WO2023054052A1 - 接合部材の解体方法及び接合部材並びに易解体性の液状シリコーン系接着剤 - Google Patents

接合部材の解体方法及び接合部材並びに易解体性の液状シリコーン系接着剤 Download PDF

Info

Publication number
WO2023054052A1
WO2023054052A1 PCT/JP2022/034941 JP2022034941W WO2023054052A1 WO 2023054052 A1 WO2023054052 A1 WO 2023054052A1 JP 2022034941 W JP2022034941 W JP 2022034941W WO 2023054052 A1 WO2023054052 A1 WO 2023054052A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
dismantling
parts
groups
Prior art date
Application number
PCT/JP2022/034941
Other languages
English (en)
French (fr)
Inventor
宜良 亀田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020247013952A priority Critical patent/KR20240065309A/ko
Priority to JP2023551339A priority patent/JPWO2023054052A1/ja
Priority to CN202280064243.4A priority patent/CN117980432A/zh
Priority to EP22875922.1A priority patent/EP4410921A1/en
Publication of WO2023054052A1 publication Critical patent/WO2023054052A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/354Applications of adhesives in processes or use of adhesives in the form of films or foils for automotive applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane

Definitions

  • the present invention relates to the dismantling of joining members using a curable liquid silicone adhesive that enables the collection, repair, and recycling of automobile parts such as automobile electrical parts and electric/electronic products to be easily carried out in a short period of time.
  • the present invention relates to a method, a joining member used in the method, and an easily dismantling liquid silicone adhesive.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-026784
  • Patent Document 1 describes joining members using a polyol-based curable composition at 150 to 200 It has been proposed to soften or liquefy the material by heating it to 10° C. and dismantle the members joined by the cured material. Further, in Japanese Patent Application Laid-Open No.
  • Patent Document 2 by bringing a halogen-based organic solvent into contact with a bonding portion of an adhesive structure using a moisture-curable adhesive containing a urethane prepolymer as a main component, , it has been proposed to detach the constituent members of the adhesive structure from the adhesive portion after reducing the adhesive strength of the adhesive portion. Furthermore, in Japanese Patent Laid-Open No. 2008-120903 (Patent Document 3), an adhesive made of a vinyl-based monomer mixture containing alkyl (meth)acrylate as a main component is used, and a high normal state adhesive strength is maintained during bonding.
  • Patent Document 4 proposes that rework is possible by incorporating a tackifier resin into an oxyalkylene polymer, rebonding is possible after rework, and sealing performance can be maintained. ing.
  • silicone-based adhesives and sealants are widely used in the fields of automobiles, electrical and electronics, construction, etc., because they have better properties such as heat resistance and weather resistance than the above organic adhesives.
  • silicone-based adhesives and sealants are difficult to decompose even when heated, there is a problem that it is difficult to repair or recycle them.
  • a masking-type silicone adhesive has been proposed as a silicone adhesive that facilitates the dismantling of members and can exhibit sealing properties.
  • Masking-type silicone adhesives containing no tackifier include silicone adhesives to which a release agent is added to impart releasability to glass and metal.
  • the detachability imparting agent itself is thermally decomposed and loses its effectiveness when subjected to high-temperature durability exceeding 200° C., and the member and the silicone-based adhesive are adhered by heat, making it difficult to dismantle. Difficult to collect and repair.
  • JP 2003-026784 A JP-A-2002-327163 Japanese Patent Application Laid-Open No. 2008-120903 Japanese Patent No. 6221630 Japanese Patent Application No. 2021-090750
  • the present invention has been made in view of the above circumstances, and the bonded adhesive member is a silicone-based adhesive, and is exposed to a high temperature of about 150°C at room temperature (23°C ⁇ 15°C, the same applies hereinafter).
  • a method for dismantling the joining member, and an easily dismantling liquid silicone adhesive used for the joining member intended to provide a joining member that can be easily recycled in a short time and with little energy consumption while exhibiting sealing performance afterward.
  • Patent Document 5 Japanese Patent Application No. 2021-090750
  • adding aluminum hydroxide that decomposes at around 160 ° C. to a curable liquid silicone adhesive in a specific proportion.
  • the bonded adhesive members exhibit sealing properties even after being exposed to room temperature and further to a high temperature of about 150 ° C., and the sealing properties are reduced by exposing to a high temperature of 160 ° C. or higher.
  • this method uses a heating furnace and heats for several hours, which consumes a large amount of energy.
  • the present inventors have made intensive studies on joint members that consume less energy and can be recycled in a short time and their dismantling methods.
  • a specific content of particles that generate heat by microwaves is added to the curable liquid silicone adhesive used as the bonding member for the bonding member, and furthermore, a hydroxide compound (especially A bonding member (particularly made of organic resin and/or metal, etc.) bonded with a cured product obtained by curing the curable liquid silicone adhesive by blending a metal hydroxide or a hydroxide of a metal oxide.
  • a joint member in which a plurality of (particularly two) members are joined to each other) is exposed to room temperature and a high temperature of about 150 ° C.
  • the present invention provides the following method for dismantling a joint member, the joint member, and an easily dismantleable liquid silicone adhesive.
  • a curable liquid silicone adhesive containing particles that generate heat by microwaves and a hydroxide compound having a decomposition temperature of 180 to 600° C., and the content of the particles that generate heat by microwaves is 0.5 to 50% by mass.
  • a bonding comprising a step of dismantling the bonding member by irradiating the cured product with microwaves to separate the plurality of members from each other and dismantle the bonding member, in which a plurality of members are bonded with a cured product obtained by curing the How to dismantle parts.
  • the cured product of the curable liquid silicone adhesive is adhered by microwave irradiation while exhibiting adhesiveness and/or sealability from room temperature to a high temperature of about 150°C.
  • a joining member that easily separates and joins a plurality of members, especially a plurality of (especially two) members made of organic resin and/or metal, etc., in a short time and with little energy consumption by reducing the strength and/or the sealing property. can be dismantled, the members can be easily recycled.
  • the curable liquid silicone-based adhesive used as an adhesive member for the joining member is useful as an adhesive or sealing material for joints that require heat resistance and need to be recycled.
  • the "heat-resistant temperature" of a member to be dismantled means the upper limit of the temperature at which the member does not thermally decompose or soften when the member is left at a specific temperature for 1 minute.
  • the method for dismantling a joint member of the present invention contains particles that generate heat by microwaves and a hydroxide compound having a decomposition temperature of 180 to 600° C., and the content of the particles that generate heat by microwaves is 0.5 to 50 masses. %, by irradiating the cured product with microwaves, the plurality of members, especially those made of organic resin and/or a step of separating members made of metal or the like from each other to dismantle the joining members.
  • the curable liquid silicone adhesive used in the present invention cures to become an adhesive member that joins a plurality of members, especially members made of organic resin and/or metal, etc., and generates heat by microwaves.
  • the content of the particles (A) containing particles (A) and a hydroxide compound (B) having a decomposition temperature of 180 to 600 ° C. and generating heat by the microwave is 0.5 to 50% by mass
  • the main chain is an adhesive using a polymer composed of siloxane bonds as a base polymer
  • the curing type is preferably a condensation curing type or an addition reaction curing type.
  • the particles (A) that generate heat by microwaves used in the present invention are the hydroxide compounds (especially metal hydroxides) blended in the curable liquid silicone adhesive as the particles generate heat when irradiated with microwaves. Hydroxides of substances or metal oxides) are decomposed, and water is generated with the decomposition of the hydroxide compounds, causing the adhesive to foam and the adhesive strength to decrease, so that it can be easily applied in a short time and with little energy consumption.
  • the joining member can be dismantled.
  • the present particles are particles that have the property of generating heat by microwaves in order to be dismantled. Particles with such properties are all preferable, but particles with a large dielectric constant have a high absorption rate of microwaves. It is more preferable because it is high and generates heat efficiently in a short time.
  • the dielectric constant is preferably 3 to 1,000, more preferably 5 to 800 at 3 GHz.
  • Particles that generate heat by microwaves are inorganic substances such as carbon such as acetylene black, furnace black, channel black, thermal black, Ketjen black, iron (II) oxide, iron (III) oxide, triiron tetraoxide and the like.
  • Iron titanium oxide compounds such as titanium oxide (TiO), titanium dioxide (TiO 2 ), dititanium trioxide (Ti 2 O 3 ), ferrites such as spinel ferrite, magnetoplumbite ferrite, garnet ferrite, and silicon carbide At least one selected from the group is preferred, and among these, acetylene black, titanium dioxide, and silicon carbide are more preferred.
  • the particles that generate heat by microwaves particles having an average particle diameter of preferably 0.05 to 100 ⁇ m, more preferably 0.1 to 80 ⁇ m are used. If the average particle size is less than 0.05 ⁇ m, the viscosity of the composition increases, so high filling may not be possible and sufficient heat generation effect may not be obtained. sexuality may be compromised.
  • the average particle size can be obtained as a cumulative weight average value D50 (or median size) using a particle size distribution measuring device such as a laser beam diffraction method.
  • the surface of the particles that generate heat by microwaves may be untreated or surface-treated (hydrophobic treatment).
  • treating agents include alumina, silica, stearic acid, silane coupling agents, silicone compounds, and the like.
  • Surface treatment can be performed by a known method.
  • the treatment amount is not particularly limited, but it is preferably 10% by mass or less (usually 0.1 to 8% by mass), particularly 0.5 to 6% by mass.
  • the particles that generate heat by microwaves can be used singly or in combination of two or more.
  • the content of particles that generate heat by microwaves is 0.5 to 50% by mass, preferably 1 to 40% by mass, more preferably 3 to 30% by mass, and even more preferably 3 to 30% by mass, based on the total curable liquid silicone adhesive. 5 to 20% by mass. If the amount is less than 0.5% by mass, sufficient heat generation cannot be obtained, and if the amount exceeds 50% by mass, the viscosity of the composition increases and the ejection properties during mixing and application deteriorate.
  • the hydroxide compound (B) having a decomposition temperature of 180 to 600° C. is usually preferably a metal hydroxide or a metal oxide hydroxide, and aluminum hydroxide having a decomposition temperature of around 180° C.
  • a metal hydroxide or a metal oxide hydroxide and aluminum hydroxide having a decomposition temperature of around 180° C.
  • Magnesium hydroxide having a temperature of around 300°C and aluminum hydroxide oxide (boehmite) having a decomposition temperature of around 500°C can be mentioned.
  • the decomposition begins to decompose when heated, and the decomposition generates water, which has an anti-inflammatory effect and is conventionally used as a flame-retardant material.
  • the water generated by this decomposition is used to reduce the adhesive strength due to air bubbles generated in the cured product of the curable liquid silicone adhesive, thereby facilitating the dismantling of the joining member in a short time. can do.
  • the hydroxide compound having a decomposition temperature of 180 to 600°C particles having an average particle size of 50 ⁇ m or less, preferably 0.5 to 20 ⁇ m are used. If the average particle size is more than 50 ⁇ m, the degradability will be lowered.
  • the average particle size can be obtained as a cumulative weight average value D50 (or median size) using a particle size distribution measuring device such as a laser beam diffraction method.
  • the surface of the hydroxide compound may be untreated or surface-treated (hydrophobic treatment).
  • treating agents are generally used, and include silane coupling agents and fatty acids.
  • Surface treatment can be performed by a known method.
  • the treatment amount is not particularly limited, but it is preferably 3% by mass or less (usually 0.1 to 3% by mass), particularly 0.2 to 2% by mass.
  • hydroxide compound may be used alone, two or more types having different average particle sizes and surface treatment methods may be used in combination.
  • the content of the hydroxide compound is 35 to 65% by mass, preferably 40 to 60% by mass, more preferably 45 to 55% by mass, based on the total curable liquid silicone adhesive.
  • the amount is less than 35% by mass, the decomposition (foaming) of the hydroxide compound is insufficient and the adhesive strength of the adhesive member does not decrease, and when the amount exceeds 65% by mass, the viscosity of the composition increases, and mixing and application are difficult. Dischargeability deteriorates at times.
  • the total content of the particles (A) that generate heat by microwaves and the hydroxide compound (B) in the curable liquid silicone adhesive is preferably 36 to 85% by mass, more preferably 40 to 75% by mass, and 45% by mass.
  • the mass ratio of the particles (A) that generate heat by microwaves and the hydroxide compound (B) is preferably 1:0.8 to 1:50, more preferably 1:1 to 1:30, and 1:2 to 1:20 is more preferred.
  • Condensation-curable liquid silicone-based adhesives include (C) hydroxyl groups bonded to silicon atoms and (C) hydroxyl groups bonded to silicon atoms and / Or a linear diorganopolysiloxane (base polymer) having both ends of the molecular chain blocked with hydrolyzable silyl groups, (D) Hydrolysis having 3 or more hydrolyzable groups bonded to silicon atoms in the molecule Moisture (humidity) in the atmosphere at room temperature, including a reactive organosilane compound and / or a partial hydrolysis condensate thereof (crosslinking agent), (E) a curing catalyst, and (F) a silane coupling agent (adhesion imparting agent) It is a liquid silicone adhesive that obtains a cured product using the hydrolysis and condensation reaction of .
  • Organopolysiloxane as the base polymer (main agent) is a linear diorganopolysiloxane blocked with hydroxyl groups (silanol groups) and/or hydrolyzable silyl groups bonded to silicon atoms at both ends of the molecular chain.
  • the hydrolyzable silyl group is preferably an alkoxysilyl group or an alkoxy-substituted alkoxysilyl group.
  • silicon-bonded hydroxyl group silanol group
  • the hydrolyzable silyl group has an alkoxysilyl group or an alkoxy-substituted alkoxysilyl group at the terminal, an alkoxy group bonded to a silicon atom (that is, an alkoxysilyl group) or an alkoxy group bonded to a silicon atom is added to both ends of the molecular chain.
