 48 hours, 5 hours to 60 hours, and 20 hours to 48 hours.
  • the integrated irradiation amount (integrated light amount) of the active energy ray to be irradiated depends on the type of the radically polymerizable monomer, the amount of the radically polymerizable monomer used, and the active energy ray. can be appropriately selected according to the type of irradiation, irradiation time, and the like. Active energy rays include visible light, ultraviolet rays, X-rays, electron beams, and the like.
  • the integrated amount of light is usually 100 mJ/cm 2 or more, preferably 300 mJ/cm 2 or more, more preferably 500 mJ/cm 2 or more, and is usually 5,000 mJ/cm 2 or less, preferably 4,000 mJ/cm 2 or less, more preferably 3,000 mJ/cm 2 or less. Therefore, the preferable range of the integrated amount of light is, for example, 100 mJ/cm 2 or more and 4,000 mJ/cm 2 or less, 300 mJ/cm 2 or more and 5,000 mJ/cm 2 or less, and 500 mJ/cm 2 or more and 3,000 mJ/cm 2 or more. The following ranges are mentioned.
  • the integrated amount of light means the amount of irradiation represented by the product of the irradiation intensity of the active energy ray and the irradiation time.
  • Retention factor (k') and/or separation factor ( ⁇ ) can be used as an index for evaluating the separation performance of the stationary phase.
  • the retention factor and separation factor are calculated based on the following formulas (1) to (3), for example, by packing the stationary phase into a column and separating the sample by column chromatography. It can be judged that the larger the value of one or both of the retention factor and the separation factor, the higher the separation performance.
  • k1′ Retention coefficient of the weaker retained component
  • k2′ Retention coefficient of the weaker retained component
  • t0 Dead time (the time from introduction of a substance that does not interact with the stationary phase into the column to elution) For convenience, let the elution time of tri-tert-butylbenzene be the dead time.)
  • t1 elution time of weaker retained component
  • t2 elution time of stronger retained component
  • the immobilization rate (%) of the separating agent on the carrier in the stationary phase is determined by the following formula when the stationary phase is a chiral stationary phase.
  • Immobilization rate ((retention coefficient k1' of stationary phase)/(retention coefficient k1' of substrate having radically polymerizable functional group)) x 100
  • the immobilization rate is usually 50% or higher, preferably 60% or higher, more preferably 70% or higher, and even more preferably 80% or higher.
  • the upper limit of the immobilization rate is not particularly limited, and is usually 100% or less, and may be 95% or less.
  • preferred ranges for the immobilization rate include, for example, 50% to 95%, 60% to 100%, 70% to 95%, and 80% to 95%.
  • the retention coefficient k1 'of the substrate having a radically polymerizable functional group is similar to the retention coefficient k1 'of the stationary phase, and the substrate having a radically polymerizable functional group is packed in a column and the sample is separated by column chromatography. and calculated according to the above formula (1).
  • the immobilization rate of the separating agent on the carrier in the stationary phase is evaluated by the retention coefficient k1' of the stationary phase.
  • the chromatographic stationary phase obtained by the production method according to the present embodiment can be used in various column chromatographies such as high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC), and ion exchange chromatography (IEC). can be done.
  • HPLC high performance liquid chromatography
  • SFC supercritical fluid chromatography
  • IEC ion exchange chromatography
  • the total amount of the recovered product was dispersed in a mixed solution of methanol/12N hydrochloric acid (667 mL/19 mL) and stirred for 12 hours to deprotect the trityl group at the 6-position of amylose to obtain a carbamate derivative of amylose. Carbamate derivatives of amylose were vacuum dried before use in the next step.
  • Example 2 (Production of radically polymerizable polymer) A dispersion liquid was obtained by dispersing 5.0 g of cellulose in 171 mL of pyridine and dehydrating 80 mL of pyridine by azeotropic distillation. 7.2 g of 4-methylbenzoyl chloride was added to this dispersion and reacted at 80° C. for 4 hours. Then, 0.80 g of 1,4-benzoquinone and 0.72 g of 2-isocyanatoethyl methacrylate were added to the reaction mixture, reacted at 80° C. for 13 hours, and then 20.7 g of 4-methylbenzoyl chloride was added, Furthermore, it was made to react at 80 degreeC for 5 hours.
  • the resulting reaction mixture was dropped into methanol, and the precipitated insoluble matter was collected.
  • the collected material was dissolved in dichloromethane, and the resulting solution was added dropwise to methanol.
  • the precipitated insoluble matter was collected and vacuum-dried at room temperature to obtain a cellulose derivative having a methacryloyl group (hereinafter referred to as "methacryloyl group-containing cellulose derivative A").
  • Example 3 (Production of radically polymerizable polymer) 3.0 g of cellulose was dispersed in 124 mL of pyridine to obtain a dispersion. 4.1 g of 3,5-dimethylphenyl isocyanate was added to this dispersion and reacted at 80° C. for 4 hours. Then, 0.59 g of 1,4-benzoquinone and 0.29 g of 2-isocyanatoethyl methacrylate were added and reacted at 80° C. for 13 hours, then 12.3 g of 3,5-dimethylphenyl isocyanate was added, and further The reaction was carried out at 80°C for 5 hours.
  • the resulting reaction mixture was dropped into methanol, and the precipitated insoluble matter was recovered.
  • the recovered material was dissolved in tetrahydrofuran, and the resulting solution was added dropwise to methanol.
  • the precipitated insoluble matter was collected and vacuum-dried at room temperature to obtain a cellulose derivative having a methacryloyl group (hereinafter referred to as "methacryloyl group-containing cellulose derivative B").
  • Example 4 (Production of radically polymerizable polymer) 3.0 g of cellulose was dispersed in 124 mL of pyridine to obtain a dispersion. 5.2 g of 3,5-dichlorophenyl isocyanate was added to this dispersion and reacted at 80° C. for 4 hours. Then, 0.59 g of 1,4-benzoquinone and 0.29 g of 2-isocyanatoethyl methacrylate were added and reacted at 80° C. for 13 hours. °C for 5 hours. The resulting reaction mixture was added dropwise to methanol, and precipitated insoluble matter was recovered.
  • methacryloyl group-containing cellulose derivative C a cellulose derivative having a methacryloyl group
  • Example 5 (Manufacture of silane coupling agent) 5.26 g of 4-pyrrolidinopyridine was added to the flask, and after degassing, the flask was purged with nitrogen. To this flask, 3500 mL of toluene, 138.6 g of N-methylaminopropyltrimethoxysilane, and 203 mL of triethylamine were added in that order under a nitrogen atmosphere. Thereafter, a toluene solution (175 mL) of 84.23 g of acrylic acid chloride was added to the resulting mixture under a nitrogen atmosphere and heated at 60° C. for 1.5 hours to give N-methyl-N-[3-(tri A crude product of methoxysilyl)propyl]2-propenamide was obtained.
  • Example 6 (radical copolymerization) Under a nitrogen atmosphere, 18 mL of ethanol and 18 mL of distilled water were added to 10.0 g of the acrylamide-modified silica particles obtained in Example 5, and 0.15 mol/L of 2,2′-azobis[2-(2-imidazoline-2- yl)propane]dihydrochloride aqueous solution and 9 mL of 3.0 mol/L 4-vinylpyridine ethanol solution were added to obtain a reaction solution. This reaction solution was stirred at 55° C. for 24 hours to carry out a radical copolymerization reaction to obtain a stationary phase in which poly(4-vinylpyridine) was immobilized on the carrier.
  • ⁇ Comparative Example 1> (Production of radically polymerizable polymer-coated silica particles) 1.5 g of the methacryloyl group-containing amylose derivative obtained in Example 1 was dissolved in 9.0 mL of ethyl acetate to obtain a coating liquid. This coating liquid was uniformly applied to 6.0 g of the aminopropyl-modified silica particles obtained in Example 1, and then the ethyl acetate was distilled off, so that the methacryloyl group-containing amylose derivative was adsorbed to the physical droplets on the surface. Aminopropyl-modified silica particles (hereinafter referred to as "methacryloyl group-containing amylose derivative-coated silica particles B”) were obtained.
  • methacryloyl group-containing amylose derivative-coated silica particles B Aminopropyl-modified silica particles
  • ⁇ Comparative Example 2> (Production of radically polymerizable polymer) 5.0 g of cellulose was dispersed in 126 mL of pyridine to obtain a dispersion. 7.2 g of 4-methylbenzoyl chloride was added to this dispersion and reacted at 80° C. for 4 hours. Then, 0.72 g of 2-isocyanatoethyl methacrylate was added to the reaction mixture and reacted at 80° C. for 13 hours, then 20.7 g of 4-methylbenzoyl chloride was added and further reacted at 80° C. for 5 hours. . The resulting reaction mixture was dropped into methanol, and the precipitated insoluble matter was collected.
