WO2023053343A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2023053343A1
WO2023053343A1 PCT/JP2021/036140 JP2021036140W WO2023053343A1 WO 2023053343 A1 WO2023053343 A1 WO 2023053343A1 JP 2021036140 W JP2021036140 W JP 2021036140W WO 2023053343 A1 WO2023053343 A1 WO 2023053343A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
motor
buffer motor
emergency stop
buffer
Prior art date
Application number
PCT/JP2021/036140
Other languages
English (en)
French (fr)
Other versions
WO2023053343A9 (ja
Inventor
大亮 小林
敬介 辻川
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to DE112021008011.3T priority Critical patent/DE112021008011T5/de
Priority to JP2022504264A priority patent/JP7064063B1/ja
Priority to CN202180102504.2A priority patent/CN117957504A/zh
Priority to PCT/JP2021/036140 priority patent/WO2023053343A1/ja
Publication of WO2023053343A1 publication Critical patent/WO2023053343A1/ja
Publication of WO2023053343A9 publication Critical patent/WO2023053343A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50195Emergency stop stops drives and spindle, stored program remains in memory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50198Emergency stop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a control device.
  • a motor different from the driving motor of the industrial machine is previously driven at a predetermined speed (hereinafter referred to as base speed). Then, other motors are decelerated in accordance with the timing at which power is consumed in the industrial machine. Then, regenerative electric power is generated from other motors, and by using this, power consumption can be suppressed.
  • Other motors installed for such purposes are referred to herein as buffer motors.
  • the buffer motor accelerates and decelerates based on the base speed so as to reduce the peak power according to the operation of the drive motor.
  • DBM dynamic brake module
  • the DBM is a mechanism that causes rotational energy to be consumed by heat by short-circuiting terminals of a servomotor via a resistor.
  • the motor can be quickly stopped without coasting during an emergency stop.
  • the emergency stop is frequently applied, the DBM becomes hot and cannot be used. Therefore, in some cases, buffer motors that do not pose a serious danger even if they are not stopped quickly in an emergency are used without incorporating a DBM.
  • the speed control will not be performed and the buffer motor will coast for a long time. For example, if a motor is coasting at 3000 revolutions per minute, it will take about 6 minutes to stop rotating. Therefore, if a buffer motor that does not incorporate a DBM is brought to an emergency stop and restarted after waiting for its rotation to stop, a waiting time will occur each time an emergency stop occurs. There is a problem that the operating efficiency of the system is greatly reduced.
  • FIG. 7 is a graph illustrating changes in speed, power consumption, and command speed of the buffer motor when the emergency stop is canceled while the buffer motor is coasting.
  • an emergency stop is applied at time t1
  • the cause of the emergency stop is resolved and the emergency stop is canceled at time t2.
  • the buffer motor is driven to maintain a predetermined base speed Vb.
  • the control device identifies the speed of the buffer motor at a predetermined timing after the emergency stop is cancelled, and outputs a command to control the speed of the buffer motor with the identified speed as the initial speed, thereby solving the above problem. solve.
  • the predetermined timing may be when the emergency stop is cancelled. Alternatively, it may be the time when the speed of the buffer motor reaches a predetermined threshold value. In this case, the predetermined threshold is the speed from which acceleration to the base speed does not consume significant power.
  • One aspect of the present disclosure is a control device that controls a buffer motor that is supplied with power from a common power source with a drive motor that drives an industrial machine, wherein the current speed of the buffer motor is an emergency stop detection unit for detecting an emergency stop state; and at a predetermined timing after cancellation of the emergency stop is detected by the emergency stop detection unit, the motor speed identification unit specifies a buffer motor command generation unit for generating a command for returning the speed of the buffer motor to a predetermined base speed at a predetermined acceleration with the speed of the buffer motor as an initial speed; and a buffer motor control unit that controls the buffer motor based on the command generated by the buffer motor command generation unit.
  • FIG. 1 is a schematic hardware configuration diagram of a control device according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing schematic functions of a control device according to the first embodiment of the present invention
  • FIG. 10 is a diagram illustrating speed detection delay
  • FIG. 4 is a diagram for explaining how the controller according to the first embodiment reduces the power consumption of the buffer motor when the emergency stop is canceled
  • FIG. 4 is a diagram for explaining a problem caused by a delay in detection of an emergency stop state
  • FIG. 5 is a diagram for explaining reduction of power consumption peaks using regenerative power of a buffer motor
  • 7 is a graph illustrating changes in speed, power consumption, and command speed of the buffer motor when an emergency stop is canceled while the buffer motor is coasting;
  • FIG. 1 is a schematic hardware configuration diagram showing essential parts of a control device according to a first embodiment of the present invention.
  • the control device 1 of the present invention can be implemented, for example, as a control device that controls industrial machines such as machine tools and robots based on control programs.
  • the CPU 11 included in the control device 1 is a processor that controls the control device 1 as a whole.
  • the CPU 11 reads a system program stored in the ROM 12 via the bus 22 and controls the entire control device 1 according to the system program.
  • the RAM 13 temporarily stores calculation data, display data, various data input from the outside, and the like.
  • the non-volatile memory 14 is composed of, for example, a memory backed up by a battery (not shown) or an SSD (Solid State Drive), and retains the stored state even when the control device 1 is powered off.