  • alkoxyalkoxysilyl groups that is, dialkoxyorganosilyl groups or bis(alkoxyalkoxy)organosilyl groups, trialkoxysilyl groups or tris(alkoxyalkoxy)silyl existing as a base.
  • the alkoxy group preferably has 1 to 10 carbon atoms, particularly preferably 1 to 4 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, and tert-butoxy. , a hexyloxy group, an octyloxy group, and the like.
  • the alkoxy-substituted alkoxy group is preferably an alkoxy-substituted alkoxy group having 2 to 10 carbon atoms, particularly preferably 2 to 4 carbon atoms, such as methoxyethoxy group, ethoxyethoxy group, methoxypropoxy group and the like.
  • hydroxyl groups are particularly present at both ends of the diorganopolysiloxane, preferably only at both ends. (silanol group), methoxy group or ethoxy group is preferred.
  • Examples of silicon-bonded organic groups other than hydroxyl groups and hydrolyzable groups include unsubstituted or substituted monovalent hydrocarbon groups having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms.
  • Examples of the monovalent hydrocarbon group include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, heptyl group, octyl group and 2-ethylhexyl group.
  • cycloalkyl group such as cyclopentyl group and cyclohexyl group
  • alkenyl group such as vinyl group and allyl group
  • aryl group such as phenyl group, tolyl group and naphthyl group
  • aralkyl group such as benzyl group, phenylethyl group and phenylpropyl group ; those in which some or all of the hydrogen atoms bonded to the carbon atoms of these groups are substituted with halogen atoms such as fluorine, bromine, chlorine, or cyano groups, for example, halogenated groups such as trifluoropropyl group and chloropropyl group valent hydrocarbon group
  • cyanoalkyl groups such as ⁇ -cyanoethyl group and ⁇ -cyanopropyl group are exemplified. Among them, a methyl group is preferred.
  • the viscosity of the organopolysiloxane as the base polymer (main agent) at 23°C is preferably 50 to 1,000,000 mPa ⁇ s, more preferably 100 to 300,000 mPa ⁇ s. If the viscosity is less than the above lower limit, the cured product may not have sufficient mechanical properties, and if it exceeds the above upper limit, workability may be reduced. In the present invention, viscosity is a value at 23° C. measured by a rotational viscometer (eg, BL type, BH type, BS type, cone plate type, rheometer, etc.) (same below).
  • a rotational viscometer eg, BL type, BH type, BS type, cone plate type, rheometer, etc.
  • the organopolysiloxane as the base polymer (main agent) may be used singly or in combination of two or more.
  • the hydrolyzable organosilane compound and/or its partial hydrolysis condensate as a cross-linking agent is a hydrolyzable organosilane compound having three or more silicon-bonded hydrolyzable groups in the molecule. It is a silane compound and/or a partial hydrolysis condensate thereof (that is, a siloxane compound such as a siloxane oligomer having 3 or more residual hydrolyzable groups in the molecule).
  • the hydrolyzable organosilane compound is a straight chain in which three or more hydrolyzable groups present in the molecule are blocked at both ends with hydroxyl groups and/or hydrolyzable silyl groups bonded to the silicon atoms of the base polymer. It acts as a cross-linking agent (curing agent) that forms a cross-linked structure through a hydrolysis/condensation reaction with diorganopolysiloxane.
  • the hydrolyzable group possessed by the hydrolyzable organosilane compound includes an alkoxy group, an alkoxy-substituted alkoxy group, an acyloxy group, an alkenoxy group, a ketoxime group, an aminoxy group, and an amide group having 1 to 10 carbon atoms.
  • alkoxy groups such as methoxy, ethoxy and propoxy groups
  • alkoxy-substituted alkoxy groups such as methoxyethoxy, ethoxyethoxy and methoxypropoxy
  • acyloxy groups such as acetoxy and octanoyloxy
  • vinyloxy and isopropenoxy isopropenoxy.
  • alkenoxy groups such as 1-ethyl-2-methylvinyloxy group
  • ketoxime groups such as dimethylketoxime group, methylethylketoxime group and methylisobutylketoxime group
  • aminoxy groups such as dimethylaminoxy group and diethylaminoxy group
  • N- Examples include amide groups such as methylacetamide group and N-ethylacetamide group.
  • the hydrolyzable organosilane compound may have an organic group bonded to a silicon atom other than the above hydrolyzable groups.
  • Silicon-bonded organic groups other than such hydrolyzable groups include unsubstituted or substituted monovalent hydrocarbon groups having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms. .
  • alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, octadecyl group, etc.
  • the unsubstituted or substituted monovalent hydrocarbon group is preferably a methyl group, an ethyl group, a propyl group, a vinyl group, or a phenyl group.
  • hydrolyzable organosilane compounds and partial hydrolysis condensates thereof include methyltrimethoxysilane, ethyltrimethoxysilane, decyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, Alkoxysilanes such as ethoxysilane, vinyltriethoxysilane, phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane; methyltris(dimethylketoxime)silane, methyltris(methylethylketoxime)silane, ethyltris(methylethylketoxime)silane, methyltris(methyl Ketooxime silanes such as isobutylketoxime)silane, vinyltris(methylethylketoxi
  • the hydrolyzable organosilane compound used as a cross-linking agent does not have a monovalent hydrocarbon group substituted with a functional group having a heteroatom such as a nitrogen atom, an oxygen atom, or a sulfur atom in its molecule. In this point, it is clearly distinguished from (F) a silane coupling agent as an adhesiveness-imparting agent, which will be described later.
  • the hydrolyzable organosilane compound and/or its partial hydrolysis condensate may be used singly or in combination of two or more.
  • the amount of the hydrolyzable organosilane compound and/or its partial hydrolyzed condensate as a cross-linking agent (curing agent) is such that both ends of the molecular chain are blocked with hydroxyl groups and/or hydrolyzable silyl groups bonded to silicon atoms. It is 0.1 to 40 parts by mass, preferably 1 to 20 parts by mass, per 100 parts by mass of linear diorganopolysiloxane. If the amount of the hydrolyzable organosilane compound and/or its partial hydrolyzed condensate is less than the above lower limit (0.1 part by mass), there is a risk of deterioration in curability and storage stability. On the other hand, when the above upper limit (40 parts by mass) is exceeded, not only is it disadvantageous in terms of cost, but also the elongation of the cured product may be lowered, and the durability may be lowered.
  • condensation catalysts that have been commonly used as curing accelerators for condensation-curable liquid silicone adhesives (room-temperature-curing organopolysiloxane compositions) can be used.
  • the amount of the curing catalyst is 0.001 to 20 parts by weight per 100 parts by weight of the linear diorganopolysiloxane having both molecular chain ends blocked with silicon-bonded hydroxyl groups and/or hydrolyzable silyl groups. , preferably 0.005 to 5 parts by mass, more preferably 0.01 to 2 parts by mass. If the amount of the curing catalyst is less than the above lower limit (0.001 parts by mass), the catalytic effect may not be obtained, and if the amount of the curing catalyst exceeds the above upper limit (20 parts by mass) In addition to being disadvantageous in terms of price, the durability of the composition may be lowered, or the adhesiveness may be lowered.
  • the condensation-curing liquid silicone adhesive further contains, as component (F), a silane coupling agent (a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, etc.) that improves adhesive strength and acts as an adhesion imparting component.
  • a silane coupling agent a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, etc.
  • a silane coupling agent known in the technical field is preferably used as the adhesion-imparting component.
  • those having an alkoxy group or an alkenoxy group are preferable as the hydrolyzable group.
  • alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, a vinyloxy group, an isopropenoxy group, and 1-ethyl-2-methyl Examples include alkenoxy groups such as vinyloxy groups.
  • the monovalent hydrocarbon group substituted with a functional group having a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom includes an unsubstituted or substituted amino group, an unsubstituted or substituted Those having a monovalent hydrocarbon group of 1 to 20 carbon atoms having at least one imino group, mercapto group, epoxy group, (meth)acryloxy group, etc.
  • ⁇ -acryloxypropyl group ⁇ -methacryloxypropyl group, ⁇ -(3,4-epoxycyclohexyl)ethyl group, ⁇ -glycidoxypropyl group, N- ⁇ (aminoethyl) ⁇ -aminopropyl group, ⁇ -aminopropyl group, the following formula and a ⁇ -mercaptopropyl group.
  • the silane coupling agent may have an organic group bonded to a silicon atom other than the monovalent hydrocarbon group substituted with the above hydrolyzable group and functional group.
  • a monovalent hydrocarbon group having 1 to 10 carbon atoms is preferable.
  • alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, heptyl group, octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; vinyl group, alkenyl groups such as allyl group; aryl groups such as phenyl group, tolyl group and xylyl group; aralkyl groups such as benzyl group and phenethyl group; Among them, a methyl group and an ethyl group are preferable.
  • silane coupling agents include ⁇ -acryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and ⁇ -glycidoxypropyl.
  • Use of an amino group-containing silane coupling agent is particularly preferred.
  • the silane coupling agents may be used singly or in combination of two or more.
  • the amount of the silane coupling agent (F) to be blended is based on 100 parts by mass of a linear diorganopolysiloxane having both ends of the molecular chain blocked with hydroxyl groups and/or hydrolyzable silyl groups bonded to silicon atoms. 0.05 to 20 parts by weight, preferably 0.1 to 15 parts by weight, particularly preferably 0.5 to 10 parts by weight. If it is less than 0.05 parts by mass, sufficient adhesiveness cannot be obtained, and if it exceeds 20 parts by mass, the weather resistance and mechanical properties will be poor.
  • the condensation-curing liquid silicone adhesive can contain optional components within a range that does not impair the purpose of the present invention.
  • the optional components include inorganic fillers other than components (A) and (B), pigments, dyes, coloring agents such as fluorescent brightening agents; antibacterial agents; antifungal agents; silicone oil (non-functional organopolysiloxane). and other plasticizers.
  • inorganic fillers other than the optional components (A) and (B) include dry silica (fumed silica, etc.), wet silica (precipitated silica, etc.), fine quartz powder, diatomaceous Soil powder, particulate alumina, magnesia powder, and fine powder inorganic fillers obtained by surface-treating these with silanes, silazanes, low-polymerization polysiloxanes, etc. (excluding components (A) and (B)) ) can be exemplified.
  • the blending amount is 0 per 100 parts by mass of linear diorganopolysiloxane having both ends of the molecular chain blocked with hydroxyl groups and/or hydrolyzable silyl groups bonded to silicon atoms. .1 to 800 parts by mass, more preferably 0.5 to 600 parts by mass.
  • the condensation-curing liquid silicone adhesive is prepared by uniformly mixing the above-described components using a known mixer in a state where moisture is blocked (in a dry atmosphere or under reduced pressure) according to a conventional method. be able to.
  • the resulting condensation-curable liquid silicone adhesive is cured, for example, by leaving it at room temperature (23°C ⁇ 15°C).
  • room temperature 23°C ⁇ 15°C
  • Known methods and conditions according to the type can be adopted, for example, leaving it in the atmosphere for several hours to several days (e.g., 6 hours to 7 days) under the conditions of 23 ° C./50% RH. It can be cured by
  • the addition reaction curing type liquid silicone adhesive contains (G) a silicon-bonded vinyl Linear diorganopolysiloxane (base polymer) whose molecular chain ends are blocked with silyl groups having alkenyl groups such as groups, (H) at least two silicon-bonded hydrogen atoms (SiH groups) in the molecule and (I) a platinum group metal catalyst (hydrosilylation addition reaction catalyst), which is crosslinked by the addition reaction (hydrosilylation reaction) of the SiH group to the vinyl group to obtain a cured product.
  • Liquid silicone adhesive is a silicon-bonded vinyl Linear diorganopolysiloxane (base polymer) whose molecular chain ends are blocked with silyl groups having alkenyl groups such as groups, (H) at least two silicon-bonded hydrogen atoms (SiH groups) in the molecule and (I) a platinum group metal catalyst (hydrosilylation addition reaction catalyst), which is crosslinked by the addition reaction (hydrosilylation reaction) of the SiH
  • the alkenyl group-containing organopolysiloxane as the base polymer (main ingredient) is capped with a silyl group having an alkenyl group such as a vinyl group bonded to a silicon atom at the molecular chain ends (one or both ends of the molecular chain).
  • alkenyl group examples include, for example, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group and the like.
  • a lower alkenyl group having about 4 groups and the like can be mentioned.
  • the alkenyl group-containing organopolysiloxane as the base polymer (main agent) has alkenyl groups in the side chains of the molecular chain, provided that it has alkenyl groups bonded to silicon atoms at one or both ends of the molecular chain. may be
  • the silicon-bonded organic group other than the silicon-bonded alkenyl group is not particularly limited as long as it does not have an aliphatic unsaturated bond.
  • Examples include 1 to 12, preferably 1 to 10, monovalent hydrocarbon groups excluding aliphatic unsaturated bonds.
  • Examples of the unsubstituted or substituted monovalent hydrocarbon group include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and heptyl group; cycloalkyl groups such as cyclohexyl group; aryl groups such as groups, tolyl groups, xylyl groups, and naphthyl groups; aralkyl groups such as benzyl groups and phenethyl groups; Examples thereof include substituted halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, and 3,3,3-trifluoropropyl group, preferably alkyl groups and aryl groups, and more preferably methyl groups. , is a phenyl group.
  • alkenyl group-containing organopolysiloxane examples include dimethylpolysiloxane blocked at both ends with dimethylvinylsiloxy groups, dimethylsiloxane/methylvinylsiloxane copolymer blocked at both ends with dimethylvinylsiloxy groups, and dimethylsiloxane/diphenyl at both ends blocked with dimethylvinylsiloxy groups.
  • Siloxane copolymer both ends dimethylvinylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane/diphenylsiloxane copolymer, both ends dimethylvinylsiloxy group-blocked methyltrifluoropropylpolysiloxane, both ends dimethylvinylsiloxy group-blocked dimethylsiloxane/methyl Trifluoropropylsiloxane copolymer, both ends dimethylvinylsiloxy group-blocked dimethylsiloxane/methyltrifluoropropylsiloxane/methylvinylsiloxane copolymer, both ends methyldivinylsiloxy group-blocked dimethylpolysiloxane, both ends methyldivinylsiloxy group-blocked dimethyl Siloxane/methylvinylsiloxane copolymer, dimethylsiloxane/diphenylsiloxane cop
  • the viscosity of the alkenyl group-containing organopolysiloxane as the base polymer (main agent) at 23°C is preferably 100 to 500,000 mPa ⁇ s, more preferably 700 to 100,000 mPa ⁇ s.
  • the alkenyl group-containing organopolysiloxane as the base polymer (main agent) may be used alone or in combination of two or more.
  • the organohydrogenpolysiloxane as a cross-linking agent has an average of at least 2, preferably at least 3, more preferably an upper limit of 500, still more preferably an upper limit of 200, Particularly preferred are those having up to 100 silicon-bonded hydrogen atoms (SiH groups) and preferably having no aliphatic unsaturated bonds in the molecule.