  • methacryloyl group-containing cellulose derivative D a cellulose derivative having a methacryloyl group
  • the chiral stationary phases (Examples 1 to 3) in which a polysaccharide derivative was immobilized on a support by a radical copolymerization reaction in a heterogeneous system in which the radically polymerizable monomer was not completely dissolved in the reaction solution were radical It can be seen that the separation performance is equal to or higher than that of the chiral stationary phase (Comparative Examples 1 and 2) obtained by a radical copolymerization reaction in a reaction system in which a polymerizable monomer is dissolved in the reaction solution.
  • the chiral stationary phases obtained in Examples 1, 3, and 4 exhibit high separation performance for racemate 1
  • the chiral stationary phase obtained in Example 2 exhibits high resolution for racemates 2-4. performance was confirmed.
  • the value obtained by dividing k1′ of the chiral stationary phase obtained in each example and comparative example by k1′ of the base material having a radically polymerizable functional group and multiplying the result by 100 is the immobilization rate (%) of the polysaccharide derivative.
  • the immobilization rate of the polysaccharide derivative in the chiral stationary phase of Example 1 is ((k1′ of chiral stationary phase of Example 1)/(k1′ of methacryloyl group-containing amylose derivative-coated silica particles A)) ⁇ 100 Calculated by The closer the immobilization rate of the polysaccharide derivative is to 100%, the higher the proportion of the polysaccharide derivative immobilized on the carrier.
  • Table 2 shows the calculated immobilization rate of the polysaccharide derivative.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

ラジカル開始剤の存在下でラジカル重合性官能基を有する基材とラジカル重合性官能基を有するモノマーとをラジカル共重合させるラジカル共重合工程を含み、前記ラジカル共重合工程は、前記ラジカル重合性官能基を有するモノマーの相及び溶媒の相を含む不均一系で行われる、クロマトグラフィー用固定相の製造方法。

Description

カラムクロマトグラフィー用固定相の製造方法
 本開示は、カラムクロマトグラフィー用固定相の製造方法に関する。
 混合物の成分及びその含量を分析し、また分離精製するための方法として、クロマトグラフィーはもっとも有効な手段である。これは、カラムあるいはキャピラリーと呼ばれる管の中で空間的に固定された固体(固定相)と、その隙間を移動する流体(移動相)に対する物質固有の分配比(吸着平衡とも理解される)を利用して、異なる物質を分離するものである。
 クロマトグラフィー用の固定相としては、多糖類誘導体、ポリ(4-ビニルピリジン)等の分子認識能を有する分離剤を担体に固定化したものが知られている。分離剤の固定化率は、分離性能、耐溶剤性等の特性に影響を与えるため、これまでに分離剤を担体に固定化する方法が種々開発されている。
 例えば、特許文献1に、多糖類誘導体に重合性不飽和基を導入してなる重合性多糖類誘導体と、それとは異なる他の重合性不飽和モノマーとをラジカル共重合することで、生成する共重合体をシリカゲル等の多孔性の担体上に固定化する方法が開示されている。
 特許文献2には、重合性官能基を有する担体に重合性多糖類誘導体を担持させた後、重合性モノマーと共重合させることにより多糖類誘導体を担体に固定化する方法が開示されている。
 また、特許文献3には、含窒素芳香環を有するビニルモノマー又は含窒素芳香環を含むイソプロペニルモノマーと、シランカップリング剤により重合性官能基が導入されたシリカゲルとを共重合させることで、窒素芳香環を有するビニルモノマー又は含窒素芳香環を含むイソプロペニルモノマーの重合体を担体であるシリカゲル上に固定化する方法が開示されている。
特開2002-148247号公報 国際公開第03/091185号 特開2021-015129号公報
 しかしながら、分離剤の固定化率については依然として改善の余地がある。一方で、例えば多糖類誘導体の固定化率を上げると分離性能が低下する場合があることも知られている。そこで、分離性能を犠牲にすることなく分離剤の固定化率の高いクロマトグラフィー用固定相を製造することのできる方法を開発することが求められている。
 本開示の課題は、分離剤の固定化率及び分離性能の高いクロマトグラフィー用固定相を製造することのできる方法を提供することである。
 上記課題を解決するために、本発明者等は鋭意検討を重ねた。その結果、ラジカル重合性官能基を有する基材とラジカル重合性官能基を有するモノマーとを、ラジカル重合性官能基を有するモノマーが完全に溶解しない溶媒中でラジカル共重合させることで、分離剤の固定化率及び分離性能の高い固定相が得られることを見出した。すなわち、本開示の要旨は、以下に示す通りである。
[1]
 ラジカル開始剤の存在下でラジカル重合性官能基を有する基材とラジカル重合性官能基を有するモノマーとをラジカル共重合させるラジカル共重合工程を含み、
 前記ラジカル共重合工程は、前記ラジカル重合性官能基を有するモノマーの相及び溶媒の相を含む不均一系で行われる、クロマトグラフィー用固定相の製造方法。
[2]
 前記ラジカル重合性官能基を有する基材が、担体とラジカル重合性官能基を有するポリマーとを含む、[1]に記載の製造方法。
[3]
 前記ラジカル重合性官能基を有するポリマーが、前記担体の表面上に物理的に吸着している、[2]に記載の製造方法。
[4]
 前記溶媒が、水、又は水と水100体積部に対して10体積部以上300体積部以下の水溶性溶媒とを混合した混合溶媒である、[2]又は[3]に記載の製造方法。
[5]
 前記ラジカル重合性官能基を有するモノマーが、ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-メチル-1,3-ブタジエン、ジビニルベンゼン、(メタ)アクリル酸アリル、及びスチレンからなる群より選択される1種以上である、[4]に記載の製造方法。
[6]
 前記ラジカル重合性官能基を有する基材が、表面に前記ラジカル重合性官能基が導入された担体である、[1]に記載の製造方法。
[7]
 前記溶媒が、水、又は水と水100体積部に対して10体積部以上300体積部以下の水溶性溶媒とを混合した混合溶媒である、[6]に記載の製造方法。
[8]
 前記ラジカル重合性官能基を有するモノマーが、2-ビニルピリジン、3-ビニルピリジン、4-ビニルピリジン、9-ビニルカルバゾール、2-イソプロペニルピリジン、3-イソプロペニルピリジン、4-イソプロペニルピリジン、及び9-イソプロペニルカルバゾールからなる群より選択される1種以上である、[7]に記載の製造方法。
[9]
 前記溶媒が、水/1-オクタノール分配係数(logPow)が0.5以上の脂溶性溶媒である、[6]に記載の製造方法。
[10]
 前記ラジカル重合性官能基を有するモノマーが、2-((メタ)アクリロイルオキシ)エチル-2’-(トリメチルアンモニオ)エチルホスフェート、2-(N-3-スルホプロピル-N,N-ジメチルアンモニウム)エチルメタクリレート、3-(メタクリロイルアミノ)プロピルトリメチルアンモニウムクロリド、3-(メタクリロイルオキシ)プロパンスルホン酸カリウム、2-ヒドロキシエチルメタクリレート、及びアクリルアミドからなる群より選択される1種以上である、[9]に記載の製造方法。
 本開示によれば、分離剤の固定化率及び分離性能の高いクロマトグラフィー用固定相を製造することのできる方法を提供することができる。
 そして本開示の課題及び効果は、具体的に上記に記載したものに限らず、明細書全体より当業者に明らかにされるものを含む。