  • the nonvolatile memory 14 stores data acquired from the industrial machine 2, control programs and data read from the external device 72 via the interface 15, control programs and data input via the input device 71, network Control programs and data acquired from other devices via 5 are stored.
  • the control program and data stored in the nonvolatile memory 14 may be developed in the RAM 13 at the time of execution/use.
  • Various system programs such as a well-known analysis program are pre-written in the ROM 12 .
  • the interface 15 is an interface for connecting the CPU 11 of the control device 1 and an external device 72 such as a USB device. From the external device 72 side, for example, a control program and setting data used for controlling the industrial machine 2 are read. Control programs and setting data edited in the control device 1 can be stored in the external storage means via the external device 72 .
  • a PMC (Programmable Machine Controller) 16 executes a ladder program to control the industrial machine 2 and peripheral devices of the industrial machine 2 (for example, a tool changer, an actuator such as a robot, and a temperature sensor attached to the industrial machine 2). and a plurality of sensors 3) such as a humidity sensor, etc., through the I/O unit 19 to control them. It also receives signals from various switches on an operation panel provided on the main body of the industrial machine 2 and signals from peripheral devices, and passes the signals to the CPU 11 after performing necessary signal processing.
  • the interface 20 is an interface for connecting the CPU of the control device 1 and the wired or wireless network 5 .
  • Other industrial machines 4 such as machine tools and electrical discharge machines, fog computers 6, cloud servers 7, and the like are connected to the network 5 to exchange data with the control device 1 .
  • each data read into the memory, data obtained as a result of executing the program, etc. are output via the interface 17 and displayed.
  • An input device 71 composed of a keyboard, a pointing device, etc., transfers commands, data, etc. based on operations by an operator to the CPU 11 via the interface 18 .
  • the axis control circuit 30 for controlling the axes provided in the industrial machine 2 receives the axis movement command amount from the CPU 11 and outputs the axis command to the servo amplifier 40 .
  • the servo amplifier 40 receives this command and drives the servo motor 50 that moves the axis of the machine tool.
  • the axis servomotor 50 incorporates a position/velocity detector, and feeds back a position/velocity feedback signal from this position/velocity detector to the axis control circuit 30 to perform position/velocity feedback control.
  • Only one axis control circuit 30, one servo amplifier 40, and one servo motor 50 are shown in the hardware configuration diagram of FIG. only available.
  • the axis control circuit 35 for controlling the buffer motor 55 receives a rotation command amount for the buffer motor 55 from the CPU 11 and outputs a command to drive the buffer motor 55 to the servo amplifier 45 .
  • the servo amplifier 45 receives this command and drives the buffer motor 55 .
  • the buffer motor 55 also incorporates a position/velocity detector, and feeds back a position/velocity feedback signal from this position/velocity detector to the axis control circuit 35 to perform position/velocity feedback control.
  • the servo amplifiers 40 and 45 are supplied with power from the common power supply 9 via the power supply path 8 .
  • FIG. 2 is a schematic block diagram showing the functions of the control device 1 according to the first embodiment of the present invention. Each function provided in the control device 1 according to the present embodiment is realized by the CPU 11 provided in the control device 1 shown in FIG.
  • the control device 1 of this embodiment includes a command generator 100, a controller 110, a power consumption calculator 120, a power supply calculator 130, a buffer motor command generator 140, a buffer motor controller 150, and a motor speed identifier 160. , an emergency stop detection unit 170 is provided.
  • a control program 200 for controlling the operation of the industrial machine 2 is pre-stored in the RAM 13 to the non-volatile memory 14 of the control device 1, and settings for controlling the buffer motor 55 are also stored.
  • a setting storage unit 210 is prepared in advance as an area for the setting.
  • the command generation unit 100 analyzes the blocks of the control program 200 and generates commands for controlling each part of the industrial machine 2 based on the analysis results. For example, when a block of the control program 200 commands to drive each axis of the industrial machine 2, the command generated by the command generation unit 100 commands movement of the servomotor 50 according to the command of the block. Generate movement commands. Further, for example, when a block of the control program 200 commands to control a peripheral device of the industrial machine 2, a command to operate the peripheral device is generated. A command generated by the command generation unit 100 is output to the control unit 110 . The command generating unit 100 temporarily stops generating commands related to the control of the industrial machine 2 when receiving the emergency stop detection notification from the emergency stop detecting unit 170 . Further, when receiving a notification of the detection of emergency stop cancellation from the emergency stop detection unit 170, the production of commands relating to the control of the industrial machine 2, which has been temporarily stopped, is resumed.
  • the control unit 110 executes a system program read from the ROM 12 by the CPU 11 of the control device 1 shown in FIG. , and input/output processing via the interface 18 are performed.
  • the control unit 110 controls each part of the industrial machine 2 based on commands input from the command generation unit 100 .
  • the control unit 110 when the command input from the command generation unit 100 instructs the servomotor 50 of the industrial machine 2 to move, the control unit 110 generates move command data according to the command and sends the data to the servomotor 50. Output.
  • the command input from the command generation unit 100 is a command to operate a peripheral device attached to the industrial machine 2
  • the control unit 110 generates a predetermined signal to operate the peripheral device. and output to the PMC 16.
  • the control unit 110 acquires position feedback, speed feedback, and torque feedback of the servomotor 50 and data detected by peripheral devices such as a temperature sensor and a humidity sensor, and uses them for controlling the industrial machine 2 .