  • the silicon-bonded organic group other than the silicon-bonded hydrogen atom is not particularly limited, but is, for example, an unsubstituted or substituted group having usually 1 to 10 carbon atoms, preferably 1 to 6 monovalent hydrocarbon groups, and the like.
  • Specific examples thereof include the same silicon-bonded organic groups other than the silicon-bonded alkenyl groups exemplified in the description of the alkenyl-containing organopolysiloxane, and alkenyl groups such as vinyl groups and allyl groups.
  • an unsubstituted monovalent hydrocarbon group having no aliphatic unsaturated bond such as an alkyl group or an aryl group, more preferably a methyl group, a phenyl group or the like.
  • the number of silicon atoms in the molecule is 2 to 300, particularly 3 to 150, especially 4 to 100, and liquid at room temperature is preferably used.
  • the hydrogen atoms bonded to the silicon atoms may be located either at the molecular chain terminal, in the middle (non-terminal) of the molecular chain, or at both.
  • the molecular structure of the organohydrogenpolysiloxane may be linear, cyclic, branched, or three-dimensional network.
  • the degree of polymerization (or the repeating number of diorganosiloxane units constituting the main chain, which is a measure of the number of silicon atoms in the molecule) is analyzed by gel permeation chromatography (GPC) using, for example, toluene as a developing solvent. It can be obtained as a polystyrene-equivalent number-average polymerization degree (or number-average molecular weight) or the like.
  • organohydrogenpolysiloxanes examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris(hydrogendimethylsiloxy)methylsilane, tris(hydrogen dimethylsiloxy)phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane/dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends trimethylsiloxy group-blocked dimethylsiloxane/methylhydrogensiloxane Copolymer, dimethylpolysiloxane blocked at both ends by dimethylhydrogensiloxy groups, dimethylsiloxane/methylhydrogensiloxane copolymer blocked at both ends by dimethylhydrogensiloxy groups, copolymer of methylhydrogensiloxane/diphenyl
  • the organohydrogenpolysiloxane may be used singly or in combination of two or more.
  • the amount of organohydrogenpolysiloxane to be added is 0.01 to 3 mol, preferably 0, of silicon-bonded hydrogen atoms (SiH groups) per 1 mol of silicon-bonded alkenyl groups in the alkenyl-containing organopolysiloxane. 0.05 to 2.5 mol, more preferably 0.2 to 2 mol.
  • the platinum group metal catalyst (hydrosilylation addition reaction catalyst) promotes the addition reaction between the silicon-bonded alkenyl groups in the alkenyl-containing organopolysiloxane and the silicon-bonded hydrogen atoms in the organohydrogenpolysiloxane. It is used as a catalyst for A known platinum group metal catalyst can be used. Specific examples thereof include platinum black, chloroplatinic acid, alcohol-modified products of chloroplatinic acid, and platinum-based catalysts such as complexes of chloroplatinic acid with olefins, aldehydes, vinylsiloxanes, acetylene alcohols, and the like.
  • the amount of the platinum group metal catalyst may be an effective amount, and can be appropriately increased or decreased depending on the desired curing rate. In terms of mass, it is usually in the range of 0.1 to 1,000 ppm, preferably 1 to 300 ppm. If the blending amount is too large, the heat resistance of the resulting cured product may be lowered.
  • the addition reaction curing type liquid silicone adhesive further improves the adhesive strength and has an action as an adhesion-imparting component (J) a silane coupling agent (a functional group having a heteroatom such as an oxygen atom or a sulfur atom). It is preferable to add a hydrolyzable silane compound having a monovalent hydrocarbon group substituted with in the molecule, a so-called carbon functional silane compound.
  • a silane coupling agent known in the technical field is preferably used as the adhesion-imparting component. Specifically, the same silane coupling agents as exemplified for the component (F) described above can be exemplified.
  • the blending amount is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, based on 100 parts by mass of the alkenyl group-containing organopolysiloxane (base polymer). parts, particularly preferably 0.5 to 10 parts by mass. If it is less than 0.05 parts by mass, sufficient adhesion may not be obtained, and if it exceeds 20 parts by mass, the weather resistance and mechanical properties may be poor.
  • optional components can be added to the addition reaction curing type liquid silicone adhesive within a range that does not impair the purpose of the present invention.
  • the optional components include, for example, reaction inhibitors, and inorganic fillers similar to those exemplified in the condensation-curable liquid silicone-based adhesive described above (however, component (A), particles that generate heat when exposed to microwaves, and (B), Hydroxy compounds whose component decomposition temperature is 180 to 600 ° C), organopolysiloxanes that do not contain silicon-bonded hydrogen atoms (SiH groups) and silicon-bonded alkenyl groups (so-called non-functional silicone oils), heat-resistant additives agents, flame retardants, thixotropic agents, pigments, dyes, and the like.
  • the addition reaction-curing liquid silicone adhesive can be prepared by uniformly mixing the above components using a known mixer according to a conventional method.
  • the curing conditions for the addition reaction curing type liquid silicone adhesive are 23 to 150° C., particularly 23 to 100° C., and 10 minutes to 8 hours, particularly 30 minutes to 5 hours.
  • the joining member is a cured product obtained by curing a curable liquid silicone adhesive containing particles that generate heat by microwaves and a hydroxide compound having a decomposition temperature of 180 to 600°C.
  • the members are preferably the same or different members selected from resin members and metal members, and more preferably at least one (one) of the plurality of joined members is an organic resin member.
  • Such a combination of members includes, for example, a combination of the same or different organic resin members, a combination of a metal member and an organic resin member, and the like.
  • organic resins that make up the organic resin member include PBT (polybutylene terephthalate resin), PPS (polyphenylene sulfide resin), polyamide resins such as PA66 (nylon 66) and PA6 (nylon 6), and PC (polycarbonate resin).
  • Examples of metals forming the metal member include aluminum, iron, SUS, and copper. It is desirable that the above organic resin or metal constituting the organic resin member or the metal member has a heat resistance temperature of 160° C. or higher.
  • a curable liquid silicone adhesive containing particles that generate heat by microwaves and a hydroxide compound with a decomposition temperature of 180 to 600° C. is applied manually or mechanically onto the surface of a member made of organic resin or metal on one side. It is applied to the shape of a joint (for example, a gasket), and the other member made of organic resin or metal is pasted and joined, and then cured. Then fix with bolts, etc., if necessary.
  • the curable liquid silicone adhesive of the present invention is a condensation-curable liquid silicone adhesive, it cures at room temperature by moisture in the air. . Humidification is effective in accelerating hardening.
  • the curable liquid silicone adhesive of the present invention is an addition reaction curable liquid silicone adhesive, it cures by the addition reaction at a temperature of 23 to 150° C. Therefore, after combining a plurality of members, it can be left alone or heated. Hardening proceeds.
  • Examples of the bonding member include automobile parts such as engines, transmissions, ECUs and PCUs, and electric/electronic parts such as smartphones, tablets, liquid crystals, and batteries. preferable.
  • the joining member maintains the joining state of the member at a usage environment temperature of 150°C or less, preferably room temperature to 120°C.
  • the joining member is preferably an easily dismantled joining member that is joined with a certain degree of adhesive strength during normal use, and whose adhesive strength is reduced to the extent that the members can be separated after heating.
  • the initial shear adhesive strength of the bonding member is preferably 1.2 MPa or more, particularly 1.5 MPa or more, and the shear adhesive strength of the bonding member after microwave irradiation is 1 MPa or less. preferable.
  • This shear adhesive strength is a value measured according to the method specified in JIS K6850.
  • the composition of the curable liquid silicone adhesive can be adjusted to the specific range described above.
  • a cured product obtained by curing a curable liquid silicone adhesive, which is an adhesive member of the joining member, is irradiated with microwaves, and then cooled to room temperature.
  • the members peel off naturally, or apply force to them by hand, or use an instrument such as a scraper to separate multiple (especially two) members such as organic resin and / or metal
  • the joining member can be dismantled by peeling. Also, the dismantled members can be recycled.
  • the frequency, output, and duration of the microwaves to be irradiated are such that the adhesive strength is reduced to the extent that the members can be separated after irradiation.
  • the frequency can be selected in the range of 300 MHz or more and 300 GHz or less, and the output can be selected in the range of 300 W or more and 5,000 W or less.
  • the microwave irradiation time is not particularly limited, but is 30 minutes or less, preferably 15 minutes or less, more preferably 5 minutes or less.
  • composition examples, composition comparative examples, examples and comparative examples are shown to specifically describe the present invention, but the present invention is not limited to the following examples.
  • the room temperature is 23° C.
  • the viscosity is the value at 23° C. measured by a rotational viscometer
  • the average particle size is the cumulative weight average value using a particle size distribution measuring device based on the laser light diffraction method. Values determined as D50 (or median diameter) are shown.
  • the dielectric constant shows the value at 3 GHz.
  • composition Example 1 100 parts by mass of dimethylpolysiloxane having a viscosity of 30,000 mPa s, an average particle size of 8 ⁇ m, and an untreated surface of acetylene black powder (dielectric constant: 37), both molecular chain ends of which are blocked with trimethoxysilyl groups.
  • a composition 1 was obtained by uniformly mixing 0.5 parts by mass of the compound and 0.1 parts by mass of dioctyltin dineodecanoate.
  • composition Example 2 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s and having both ends of the molecular chain blocked with hydroxyl groups, 12 parts by mass of acetylene black powder having an average particle size of 8 ⁇ m and an untreated surface (dielectric constant: 37) (5.0% by mass of the total composition), 120 parts by mass of untreated magnesium hydroxide having an average particle size of 1 ⁇ m (50.2% by mass of the total composition), vinyl 6 parts by mass of trimethoxysilane, 0.5 parts by mass of ⁇ -aminopropyltriethoxysilane, and 0.5 parts by mass of the compound obtained by the dehydrochlorination reaction of xylylenediamine represented by the above formula (1) and 3-chloropropyltrimethoxysilane. 5 parts by mass and 0.1 part by mass of dioctyltin dineodecanoate were uniformly mixed to obtain composition 2.
  • composition Example 3 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s, an average particle size of 0.3 ⁇ m, and a surface treated with alumina and silica (amount of surface treatment: 5 % by mass) titanium dioxide (dielectric constant: 96) 20 parts by mass (content of 8.1% by mass in the entire composition), 120 parts by mass of aluminum hydroxide having an average particle diameter of 10 ⁇ m and an untreated surface (composition 5 parts by mass of phenyltriisopropenoxysilane, 0.5 parts by mass of ⁇ -aminopropyltriethoxysilane, xylylenediamine represented by the above formula (1) and 3-
  • a composition 3 was obtained by uniformly mixing 0.5 parts by mass of a compound obtained by a dehydrochlorination reaction of chloropropyltrimethoxysilane and 0.7 parts by mass of tetramethylguanidylpropyltrimethoxysilane
  • composition Comparative Example 1 100 parts by mass of dimethylpolysiloxane having a viscosity of 30,000 mPa ⁇ s and having both ends of the molecular chain blocked with trimethoxysilyl groups, 12 parts by mass of fumed silica, 4 parts by mass of vinyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane 0.5 parts by mass, 0.5 parts by mass of the compound obtained by the dehydrochlorination reaction of xylylenediamine represented by the above formula (1) and 3-chloropropyltrimethoxysilane, and 0.5 part by mass of dioctyltin dineodecanoate.
  • a composition 4 was obtained by uniformly mixing 1 part by mass.
  • composition Comparative Example 2 100 parts by mass of dimethylpolysiloxane having a viscosity of 30,000 mPa ⁇ s and 120 parts by mass of aluminum hydroxide having an average particle size of 10 ⁇ m and an untreated surface (composition 5 parts by mass of fumed silica, 4 parts by mass of vinyltrimethoxysilane, 0.5 parts by mass of ⁇ -aminopropyltriethoxysilane, xylylene represented by the above formula (1)
  • a composition 5 was obtained by uniformly mixing 0.5 parts by mass of a compound obtained by the dehydrochlorination reaction of amine and 3-chloropropyltrimethoxysilane and 0.1 parts by mass of dioctyltin dineodecanoate.
  • composition Comparative Example 3 100 parts by mass of dimethylpolysiloxane having a viscosity of 30,000 mPa s, an average particle size of 8 ⁇ m, and an untreated surface of acetylene black powder (dielectric constant: 37), both molecular chain ends of which are blocked with trimethoxysilyl groups.
  • composition 6 0.3 parts by mass (content of 0.1% by mass in the entire composition), 120 parts by mass of aluminum hydroxide having an average particle diameter of 10 ⁇ m and an untreated surface (content of 53.2 parts by mass in the entire composition) % by mass), 4 parts by mass of vinyltrimethoxysilane, 0.5 parts by mass of ⁇ -aminopropyltriethoxysilane, obtained by the dehydrochlorination reaction of xylylenediamine represented by the above formula (1) and 3-chloropropyltrimethoxysilane. 0.5 parts by mass of the obtained compound and 0.1 parts by mass of dioctyltin dineodecanoate were uniformly mixed to obtain composition 6.
  • Adhesive strength (initial) was measured according to the method specified in JIS K6850.
  • Adhesion (after microwave irradiation)
  • the bonding member prepared above was irradiated with a frequency of 2.4 GHz and an output of 1,000 W for the time shown in the table, and then cooled to room temperature. After) was measured by the same method as (1).
  • a composition in which the substrates were decomposed after microwave irradiation and before the measurement of the shear adhesive strength was regarded as delamination.
  • the cured product of the curable liquid silicone-based adhesive used in the method for dismantling a joint member of the present invention has a reduced adhesive strength due to the decomposition of the hydroxide compound by irradiation with microwaves. .
  • Comparative Examples 1 and 2 no heat-generating particles exist even when irradiated with microwaves, so dismantling properties cannot be obtained.
  • the adhesive force of the cured adhesive silicone rubber hardly changes even when irradiated with microwaves, and the heat resistance (adhesiveness) is maintained. could not.
  • Comparative Example 3 there are particles that generate heat by microwaves, but since the content is less than the specified amount, a sufficient heat generation effect cannot be obtained, the adhesive force is insufficiently reduced, and the dismantling property is poor. I could't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