 以下に、本開示について具体的な実施態様を挙げて説明するが、各実施態様における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施態様によって限定されるものではない。
 また、本明細書に開示される各々の態様は、本明細書に開示される他のいかなる特徴とも組み合わせることができる。
 なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。
 本開示の一実施態様であるクロマトグラフィー用固定相の製造方法は、ラジカル開始剤の存在下でラジカル重合性官能基を有する基材とラジカル重合性官能基を有するモノマーとをラジカル共重合させるラジカル共重合工程を含み、前記ラジカル共重合工程は、前記ラジカル重合性官能基を有するモノマーの相及び溶媒の相を含む不均一系で行われる。本実施態様に係るクロマトグラフィー用固定相の製造方法は、ラジカル共重合工程以外に、洗浄工程、乾燥工程等のその他の工程を含んでいてもよい。
 本実施態様に係る製造方法では、従来の製造方法とは異なり、ラジカル共重合反応が、ラジカル重合性官能基を有するモノマーが完全に溶解しない溶媒中で行われる。そのため、ラジカル共重合反応の反応系は、ラジカル重合性官能基を有するモノマーの相及び溶媒の相を含む不均一系で行われることとなる。後述する実施例に示すように、溶媒としてラジカル重合性官能基を有するモノマーが完全に溶解しない溶媒を用いた場合と、ラジカル重合性官能基を有するモノマーが溶解する溶媒を用いた場合とを比較すると、前者の方が分離剤の固定化率及び分離性能の高い固定相を得ることができる。したがって、反応系が上述の不均一系となるよう、ラジカル重合性官能基を有するモノマー及び溶媒を適切に選択することにより、分離剤の固定化率及び固定相の分離性能を向上することができると考えられる。
 以下、ラジカル共重合工程に用いられる各試薬、反応条件等について説明する。
<ラジカル重合性官能基を有する基材>
 本実施態様に係る製造方法により得られるクロマトグラフィー用固定相(以下、単に「固定相」と称することがある。)は、分子認識能を有する分離剤が担体上に固定化されたものである。そして、本実施態様におけるラジカル重合性官能基を有する基材は、担体を含み、ラジカル重合性基を有する。
 ラジカル重合性官能基を有する基材のラジカル重合性官能基は、特に限定されないが、エチレン性不飽和結合基を有する官能基であることが好ましい。エチレン性不飽和結合基を有する官能基としては、具体的にはビニル基、アリル基、iso-プロペニル基等の末端に二重結合を有する炭素数2~12の炭化水素基;(メタ)アクリロイル基;等が挙げられ、ビニル基又は(メタ)アクリロイル基であることが好ましい。なお、本明細書において、「(メタ)アクリロイル」はアクリロイル及び/又はメタクリロイルを意味し、「(メタ)アクリル」はアクリル及び/又はメタクリルを意味する。
 担体としては、有機担体、無機担体、有機無機ハイブリッド担体等が挙げられ、好ましくは無機担体である。
 有機担体としては、ポリスチレン、ポリ(メタ)アクリルアミド、ポリ(メタ)アクリル酸エステル等が挙げられる。無機担体としては、シリカ、アルミナ、マグネシア、ガラス、カオリン、酸化チタン、酸化ジルコニウム、ケイ酸塩、ヒドロキシアパタイト等が挙げられ、好ましくはシリカゲルである。担体としてシリカゲルを用いる場合、コアシェルあるいはペリフェラルと呼ばれる、表層のみを多孔質にしたものであってもよい。また、有機無機ハイブリッド担体としては、アルコキシシランとアルキル置換又はアルキレン置換アルコキシシラン化合物とのゾルゲル反応により形成される有機無機ハイブリッド担体が挙げられる。
 担体の形状は、特に限定されないが、固定相の分離性能を均一化する観点から、粒子であることが好ましく、中でも球状の粒子あることが好ましい。本明細書において、球状とは、真球の形状だけを意味するのではなく、長球、扁球等のように、断面形状が円形、略円形、楕円形、略楕円形である形状を含む。
 担体が粒子である場合、粒子のメジアン径は、特に限定されず、1.5μm以上、3.0μm以上、又は4.0μm以上であってよく、また、15.0μm以下、10.0μm以下、8.0μm以下であってよい。すなわち、担体粒子のメジアン径は、例えば、1.5μm以上15.0μm以下、3.0μm以上10.0μm以下、又は4.0μm以上8.0μm以下であってよい。なお、本明細書において、メジアン径は、レーザ回折/散乱式粒子径分布測定装置で測定した累積体積分布曲線の50%累積値に相当する径、すなわち体積基準累積50%径(D50)を意味する。
 ラジカル重合性官能基を有する基材は、担体とラジカル重合性官能基を有するポリマー(以下、「ラジカル重合性ポリマー」と称することがある。)とを含む基材、又は表面に前記ラジカル重合性官能基が導入された担体であることが好ましい。
 ラジカル重合性官能基を有する基材が担体とラジカル重合性ポリマーとを含む基材である場合、基材は、ラジカル重合性ポリマーが担体の表面の少なくとも一部、好ましくは全体にわたって物理的に吸着したものであることが好ましい。このような基材は、公知の製造方法、例えば特開平8-231489号公報に記載の方法に従って、ラジカル重合性ポリマーを溶媒に溶解した塗布液を担体に塗布し、その後溶媒を留去することにより得ることができる。
 また、ラジカル重合性ポリマーが担体の表面に物理的に吸着している場合、担体の耐久性向上の観点より表面処理されていることが好ましい。たとえば、アミノアルキルシリル基の導入により、ラジカル重合性ポリマーをより良好に担体表面上に物理吸着させ、担体の耐久性を向上させることができる。担体へのアミノアルキルシリル基の導入は、公知の方法、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノアルキルシリル基を有する表面処理剤により行うことができる。
 ラジカル重合性ポリマーとしては、ラジカル重合性官能基を有する多糖類誘導体が挙げられる。多糖類誘導体は、キラル分離セレクターとして知られており、したがって、キラル固定相を製造する際には、ラジカル重合性官能基を有する基材として担体とラジカル重合性ポリマーとを含む基材を好適に適用できる。
 ラジカル重合性官能基を有する多糖類誘導体の多糖類は、アミロース又はセルロースであることが好ましい。また、ラジカル重合性官能基を有する多糖類誘導体は、多糖類のヒドロキシ基のうちの一部がラジカル重合性官能基に変換されたものであることが好ましい。多糖類のヒドロキシ基のうち、ラジカル重合性官能基に変換されていない基は、例えば置換又は無置換のフェニルイソシアナートによりフェニルカルバメート誘導体に変換されていてもよく、4-メチルベンゾイルクロリド等の酸ハロゲン化物によりエステル誘導体に変換されていてもよい。
 上記置換又は無置換のフェニルイソシアナートとしては、フェニルイソシアナート、3-クロロフェニルイソシアナート、4-クロロフェニルイソシアナート、3,5-ジクロロフェニルイソシアナート、3-メチルフェニルイソシアナート、4-メチルフェニルイソシアナート、3,5-ジメチルフェニルイソシアナート、3-クロロ-5-メチルフェニルイソシアナート等が挙げられる。
 また、上記酸ハロゲン化物としては、ベンゾイルクロリド、4-メチルベンゾイルクロリド、ベンゾイルブロミド、4-メチルベンゾイルブロミド等が挙げられる。
 ラジカル重合性官能基を有する多糖類誘導体は、公知の製造方法に準じて製造することができる。公知の方法としては、例えば国際公開第03/091185号に記載の以下の方法が挙げられる。
 すなわち、ラジカル重合性官能基を有する多糖類誘導体を製造するための具体的な手順としては、多糖類のヒドロキシ基の一部を保護するための保護工程と、保護されなかった多糖類のヒドロキシ基を、置換又は無置換のフェニルイソシアナートで修飾する工程と、保護されたヒドロキシ基を脱保護する工程と、置換又は無置換のフェニルイソシアナート及びラジカル重合性官能基を有する化合物で、脱保護されたヒドロキシ基を修飾する工程とを含む方法を挙げられる。
 また、上記の保護工程を含まず、多糖類のヒドロキシ基を、置換又は無置換のフェニルイソシアナートで修飾する工程と、ラジカル重合性官能基を有する化合物を用いてラジカル重合性官能基を多糖類に導入する工程を同時に行うこともできる。
 上記ラジカル重合性官能基を有する化合物としては、(メタ)アクリル酸クロリド;4-ビニル安息香酸クロリド等の不飽和酸ハロゲン化物類;ビニルフェニルイソシアナート、(メタ)アクリル酸2-イソシアナートエチル等の不飽和イソシアナート類;等を挙げることができる。
 上記ラジカル重合性官能基を有する多糖類誘導体では、多糖類のヒドロキシ基の一部が置換又は無置換のフェニルイソシアナートにより置換又は無置換のフェニルカルバメート基に変換され、それ以外のヒドロキシ基がラジカル重合性官能基を有する基に変換されている。
 なお、保護工程で導入される保護基としては、例えば、トリフェニルメチル基(トリチル基)、ジフェニルメチル基、トシル基、メシル基、トリメチルシリル基、ジメチル(t-ブチル)シリル基等の公知の保護基が挙げられる。これらのうち、保護基は、トリチル基又はトリメチルシリル基であることが好ましい。
 表面にラジカル重合性官能基が導入された担体としては、例えば下記式(I)で表されるシランカップリング剤で表面処理を行った担体が挙げられる。担体としては、シリカゲルが好ましい。下記式(I)で表されるシランカップリング剤は、公知の製造方法に準じて製造することができる。公知の方法としては、例えば国際公開第2017/164289号に記載の方法が挙げられる。
  W-X-Y-SiR3-n   (I)
(式(I)中、Wは、ラジカル重合性官能基であり;Xは、-NR’CO-、-CONR’-、-CO-、-OCO-、-O-、-SO-、-SO-、-OSO-、-S-、炭素数6~20のアリーレン基、又はリン酸エステル基であり;R’は、水素原子又は炭素数1~3のアルキル基であり;Yは、炭素数1~30のアルキレン基であり;Rは、それぞれ独立して炭素数1~3のアルキル基であり;Zは、それぞれ独立して式(I)中のケイ素原子と担体との間に結合を作らせ得る脱離基であり;nは1~3の整数である。)