  • the power consumption calculator 120 calculates the power consumed in driving the servomotor 50 that drives the industrial machine 2 based on the operating state and control details of the servomotor 50 that drives the industrial machine 2 by the controller 110 .
  • the power consumed in driving the servo motor 50 is, for example, the output V d ⁇ T d of the servo motor 50 calculated based on the rotation speed V d and the torque T d of the servo motor 50 , the servo motor 50 and the servo amplifier 40 It can be calculated based on the loss Ld generated in the above. Normally, the loss Ld generated in the servomotor 50, the servo amplifier 40, etc. is sufficiently small compared to the output of the servomotor 50 (the absolute value thereof).
  • the power consumption calculator 120 may calculate the power consumed in driving the servomotor 50 at the present point in time, for example, using speed feedback and torque feedback fed back from the servomotor 50 .
  • a method for calculating power consumption is already known in, for example, Japanese Patent Application Laid-Open No. 2019-075864 and Japanese Patent Application Laid-Open No. 2019-092239, and therefore detailed description thereof will be omitted in this specification.
  • the power supply calculator 130 calculates the amount of regenerative power to be supplied from the buffer motor 55 based on the amount of power consumed in driving the servo motor 50 calculated by the power consumption calculator 120 .
  • the power supply calculation unit 130 calculates, for example, a value obtained by subtracting the power consumption calculated by the power consumption calculation unit 120 from the preset maximum available power of the common power supply 9 . If the calculated value falls below a predetermined threshold value Th d that has been set in advance, the lower value is calculated as the amount of regenerative electric power to be supplied from the buffer motor 55 .
  • the threshold Th d may be set as a positive value with a predetermined margin for safety.
  • the buffer motor command generation unit 140 When the buffer motor command generation unit 140 receives the notification of the emergency stop cancellation detection from the emergency stop detection unit 170, the buffer motor command generation unit 140 changes the speed input from the motor speed identification unit 160 to the buffer motor 55 at a predetermined timing. A command is generated to control the speed of the buffer motor 55 so as to accelerate from there to the base speed Vb at the acceleration Ab as the initial speed.
  • the predetermined timing may be, for example, the timing of receiving a notification that the emergency stop has been canceled.
  • the initial speed of the buffer motor 55 is the speed of the buffer motor 55 when the emergency stop is cancelled.
  • the predetermined timing is such that the speed of the buffer motor 55 is maintained at a predetermined threshold value V th by maintaining the buffer motor 55 in a free-running state, for example, after receiving the notification that the emergency stop has been canceled.
  • the timing may be decelerated to the following.
  • the predetermined threshold value V th is a speed that does not consume a large amount of electric power even if the vehicle is accelerated from that speed to the base speed Vb with the acceleration Ab.
  • the predetermined threshold value V th is preferably obtained in advance by performing experiments or the like for each type of buffer motor.
  • the command generated by the buffer motor command generator 140 is output to the buffer motor controller 150 .
  • the buffer motor control unit 150 controls the buffer motor 55 .
  • the buffer motor control unit 150 stores the settings. Based on the base speed Vb of the buffer motor 55 stored in advance in the unit 210 and the acceleration Ab when the buffer motor is accelerated to the base speed Vb, the speed of the buffer motor 55 is set to the base speed Vb. It controls the buffer motor 55 .
  • the buffer motor control unit 150 controls the deceleration of the buffer motor 55 so that regenerative electric power corresponding to the amount of regenerative electric power to be supplied from the buffer motor 55 is generated. Conversely, when the amount of regenerative power to be supplied from the buffer motor 55 input from the supply power calculation unit 130 takes a negative value, the buffer motor control unit 150 determines the regenerative power to be supplied from the buffer motor 55. Control is performed to accelerate the buffer motor 55 so as to generate power consumption corresponding to the amount.
  • the buffer motor control unit 150 controls the buffer motor 55 based on the command generated by the buffer motor command generation unit 140 .
  • the buffer motor control unit 150 may control the torque of the buffer motor 55 to be equal to or less than a predetermined threshold value Tth when the buffer motor 55 is accelerated when the emergency stop is cancelled.
  • the predetermined threshold value T th is a torque value that does not consume a large amount of electric power when accelerating the buffer motor to the base speed Vb with the acceleration Ab.
  • the predetermined threshold value T th may be obtained in advance by performing experiments or the like for each type of buffer motor.
  • the motor speed identification unit 160 identifies the speed of the buffer motor 55 and outputs the identified speed of the buffer motor 55 to the buffer motor command generation unit 140 .
  • the motor speed identification unit 160 may identify the speed of the buffer motor 55 based on an input from a sensor (not shown) that detects the speed of the buffer motor 55 .
  • the speed of the buffer motor 55 it may be predicted from the past speed of the buffer motor 55 detected by a sensor. Similarly, the history of sensor detection of the speed of the buffer motor 55 may be stored, and the current speed of the buffer motor 55 may be predicted from the stored speed history. A certain amount of delay occurs between the detection of the speed of the motor by the sensor and the acquisition of the detected speed by the motor speed identification unit 160 .
  • FIG. 3 is an example in which the speed of the buffer motor 55 and the speed of the buffer motor 55 detected by the sensor of the motor speed identification unit 160 are shown on the same graph. In FIG. 3, the solid line represents the buffer motor 55 at that time. Also, the dotted line represents the speed of the buffer motor 55 acquired by the motor speed identification unit 160 at that time.