マイクロ波により発熱する粒子の特定量と分解温度が180~600℃である水酸化化合物を含有する硬化性液状シリコーン系接着剤を硬化させてなる硬化物で複数の部材同士が接合された接合部材について、該硬化物にマイクロ波を照射することにより、前記複数の部材同士を分離して接合部材を解体する工程を含む接合部材の解体方法によれば、室温から150℃程度の高温まで接着性及び/又はシール性を発揮しつつも、マイクロ波の照射により硬化性液状シリコーン系接着剤の硬化物の接着性及び/又はシール性を低下させて短時間かつ少ない消費エネルギーで容易に複数の部材同士を分離して接合部材を解体できるため、部材を容易にリサイクルすることができる。

Description

接合部材の解体方法及び接合部材並びに易解体性の液状シリコーン系接着剤
 本発明は、自動車電装部品等の自動車部品、電気・電子製品などの回収、修理、リサイクル時の作業を短時間で容易に行うことができる硬化性液状シリコーン系接着剤を使用した接合部材の解体方法及び該方法に使用する接合部材並びに易解体性の液状シリコーン系接着剤に関する。
 近年、環境にやさしく、コストも低減できる点から、様々な分野でリサイクル性が要求されている。自動車分野、電気・電子分野等においてもリサイクルするため、接合部材における部材同士の解体が必要とされている。一方で接合部材は外部の埃や水分の侵入を防ぎ、内部の部品を保護するために重要な役割を果たすため、確かなシール性能も求められる。そのシール性能は接着によるシールが最も優れるため、様々な条件(耐熱、耐湿など)においても接着性を維持することが求められる。そのため、通常は基材に硬化物が強く接着しており、接合部材の除去は容易ではない。
 硬化性樹脂組成物を用いた接合部材のリサイクル方法として、例えば、特開2003-026784号公報(特許文献1)には、ポリオール系の硬化性組成物を用いてなる接合部材を、150~200℃に加熱することにより軟化又は液状化させて、該硬化物で接合された部材同士を解体することが提案されている。また、特開2002-327163号公報(特許文献2)には、ウレタンプレポリマーを主成分とする湿気硬化型接着剤を用いた接着構造物の接着部分に、ハロゲン系有機溶剤を接触させることにより、接着部分の接着力を低下させた後、接着部分から接着構造物の構成部材を剥離解体することが提案されている。更に、特開2008-120903号公報(特許文献3)には、アルキル(メタ)アクリレートを主成分とするビニル系モノマー混合物からなる接着剤を用い、接合時には高い常態接着力を維持しつつ、接合部を分離・解体する際には、加熱により接着力が低下して、容易に分離・解体することができる再剥離型粘着テープが提案されている。そして、特許第6221630号公報(特許文献4)には、オキシアルキレン重合体に粘着性付与剤樹脂を含有させることによりリワーク可能であり、リワーク後も再結合でき、シール性能を維持できることが提案されている。
 一方、シリコーン系の接着剤やシーリング材は、上記の有機系接着剤より、耐熱性、耐候性等の特性に優れるため、自動車分野、電気電子分野、建築分野等で広く使用されている。その反面、熱をかけてもシリコーン系の接着剤やシーリング材が分解し難いため、修理あるいはリサイクルし難いという問題がある。
 部材同士の解体が容易で、かつ、シール性を発揮できるシリコーン系接着剤としてマスキング型シリコーン系接着剤が提案されている。接着付与剤を含まないマスキング型シリコーン系接着剤は、剥離性付与剤を添加してガラス、金属への離型性を付与したシリコーン系接着剤がある。しかし、このようなシリコーン系接着剤は、200℃を超える高温耐久において剥離性付与剤自体が熱分解してその効力を失い、部材とシリコーン系接着剤が熱により接着することで解体が難しく、回収・修理することが困難となる。
 そのため、シリコーン系接着剤で接着接合される用途においてもリサイクル可能な接合部材とその解体方法が求められている。
特開2003-026784号公報 特開2002-327163号公報 特開2008-120903号公報 特許第6221630号公報 特願2021-090750号
 本発明は、上記事情に鑑みなされたもので、接合された接着部材がシリコーン系の接着剤であり、室温(23℃±15℃、以下同じ)で、更に150℃程度の高温に晒された後もシール性能を発揮しつつ、短時間かつ少ない消費エネルギーで容易にリサイクルすることができる接合部材及びその接合部材の解体方法、並びに該接合部材に用いる易解体性の液状シリコーン系接着剤を提供することを目的とする。
 本発明者は、上記目的を達成するために、先に出願した特願2021-090750号(特許文献5)において、硬化性液状シリコーン系接着剤に160℃付近から分解する水酸化アルミニウムを特定割合で配合することにより、接合された接着部材が室温、更に150℃程度の高温に晒された後もシール性を発揮しつつ、160℃以上の高温に晒すことによりシール性を低下させ、部材同士の分離を容易にする方法を提案した。しかし、この方法は加熱炉を用いて、数時間と長時間加熱するため、エネルギー消費量が多い。
 そこで、本発明者は、よりエネルギー消費が少なく、短時間でリサイクル可能な接合部材とその解体方法を鋭意検討した結果、電気・電子製品などの回収・修理、リサイクル作業の効率化及び省エネルギー化を図るために、接合部材の接着部材として用いる硬化性液状シリコーン系接着剤にマイクロ波で発熱する粒子を特定の含有量で添加し、更に熱により分解して水を発生する水酸化化合物(特には金属水酸化物又は酸化金属の水酸化物)を配合することにより、該硬化性液状シリコーン系接着剤を硬化させてなる硬化物で接合された接合部材(特に有機樹脂製及び/又は金属製等の複数(特には2個)の部材同士が接合された接合部材)は、接合された接着部材(硬化性液状シリコーン系接着剤の硬化物)が室温、更に150℃程度の高温に晒された後もシール性を発揮しつつ、マイクロ波を照射することにより接着性が低下することから、該接着部材(硬化性液状シリコーン系接着剤の硬化物)にマイクロ波を照射することによって、前記有機樹脂製及び/又は金属製等の複数(特には2個)の部材同士を分離して接合部材を短時間かつ少ない消費エネルギーで容易に解体することができ、部材をリサイクルすることができることを見出し、本発明を完成した。
 従って、本発明は、以下の接合部材の解体方法及び接合部材並びに易解体性の液状シリコーン系接着剤を提供する。
[1]
 マイクロ波により発熱する粒子と分解温度が180~600℃である水酸化化合物を含有し、該マイクロ波により発熱する粒子の含有量が0.5~50質量%である硬化性液状シリコーン系接着剤を硬化させてなる硬化物で複数の部材同士が接合された接合部材について、該硬化物にマイクロ波を照射することにより、前記複数の部材同士を分離して接合部材を解体する工程を含む接合部材の解体方法。
[2]
 硬化性液状シリコーン系接着剤が、縮合硬化型液状シリコーン系接着剤又は付加反応硬化型液状シリコーン系接着剤である[1]に記載の接合部材の解体方法。
[3]
 マイクロ波により発熱する粒子が、炭素、酸化鉄、酸化チタン、フェライト及び炭化ケイ素から選ばれる少なくとも1種の粒子である[1]又は[2]に記載の接合部材の解体方法。
[4]
 分解温度が180~600℃である水酸化化合物が、水酸化アルミニウム、水酸化マグネシウム及び水酸化酸化アルミニウム(べーマイト)から選ばれる少なくとも1種である[1]~[3]のいずれかに記載の接合部材の解体方法。
[5]
 マイクロ波の波長が、300MHz以上300GHz以下である[1]~[4]のいずれかに記載の接合部材の解体方法。
[6]
 分解温度が180~600℃である水酸化化合物の含有量が、硬化性液状シリコーン系接着剤全体の35~65質量%である[1]~[5]のいずれかに記載の接合部材の解体方法。
[7]
 上記接合部材の解体が人手又はスクレーパーにより前記複数の部材から硬化性液状シリコーン系接着剤の硬化物を剥離する工程を含むものである[1]~[6]のいずれかに記載の接合部材の解体方法。
[8]
 接合部材が自動車部品又は電気・電子部品である[1]~[7]のいずれかに記載の接合部材の解体方法。
[9]
 [1]~[8]のいずれかに記載の接合部材の解体方法に用いられる接合部材。
[10]
 [1]~[8]のいずれかに記載の接合部材の解体方法に用いられる下記(A)~(F)成分を含有する易解体性の縮合硬化型液状シリコーン系接着剤。
(A)マイクロ波により発熱する粒子:接着剤全体の0.5~50質量%、
(B)分解温度が180~600℃である水酸化化合物:接着剤全体の35~65質量%、
(C)ケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサン:100質量部、
(D)ケイ素原子に結合した加水分解性基を分子中に3個以上有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:0.1~40質量部、
(E)硬化触媒:0.001~20質量部、及び
(F)シランカップリング剤:0.05~20質量部。
[11]
 [1]~[8]のいずれかに記載の接合部材の解体方法に用いられる下記(A)、(B)及び(G)~(I)成分を含有する易解体性の付加反応硬化型液状シリコーン系接着剤。
(A)マイクロ波により発熱する粒子:接着剤全体の0.5~50質量%、
(B)分解温度が180~600℃である水酸化化合物:接着剤全体の35~65質量%、
(G)ケイ素原子に結合したアルケニル基を分子鎖末端に有するアルケニル基含有オルガノポリシロキサン:100質量部、
(H)ケイ素原子に結合した水素原子を分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン:(G)成分中のケイ素原子に結合したアルケニル基1モルに対してケイ素原子結合水素原子が0.01~3モルとなる量、及び
(I)白金族金属触媒:(G)成分と(H)成分の合計量に対して白金族金属原子の質量換算で0.01~1,000ppm。
 本発明の接合部材の解体方法によれば、室温から150℃程度の高温まで接着性及び/又はシール性を発揮しつつも、マイクロ波の照射により硬化性液状シリコーン系接着剤の硬化物の接着性及び/又はシール性を低下させて短時間かつ少ない消費エネルギーで容易に複数の部材、特に有機樹脂製及び/又は金属製等の複数(特には2個)の部材同士を分離して接合部材を解体できるため、部材を容易にリサイクルすることができる。また、該接合部材の接着部材として用いられる硬化性液状シリコーン系接着剤は、耐熱性が必要であり、かつリサイクルが必要な接合箇所の接着剤又はシール材として有用である。
 なお、本発明において、解体する部材の「耐熱温度」とは、当該部材を特定の温度下に1分間静置した際に、該部材が熱分解又は軟化を生じない温度の上限を意味する。
 以下、本発明を詳細に説明する。
 本発明の接合部材の解体方法は、マイクロ波により発熱する粒子と分解温度が180~600℃である水酸化化合物を含有し、該マイクロ波により発熱する粒子の含有量が0.5~50質量%である硬化性液状シリコーン系接着剤を硬化させてなる硬化物で複数の部材同士が接合された接合部材について、該硬化物にマイクロ波を照射することにより前記複数の部材、特に有機樹脂製及び/又は金属製等の部材同士を分離して接合部材を解体する工程を含むものである。
〔硬化性液状シリコーン系接着剤〕
 本発明に使用される硬化性液状シリコーン系接着剤は、硬化して複数の部材、特に有機樹脂製及び/又は金属製等の部材同士を接合する接着部材となるもので、マイクロ波により発熱する粒子(A)と分解温度が180~600℃である水酸化化合物(B)を含有し、該マイクロ波により発熱する粒子(A)の含有量が0.5~50質量%であり、主鎖がシロキサン結合からなる高分子をベースポリマーに使用した接着剤であり、硬化タイプは、縮合硬化型、付加反応硬化型が好ましい。
〔マイクロ波により発熱する粒子〕
 本発明に使用されるマイクロ波により発熱する粒子(A)は、マイクロ波の照射により粒子が発熱することにより、硬化性液状シリコーン系接着剤中に配合された水酸化化合物(特には金属水酸化物又は酸化金属の水酸化物)が分解し、該水酸化化合物の分解に伴って水が発生することにより接着剤が発泡して接着力の低下が起き、短時間かつ少ない消費エネルギーで容易に接合部材を解体することができるものである。
 本粒子は、解体性を持たせるため、マイクロ波により発熱する特性を持つ粒子であって、このような特性を持つ粒子は、いずれも好ましいが、誘電率が大きい粒子はマイクロ波の吸収率が高く、短時間で効率よく発熱するため、より好ましい。誘電率としては、3GHzで3~1,000であることが好ましく、5~800であることがより好ましい。
 マイクロ波により発熱する粒子は、無機物であり、アセチレンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック、ケッチェンブラック等の炭素、酸化鉄(II)、酸化鉄(III)、四酸化三鉄等の酸化鉄、酸化チタン(TiO)、二酸化チタン(TiO2)、三酸化二チタン(Ti23)等の酸化チタン系化合物、スピネルフェライト、マグネトプランバイトフェライト、ガーネットフェライト等のフェライト及び炭化ケイ素よりなる群から選ばれる少なくとも1種が好ましく、これらの中でもアセチレンブラック、二酸化チタン、炭化ケイ素がより好ましい。
 マイクロ波により発熱する粒子としては、好ましくは平均粒子径が0.05~100μm、より好ましくは0.1~80μmの粒子状のものが使用される。平均粒子径が0.05μmより小さいと組成物の粘度が高くなるため、高充填することができず、十分な発熱効果が得られない場合があり、平均粒子径が100μmより大きいとゴムの柔軟性が損なわれる場合がある。なお、平均粒子径は、レーザー光回折法等による粒度分布測定装置を用いて、累積重量平均値D50(又はメジアン径)として求めることができる。