 Wで表されるラジカル重合性官能基は、ラジカル重合性官能基を有する基材のラジカル重合性官能基と同様に定義され、その好ましい態様も同様である。
 Xは、WとZとを連結するリンカーの一部であり、-NR’CO-、-CONR’-、-CO-、-OCO-、又はフェニレン基であることが好ましい。
 R’は、水素又は炭素数1~3のアルキル基であることが好ましく、水素又はメチル基であることがより好ましい。
 Yは、炭素数1~5のアルキレンであることが好ましく、メチレン基、エチレン基、又はトリメチレン基であることがより好ましい。
 Rは、メチル基又はエチル基であることが好ましい。
 Zは、式(I)中のケイ素原子と担体との間に結合を形成する反応において脱離する基である限り特に限定されない。Zとしては、炭素数1~5のアルコキシ基;ハロゲン原子;炭素数1~20のアルキルメルカプチル基;ジメチルアミノ基、ジエチルアミノ基、ピロリジノ基、イミダゾリル基等の窒素含有基;アリル基;2-メチル-2-プロペニル基;等が挙げられる。これらのうち、Zは、取り扱い容易性及び反応性の観点から、炭素数1~5のアルコキシ基であることが好ましく、メトキシ基又はエトキシ基であることがより好ましい。
 nは、2又は3であることが好ましく、3であることがより好ましい。
<ラジカル重合性官能基を有するモノマー>
 ラジカル共重合工程に用いられるラジカル重合性官能基を有するモノマー(以下、「ラジカル重合性モノマー」と称することがある。)は、ラジカル重合性官能基を少なくとも1つ有する化合物である。
 ラジカル重合性官能基を有する基材が、担体とラジカル重合性ポリマーとを含む基材である場合、ラジカル重合性モノマーは、ラジカル重合性ポリマーを架橋する架橋剤として働く。この場合、ラジカル重合性官能基を有する基材が、担体の表面の一部又は全体にラジカル重合性ポリマーが物理的に吸着したものであれば、ラジカル重合性ポリマーは、ラジカル重合性モノマーで架橋され、三次元網目構造が形成されることにより強固に担体上に固定化されるため、好適である。
 一方、ラジカル重合性官能基を有する基材が、表面にラジカル重合性官能基が導入された担体である場合は、ラジカル重合性モノマーは、表面にラジカル重合性官能基が導入された担体とのラジカル共重合によりポリマーを生成することで、当該ポリマーが担体上に固定化される。
 ラジカル重合性モノマーのラジカル重合性官能基は、ラジカル重合性官能基を有する基材のラジカル重合性官能基と同様に定義され、その好ましい態様も同様である。ラジカル重合性モノマーのラジカル重合性官能基とラジカル重合性官能基を有する基材のラジカル重合性官能基とは、同一の基であってもよく、互いに異なる基であってもよい。
 また、ラジカル重合性モノマーは、1種単独で使用してもよく、2種以上を任意の組み合わせ及び比率で使用してもよい。
 ラジカル共重合工程はラジカル重合性モノマーの相及び溶媒の相を含む不均一系で行われることから、ラジカル重合性モノマーは、使用する溶媒と相分離するものから適宜選択される。ラジカル重合性モノマーは、例えば以下のように溶媒と組み合わせて不均一系(A)又は(B)を形成することが好ましい。
・不均一系(A)
 ラジカル重合性モノマー:脂溶性モノマー
 溶媒:水性溶媒
・不均一系(B)
 ラジカル重合性モノマー:親水性モノマー
 溶媒:脂溶性溶媒
 以下、不均一系(A)における脂溶性モノマー及び不均一系(B)における親水性モノマーについて説明する。
 不均一系(A)における「脂溶性モノマー」とは、水/1-オクタノール分配係数(logPow)が1.0以上であるラジカル重合性モノマーを指し、その水/1-オクタノール分配係数の上限は、好ましくは5.0以下である。脂溶性モノマーの20℃の水に対する溶解度は、3.0g/100mL以下であることが好ましく、1.0g/100mL以下であることがより好ましく、0.1g/100mL以下であることがさらに好ましい。
 脂溶性モノマーとしては、例えばブタジエン、2,3-ジメチル-1,3-ブタジエン、2-メチル-1,3-ブタジエン、ジビニルベンゼン、(メタ)アクリル酸アリル、スチレン等が挙げられ、ブタジエン、2,3-ジメチル-1,3-ブタジエン、又は2-メチル-1,3-ブタジエンであることが好ましく、2,3-ジメチル-1,3-ブタジエンであることがより好ましい。
 上記脂溶性モノマーは、担体とラジカル重合性ポリマーとを含む基材を用いて不均一系(A)でラジカル共重合工程を行う場合に好適である。
 或いは、脂溶性モノマーとして重合により分子認識能を有するポリマー(すなわち、分離剤)、例えば塩基性ポリマーを生成するモノマーを用いると、固定相に分子認識能を付与することができるため好ましい。
 このような脂溶性モノマーとしては、具体的には2-ビニルピリジン、3-ビニルピリジン、4-ビニルピリジン、9-ビニルカルバゾール、2-イソプロペニルピリジン、3-イソプロペニルピリジン、4-イソプロペニルピリジン、9-イソプロペニルカルバゾール等が挙げられ、4-ビニルピリジンであることが好ましい。これらのモノマーの複素環は、置換基を有していてもよい。置換基としては、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、シアノ基、ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基等が挙げられる。これらのうち、置換基は、上記塩基性ポリマーの分子認識能を向上させ、ひいては固定相の分離性能を向上し得る点で、メチル基又はハロゲン原子であることが好ましい。
 上記脂溶性モノマーは、表面にラジカル重合性官能基が導入された担体を用いて不均一系(A)でラジカル共重合工程を行う場合に好適である。
 なお、ラジカル共重合により分子認識能を有するポリマーを形成するにあたり、固定相の分子認識能を阻害しない範囲であれば、上記脂溶性モノマーの他にスチレン、α-メチルスチレン、(メタ)アクリル酸誘導体、(メタ)アクリルアミド誘導体等の任意の脂溶性モノマーを用いてもよい。
 不均一系(B)における「親水性モノマー」とは、水/1-オクタノール分配係数(logPow)が1.0未満であるラジカル重合性モノマーを指し、その水/1-オクタノール分配係数の下限は、好ましくは-10.0以上である。親水性モノマーの20℃の脂溶性溶媒に対する溶解度は、3.0g/100mL以下であることが好ましく、1.0g/100mL以下であることがより好ましく、0.1g/100mL以下であることがさらに好ましい。
 親水性モノマーとしては、例えば2-((メタ)アクリロイルオキシ)エチル-2’-(トリメチルアンモニオ)エチルホスフェート、2-(N-3-スルホプロピル-N,N-ジメチルアンモニウム)エチルメタクリレート、3-(メタクリロイルアミノ)プロピルトリメチルアンモニウムクロリド、3-(メタクリロイルオキシ)プロパンスルホン酸カリウム、2-ヒドロキシエチルメタクリレート、アクリルアミド等が挙げられる。
 上記親水性モノマーは、表面にラジカル重合性官能基が導入された担体を用いて不均一系(B)でラジカル共重合工程を行う場合に好適である。
 なお、ラジカル重合性モノマーと表面がラジカル重合性官能基で修飾された担体とのラジカル共重合により生成するポリマーの重量平均分子量(Mw)は、特に限定されず、通常1,000以上5,000,000以下である。なお、上記ポリマーの重量平均分子量とは、ラジカル重合性モノマーのラジカル重合性官能基に由来する繰り返し単位を有する部位の重量平均分子量を指す。上記ポリマーの重量平均分子量は、当該ポリマーの生成と当該ポリマーの担体への固定化が同時に起こるため、ラジカル共重合反応後の反応混合物の上澄みから見積もること;又は担体ポリマーとの共有結合を切断して得られるポリマーの分子量を測定すること;により求められ、これらの方法のうち少なくとも一方が上記範囲内であればよい。
<溶媒>
 本開示において、ラジカル共重合工程に用いられる溶媒としては、モノマーを完全に溶解させず、反応系を、ラジカル重合性官能基を有するモノマーの相及び溶媒の相を含む不均一系とすることができる限り、特に限定されないが、上記不均一系(A)又は(B)を構成する水性溶媒又は脂溶性溶媒であることが好ましい。
 不均一系が上記不均一系(A)である場合における「水性溶媒」とは、水を含有する溶媒であって、水、又は水と水溶性溶媒との混合溶媒を指す。水性溶媒として水と水溶性溶媒との混合溶媒を用いる場合、水100体積部と混合する水溶性溶媒の量は、通常10体積部以上、好ましくは50体積部以上、より好ましくは100体積部以上であり、また、通常300体積部以下、好ましくは200体積部以下、より好ましくは150体積部以下である。したがって、水100体積部と混合する水溶性溶媒の量の好ましい範囲としては、例えば、10体積部以上200体積部以下、50体積部以上300体積部以下、及び100体積部以上150体積部以下の範囲が挙げられる。
 水性溶媒に含まれる水としては、イオン交換水、水道水、蒸留水等を用いることができる。また、水性溶媒に含まれる水溶性溶媒としては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、iso-ブタノール、tert-ブタノール、n-ペンタノール、ネオペンチルアルコール、n-ヘキサノール等の炭素数1~6のアルキルアルコール;エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、2,3-ブチレングリコール、1,2-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、1,6-ヘキサンジオール、ジプロピレングリコール等のグリコール;炭酸エチレン、炭酸プロピレン等の炭酸アルキレン;等が挙げられる。水溶性溶媒は、炭素数1~6のアルキルアルコールであることが好ましく、炭素数1~4のアルキルアルコールであることが好ましく、エタノールであることがより好ましい。これらの水溶性溶媒を使用することにより、ラジカル重合により生じる架橋物又はポリマーが担体に良好に固定化される。