  • the speed of the buffer motor 55 acquired by the motor speed identification unit 160 is a value greater than the actual speed of the buffer motor 55 at the same time. It has become. Therefore, if the speed of the buffer motor 55 acquired by the motor speed identification unit 160 is used as the current speed of the buffer motor 55 when the emergency stop is cancelled, sudden acceleration occurs immediately after the start of control and power consumption increases. . In order to avoid this, the motor speed identification unit 160 calculates the past speed transition of the buffer motor 55 during the emergency stop of the buffer motor 55 acquired and the change tendency from the speed history, and conducts an experiment or the like in advance. Predict what value the speed of the buffer motor 55 will take after the delay time measured in . Then, the predicted speed is output as the current speed of the buffer motor 55 .
  • Another example of specifying the speed of the buffer motor 55 is to determine the current speed of the buffer motor 55 based on the speed of the buffer motor 55 at the time when the emergency stop was applied and the time taken from the emergency stop to the present. You may make it predict a speed. In general, the rate at which the motor slows down while it is coasting depends on parameters such as inertia and friction. Therefore, an experiment is performed in advance using the buffer motor 55, and the change in speed with respect to time after the emergency stop is plotted. Then, by performing regression analysis on the plotted data, a regression formula is created, and by using the created regression formula, the speed of the buffer motor 55 at the time when the emergency stop is applied and the speed from the emergency stop to the present are calculated.
  • the current speed of the buffer motor 55 may be predicted from the time taken.
  • the explanatory variables of the regression equation should be the speed of the buffer motor 55 at the start of the emergency stop and the time taken from the start of the emergency stop to the present time, and the current time should be used as the objective variable.
  • machine learning using a neural network or the like as a model may be performed based on the plotted data, and the current speed of the buffer motor 55 may be predicted using the created model.
  • the speed of the buffer motor 55 at the start of the emergency stop and the time taken from the start of the emergency stop to the present time are used as the input data of the machine learning device, and the current time is used as the objective variable for the output data (label data).
  • Parameters such as inertia and friction of the buffer motor 55 may be used as explanatory variables of the regression equation and input data of the machine learning device.
  • data such as temperature and humidity may be added. This is because temperature and humidity affect parameters such as friction.
  • the emergency stop detection unit 170 detects an emergency stop and cancellation of the emergency stop of the industrial machine 2 and outputs the detection result to the command generation unit 100 and the buffer motor command generation unit 140 .
  • the emergency stop detection unit 170 may detect an emergency stop and cancellation of the emergency stop by detecting ON/OFF of the excitation state of the servo amplifier 40 and the servo amplifier 45, for example.
  • emergency stop and emergency stop cancellation can be detected. good.
  • FIG. 4 is a graph illustrating changes in speed, power consumption, and command speed of the buffer motor 55 when the emergency stop is canceled while the buffer motor 55 is coasting in the control device 1 according to the present embodiment.
  • the motor 55 for buffering is not suddenly stopped, and speed control is performed with the speed at that time as the initial speed (symbol D). Therefore, the speed of the buffer motor 55 can be returned to the base speed without sudden stop and without generating regenerative electric power at the time of sudden stop (symbol E).
  • the buffer motor command generation unit 140 controls the speed of the buffer motor 55 to be the same as the current speed. You may make it start the instruction
  • FIG. 5 is a graph illustrating changes in speed, power consumption, and command speed of the buffer motor 55 when the emergency stop is canceled while the buffer motor 55 is coasting in such a state.
  • this delay causes a delay in command output from the buffer motor command generation unit 140, resulting in a state in which there is no speed command temporarily.
  • speed control of the buffer motor 55 is performed (symbol F).
  • speed control is performed assuming that the normal speed is 0 (symbol G).
  • the buffer motor 55 is rapidly decelerated to generate regenerative electric power (symbol H), and then the current speed of the buffer motor 55 is set as the initial speed and controlled to return to the base speed Vb. At this time, the buffer motor 55 is rapidly accelerated and a large amount of power is consumed (symbol I). Therefore, as described above, the buffer motor command generator 140 always outputs a command to control the buffer motor 55 at the current speed during the emergency stop, thereby preventing the increase in power consumption caused by such a delay. be able to prevent it.