 マイクロ波により発熱する粒子の表面は、未処理でも表面処理(疎水化処理)されていてもよい。表面処理する場合、処理剤としては、アルミナ、シリカ、ステアリン酸、シランカップリング剤、シリコーン化合物等が挙げられる。表面処理は、公知の方法によって行うことができる。その処理量は特に制限はないが、10質量%以下(通常、0.1~8質量%)、特に0.5~6質量%であることが好ましい。
 なお、マイクロ波により発熱する粒子は1種を単独で又は2種以上を組み合わせて使用することができる。
 マイクロ波により発熱する粒子の含有量は、硬化性液状シリコーン系接着剤全体の0.5~50質量%であり、好ましくは1~40質量%、より好ましくは3~30質量%、更に好ましくは5~20質量%である。0.5質量%未満であると十分な発熱が得られず、50質量%を超える量であると組成物の粘度が上昇し、混合及び施工時の吐出性が悪くなる。
〔分解温度が180~600℃である水酸化化合物〕
 分解温度が180~600℃である水酸化化合物(B)は、通常、金属の水酸化物又は酸化金属の水酸化物であることが好ましく、分解温度が180℃付近である水酸化アルミニウム、分解温度が300℃付近である水酸化マグネシウム、分解温度が500℃付近である水酸化酸化アルミニウム(べーマイト)を挙げることができる。
 これらは加熱されることにより分解が始まり、分解により水が発生するため、消炎効果があり、従来は難燃性材料に利用される。本発明においては、この分解により発生する水を利用して、硬化性液状シリコーン系接着剤の硬化物中に発生する気泡により接着力を低下させることによって、接合部材の解体を短時間で容易にすることができる。
 分解温度が180~600℃である水酸化化合物としては、平均粒子径が50μm以下、好ましくは0.5~20μmの粒子状のものが使用される。平均粒子径が50μmより大きいと分解性が低下してしまう。なお、平均粒子径は、レーザー光回折法等による粒度分布測定装置を用いて、累積重量平均値D50(又はメジアン径)として求めることができる。
 該水酸化化合物の表面は、未処理でも表面処理(疎水化処理)されていてもよい。表面処理する場合、処理剤は一般的に用いられているものであり、シランカップリング剤や脂肪酸が挙げられる。表面処理は、公知の方法によって行うことができる。その処理量は特に制限はないが、3質量%以下(通常、0.1~3質量%)、特に0.2~2質量%であることが好ましい。
 なお、水酸化化合物は1種を単独で使用してもよいが、平均粒子径や表面処理方法が異なるものを2種以上併用して使用することもできる。
 該水酸化化合物の含有量は、硬化性液状シリコーン系接着剤全体の35~65質量%であり、40~60質量%であることが好ましく、45~55質量%であることがより好ましい。35質量%未満であると水酸化化合物の分解(発泡)が不十分で接着部材の接着力の低下が起こらず、65質量%を超える量であると組成物の粘度が上昇し、混合及び施工時の吐出性が悪くなる。
 なお、硬化性液状シリコーン系接着剤におけるマイクロ波により発熱する粒子(A)と、水酸化化合物(B)の合計含有量は36~85質量%が好ましく、40~75質量%がより好ましく、45~65質量%であることが更に好ましい。また、マイクロ波により発熱する粒子(A)と水酸化化合物(B)との質量比は1:0.8~1:50が好ましく、1:1~1:30がより好ましく、1:2~1:20が更に好ましい。
[縮合硬化型液状シリコーン系接着剤]
 縮合硬化型液状シリコーン系接着剤は、上述した(A)マイクロ波により発熱する粒子と(B)分解温度が180~600℃である水酸化化合物以外に、(C)ケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサン(ベースポリマー)、(D)ケイ素原子に結合した加水分解性基を分子中に3個以上有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(架橋剤)、(E)硬化触媒、及び(F)シランカップリング剤(接着性付与剤)を含み、室温において大気中の水分(湿気)による加水分解・縮合反応を利用して硬化物を得る液状シリコーン系接着剤である。
 (C)ベースポリマー(主剤)としてのオルガノポリシロキサンは、分子鎖両末端がケイ素原子に結合した水酸基(シラノール基)及び/又は加水分解性シリル基で封鎖された直鎖状のジオルガノポリシロキサンである。ここで、加水分解性シリル基としては、アルコキシシリル基又はアルコキシ置換アルコキシシリル基が好ましい。
 ケイ素原子に結合した水酸基(シラノール基)を有する場合は、分子鎖の両末端に、ケイ素原子に結合した水酸基(即ち、ヒドロキシシリル基又はシラノール基)を一つずつ有するのがよい。
 加水分解性シリル基として末端にアルコキシシリル基又はアルコキシ置換アルコキシシリル基を有する場合は、分子鎖の両末端に、ケイ素原子に結合するアルコキシ基(即ち、アルコキシシリル基)又はケイ素原子に結合するアルコキシ置換アルコキシ基(即ち、アルコキシアルコキシシリル基)を、2つ又は3つずつ有する(即ち、ジアルコキシオルガノシリル基又はビス(アルコキシアルコキシ)オルガノシリル基や、トリアルコキシシリル基又はトリス(アルコキシアルコキシ)シリル基として存在する)のがよい。
 アルコキシ基としては、炭素原子数1~10、特に炭素原子数1~4のアルコキシ基が好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ヘキシルオキシ基、オクチルオキシ基等が挙げられる。
 アルコキシ置換アルコキシ基としては、炭素原子数2~10、特に炭素原子数2~4のアルコキシ置換アルコキシ基が好ましく、例えば、メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等が挙げられる。
 ケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサンとしては、特に、ジオルガノポリシロキサンの両末端、好ましくは両末端のみに水酸基(シラノール基)、メトキシ基又はエトキシ基を有するものが好ましい。
 水酸基及び加水分解性基以外の、ケイ素原子に結合する有機基としては、非置換又は置換の、炭素原子数1~18、好ましくは炭素原子数1~10の一価炭化水素基が挙げられる。該一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の炭素原子に結合する水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子又はシアノ基で置換したもの、例えば、トリフルオロプロピル基、クロロプロピル基等のハロゲン化一価炭化水素基;β-シアノエチル基、γ-シアノプロピル基等のシアノアルキル基が例示される。中でもメチル基が好ましい。
 ベースポリマー(主剤)としてのオルガノポリシロキサンの23℃における粘度は、50~1,000,000mPa・sであることが好ましく、100~300,000mPa・sであることがより好ましい。粘度が上記下限値未満だと硬化物に十分な機械特性が得られない場合があり、また上記上限値を超えると作業性が低下する場合がある。なお、本発明において、粘度は回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型、レオメータ等)により測定した23℃における値である(以下、同じ)。
 ベースポリマー(主剤)としてのオルガノポリシロキサンは、1種単独でも2種以上を組み合わせて使用してもよい。
 (D)架橋剤(硬化剤)としての加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物は、ケイ素原子に結合した加水分解性基を分子中に3個以上有する、加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(即ち、残存加水分解性基を分子中に3個以上有するシロキサンオリゴマー等のシロキサン化合物)である。加水分解性オルガノシラン化合物は分子中に3個以上存在する加水分解性基が上記ベースポリマーとしてのケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサンと加水分解・縮合反応して架橋構造を形成する架橋剤(硬化剤)として作用するものである。
 加水分解性オルガノシラン化合物が有する加水分解性基としては、炭素原子数1~10である、アルコキシ基、アルコキシ置換アルコキシ基、アシロキシ基、アルケノキシ基、ケトオキシム基、アミノキシ基、及びアミド基が挙げられる。例えば、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等のアルコキシ置換アルコキシ基;アセトキシ基、オクタノイルオキシ基等のアシロキシ基;ビニロキシ基、イソプロペノキシ基、1-エチル-2-メチルビニルオキシ基等のアルケノキシ基;ジメチルケトオキシム基、メチルエチルケトオキシム基、メチルイソブチルケトオキシム基等のケトオキシム基;ジメチルアミノキシ基、ジエチルアミノキシ基等のアミノキシ基;N-メチルアセトアミド基、N-エチルアセトアミド基等のアミド基が挙げられる。
 加水分解性オルガノシラン化合物は、上記加水分解性基以外の、ケイ素原子に結合する有機基を有していてもよい。このような加水分解性基以外の、ケイ素原子に結合する有機基としては、非置換又は置換の、炭素原子数1~18、好ましくは炭素原子数1~10の一価炭化水素基が挙げられる。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基、フェニルプロピル基等のアラルキル基;これらの基の炭素原子に結合する水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子又はシアノ基で置換したもの、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等が挙げられる。中でも、非置換又は置換の一価炭化水素基として、メチル基、エチル基、プロピル基、ビニル基、フェニル基が好ましい。
 加水分解性オルガノシラン化合物及びその部分加水分解縮合物としては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン等のアルコキシシラン;メチルトリス(ジメチルケトオキシム)シラン、メチルトリス(メチルエチルケトオキシム)シラン、エチルトリス(メチルエチルケトオキシム)シラン、メチルトリス(メチルイソブチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン等のケトオキシムシラン;メチルトリ(メトキシメトキシ)シラン、エチルトリ(メトキシメトキシ)シラン、ビニルトリ(メトキシメトキシ)シラン、フェニルトリ(メトキシメトキシ)シラン、メチルトリ(エトキシメトキシ)シラン、エチルトリ(エトキシメトキシ)シラン、ビニルトリ(エトキシメトキシ)シラン、フェニルトリ(エトキシメトキシ)シラン、テトラ(メトキシメトキシ)シラン、テトラ(エトキシメトキシ)シラン等のアルコキシ置換アルコキシシラン;メチルトリス(N,N-ジエチルアミノキシ)シラン等のアミノキシシラン;メチルトリス(N-メチルアセトアミド)シラン、メチルトリス(N-ブチルアセトアミド)シラン、メチルトリス(N-シクロヘキシルアセトアミド)シラン等のアミドシラン;メチルトリイソプロペノキシシラン、ビニルトリイソプロペノキシシラン、フェニルトリイソプロペノキシシラン等のアルケノキシシラン;メチルトリアセトキシシラン、ビニルトリアセトキシシラン等のアシロキシシラン、及びこれらの加水分解性オルガノシラン化合物の部分加水分解縮合物が挙げられる。
 架橋剤(硬化剤)としての加水分解性オルガノシラン化合物は、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有する官能性基で置換された一価炭化水素基を分子中に有さないものである点において、後述する接着性付与剤としての(F)シランカップリング剤とは明確に区別されるものである。
 加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物は、1種単独でも2種以上を組み合わせて使用してもよい。
 架橋剤(硬化剤)としての加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物の配合量は、ケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサン100質量部に対して0.1~40質量部であり、好ましくは1~20質量部である。加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物の量が上記下限値(0.1質量部)未満では、硬化性や保存性の低下を招くおそれがある。また、上記上限値(40質量部)を超えると、価格的に不利になるばかりか、硬化物の伸びが低下したり、耐久性の低下を招いたりするおそれがある。
 (E)硬化触媒は、縮合硬化型液状シリコーン系接着剤(室温硬化性オルガノポリシロキサン組成物)の硬化促進剤として従来から一般的に使用されている縮合触媒が使用でき、例えば、ジブチルスズメトキサイド、ジブチルスズジアセテート、ジブチルスズジオクテート、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジネオデカノエート、ジメチルスズジメトキサイド、ジメチルスズジアセテート等の有機スズ化合物;テトラプロピルチタネート、テトラブチルチタネート、テトラ-2-エチルヘキシルチタネート、ジメトキシチタンジアセチルアセトナート等の有機チタン化合物;ヘキシルアミン、テトラメチルグアニジルプロピルトリメトキシシラン等のアミン化合物やこれらの塩などが挙げられ、これらの1種を単独で又は2種以上を組み合わせて使用することができる。