 不均一系が上記不均一系(B)である場合における「脂溶性溶媒」とは、水/1-オクタノール分配係数(logPow)が0.5以上である溶媒を指し、その水/1-オクタノール分配係数(logPow)の上限は、好ましくは5.0以下である。
 脂溶性溶媒としては、具体的には、n-ヘキサン、n-へプタン、n-オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素溶媒;及びtert-ブチルメチルエーテル、ジイソプロピルエーテル等のエーテル溶媒;等が好ましく挙げられる。
<ラジカル開始剤>
 ラジカル共重合工程に用いるラジカル開始剤としては、特に限定されず、公知のラジカル開始剤からラジカル重合性基材の種類、ラジカル重合性モノマーの種類、反応条件等に応じて適宜選択することができる。公知のラジカル開始剤としては、熱ラジカル開始剤及び光ラジカル開始剤が挙げられ、好ましくは熱ラジカル開始剤である。
 熱ラジカル開始剤としては、例えばベンゾイルパーオキシド、メチルエチルケトンパーオキシド、tert-ブチルハイドロパーオキシド、tert-ブチルパーオキシベンゾエート、ジクミルパーオキシド、クメンハイドロキシパーオキシド、ラウロイルパーオキシド等の有機過酸化物;2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物;等が挙げられる。これらのうち、熱ラジカル開始剤は、アゾ系化合物であることが好ましい。
 熱ラジカル開始剤は、1種単独で使用してもよく、2種以上を任意の組み合わせ及び比率で使用してもよい。
 光ラジカル開始剤としては、例えばアセトフェノン、ベンゾフェノン、ベンゾイン、ベンジル、ベンゾイル安息香酸、メチル-2-ベンゾイルベンゾエート、2-エチルアントラキノン、チオキサントン、2-イソプロピルチオキサントン等が挙げられる。
 光ラジカル開始剤は、1種単独で使用してもよく、2種以上を任意の組み合わせ及び比率で使用してもよい。
 ラジカル開始剤の使用量は、特に限定されず、ラジカル重合性モノマー100質量部に対し、通常0.1質量部以上、好ましくは0.2質量部以上、より好ましくは0.3質量部以上であり、また、通常25.0質量部以下、好ましくは5.0質量部以下、より好ましくは3.0質量部以下である。したがって、ラジカル重合性モノマー100質量部に対するラジカル開始剤の使用量の好ましい範囲としては、例えば0.1質量部以上5.0質量部以下、0.2質量部以上25.0質量部以下、及び0.3質量部以上3.0質量部以下の範囲が挙げられる。ラジカル開始剤の使用量を上記範囲内とすることにより、ラジカル重合性モノマーのラジカル共重合反応が促進され、生成する架橋物又はポリマー(すなわち、分離剤)の担体への固定化率がより高い固定相を得ることができる。
 なお、本明細書において、各成分の使用量として示す量は、当該成分を2種以上使用する場合には、その総量を指す。
<ラジカル共重合工程の反応条件>
 ラジカル共重合の方法は、特に限定されず、例えば撹拌子又は撹拌翼を備えた反応器中で、ラジカル重合性基材、ラジカル重合性モノマー、ラジカル開始剤、及び溶媒を含む反応液を撹拌しながら加熱又は活性エネルギー線照射を行う方法が挙げられる。
 ラジカル重合が熱ラジカル開始剤を用いた熱ラジカル重合である場合、反応温度及び反応時間は、ラジカル重合性モノマーの種類、ラジカル重合性モノマーの使用量、溶媒の種類等に応じて適宜選択することができる。反応温度は、通常40℃以上、好ましくは50℃以上であり、また、通常100℃以下、好ましくは80℃以下、より好ましくは70℃以下である。したがって、反応温度の好ましい範囲としては、例えば、40℃以上80℃以下、好ましくは50℃以上100℃以下、及び50℃以上70℃以下の範囲が挙げられる。反応時間は、通常1時間以上、好ましくは5時間以上、より好ましくは20時間以上であり、また、通常60時間以下、好ましくは48時間以下である。したがって、反応時間の好ましい範囲としては、例えば、1時間以上48時間以下、5時間以上60時間以下、及び20時間以上48時間以下の範囲が挙げられる。
 ラジカル重合が光ラジカル開始剤を用いた光ラジカル重合である場合、照射する活性エネルギー線の積算照射量(積算光量)は、ラジカル重合性モノマーの種類、ラジカル重合性モノマーの使用量、活性エネルギー線の種類、照射時間等に応じて適宜選択することができる。活性エネルギー線としては、可視光線、紫外線、X線、電子線等が挙げられる。また、積算光量は、通常100mJ/cm以上、好ましくは300mJ/cm以上、より好ましくは500mJ/cm以上であり、また、通常5,000mJ/cm以下、好ましくは4,000mJ/cm以下、より好ましくは3,000mJ/cm以下である。したがって、積算光量の好ましい範囲としては、例えば、100mJ/cm以上4,000mJ/cm以下、300mJ/cm以上5,000mJ/cm以下、及び500mJ/cm以上3,000mJ/cm以下の範囲が挙げられる。積算光量を上記範囲内とすることにより、光ラジカル開始剤由来の活性種が十分に発生し、ラジカル重合効率を向上させることができる。なお、積算光量とは、活性エネルギー線の照射強度と照射時間の積で表される照射量を意味する。
<固定相の分離性能及び分離剤の固定化率の評価方法>
 固定相の分離性能を評価するための指標としては、保持係数(k’)及び/又は分離係数(α)を用いることができる。保持係数及び分離係数は、例えば固定相をカラムに充填してカラムクロマトグラフィーによるサンプルの分離を行い、下記式(1)~(3)に基づいて算出される。保持係数及び分離係数の一方又は両方の値が大きいほど、分離性能が高いと判断することができる。
・保持係数k1’=(t1-t0)/t0  (1)
・保持係数k2’=(t2-t0)/t0  (2)
・分離係数α=k2’/k1’       (3)
  k1’:より弱く保持される成分の保持係数
  k2’:より弱く保持される成分の保持係数
  t0:デッドタイム(固定相と相互作用しない物質をカラムに導入してから溶出されるまでの時間である。便宜上、トリ-tert-ブチルベンゼンの溶出時間をデッドタイムとする。)
  t1:より弱く保持される成分の溶出時間
  t2:より強く保持される成分の溶出時間
 また、本実施態様では、固定相における分離剤の担体への固定化率(%)は、固定相がキラル固定相である場合には、次式により求められる。
・固定化率=((固定相の保持係数k1’)/(ラジカル重合性官能基を有する基材の保持係数k1’))×100
 固定化率が100%に近いほど、分離剤が担体上に良好に固定されていることを示す。本実施態様に係る製造方法により得られる固定相においては、固定化率は、通常50%以上、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上である。固定化率の上限は、特に限定されず、通常100%以下であり、95%以下であってもよい。したがって、固定化率の好ましい範囲としては、例えば、50%以上95%以下、60%以上100%以下、70%以上95%以下、及び80%以上95%以下の範囲が挙げられる。
 なお、ラジカル重合性官能基を有する基材の保持係数k1’は、固定相の保持係数k1’と同様、ラジカル重合性官能基を有する基材をカラムに充填してカラムクロマトグラフィーによるサンプルの分離を行い、上記式(1)に従い算出される。
 一方、固定相がアキラル固定相である場合には、固定相における分離剤の担体への固定化率は、固定相の保持係数k1’により評価される。固定相の保持係数k1’の値が大きいほど、分離剤の担体への固定化率が高い。
<クロマトグラフィー用固定相の用途>
 本実施態様に係る製造方法により得られるクロマトグラフィー用固定相は、高速液体クロマトグラフィー(HPLC)、超臨界流体クロマトグラフィー(SFC)、イオン交換クロマトグラフィー(IEC)等の各種カラムクロマトグラフィーに用いることができる。
 以下、本開示を実施例によりさらに具体的に説明するが、本開示はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。
<実施例1>
(シリカ粒子の表面処理)
 180℃で2時間真空乾燥することで活性化したシリカゲル(平均粒径5μm)40gに、無水トルエン48mL及び無水ピリジン4mLを加えた後、さらに3-アミノプロピルトリエトキシシラン2.8mLを加え、12時間還流した。その後、反応液をグラスフィルターでろ過し、表面にアミノプロピル基が導入されたシリカ粒子(以下、「アミノプロピル修飾シリカ粒子」と称する。)を得た。
(ラジカル重合性ポリマーの製造)
 塩化リチウム4.4g及びN,N-ジメチルアセトアミド65mLの混合液にアミロース5.0gを溶解した後、ピリジン25mL及び塩化トリチル17.2gと混合し、85℃で12時間反応させることで、アミロースの6位のヒドロキシ基を保護した。次いで、反応混合液に3-クロロ-5-メチルフェニルイソシアナート18.3gを加え、さらに85℃で12時間反応させた。得られた反応混合液をメタノール中に滴下し、析出した不溶物を回収した。回収物全量をメタノール/12N塩酸(667mL/19mL)混合液に分散させ、12時間攪拌させることでアミロースの6位のトリチル基の脱保護を行い、アミロースのカルバメート誘導体を得た。アミロースのカルバメート誘導体は、真空乾燥を行ってから次のステップに用いた。