  • Control Device 2 4 Industrial Machine 5 Network 6 Fog Computer 7 Cloud Server 8 Power Supply Path 9 Common Power Supply 11
  • CPU 12 ROMs 13 RAM 14 non-volatile memory 15, 17, 18, 20, 21 interface 22 bus 30, 35 axis control circuit 40, 45 servo amplifier 50 servo motor 55 buffer motor 70 display device 71 input device 72 external device 100 command generation unit 110 control unit 120 power consumption calculator 130 power supply calculator 140 buffer motor command generator 150 buffer motor controller 160 motor speed identifier 170 emergency stop detector 200 control program 210 setting memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)
  • Numerical Control (AREA)

Abstract

本開示による制御装置は、産業機械を駆動する駆動用のモータと共通の電源から電力が供給されているバッファ用モータを制御する制御装置であって、バッファ用モータの現在の速度を特定するモータ速度特定部と、非常停止の状態を検出する非常停止検出部と、モータ速度特定部が特定した非常停止検出部により非常停止の解除が検出された以降の所定のタイミングにおけるバッファ用モータの速度を初速度として、予め定めた所定の加速度で予め定めたベース速度までバッファ用モータの速度を復帰させるための指令を生成するバッファ用モータ指令生成部と、バッファ用モータ指令生成部が生成した指令に基づいてバッファ用モータを制御するバッファ用モータ制御部と、を備える。

Description

制御装置
 本発明は、制御装置に関する。
 工場等の製造現場に設置された工作機械、射出成形機、ロボット等の複数の産業機械は、該産業機械を制御する制御装置からの指令に基づいて稼働している。これら複数の産業機械は、所定の電源設備に接続されている。そして、電源設備から供給される電力を消費して稼働する(例えば、特許文献1)。この時、電力を多く消費するような指令、例えば産業機械の可動部を駆動する駆動用モータを急加速する指令が実行されると、産業機械で大きな電力が消費される。
 このような場合に消費電力量を低減させる仕組みとして、モータの回生電力を利用するものがある。例えば図6に示されるように、産業機械の駆動用モータとは異なる他のモータを予め所定の速度(以下、ベース速度とする)で駆動しておく。そして、産業機械で電力が消費されるタイミングに合わせて他のモータを減速させる。すると、他のモータから回生電力が発生し、これを利用することで電力の消費を抑える事ができる。このような目的で設置される他のモータを、本明細書ではバッファ用モータと呼ぶ。バッファ用モータは、駆動用モータの動作に応じて、ピーク電力を低減できるようにベース速度を基準とした加速・減速を行っている。
 ところで、緊急時に産業機械を停止するために非常停止ボタンを操作すると、商用電源からの電力供給路が遮断される。ここで、図6に例示するように、駆動用モータとバッファ用モータとで共通の電源を使用している場合、産業機械を駆動する駆動用モータに非常停止をかけると、バッファ用モータにも非常停止がかかる。
 非常停止時にモータの回転を減速させる仕組みとしてダイナミックブレーキモジュール(以下、DBMとする)がある。DBMは、抵抗器を介してサーボモータの端子間を短絡することで、回転エネルギーを熱消費させる仕組みである。DBMを組み込むことで、非常停止時にモータを惰走させずに速やかに停止させることができる。しかしながら、高い頻度で非常停止をかけるとDBMが高温になり使用できなくなるという問題がある。そのため、非常時に回転を速やかに停止させなくても大きな危険が無いバッファ用モータは、DBMを組み込まずに使用する場合がある。
特開2017-162300号公報
 DBMが組み込まれていない場合に非常停止をかけると、速度制御が行われなくなり、バッファ用モータは長時間惰走することになる。例えば、あるモータを毎分3000回転している状態から惰走させると、回転が停止するまで約6分掛かる。そのため、DBMを組み込んでいないバッファ用モータを非常停止させた場合に、その回転が停止するのを待って運転を再開するようにした場合、非常停止が起きるたびに待ち時間が発生するため産業機械の運転効率が大幅に低下するという問題がある。
 このような問題を解決するために、非常停止の原因を解決し次第、バッファ用モータが惰走している間であっても非常停止を解除して産業機械の運転を再開するという方法が考えられる。図7は、バッファ用モータの惰走中に非常停止を解除した場合のバッファ用モータの速度、消費電力及び指令速度の推移を例示するグラフである。図7の例では、時刻t1の時点で非常停止がかかり、その後、非常停止の原因が解決されて時刻t2の時点で非常停止が解除されている。産業機械の運転時、バッファ用モータは所定のベース速度Vbを維持するように駆動している。そして、非常停止が掛かった時刻t1から非常停止が解除される時刻t2までの間はバッファ用モータに対する指令は行われず、この区間では無制御の状態になる。この無制御区間では、バッファ用モータは惰走状態となり、その速度は時間が経つにつれて減少していく。その後、時刻t2において非常停止が解除されると、制御装置がバッファ用モータの制御を開始する。この時、制御装置はモータの初速度が0であるものとし(符号A)、その後ベース速度Vbまで速度を加速するように速度制御を行う。そのため、バッファ用モータが惰走している最中に非常停止を解除すると、バッファ用モータが惰走している速度から急減速する(符号B)。この時、バッファ用モータで大量の回生電力が発生する(符号C)。このような大量の回生電力の発生は避けたいという要望がある。