 硬化触媒の配合量は、ケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサン100質量部に対して0.001~20質量部であり、好ましくは0.005~5質量部、更に好ましくは0.01~2質量部である。硬化触媒の配合量が上記下限値(0.001質量部)未満であると、触媒効果が得られない場合があり、また、硬化触媒の配合量が上記上限値(20質量部)を超えると、価格的に不利になるばかりか、組成物の耐久性が低下する場合、あるいは接着性が低下する場合がある。
 縮合硬化型液状シリコーン系接着剤には、更に(F)成分として、接着強度を向上させると共に接着性付与成分としての作用を有するシランカップリング剤(窒素原子、酸素原子、硫黄原子等のヘテロ原子を有する官能性基(但し、グアニジル基を除く)で置換された一価炭化水素基を分子中に有する加水分解性シラン化合物、いわゆるカーボンファンクショナルシラン化合物)を添加する。
 接着性付与成分としてのシランカップリング剤は、当該技術分野で公知のシランカップリング剤が好適に使用される。特には加水分解性基として、アルコキシ基又はアルケノキシ基を有するものが好ましく、具体的には、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、ビニロキシ基、イソプロペノキシ基、1-エチル-2-メチルビニルオキシ基等のアルケノキシ基が挙げられる。
 また、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有する官能性基(但し、グアニジル基を除く)で置換された一価炭化水素基としては、非置換又は置換アミノ基、非置換又は置換イミノ基、メルカプト基、エポキシ基、(メタ)アクリロキシ基等を少なくとも1個有する炭素原子数1~20の一価炭化水素基を有するものが好ましく、具体的には、γ-アクリロキシプロピル基、γ-メタクリロキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-グリシドキシプロピル基、N-β(アミノエチル)γ-アミノプロピル基、γ-アミノプロピル基、下記式
Figure JPOXMLDOC01-appb-C000001
で示される基、γ-メルカプトプロピル基等が例示される。
 シランカップリング剤は、上記加水分解性基及び官能性基で置換された一価炭化水素基以外の、ケイ素原子に結合する有機基を有していてもよい。このような加水分解性基及び官能性基で置換された一価炭化水素基以外の、ケイ素原子に結合する有機基としては、炭素原子数1~10の一価炭化水素基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ヘキシル基、ヘプチル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。中でも、メチル基、エチル基が好ましい。
 シランカップリング剤として、具体的には、γ-アクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、下記式
Figure JPOXMLDOC01-appb-C000002
で示されるシラン化合物、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等が例示される。特にはアミノ基含有シランカップリング剤の使用が好ましい。
 シランカップリング剤は、1種単独でも2種以上を組み合わせて使用してもよい。
 (F)成分のシランカップリング剤の配合量は、ケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサン100質量部に対して0.05~20質量部、好ましくは0.1~15質量部、特に好ましくは0.5~10質量部である。0.05質量部未満では十分な接着性が得られず、20質量部を超えると耐候性や機械特性に劣るものとなる。
 縮合硬化型液状シリコーン系接着剤には、上記成分以外にも、任意成分を本発明の目的を損なわない範囲で配合することができる。この任意成分としては、(A)、(B)成分以外の無機質充填剤、顔料、染料、蛍光増白剤等の着色剤;抗菌剤;防カビ剤;シリコーンオイル(無官能性オルガノポリシロキサン)等の可塑剤などが挙げられる。
 この任意成分である(A)、(B)成分以外の無機質充填剤としては、具体的には、乾式法シリカ(煙霧質シリカなど)、湿式法シリカ(沈降シリカなど)、石英微粉末、ケイソウ土粉末、微粒子状アルミナ、マグネシア粉末、及びこれらをシラン類、シラザン類、低重合度ポリシロキサン類等で表面処理した微粉末状の無機質充填剤(但し、(A)、(B)成分を除く)が例示できる。無機質充填剤を配合する場合、その配合量は、ケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサン100質量部に対して0.1~800質量部であることが好ましく、より好ましくは0.5~600質量部である。
 縮合硬化型液状シリコーン系接着剤は、上述した各成分を、公知の混合機を用いて湿気を遮断した状態(乾燥雰囲気中や減圧下)で常法に準じて均一に混合することにより調製することができる。
 また、得られた縮合硬化型液状シリコーン系接着剤は、例えば室温(23℃±15℃)で放置することにより硬化するが、その成形方法、硬化条件などは、縮合硬化型液状シリコーン系接着剤の種類に応じた公知の方法、条件を採用することができ、例えば、23℃/50%RHの条件下で大気中に数時間~数日間(例えば、6時間~7日間)程度静置することにより硬化させることができる。
[付加反応硬化型液状シリコーン系接着剤]
 付加反応硬化型液状シリコーン系接着剤は、上述した(A)マイクロ波により発熱する粒子と(B)分解温度が180~600℃である水酸化化合物以外に、(G)ケイ素原子に結合したビニル基等のアルケニル基を有するシリル基で分子鎖末端が封鎖された直鎖状ジオルガノポリシロキサン(ベースポリマー)、(H)ケイ素原子に結合した水素原子(SiH基)を分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン(架橋剤)、及び(I)白金族金属触媒(ヒドロシリル化付加反応触媒)を含み、SiH基のビニル基への付加反応(ヒドロシリル化反応)により架橋し硬化物を得る液状シリコーン系接着剤である。
 (G)ベースポリマー(主剤)としてのアルケニル基含有オルガノポリシロキサンは、分子鎖末端(分子鎖片末端又は両末端)がケイ素原子に結合したビニル基等のアルケニル基を有するシリル基で封鎖された直鎖状ジオルガノポリシロキサンであり、分子中にケイ素原子に結合したアルケニル基を平均して少なくとも1個、好ましくは2個以上(通常、2~20個、特には2~10個、更には2~5個程度)有するオルガノポリシロキサンである。このアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の、通常、炭素原子数2~6個、好ましくは炭素原子数2~4個程度の低級アルケニル基等が挙げられる。なお、ベースポリマー(主剤)としてのアルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を分子鎖の片末端又は両末端に有するものであれば、分子鎖側鎖にアルケニル基を有していてもよい。
 また、ケイ素原子結合アルケニル基以外のケイ素原子に結合した有機基は、脂肪族不飽和結合を有しないものであれば特に限定されず、例えば、非置換又は置換の、炭素原子数が、通常、1~12、好ましくは1~10の、脂肪族不飽和結合を除く一価炭化水素基等が挙げられる。この非置換又は置換の一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;これらの基の水素原子の一部又は全部が塩素原子、フッ素原子、臭素原子等のハロゲン原子で置換された、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等が挙げられ、好ましくはアルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。
 アルケニル基含有オルガノポリシロキサンの具体例は、両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルポリシロキサン、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、片末端トリメチルシロキシ基封鎖で他方の片末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、片末端トリメチルシロキシ基封鎖で他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、片末端トリメチルシロキシ基封鎖で他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、片末端トリメチルシロキシ基封鎖で他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、片末端トリメチルシロキシ基封鎖で他方の片末端ジメチルビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、片末端トリメチルシロキシ基封鎖で他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、片末端トリメチルシロキシ基封鎖で他方の片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体等が挙げられる。
 ベースポリマー(主剤)としてのアルケニル基含有オルガノポリシロキサンの23℃における粘度は、100~500,000mPa・sであることが好ましく、700~100,000mPa・sであることがより好ましい。
 ベースポリマー(主剤)としてのアルケニル基含有オルガノポリシロキサンは、1種単独でも2種以上を組み合わせて使用してもよい。
 (H)架橋剤(硬化剤)としてのオルガノハイドロジェンポリシロキサンは、平均で、分子中に少なくとも2個、好ましくは少なくとも3個、より好ましくは上限が500個、更に好ましくは上限が200個、特に好ましくは上限が100個のケイ素原子に結合した水素原子(SiH基)を有するものであって、好ましくは分子中に脂肪族不飽和結合を有しないものである。
 このオルガノハイドロジェンポリシロキサンにおいて、前記ケイ素原子結合水素原子以外のケイ素原子結合有機基は、特に限定されないが、例えば、非置換又は置換の、炭素原子数が、通常、1~10、好ましくは1~6の一価炭化水素基等が挙げられる。その具体例としては、アルケニル基含有オルガノポリシロキサンの説明において、前記ケイ素原子結合アルケニル基以外のケイ素原子結合有機基として例示したものと同様のものやビニル基、アリル基等のアルケニル基等が挙げられ、好ましくはアルキル基、アリール基等の脂肪族不飽和結合を有しない非置換一価炭化水素基、より好ましくはメチル基、フェニル基等である。
 分子中のケイ素原子の数は2~300個、特に3~150個、とりわけ4~100個程度の室温で液状のものが好適に用いられる。なお、ケイ素原子に結合する水素原子は分子鎖末端、分子鎖の途中(非末端)のいずれに位置していてもよく、両方に位置するものであってもよい。また、オルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐鎖状、及び三次元網目状のいずれであってもよい。本発明において、重合度(又は、分子中のケイ素原子数の尺度である主鎖を構成するジオルガノシロキサン単位の繰り返し数)は、例えば、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。
 オルガノハイドロジェンポリシロキサンとしては、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体や、これら例示化合物においてメチル基の一部又は全部を他のアルキル基やフェニル基などで置換したものなどが挙げられる。
 オルガノハイドロジェンポリシロキサンは、1種単独でも2種以上を組み合わせて使用してもよい。
 オルガノハイドロジェンポリシロキサンの添加量は、アルケニル基含有オルガノポリシロキサン中のケイ素原子に結合したアルケニル基1モルに対してケイ素原子結合水素原子(SiH基)が0.01~3モル、好ましくは0.05~2.5モル、より好ましくは0.2~2モルとなる量である。
 (I)白金族金属触媒(ヒドロシリル化付加反応触媒)は、アルケニル基含有オルガノポリシロキサン中のケイ素原子結合アルケニル基とオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子との付加反応を促進させるための触媒として使用されるものである。この白金族金属触媒は公知のものを使用することができる。その具体例としては、白金ブラック、塩化白金酸、塩化白金酸等のアルコール変性物;塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類等との錯体などの白金系触媒が例示される。
 白金族金属触媒の配合量は有効量でよく、所望の硬化速度により適宜増減することができるが、アルケニル基含有オルガノポリシロキサン及びオルガノハイドロジェンポリシロキサンの合計量に対して、白金族金属原子の質量換算で、通常0.1~1,000ppm、好ましくは1~300ppmの範囲である。この配合量が多すぎると得られる硬化物の耐熱性が低下する場合がある。