 上記アミロースのカルバメート誘導体5.0gをピリジン35mLに溶解させた後、3-クロロ-5-メチルフェニルイソシアナート0.17gと混合し、85℃で2時間反応させることで、アミロースのカルバメート誘導体のヒドロキシ基の一部を3-クロロ-5-メチルフェニルカルバメート基に変換した。次いで、反応混合液にメタクリル酸2-イソシアナートエチルを0.16g加え、85℃で13時間反応を行った。続いて、反応混合液に3-クロロ-5-メチルフェニルイソシアナート2.03gを加え、85℃で7時間反応を行うことにより、アミロースの残存ヒドロキシ基をカルバメートに変換した。得られた反応混合液をメタノール中に滴下し、析出した不溶物を回収して真空乾燥することにより、メタクリロイル基を有するアミロース誘導体(以下、「メタクリロイル基含有アミロース誘導体A」と称する。)を得た。
(ラジカル重合性ポリマー被覆シリカ粒子の製造)
 上記メタクリロイル基含有アミロース誘導体A2.0gを酢酸エチル16mLに溶解し、塗布液を得た。この塗布液を、アミノプロピル修飾シリカ粒子5.4gに均一に塗布し、その後、酢酸エチルを留去することで、メタクリロイル基含有アミロース誘導体が表面上に物理滴に吸着したアミノプロピル修飾シリカ粒子(以下、「メタクリロイル基含有アミロース誘導体被覆シリカ粒子A」と称する。)を得た。
(ラジカル共重合)
 窒素雰囲気下で、上記メタクリロイル基含有アミロース誘導体被覆シリカ粒子A3.0gにエタノール12mL及び蒸留水12mLを加え、さらに0.30mol/Lの2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩水溶液6mL及び1.48mol/Lの2,3-ジメチル-1,3-ブタジエン エタノール溶液6mLを加え、55℃で24時間ラジカル共重合反応を行った。その後、生成物を酢酸エチル及びメタノールで洗浄し、メタクリロイル基含有アミロース誘導体Aの架橋物が担体上に固定化されたキラル固定相を得た。
<実施例2>
(ラジカル重合性ポリマーの製造)
 セルロース5.0gをピリジン171mLに分散させ、ピリジン80mLを共沸蒸留して脱水することで分散液を得た。この分散液に4-メチルベンゾイルクロリド7.2gを加え、80℃で4時間反応させた。次いで、反応混合液に1,4-ベンゾキノン0.80g及びメタクリル酸2-イソシアナートエチル0.72gを加え、80℃で13時間反応をさせ、続いて4-メチルベンゾイルクロリド20.7gを加え、さらに80℃で5時間反応させた。得られた反応混合液をメタノール中に滴下し、析出した不溶物を回収した。回収物をジクロロメタンに溶解させ、得られた溶液をメタノール中に滴下した。析出した不溶物を回収して室温で真空乾燥することにより、メタクリロイル基を有するセルロース誘導体(以下、「メタクリロイル基含有セルロース誘導体A」と称する。)を得た。
(ラジカル重合性ポリマー被覆シリカ粒子の製造)
 メタクリロイル基含有セルロース誘導体A10.0gをジクロロメタン30mLに溶解し、塗布液を得た。この塗布液を、実施例1で得たアミノプロピル修飾シリカ粒子40.0gに均一に塗布し、その後、ジクロロメタンを留去することで、メタクリロイル基含有セルロース誘導体Aが表面上に物理的に吸着したアミノプロピル修飾シリカ粒子(以下、「メタクリロイル基含有セルロース誘導体被覆シリカ粒子A」と称する。)を得た。
(ラジカル共重合)
 窒素雰囲気下で、メタクリロイル基含有セルロース誘導体被覆シリカ粒子A3.0gにエタノール12mL及び蒸留水12mLを加え、さらに0.22mol/Lの2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩水溶液6mL及び1.83mol/Lの2,3-ジメチル-1,3-ブタジエン エタノール溶液6mLを加え、反応液を得た。この反応液を60℃で24時間撹拌し、ラジカル共重合反応を行うことで、メタクリロイル基含有セルロース誘導体Aの架橋物が担体上に固定化されたキラル固定相を得た。
<実施例3>
(ラジカル重合性ポリマーの製造)
 セルロース3.0gをピリジン124mLに分散させ、分散液を得た。この分散液に3,5-ジメチルフェニルイソシアナート4.1gを加え、80℃で4時間反応させた。次いで、1,4-ベンゾキノン0.59g及びメタクリル酸2-イソシアナートエチル0.29gを加え、80℃で13時間反応をさせ、続いて3,5-ジメチルフェニルイソシアナート12.3gを加え、さらに80℃で5時間反応させた。得られた反応混合液をメタノール中に滴下し、析出した不溶物を回収した。回収物をテトラヒドロフランに溶解させ、得られた溶液をメタノール中に滴下した。析出した不溶物を回収して室温で真空乾燥することにより、メタクリロイル基を有するセルロース誘導体(以下、「メタクリロイル基含有セルロース誘導体B」と称する。)を得た。
(ラジカル重合性ポリマー被覆シリカ粒子の製造)
 メタクリロイル基含有セルロース誘導体B2.0gをアセトン16mLに溶解し、塗布液を得た。この塗布液を、実施例1で得たアミノプロピル修飾シリカ粒子5.4gに均一に塗布し、その後、アセトンを留去することで、メタクリロイル基含有セルロース誘導体Bが表面上に物理的に吸着したアミノプロピル修飾シリカ粒子(以下、「メタクリロイル基含有セルロース誘導体被覆シリカ粒子B」と称する。)を得た。
(ラジカル共重合)
 窒素雰囲気下で、メタクリロイル基含有セルロース誘導体被覆シリカ粒子B3.0gにエタノール12mL及び蒸留水12mLを加え、さらに0.28mol/Lの2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩水溶液6mL及び1.47mol/Lの2,3-ジメチル-1,3-ブタジエン エタノール溶液6mLを加え、反応液を得た。この反応液を55℃で24時間撹拌し、ラジカル共重合反応を行うことで、メタクリロイル基含有セルロース誘導体Bの架橋物が担体上に固定化されたキラル固定相を得た。
<実施例4>
(ラジカル重合性ポリマーの製造)
 セルロース3.0gをピリジン124mLに分散させ、分散液を得た。この分散液に3,5-ジクロロフェニルイソシアナート5.2gを加え、80℃で4時間反応させた。次いで、1,4-ベンゾキノン0.59g及びメタクリル酸2-イソシアナートエチル0.29gを加え、80℃で13時間反応をさせ、続いて3,5-ジクロロフェニルイソシアナート15.7gを加え、さらに80℃で5時間反応させた。得られた反応混合液をメタノール中に滴下し、析出不溶物を回収した。回収物をテトラヒドロフランに再溶解させ、得られた溶液をメタノール中に滴下した。析出した不溶物を回収して室温で真空乾燥することにより、メタクリロイル基を有するセルロース誘導体(以下、「メタクリロイル基含有セルロース誘導体C」と称する。)を得た。
(ラジカル重合性ポリマー被覆シリカ粒子の製造)
 メタクリロイル基含有セルロース誘導体C3.7gを酢酸エチル30mLに溶解し、塗布液を得た。この塗布液を、実施例1で得たアミノプロピル修飾シリカ粒子10.0gに均一に塗布し、その後、酢酸エチルを留去することで、メタクリロイル基含有セルロース誘導体Cが表面上に物理的に吸着したアミノプロピル修飾シリカ粒子(以下、「メタクリロイル基含有セルロース誘導体被覆シリカ粒子C」と称する。)を得た。
(ラジカル共重合)
 窒素雰囲気下で、メタクリロイル基含有セルロース誘導体被覆シリカ粒子C3.0gにエタノール12mL及び蒸留水12mLを加え、さらに0.30mol/Lの2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩水溶液6mLと1.48mol/Lの2,3-ジメチル-1,3-ブタジエン エタノール溶液6mLを加え、反応液を得た。この反応液を55℃で24時間撹拌し、ラジカル共重合反応を行うことで、メタクリロイル基含有セルロース誘導体Cの架橋物が担体上に固定化されたキラル充填剤を得た。
<実施例5>
(シランカップリング剤の製造)
 フラスコに4-ピロリジノピリジン5.26gを加え、脱気後、窒素パージを行った。このフラスコに、窒素雰囲気下でトルエン3500mL、N-メチルアミノプロピルトリメトキシシラン138.6g、及びトリエチルアミン203mLをこの順番で加えた。その後、得られた混合物に、窒素雰囲気下でアクリル酸クロリド84.23gのトルエン溶液(175mL)を加え、60℃で1.5時間加熱させることにより、N-メチル-N-[3-(トリメトキシシリル)プロピル]2-プロペンアミドの粗生成物を得た。
(シリカ粒子の表面処理)
 N-メチル-N-[3-(トリメトキシシリル)プロピル]2-プロペンアミドの粗生成物をろ過し、ろ液をシリカゲル(平均粒径5μm)700gと混合した。なお、シリカゲルは予め80℃、8時間真空乾燥し、活性化したものである。得られた混合液を3時間加熱還流した後、室温まで冷却した。生成物を、80℃で8時間真空乾燥し、表面にアクリルアミド基が導入されたシリカ粒子(以下、「アクリルアミド修飾シリカ粒子」と称する。)を得た。
(ラジカル共重合)
 窒素雰囲気下で、アクリルアミド修飾シリカ粒子10.0gにエタノール18mL及び蒸留水18mLを加え、さらに0.15mol/Lの2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩水溶液9mLと3.0mol/Lのスチレ エタノール溶液9mLを加え、反応液を得た。この反応液を55℃で24時間撹拌し、ラジカル共重合反応を行うことで、ポリスチレンが担体上に固定化された固定相を得た。
<実施例6>
(ラジカル共重合)
 窒素雰囲気下、実施例5で得たアクリルアミド修飾シリカ粒子10.0gにエタノール18mL及び蒸留水18mLを加え、さらに0.15mol/Lの2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩水溶液9mLと3.0mol/Lの4-ビニルピリジン エタノール溶液9mLを加え、反応液を得た。この反応液を55℃で24時間撹拌し、ラジカル共重合反応を行うことで、ポリ(4-ビニルピリジン)が担体上に固定化された固定相を得た。
<比較例1>
(ラジカル重合性ポリマー被覆シリカ粒子の製造)