 そのため、バッファ用モータで大量の回生電力を発生させることなく速やかに産業機械の運転を再開できる仕組みが求められている。
 本開示による制御装置は、非常停止解除以降の所定のタイミングにおけるバッファ用モータの速度を特定し、特定した速度を初速度としてバッファ用モータの速度制御をする指令を出力することで、上記課題を解決する。所定のタイミングとしては、非常停止が解除された時点であってもよい。また、バッファ用モータの速度が予め定めた所定の閾値に到達した時点であってもよい。この場合、所定の閾値は、そこからベース速度へと加速しても大きな電力を消費しない速度である。
 そして、本開示の一態様は、 産業機械を駆動する駆動用のモータと共通の電源から電力が供給されているバッファ用モータを制御する制御装置であって、前記バッファ用モータの現在の速度を特定するモータ速度特定部と、非常停止の状態を検出する非常停止検出部と、前記非常停止検出部により非常停止の解除が検出されて以降の所定のタイミングにおいて、前記モータ速度特定部が特定した前記バッファ用モータの速度を初速度として、予め定めた所定の加速度で予め定めた所定のベース速度まで前記バッファ用モータの速度を復帰させるための指令を生成するバッファ用モータ指令生成部と、前記バッファ用モータ指令生成部が生成した指令に基づいて前記バッファ用モータを制御するバッファ用モータ制御部と、を備えた制御装置である。
 本開示の一態様により、バッファ用モータで大量の電力を消費することなく産業機械の運転を短時間で再開することが可能となる。
本発明の一実施形態による制御装置の概略的なハードウェア構成図である。 本発明の第1実施形態による制御装置の概略的な機能を示すブロック図である。 速度の検出の遅れについて説明する図である。 第1実施形態による制御装置により非常停止解除時におけるバッファ用モータの消費電力が緩和されることを説明する図である。 非常停止状態の検出の遅れにより生じる問題について説明する図である。 バッファ用モータの回生電力を用いた消費電力ピークの緩和について説明する図である。 バッファ用モータの惰走中に非常停止を解除した場合のバッファ用モータの速度、消費電力及び指令速度の推移を例示するグラフである。
 以下、本発明の実施形態を図面と共に説明する。
 図1は本発明の第1実施形態による制御装置の要部を示す概略的なハードウェア構成図である。本発明の制御装置1は、例えば制御用プログラムに基づいて工作機械やロボットなどの産業機械を制御する制御装置として実装することができる。
 本実施形態による制御装置1が備えるCPU11は、制御装置1を全体的に制御するプロセッサである。CPU11は、バス22を介してROM12に格納されたシステム・プログラムを読み出し、該システム・プログラムに従って制御装置1全体を制御する。RAM13には一時的な計算データや表示データ、及び外部から入力された各種データ等が一時的に格納される。
 不揮発性メモリ14は、例えば図示しないバッテリでバックアップされたメモリやSSD(Solid State Drive)等で構成され、制御装置1の電源がオフされても記憶状態が保持される。不揮発性メモリ14には、産業機械2から取得されたデータ、インタフェース15を介して外部機器72から読み込まれた制御用プログラムやデータ、入力装置71を介して入力された制御用プログラムやデータ、ネットワーク5を介して他の装置から取得された制御用プログラムやデータ等が記憶される。不揮発性メモリ14に記憶された制御用プログラムやデータは、実行時/利用時にはRAM13に展開されても良い。また、ROM12には、公知の解析プログラムなどの各種システム・プログラムがあらかじめ書き込まれている。
 インタフェース15は、制御装置1のCPU11とUSB装置等の外部機器72と接続するためのインタフェースである。外部機器72側からは、例えば産業機械2の制御に用いられる制御用プログラムや設定データ等が読み込まれる。また、制御装置1内で編集した制御用プログラムや設定データ等は、外部機器72を介して外部記憶手段に記憶させることができる。PMC(プログラマブル・マシン・コントローラ)16は、ラダープログラムを実行して産業機械2及び産業機械2の周辺装置(例えば、工具交換装置や、ロボット等のアクチュエータ、産業機械2に取付けられている温度センサや湿度センサ等の複数のセンサ3)にI/Oユニット19を介して信号を出力し制御する。また、産業機械2の本体に配備された操作盤の各種スイッチや周辺装置等の信号を受け、必要な信号処理をした後、CPU11に渡す。
 インタフェース20は、制御装置1のCPUと有線乃至無線のネットワーク5とを接続するためのインタフェースである。ネットワーク5には、工作機械や放電加工機などの他の産業機械4やフォグコンピュータ6、クラウドサーバ7等が接続され、制御装置1との間で相互にデータのやり取りを行っている。
 表示装置70には、メモリ上に読み込まれた各データ、プログラム等が実行された結果として得られたデータ等がインタフェース17を介して出力されて表示される。また、キーボードやポインティングデバイス等から構成される入力装置71は、オペレータによる操作に基づく指令,データ等をインタフェース18を介してCPU11に渡す。
 産業機械2が備える軸を制御するための軸制御回路30はCPU11からの軸の移動指令量を受けて、軸の指令をサーボアンプ40に出力する。サーボアンプ40はこの指令を受けて、工作機械が備える軸を移動させるサーボモータ50を駆動する。軸のサーボモータ50は位置・速度検出器を内蔵し、この位置・速度検出器からの位置・速度フィードバック信号を軸制御回路30にフィードバックし、位置・速度のフィードバック制御を行う。なお、図1のハードウェア構成図では軸制御回路30、サーボアンプ40、サーボモータ50は1つずつしか示されていないが、実際には制御対象となる産業機械2に備えられた軸の数だけ用意される。