 付加反応硬化型液状シリコーン系接着剤には、更に接着強度を向上させると共に接着性付与成分としての作用を有する(J)シランカップリング剤(酸素原子、硫黄原子等のヘテロ原子を有する官能性基で置換された一価炭化水素基を分子中に有する加水分解性シラン化合物、いわゆるカーボンファンクショナルシラン化合物)を添加することが好ましい。
 接着性付与成分としてのシランカップリング剤は、当該技術分野で公知のシランカップリング剤が好適に使用される。具体的には、上述した(F)成分で例示したシランカップリング剤と同様のものが例示できる。
 このシランカップリング剤を配合する場合、その配合量は、アルケニル基含有オルガノポリシロキサン(ベースポリマー)100質量部に対して0.05~20質量部が好ましく、より好ましくは0.1~15質量部、特に好ましくは0.5~10質量部である。0.05質量部未満では十分な接着性が得られない場合があり、20質量部を超えると耐候性や機械特性に劣るものとなる場合がある。
 付加反応硬化型液状シリコーン系接着剤には、上記成分以外にも、任意成分を本発明の目的を損なわない範囲で配合することができる。この任意成分としては、例えば、反応抑制剤、上述の縮合硬化型液状シリコーン系接着剤において例示したものと同様の無機質充填剤(但し、(A)成分のマイクロ波により発熱する粒子と(B)成分の分解温度が180~600℃である水酸化化合物を除く)、ケイ素原子結合水素原子(SiH基)及びケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン(いわゆる無官能性シリコーンオイル)、耐熱添加剤、難燃付与剤等、チクソ性付与剤、顔料、染料等が挙げられる。
 付加反応硬化型液状シリコーン系接着剤は、上述した各成分を公知の混合機を用いて常法に準じて均一に混合することにより調製することができる。
 また、付加反応硬化型液状シリコーン系接着剤の硬化条件としては、23~150℃、特に23~100℃にて10分~8時間、特に30分~5時間とすることができる。
[接合部材]
 本発明の接合部材の解体方法において、接合部材は、マイクロ波により発熱する粒子と分解温度が180~600℃である水酸化化合物を含有する硬化性液状シリコーン系接着剤を硬化させてなる硬化物(接着性シリコーンゴム硬化物からなる接着部材)によって同一又は異種の複数(特には2個)の部材同士が接合された接合部材であって、該接合部材において、接合された各部材は、有機樹脂製部材及び金属製部材から選ばれる同一又は異種のものであることが好ましく、接合された複数の部材のうち少なくとも1個(一方)が有機樹脂製部材であることがより好ましい。このような部材の組合せとしては、例えば、同一又は異種の有機樹脂製の部材同士の組合せ、金属製部材と有機樹脂製部材の組合せなどが挙げられる。有機樹脂製部材を構成する有機樹脂としては、PBT(ポリブチレンテレフタレート樹脂)、PPS(ポリフェニレンサルファイド樹脂)、PA66(ナイロン66)、PA6(ナイロン6)等のポリアミド樹脂、PC(ポリカーボネート樹脂)などが挙げられ、金属製部材を構成する金属としては、例えば、アルミニウム、鉄、SUS、銅などが挙げられる。なお、有機樹脂製部材又は金属製部材を構成する上記の有機樹脂又は金属は、それぞれ耐熱温度が160℃以上であることが望ましい。
[接合部材の作製方法]
 マイクロ波により発熱する粒子と分解温度が180~600℃である水酸化化合物を含有する硬化性液状シリコーン系接着剤を、手又は機械吐出で片側の有機樹脂製又は金属製等の部材の表面に接合箇所(例えばガスケット等)の形状に塗布し、もう一方の有機樹脂製又は金属製等の部材を貼り合わせて接合し、硬化させる。その後必要に応じてボルトなどで固定する。本発明の硬化性液状シリコーン系接着剤が縮合硬化型液状シリコーン系接着剤の場合、室温において空気中の湿分によって硬化するので、複数の部材を合体後、放置しておけば硬化が進行する。硬化を促進させたい場合には加湿することが有効である。また、本発明の硬化性液状シリコーン系接着剤が付加反応硬化型液状シリコーン系接着剤の場合、23~150℃の温度において付加反応により硬化するので、複数の部材を合体後、放置又は加熱すれば硬化が進行する。
 上記接合部材としては、エンジン、トランスミッション、ECUやPCUなどの自動車部品、スマートフォン、タブレット、液晶、バッテリーなどの電気・電子部品等を例示することができ、自動車部品、電気・電子部品であることが好ましい。
 上記接合部材は、使用環境温度が150℃以下、好ましくは室温~120℃で部材の接合状態が維持されるものである。
 上記接合部材は、通常使用時にはある程度の接着力で接合されていて、加熱後に部材の分離が可能な程度に接着力が低下する易解体性の接合部材であることが好ましい。具体的には、上記接合部材の初期せん断接着力が1.2MPa以上、特には1.5MPa以上であることが好ましく、該接合部材をマイクロ波照射後のせん断接着力が1MPa以下であることが好ましい。このせん断接着力はJIS K6850に規定する方法に準じて測定した値である。なお、初期及び加熱後のせん断接着力を上記範囲とするためには、硬化性液状シリコーン系接着剤の組成を上述した特定範囲の組成とすることにより達成できる。
〔解体方法〕
 本発明の接合部材の解体方法は、接合部材の接着部材である硬化性液状シリコーン系接着剤を硬化させてなる硬化物(接着性シリコーンゴム硬化物)にマイクロ波を照射後、室温まで冷却し、部材同士が自然に剥離するか、あるいはこれに手で力を加えるか、又はスクレーパーなどの器具を使用して有機樹脂製及び/又は金属製等の複数(特には2個)の部材同士を剥離させることにより接合部材を解体することができる。また、解体した部材はリサイクルすることが可能である。
 この場合、本発明の接合部材の解体方法において使用する硬化性液状シリコーン系接着剤の硬化物では、マイクロ波の照射により以下のような現象が起こるものと推定される。
(1)マイクロ波の照射により、(A)成分の粒子が発熱する。
(2)(A)成分の粒子の発熱により、(B)成分の水酸化化合物が加熱され、該(B)成分の水酸化化合物が分解して水を発生する。
(3)発生した水が、(A)成分の粒子の発熱及びマイクロ波の照射により加熱されて気化することにより発泡する。
(4)硬化物内におけるこの発泡により接合部材の接着力が低下する。
 照射するマイクロ波は、照射後に部材の分離が可能な程度に接着力が低下する程度の周波数、出力、時間が好ましい。周波数は、300MHz以上300GHz以下、出力は300W以上5,000W以下の範囲で選択できる。マイクロ波の照射時間は特に限定されないが、30分以下であり、好ましくは15分以下、より好ましくは5分以下である。
 次に、組成物実施例、組成物比較例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において、室温は23℃であり、粘度は回転粘度計により測定した23℃における値を示し、平均粒子径はレーザー光回折法による粒度分布測定装置を用いて、累積重量平均値D50(又はメジアン径)として求めた値を示す。誘電率は3GHzでの値を示す。
硬化性液状シリコーン系接着剤(組成物)の調製
[組成物実施例1]
 分子鎖両末端がトリメトキシシリル基で封鎖され、粘度が30,000mPa・sのジメチルポリシロキサン100質量部、平均粒子径が8μmであり、表面が未処理のアセチレンブラック粉末(誘電率:37)12質量部(組成物全体中の含有量5.1質量%)、平均粒子径が10μmであり、表面が未処理の水酸化アルミニウム120質量部(組成物全体中の含有量50.6質量%)、ビニルトリメトキシシラン4質量部、γ-アミノプロピルトリエトキシシラン0.5質量部、下記式(1)で示されるキシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物0.5質量部、及びジオクチルスズジネオデカノエート0.1質量部を均一に混ぜ、組成物1を得た。
Figure JPOXMLDOC01-appb-C000003
[組成物実施例2]
 分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、平均粒子径が8μmであり、表面が未処理のアセチレンブラック粉末(誘電率:37)12質量部(組成物全体中の含有量5.0質量%)、平均粒子径が1μmであり、表面が未処理の水酸化マグネシウム120質量部(組成物全体中の含有量50.2質量%)、ビニルトリメトキシシラン6質量部、γ-アミノプロピルトリエトキシシラン0.5質量部、上記式(1)で示されるキシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物0.5質量部、及びジオクチルスズジネオデカノエート0.1質量部を均一に混ぜ、組成物2を得た。
[組成物実施例3]
 分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、平均粒子径が0.3μmであり、表面がアルミナとシリカで処理された(表面処理量:5質量%)二酸化チタン(誘電率:96)20質量部(組成物全体中の含有量8.1質量%)、平均粒子径が10μmであり、表面が未処理の水酸化アルミニウム120質量部(組成物全体中の含有量48.6質量%)、フェニルトリイソプロペノキシシラン5質量部、γ-アミノプロピルトリエトキシシラン0.5質量部、上記式(1)で示されるキシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物0.5質量部、及びテトラメチルグアニジルプロピルトリメトキシシラン0.7質量部を均一に混ぜ、組成物3を得た。
[組成物比較例1]
 分子鎖両末端がトリメトキシシリル基で封鎖され、粘度が30,000mPa・sのジメチルポリシロキサン100質量部、煙霧質シリカ12質量部、ビニルトリメトキシシラン4質量部、γ-アミノプロピルトリエトキシシラン0.5質量部、上記式(1)で示されるキシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物0.5質量部、及びジオクチルスズジネオデカノエート0.1質量部を均一に混ぜ、組成物4を得た。
[組成物比較例2]
 分子鎖両末端がトリメトキシシリル基で封鎖され、粘度が30,000mPa・sのジメチルポリシロキサン100質量部、平均粒子径が10μmであり、表面が未処理の水酸化アルミニウム120質量部(組成物全体中の含有量52.2質量%)、煙霧質シリカ5質量部、ビニルトリメトキシシラン4質量部、γ-アミノプロピルトリエトキシシラン0.5質量部、上記式(1)で示されるキシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物0.5質量部、及びジオクチルスズジネオデカノエート0.1質量部を均一に混ぜ、組成物5を得た。
[組成物比較例3]
 分子鎖両末端がトリメトキシシリル基で封鎖され、粘度が30,000mPa・sのジメチルポリシロキサン100質量部、平均粒子径が8μmであり、表面が未処理のアセチレンブラック粉末(誘電率:37)0.3質量部(組成物全体中の含有量0.1質量%)、平均粒子径が10μmであり、表面が未処理の水酸化アルミニウム120質量部(組成物全体中の含有量53.2質量%)、ビニルトリメトキシシラン4質量部、γ-アミノプロピルトリエトキシシラン0.5質量部、上記式(1)で示されるキシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物0.5質量部、及びジオクチルスズジネオデカノエート0.1質量部を均一に混ぜ、組成物6を得た。
[接合部材の作製]
 基材として幅25mm、長さ100mmのPBT(ポリブチレンテレフタレート樹脂、耐熱温度:150℃以上)製基材を2枚使用し、硬化性液状シリコーン系接着剤として上記組成物1~6のいずれかを使用し、接着厚みが0.5mm、接着面積が2.5cm2になるように2枚のPBT基材同士を貼り合わせ、23℃/50%RHにて7日間養生することによって、硬化性液状シリコーン系接着剤の硬化物(接着性シリコーンゴム硬化物)で2枚のPBT基材同士が接合された接合部材を作製した。
解体性の評価
[実施例1~3、比較例1~3]
 上記で作製した接合部材を用いて、下記に示す評価方法により接着力(解体性)の評価を行った。これらの結果を表1に示す。
(1)接着力(初期)
 上記で作製した接合部材を用いて、せん断接着力(初期)をJIS K6850に規定する方法に準じて測定した。
(2)接着力(マイクロ波照射後)
 上記で作製した接合部材を、周波数2.4GHz、出力1,000Wで表中記載の時間照射後、室温になるまで冷却し、PBT部材に対する接着性シリコーンゴム硬化物のせん断接着力(マイクロ波照射後)を(1)と同様の方法により測定した。なお、マイクロ波照射後、せん断接着力測定前に基材同士が分解した組成物は剥離とした。
Figure JPOXMLDOC01-appb-T000004
 上記の結果から明らかなように、本発明の接合部材の解体方法において使用する硬化性液状シリコーン系接着剤の硬化物は、マイクロ波の照射により水酸化化合物が分解することで接着力が低下する。これにより、該硬化性液状シリコーン系接着剤の硬化物(接着性シリコーンゴム硬化物)で接合された樹脂製の接合部材を90~180秒と短時間かつ少ない消費エネルギーで容易に解体することができる。
 一方、比較例1、2ではマイクロ波を照射しても発熱粒子が存在しないため、解体性は得られない。即ち、マイクロ波を照射しても接着性シリコーンゴム硬化物(接着部材)の接着力はほとんど変化しておらず、耐熱性(接着性)を維持しているため、接合部材を解体することはできなかった。
 また、比較例3ではマイクロ波により発熱する粒子が存在するが、含有量が規定量以下で少ないため、十分な発熱効果が得られず、接着力の低下が不十分であり、解体性は得られなかった。