 実施例1で得たメタクリロイル基含有アミロース誘導体1.5gを酢酸エチル9.0mLに溶解させ、塗布液を得た。この塗布液を、実施例1で得たアミノプロピル修飾シリカ粒子6.0gに均一に塗布し、その後、酢酸エチルを留去することで、メタクリロイル基含有アミロース誘導体が表面上に物理滴に吸着したアミノプロピル修飾シリカ粒子(以下、「メタクリロイル基含有アミロース誘導体被覆シリカ粒子B」と称する。)を得た。
(ラジカル共重合)
 窒素雰囲気下、メタクリロイル基含有アミロース誘導体被覆シリカ粒子B2.5gに0.002mol/Lの2,2’-アゾビス(イソブチロニトリル) ヘキサン溶液10mL及び2,3-ジメチル-1,3-ブタジエン0.07gを加え、60℃で20時間共重合反応を行った。その後、生成物を酢酸エチル及びメタノールで洗浄し、メタクリロイル基含有アミロース誘導体Bの架橋物が担体上に固定化されたキラル固定相を得た。
<比較例2>
(ラジカル重合性ポリマーの製造)
 セルロース5.0gをピリジン126mLに分散させ、分散液を得た。この分散液に4-メチルベンゾイルクロリド7.2gを加え、80℃で4時間反応させた。次いで、反応混合液にメタクリル酸2-イソシアナートエチル0.72gを加え、80℃で13時間反応をさせ、続いて4-メチルベンゾイルクロリド20.7gを加え、さらに80℃で5時間反応させた。得られた反応混合液をメタノール中に滴下し、析出した不溶物を回収した。回収物をジクロロメタンに溶解させ、得られた溶液をメタノール中に滴下した。析出した不溶物を回収して室温で真空乾燥することにより、メタクリロイル基を有するセルロース誘導体(以下、「メタクリロイル基含有セルロース誘導体D」と称する。)を得た。
(ラジカル重合性ポリマー被覆シリカ粒子の製造)
 メタクリロイル基含有セルロース誘導体D6.0gをジクロロメタン48mLに溶解し、塗布液を得た。この塗布液を、実施例1で得たアミノプロピル修飾シリカ粒子24.0gに均一に塗布し、その後、ジクロロメタンを留去することで、メタクリロイル基含有セルロース誘導体Dが表面上に物理的に吸着したアミノプロピル修飾シリカ粒子(以下、「メタクリロイル基含有セルロース誘導体被覆シリカ粒子D」と称する。)を得た。
(ラジカル共重合)
 窒素雰囲気下、メタクリロイル基含有セルロース誘導体被覆シリカ粒子D3.0gにトルエン36mLを加え、さらに2,2’-アゾビス(イソブチロニトリル)0.45g及び2,3-ジメチル-1,3-ブタジエン0.88gを加え、反応液を得た。この反応液を80℃で4時間撹拌し、ラジカル共重合反応を行うことで、メタクリロイル基含有セルロース誘導体Dの架橋物が担体上に固定化されたキラル充填剤を得た。
<比較例3>
 窒素雰囲気下で、実施例5で得たアクリルアミド修飾シリカ粒子10.0gにN,N-ジメチルホルムアミド54mLを加え、さらに0.15mol/Lの2,2’-アゾビス(2,4-ジメチルバレロニトリル) N,N-ジメチルホルムアミド溶液9mL及び3.0mol/Lのスチレン N,N-ジメチルホルムアミド溶液9mLを加え、反応液を得た。この反応液を60℃で24時間撹拌し、ラジカル共重合反応を行うことで、ポリスチレンが担体上に固定化された固定相を得た。
<分離性能の評価I>
 実施例1~4及び比較例1、2で製造したキラル固定相を、それぞれ直径0.46cm、長さ15cmのステンレス製カラムにスラリー法により充填し、キラルカラムを得た。このキラルカラムを液体クロマトグラフィー(HPLC)装置に取り付け、下記に示すラセミ体1~4の分離試験を行い、上記式(1)~(3)に基づいて分離係数αを求めた。結果を表1に示す。
 なお、HPLCでの分離条件は、下記の通りである。
  移動相:n-ヘキサン/2-プロパノール=90/10(v/v)
  流速:1.0ml/min
  カラム温度:25℃
 検出波長:254nm(化合物1~3)
      220nm(化合物4)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、ラジカル重合性モノマーが反応液中に完全に溶解しない不均一系でのラジカル共重合反応により多糖類誘導体を担体に固定したキラル固定相(実施例1~3)は、ラジカル重合性モノマーが反応液中に溶解した反応系でのラジカル共重合反応により得られるキラル固定相(比較例1、2)と同等以上の分離性能を示すことがわかる。
 特に、実施例1、3、4で得たキラル固定相は、ラセミ体1に対して高い分離性能を示し、実施例2で得たキラル固定相は、ラセミ体2~4に対して高い分離性能を示すことが確認された。
<多糖類誘導体の固定化率の評価>
 実施例1~3及び比較例1~2のキラル固定相の製造におけるラジカル重合性官能基を有する基材(それぞれ、メタクリロイル基含有アミロース誘導体被覆シリカ粒子A、メタクリロイル基含有セルロース誘導体被覆シリカ粒子A、メタクリロイル基含有セルロース誘導体被覆シリカ粒子B、メタクリロイル基含有アミロース誘導体被覆シリカ粒子B、及びメタクリロイル基含有セルロース誘導体被覆シリカ粒子D)を、それぞれ直径0.46cm、長さ15cmのステンレス製カラムにスラリー法により充填し、キラルカラムを得た。このキラルカラムを液体クロマトグラフィー(HPLC)装置に取り付け、上記「分離性能の評価I」と同様にしてラセミ体1の分離試験を行い、k1’を求めた。
 各実施例及び比較例で得たキラル固定相のk1’を、ラジカル重合性官能基を有する基材のk1’で除し、さらに100を乗じた値を多糖類誘導体の固定化率(%)として求めた。例えば、実施例1のキラル固定相における多糖類誘導体の固定化率は、((実施例1のキラル固定相のk1’)/(メタクリロイル基含有アミロース誘導体被覆シリカ粒子Aのk1’))×100により算出される。多糖類誘導体の固定化率が100%に近いほど、多糖類誘導体が担体上に固定されている割合が大きいことを表す。算出した多糖類誘導体の固定化率を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2の結果から、ラジカル重合性モノマーが反応液中に溶解した反応系でのラジカル共重合反応により得られるキラル固定相(比較例1、2)よりも、ラジカル重合性モノマーが反応液中に完全に溶解しない不均一系でのラジカル共重合反応により多糖類誘導体を担体に固定したキラル固定相(実施例1~3)の方が、多糖類誘導体の固定化率が高いことがわかる。
<分離性能の評価II>
 実施例5、6及び比較例3で製造した固定相を直径0.46cm、長さ15cmのステンレス製カラムにスラリー法により充填し、カラムを得た。このカラムを超臨界流体クロマトグラフィー(SFC)装置に取り付け、下記に示す化合物5及び化合物6の等量混合物の分離試験を行い、上記式(1)~(3)に基づいて固定相の保持係数及び分離係数を求めた。結果を表3に示す。
 なお、SFCでの分離条件は、下記の通りである。
  移動相:CO/メタノール=97/3(v/v)
  流速:4.0ml/min
  カラム温度:40℃
  検出波長:230nm
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-T000005
 表3の結果から、ラジカル重合性モノマーが反応液中に溶解した反応系でのラジカル共重合反応により得られる固定相(比較例3)よりも、ラジカル重合性モノマーが反応液中に完全に溶解しない不均一系でのラジカル共重合反応により得られた固定相の方が、超臨界流体クロマトグラフィーにおけるk1’の値が大きいことがわかる。このことから、後者の方が、生成したポリマーの重合度が大きく、生成したポリマーがより良好に担体に固定化されていることがわかった。
 表1及び表3より、本開示に係るクロマトグラフィー用固定相の製造方法は、キラル固定相の製造だけでなく、アキラル固定相の製造にも適用できることが確認された。また、本開示に係る製造方法により製造されるクロマトグラフィー用固定相は、液体クロマトグラフィー及び超臨界流体クロマトグラフィーのいずれの固定相としても使用可能であることも確認された。

Claims (10)

  1.  ラジカル開始剤の存在下でラジカル重合性官能基を有する基材とラジカル重合性官能基を有するモノマーとをラジカル共重合させるラジカル共重合工程を含み、
     前記ラジカル共重合工程は、前記ラジカル重合性官能基を有するモノマーの相及び溶媒の相を含む不均一系で行われる、クロマトグラフィー用固定相の製造方法。
  2.  前記ラジカル重合性官能基を有する基材が、担体とラジカル重合性官能基を有するポリマーとを含む、請求項1に記載の製造方法。
  3.  前記ラジカル重合性官能基を有するポリマーが、前記担体の表面上に物理的に吸着している、請求項2に記載の製造方法。
  4.  前記溶媒が、水、又は水と水100体積部に対して10体積部以上300体積部以下の水溶性溶媒とを混合した混合溶媒である、請求項2又は3に記載の製造方法。
  5.  前記ラジカル重合性官能基を有するモノマーが、ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-メチル-1,3-ブタジエン、ジビニルベンゼン、(メタ)アクリル酸アリル、及びスチレンからなる群より選択される1種以上である、請求項4に記載の製造方法。
  6.  前記ラジカル重合性官能基を有する基材が、表面に前記ラジカル重合性官能基が導入された担体である、請求項1に記載の製造方法。
  7.  前記溶媒が、水、又は水と水100体積部に対して10体積部以上300体積部以下の水溶性溶媒とを混合した混合溶媒である、請求項6に記載の製造方法。
  8.  前記ラジカル重合性官能基を有するモノマーが、2-ビニルピリジン、3-ビニルピリジン、4-ビニルピリジン、9-ビニルカルバゾール、2-イソプロペニルピリジン、3-イソプロペニルピリジン、4-イソプロペニルピリジン、及び9-イソプロペニルカルバゾールからなる群より選択される1種以上である、請求項7に記載の製造方法。
  9.  前記溶媒が、水/1-オクタノール分配係数(logPow)が0.5以上の脂溶性溶媒である、請求項6に記載の製造方法。