 また、バッファ用モータ55を制御するための軸制御回路35はCPU11からのバッファ用モータ55の回転指令量を受けて、バッファ用モータ55を駆動する指令をサーボアンプ45に出力する。サーボアンプ45はこの指令を受けて、バッファ用モータ55を駆動する。バッファ用モータ55もまた位置・速度検出器を内蔵し、この位置・速度検出器からの位置・速度フィードバック信号を軸制御回路35にフィードバックし、位置・速度のフィードバック制御を行う。なお、サーボアンプ40及びサーボアンプ45は、電力供給路8を介して共通電源9から電力の供給を受けている。
 図2は、本発明の第1実施形態による制御装置1が備える機能を概略的なブロック図として示したものである。本実施形態による制御装置1が備える各機能は、図1に示した制御装置1が備えるCPU11がシステム・プログラムを実行し、制御装置1の各部の動作を制御することにより実現される。
 本実施形態の制御装置1は、指令生成部100、制御部110、消費電力計算部120、供給電力計算部130、バッファ用モータ指令生成部140、バッファ用モータ制御部150、モータ速度特定部160、非常停止検出部170を備える。また、制御装置1のRAM13乃至不揮発性メモリ14には、予め産業機械2の運転を制御するための制御用プログラム200が記憶されており、更に、バッファ用モータ55の制御に係る設定を記憶するための領域である設定記憶部210が予め用意されている。
 指令生成部100は、制御用プログラム200のブロックを解析し、その解析結果に基づいて産業機械2の各部を制御する指令を生成する。指令生成部100が生成する指令は、例えば制御用プログラム200のブロックが産業機械2の各軸を駆動させるように指令している場合には、そのブロックによる指令に従ってサーボモータ50の移動を指令する移動指令を生成する。また、例えば制御用プログラム200のブロックが産業機械2の周辺装置を制御するように指令している場合には、該周辺装置を動作させる指令を生成する。指令生成部100が生成する指令は、制御部110に出力される。指令生成部100は、非常停止検出部170からの非常停止の検出の通知を受けた場合、産業機械2の制御に係る指令の生成を一時停止する。また、非常停止検出部170からの非常停止解除の検出の通知を受けた場合、一時停止していた産業機械2の制御に係る指令の生成を再開する。
 制御部110は、図1に示した制御装置1が備えるCPU11がROM12から読み出したシステム・プログラムを実行し、主としてCPU11によるRAM13、不揮発性メモリ14を用いた演算処理と、軸制御回路30、PMC16を用いた産業機械2の各部の制御処理、インタフェース18を介した入出力処理が行われることで実現される。制御部110は、指令生成部100から入力された指令に基づいて、産業機械2の各部を制御する。制御部110は、例えば指令生成部100から入力された指令が産業機械2のサーボモータ50の移動を指令している場合には、該指令に従って移動指令データを生成してサーボモータ50に対して出力する。また、制御部110は、例えば指令生成部100から入力された指令が産業機械2に取り付けられた周辺装置を動作させるように指令である場合には、該周辺装置を動作させる所定の信号を生成してPMC16に出力する。一方で、制御部110は、サーボモータ50の位置フィードバック、速度フィードバック、トルクフィードバックや、温度センサや湿度センサ等の周辺装置が検出したデータを取得し、産業機械2の制御に用いる。
 消費電力計算部120は、制御部110による産業機械2を駆動するサーボモータ50の動作状態や制御内容に基づいて、産業機械2を駆動するサーボモータ50の駆動において消費される電力を計算する。サーボモータ50の駆動において消費される電力は、例えばてサーボモータ50の回転速度VdとトルクTdに基づいて算出されるサーボモータ50の出力Vd×Td、サーボモータ50やサーボアンプ40などで発生する損失Ldなどに基づいて算出することができる。通常、サーボモータ50やサーボアンプ40などで発生する損失Ldはサーボモータ50の出力(の絶対値)と比較して十分に小さいので、サーボモータ50の出力に基づいて消費電力として計算するようにしてよい。消費電力計算部120は、例えばサーボモータ50からフィードバックされる速度フィードバック、トルクフィードバックを用いて現時点におけるサーボモータ50の駆動において消費される電力を計算するようにしてよい。消費電力の計算方法については、例えば特開2019-075864号公報、特開2019-092239号公報などで既に公知となっているため、本明細書における詳細な説明は省略する。
 供給電力計算部130は、消費電力計算部120が計算したサーボモータ50の駆動において消費される電力量に基づいて、バッファ用モータ55から供給するべき回生電力の量を計算する。供給電力計算部130は、例えば予め設定されている共通電源9による最大有能電力から、消費電力計算部120が計算した消費電力量を減算した値を計算する。そして、計算した値が予め設定されている所定の閾値Thdを下回る場合、その下回った分の値をバッファ用モータ55から供給するべき回生電力の量として計算する。閾値Thdを0に設定した場合、共通電源9の最大有能電力からサーボモータ50の消費電力を減算した値が閾値Thd(=0)を下回った値は、サーボモータ50の駆動に足りない電力を示す。そのため、この下回った値をバッファ用モータ55から供給するべき回生電力の量とすることができる。閾値Thdは、安全のために所定のマージンを取った正の値として設定してもよい。