Claims (11)

  1.  マイクロ波により発熱する粒子と分解温度が180~600℃である水酸化化合物を含有し、該マイクロ波により発熱する粒子の含有量が0.5~50質量%である硬化性液状シリコーン系接着剤を硬化させてなる硬化物で複数の部材同士が接合された接合部材について、該硬化物にマイクロ波を照射することにより、前記複数の部材同士を分離して接合部材を解体する工程を含む接合部材の解体方法。
  2.  硬化性液状シリコーン系接着剤が、縮合硬化型液状シリコーン系接着剤又は付加反応硬化型液状シリコーン系接着剤である請求項1に記載の接合部材の解体方法。
  3.  マイクロ波により発熱する粒子が、炭素、酸化鉄、酸化チタン、フェライト及び炭化ケイ素から選ばれる少なくとも1種の粒子である請求項1又は2に記載の接合部材の解体方法。
  4.  分解温度が180~600℃である水酸化化合物が、水酸化アルミニウム、水酸化マグネシウム及び水酸化酸化アルミニウム(べーマイト)から選ばれる少なくとも1種である請求項1~3のいずれか1項に記載の接合部材の解体方法。
  5.  マイクロ波の波長が、300MHz以上300GHz以下である請求項1~4のいずれか1項に記載の接合部材の解体方法。
  6.  分解温度が180~600℃である水酸化化合物の含有量が、硬化性液状シリコーン系接着剤全体の35~65質量%である請求項1~5のいずれか1項に記載の接合部材の解体方法。
  7.  上記接合部材の解体が人手又はスクレーパーにより前記複数の部材から硬化性液状シリコーン系接着剤の硬化物を剥離する工程を含むものである請求項1~6のいずれか1項に記載の接合部材の解体方法。
  8.  接合部材が自動車部品又は電気・電子部品である請求項1~7のいずれか1項に記載の接合部材の解体方法。
  9.  請求項1~8のいずれか1項に記載の接合部材の解体方法に用いられる接合部材。
  10.  請求項1~8のいずれか1項に記載の接合部材の解体方法に用いられる下記(A)~(F)成分を含有する易解体性の縮合硬化型液状シリコーン系接着剤。
    (A)マイクロ波により発熱する粒子:接着剤全体の0.5~50質量%、
    (B)分解温度が180~600℃である水酸化化合物:接着剤全体の35~65質量%、 
    (C)ケイ素原子に結合した水酸基及び/又は加水分解性シリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサン:100質量部、
    (D)ケイ素原子に結合した加水分解性基を分子中に3個以上有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:0.1~40質量部、
    (E)硬化触媒:0.001~20質量部、及び
    (F)シランカップリング剤:0.05~20質量部。
  11.  請求項1~8のいずれか1項に記載の接合部材の解体方法に用いられる下記(A)、(B)及び(G)~(I)成分を含有する易解体性の付加反応硬化型液状シリコーン系接着剤。
    (A)マイクロ波により発熱する粒子:接着剤全体の0.5~50質量%、
    (B)分解温度が180~600℃である水酸化化合物:接着剤全体の35~65質量%、
    (G)ケイ素原子に結合したアルケニル基を分子鎖末端に有するアルケニル基含有オルガノポリシロキサン:100質量部、
    (H)ケイ素原子に結合した水素原子を分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン:(G)成分中のケイ素原子に結合したアルケニル基1モルに対してケイ素原子結合水素原子が0.01~3モルとなる量、及び
    (I)白金族金属触媒:(G)成分と(H)成分の合計量に対して白金族金属原子の質量換算で0.01~1,000ppm。
PCT/JP2022/034941 2021-09-30 2022-09-20 接合部材の解体方法及び接合部材並びに易解体性の液状シリコーン系接着剤 WO2023054052A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247013952A KR20240065309A (ko) 2021-09-30 2022-09-20 접합 부재의 해체 방법 및 접합 부재 그리고 해체 용이성의 액상 실리콘계 접착제
JP2023551339A JPWO2023054052A1 (ja) 2021-09-30 2022-09-20
CN202280064243.4A CN117980432A (zh) 2021-09-30 2022-09-20 接合构件的解体方法和接合构件以及易解体性的液体有机硅系粘接剂
EP22875922.1A EP4410921A1 (en) 2021-09-30 2022-09-20 Method for dismantling bonded member, bonded member, and easily dismantled silicone-based liquid adhesive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021160447 2021-09-30
JP2021-160447 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054052A1 true WO2023054052A1 (ja) 2023-04-06

Family

ID=85782527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034941 WO2023054052A1 (ja) 2021-09-30 2022-09-20 接合部材の解体方法及び接合部材並びに易解体性の液状シリコーン系接着剤

Country Status (5)

Country Link
EP (1) EP4410921A1 (ja)
JP (1) JPWO2023054052A1 (ja)
KR (1) KR20240065309A (ja)
CN (1) CN117980432A (ja)
WO (1) WO2023054052A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204332A (ja) * 1999-01-08 2000-07-25 Minnesota Mining & Mfg Co <3M> 熱剥離性接着剤組成物および接着構造体
JP2002327163A (ja) 2001-04-27 2002-11-15 Sekisui Chem Co Ltd 湿気硬化型接着剤及び接着構造物の解体方法
JP2003026784A (ja) 2001-07-18 2003-01-29 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物および接合部材の易解体方法
JP2004123943A (ja) * 2002-10-03 2004-04-22 Aica Kogyo Co Ltd 易解体性接着パネル用水性接着剤組成物
WO2005071035A1 (ja) * 2004-01-26 2005-08-04 Miike Iron Works, Co., Ltd. 被接着部材及びその剥離方法
JP2008056843A (ja) * 2006-09-01 2008-03-13 Asics Corp 熱膨張性接着剤、シューズ、シューズの解体方法、及びシューズ解体用マイクロ波照射装置
JP2008120903A (ja) 2006-11-10 2008-05-29 Nitto Denko Corp 加熱発泡型再剥離性アクリル系粘着テープ又はシート
JP2013518950A (ja) * 2010-02-04 2013-05-23 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 改善された難燃性を有する硬化性組成物
JP6221630B2 (ja) 2013-10-29 2017-11-01 セメダイン株式会社 小型携帯電子機器用液状ガスケット
JP2019147874A (ja) * 2018-02-26 2019-09-05 国立大学法人大阪大学 解体性接着剤組成物、及び被着体の解体方法
JP2020128463A (ja) * 2019-02-07 2020-08-27 信越化学工業株式会社 熱伝導性粘着層を有する熱伝導性シリコーンゴムシート
JP2021090750A (ja) 2019-12-09 2021-06-17 ジャイラス エーシーエムアイ インク 体内での複数のコンポーネントの位置付け用ユーザーインタフェース及びロック機能

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221630U (ja) 1985-07-25 1987-02-09
US12013492B2 (en) 2018-12-12 2024-06-18 Lg Electronics Inc. MEMS scanner for detecting rotational angle of mirror

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204332A (ja) * 1999-01-08 2000-07-25 Minnesota Mining & Mfg Co <3M> 熱剥離性接着剤組成物および接着構造体
JP2002327163A (ja) 2001-04-27 2002-11-15 Sekisui Chem Co Ltd 湿気硬化型接着剤及び接着構造物の解体方法
JP2003026784A (ja) 2001-07-18 2003-01-29 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物および接合部材の易解体方法
JP2004123943A (ja) * 2002-10-03 2004-04-22 Aica Kogyo Co Ltd 易解体性接着パネル用水性接着剤組成物
WO2005071035A1 (ja) * 2004-01-26 2005-08-04 Miike Iron Works, Co., Ltd. 被接着部材及びその剥離方法
JP2008056843A (ja) * 2006-09-01 2008-03-13 Asics Corp 熱膨張性接着剤、シューズ、シューズの解体方法、及びシューズ解体用マイクロ波照射装置
JP2008120903A (ja) 2006-11-10 2008-05-29 Nitto Denko Corp 加熱発泡型再剥離性アクリル系粘着テープ又はシート
JP2013518950A (ja) * 2010-02-04 2013-05-23 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 改善された難燃性を有する硬化性組成物
JP6221630B2 (ja) 2013-10-29 2017-11-01 セメダイン株式会社 小型携帯電子機器用液状ガスケット
JP2019147874A (ja) * 2018-02-26 2019-09-05 国立大学法人大阪大学 解体性接着剤組成物、及び被着体の解体方法
JP2020128463A (ja) * 2019-02-07 2020-08-27 信越化学工業株式会社 熱伝導性粘着層を有する熱伝導性シリコーンゴムシート
JP2021090750A (ja) 2019-12-09 2021-06-17 ジャイラス エーシーエムアイ インク 体内での複数のコンポーネントの位置付け用ユーザーインタフェース及びロック機能

Also Published As

Publication number Publication date
JPWO2023054052A1 (ja) 2023-04-06
CN117980432A (zh) 2024-05-03
KR20240065309A (ko) 2024-05-14
EP4410921A1 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
JP7464005B2 (ja) 接合部材の解体方法及び接合部材並びに易解体性の液状シリコーン系接着剤
JP6652917B2 (ja) ホットメルト性シリコーンおよび硬化性ホットメルト組成物
KR101261253B1 (ko) 열전도성 실리콘 고무 조성물
JP5627941B2 (ja) 光により架橋可能なシリコーン混合物からシリコーン被覆及びシリコーン成形品を製造する方法
JPWO2002092693A1 (ja) 熱伝導性シリコーン組成物
TWI671360B (zh) 可室溫固化之聚矽氧橡膠組合物,其用途及修復電子裝置之方法
KR20090106401A (ko) 실리콘-계 감압성 접착제 조성물 및 접착 테이프
JP2004262972A (ja) 熱伝導性シリコーン組成物
JP6583114B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品
JP2006225420A (ja) 付加硬化型シリコーンゴム組成物及び粘着ゴムシート
JP5068988B2 (ja) 接着性ポリオルガノシロキサン組成物
KR101884177B1 (ko) 실온-경화성 실리콘 고무 조성물, 및 그의 용도
JP2000136307A (ja) 高電圧電気絶縁体用シリコ―ンゴム組成物、ポリマ―碍子用シ―ル材及びポリマ―碍子用補修材
JP2004323764A (ja) 接着性ポリオルガノシロキサン組成物
JP7485049B2 (ja) 熱ラジカル硬化可能なオルガノポリシロキサン組成物、該組成物で接着、コーティング又はポッティングされた物品、及び該組成物の硬化物を製造する方法
JP2001192641A (ja) シーリング材組成物
JP2009102591A (ja) 室温硬化性オルガノポリシロキサン組成物
JP5266788B2 (ja) 油面接着性室温硬化型オルガノポリシロキサン組成物及びその硬化物
WO2023054052A1 (ja) 接合部材の解体方法及び接合部材並びに易解体性の液状シリコーン系接着剤
JP2006022277A (ja) 室温硬化性オルガノポリシロキサン組成物、および電気・電子機器
WO2024106077A1 (ja) 接合部材の解体方法及び易解体性の液状シリコーン系接着剤
WO2021065990A1 (ja) フロロシリコーンゴム積層体の製造方法およびフロロシリコーンゴム積層体
JP6156211B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品
JP2002020720A (ja) オイルブリード性シリコーンゴム接着剤組成物及び該接着剤組成物と熱可塑性樹脂との一体成形体
JP6108015B2 (ja) シリコーンゴム硬化物のモジュラスを低減する方法、及びシリコーンゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551339

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280064243.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247013952

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875922

Country of ref document: EP

Effective date: 20240430