  10.  前記ラジカル重合性官能基を有するモノマーが、2-((メタ)アクリロイルオキシ)エチル-2’-(トリメチルアンモニオ)エチルホスフェート、2-(N-3-スルホプロピル-N,N-ジメチルアンモニウム)エチルメタクリレート、3-(メタクリロイルアミノ)プロピルトリメチルアンモニウムクロリド、3-(メタクリロイルオキシ)プロパンスルホン酸カリウム、2-ヒドロキシエチルメタクリレート、及びアクリルアミドからなる群より選択される1種以上である、請求項9に記載の製造方法。
PCT/JP2022/036248 2021-09-29 2022-09-28 カラムクロマトグラフィー用固定相の製造方法 WO2023054507A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023551623A JPWO2023054507A1 (ja) 2021-09-29 2022-09-28
CN202280063839.2A CN117980066A (zh) 2021-09-29 2022-09-28 柱色谱用固定相的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158985 2021-09-29
JP2021-158985 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054507A1 true WO2023054507A1 (ja) 2023-04-06

Family

ID=85780748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036248 WO2023054507A1 (ja) 2021-09-29 2022-09-28 カラムクロマトグラフィー用固定相の製造方法

Country Status (3)

Country Link
JP (1) JPWO2023054507A1 (ja)
CN (1) CN117980066A (ja)
WO (1) WO2023054507A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231489A (ja) 1995-02-24 1996-09-10 Daicel Chem Ind Ltd 新規なイソシアナート、及びその誘導体、並びに分離剤
WO1997036950A1 (fr) * 1996-04-03 1997-10-09 Arakawa Chemical Industries, Ltd. Resine poreuse alkylee, son procede de production et son utilisation
JP2000351810A (ja) * 1999-06-11 2000-12-19 Mitsubishi Chemicals Corp 鋳型構造を有する架橋高分子及びそれを用いた吸着剤
JP2002148247A (ja) 2000-11-09 2002-05-22 Nagoya Industrial Science Research Inst 光学異性体用分離剤及びその製造方法
WO2003091185A1 (fr) 2002-04-25 2003-11-06 Daicel Chemical Industries, Ltd. Agent de separation pour isomere optique et procede de preparation associe
WO2017164289A1 (ja) 2016-03-23 2017-09-28 株式会社ダイセル クロマトグラフィー用の固定相
JP2021015129A (ja) 2015-03-24 2021-02-12 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231489A (ja) 1995-02-24 1996-09-10 Daicel Chem Ind Ltd 新規なイソシアナート、及びその誘導体、並びに分離剤
WO1997036950A1 (fr) * 1996-04-03 1997-10-09 Arakawa Chemical Industries, Ltd. Resine poreuse alkylee, son procede de production et son utilisation
JP2000351810A (ja) * 1999-06-11 2000-12-19 Mitsubishi Chemicals Corp 鋳型構造を有する架橋高分子及びそれを用いた吸着剤
JP2002148247A (ja) 2000-11-09 2002-05-22 Nagoya Industrial Science Research Inst 光学異性体用分離剤及びその製造方法
WO2003091185A1 (fr) 2002-04-25 2003-11-06 Daicel Chemical Industries, Ltd. Agent de separation pour isomere optique et procede de preparation associe
JP2021015129A (ja) 2015-03-24 2021-02-12 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
WO2017164289A1 (ja) 2016-03-23 2017-09-28 株式会社ダイセル クロマトグラフィー用の固定相

Also Published As

Publication number Publication date
JPWO2023054507A1 (ja) 2023-04-06
CN117980066A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US9956542B2 (en) Method for preparing molecularly imprinted polymers (MIP) through radical polymerisation
JP2005510609A5 (ja)
JP2008232764A (ja) 充填床用新規充填剤及びその用途
Yang et al. Reversible catalyst supporting via hydrogen-bonding-mediated self-assembly for atom transfer radical polymerization of MMA
EP2607392A1 (en) Fine particles for chromatography and chromatography using same
JP2017211352A (ja) 分離材及びカラム
WO2010021234A1 (ja) 有機ポリマー多孔質体、及びその製造方法
CN112638348B (zh) 使纳米凝胶稳定的方法和组合物以及由纳米凝胶产生的牙科组合物
JP5003268B2 (ja) コア−シェル微粒子、その製造方法及び固定化コロイド結晶の製造方法
WO2008102920A1 (ja) 光学異性体分離用充填剤
Kouki et al. The enhanced adsorption properties of molecular imprinted polymer material prepared using nitroxide-mediated Radical Deactivation Reversible Polymerization
WO2023054507A1 (ja) カラムクロマトグラフィー用固定相の製造方法
US11040330B2 (en) Chromatography stationary phase
JP4210813B2 (ja) 多糖類およびオリゴ糖類のビス・シラン、ビス・チオエーテル、ビス・スルホキシド、ビス・スルホンおよびブタン・ジ・イルの誘導体をベースとする架橋ポリマー、並びに担体物質としてのその成形
JP2007170907A (ja) アルコキシアルキルアクリレートがグラフト重合した充填剤
JP7368561B2 (ja) クロマトグラフィー用の固定相
WO2019110318A1 (en) Porous materials, method for producing same and uses thereof
KR101013252B1 (ko) 크로마토그래피용 분리제 및 그의 제조 방법
KR20060052566A (ko) 고분자 입자 및 그 제조방법
JP7359897B2 (ja) 光学異性体用分離剤及び光学異性体用分離剤の製造方法
JP3259532B2 (ja) 分離剤及びその製造方法
US6255385B1 (en) Polyhydroxy polymers substituted with styryl ether groups and gels and surfaces prepared from them
KR100480336B1 (ko) 완전 상호침투 가교 (Full-IPN) 구조를 갖는단분산성 고분자 입자 및 그의 제조방법
ES2311125T3 (es) Copolimeros que comprenden insaturacion y procedimiento para su preparacion.
JPS6090040A (ja) 合成吸着剤及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551623

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280063839.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022876373

Country of ref document: EP

Effective date: 20240429