 バッファ用モータ指令生成部140は、非常停止検出部170からの非常停止解除の検出の通知を受けた場合、予め定めた所定のタイミングにおいてモータ速度特定部160から入力された速度をバッファ用モータ55の初速度として、そこからベース速度Vbまで加速度Abで加速するようにバッファ用モータ55の速度を制御する指令を生成する。所定のタイミングは、例えば非常停止解除の検出の通知を受けたタイミングであってよい。この場合、バッファ用モータ55の初速度は非常停止が解除された時点でのバッファ用モータ55の速度となる。また、所定のタイミングは、例えば非常停止解除の検出の通知を受けた以降に、バッファ用モータ55をフリーラン状態に保つなどして、バッファ用モータ55の速度が予め定めた所定の閾値Vth以下まで減速したタイミングであってよい。所定の閾値Vthは、その速度からベース速度Vbまで加速度Abで加速したとしても大きな電力を消費しない速度である。所定の閾値Vthは、バッファ用モータの種類ごとに予め実験等を行い求めておくとよい。バッファ用モータ指令生成部140が生成した指令は、バッファ用モータ制御部150に出力される。
 バッファ用モータ制御部150は、バッファ用モータ55を制御する。産業機械2が通常運転されている時であって、供給電力計算部130から入力されたバッファ用モータ55から供給するべき回生電力量が0である場合、バッファ用モータ制御部150は、設定記憶部210に予め記憶されているバッファ用モータ55のベース速度Vb及び該ベース速度Vbまでバッファ用モータを加速する際の加速度Abに基づいて、バッファ用モータ55の速度がベース速度Vbとなるようにバッファ用モータ55を制御する。また、産業機械2が通常運転されている時であって、供給電力計算部130から入力されたバッファ用モータ55から供給するべき回生電力量が正の値を取る場合、バッファ用モータ制御部150は、該バッファ用モータ55から供給するべき回生電力量に相当する回生電力が発生するようにバッファ用モータ55を減速する制御をする。反対に、供給電力計算部130から入力されたバッファ用モータ55から供給するべき回生電力量が負の値を取る場合、バッファ用モータ制御部150は、該バッファ用モータ55から供給するべき回生電力量に相当する消費電力が発生するようにバッファ用モータ55を加速する制御をする。
 一方、バッファ用モータ制御部150は、バッファ用モータ指令生成部140から指令が入力される際には、バッファ用モータ指令生成部140が生成した指令に基づいてバッファ用モータ55を制御する。バッファ用モータ制御部150は、非常停止解除時のバッファ用モータ55の加速を行う際に、バッファ用モータ55のトルクが予め定めた所定の閾値Tth以下になるように制御してもよい。所定の閾値Tthは、バッファ用モータをベース速度Vbまで加速度Abで加速する際に大きな電力を消費しないトルク値である。所定の閾値Tthは、バッファ用モータの種類ごとに予め実験等を行い求めておくとよい。
 モータ速度特定部160は、バッファ用モータ55の速度を特定し、特定したバッファ用モータ55の速度をバッファ用モータ指令生成部140に出力する。モータ速度特定部160は、最もシンプルに構成するのであれば、バッファ用モータ55の速度を検出する図示しないセンサからの入力に基づいてバッファ用モータ55の速度を特定してもよい。
 バッファ用モータ55の速度を特定する他の例としては、センサで検出した過去のバッファ用モータ55の速度から予測するようにしてもよい。同様に、バッファ用モータ55の速度をセンサで検出した履歴を記憶しておき、記憶した速度の履歴からバッファ用モータ55の現在の速度を予測するようにしてもよい。センサでモータの速度を検出してから、検出した速度をモータ速度特定部160が取得するまでには、ある程度の遅れが生じる。図3は、バッファ用モータ55の速度と、モータ速度特定部160がセンサで検出したバッファ用モータ55の速度とを、同一のグラフ上に示した例である。図3において、実線はその時刻におけるバッファ用モータ55を表している。また、点線はその時刻においてモータ速度特定部160が取得したバッファ用モータ55の速度を表している。図3に示すように、非常停止中に惰走している区間では、モータ速度特定部160が取得したバッファ用モータ55の速度は、同時刻における実際のバッファ用モータ55の速度よりも大きな値となっている。そのため、モータ速度特定部160が取得したバッファ用モータ55の速度をそのまま非常停止解除時のバッファ用モータ55の現在の速度とした場合、制御開始直後に急な加速が発生し消費電力が増加する。これを避けるため、モータ速度特定部160は、取得していたバッファ用モータ55の非常停止中におけるバッファ用モータ55の過去の速度推移や、速度の履歴からその変化傾向を計算し、予め実験などで測定していた遅れ時間後にバッファ用モータ55の速度がどのような値になっているかを予測する。そして、その予測した速度を現在のバッファ用モータ55の速度として出力する。
 バッファ用モータ55の速度を特定する他の例としては、非常停止を掛けた時刻におけるバッファ用モータ55の速度と、非常停止から現在までに掛かった時間とに基づいてバッファ用モータ55の現在の速度を予測するようにしてもよい。一般に、モータが惰走している間に該モータの速度が減速していく割合はイナーシャや摩擦などのパラメータに依存する。そこで、予めバッファ用モータ55を用いた実験を行い、非常停止をしてからの時間に対する速度の変化をプロットしておく。そして、そのプロットしたデータに対する回帰分析を行うことで回帰式を作成し、作成した回帰式を用いることで、非常停止を掛けた時刻におけるバッファ用モータ55の速度と、非常停止から現在までに掛かった時間とから、バッファ用モータ55の現在の速度を予測してもよい。この時、回帰式の説明変数には、非常停止開始時のバッファ用モータ55の速度及び非常停止開始から現在までに掛かった時間を用い、目的変数に現在の時間を用いるとよい。同様に、プロットしたデータに基づいて、ニューラルネットワークなどをモデルとした機械学習を行い、作成したモデルを用いてバッファ用モータ55の現在の速度を予測してもよい。この時、機械学習器の入力データには非常停止開始時のバッファ用モータ55の速度及び非常停止開始から現在までに掛かった時間を用い、出力データ(ラベルデータ)には目的変数に現在の時間を用いるとよい。回帰式の説明変数や機械学習器の入力データには、バッファ用モータ55のイナーシャや摩擦などのパラメータを用いるようにしてもよい。また、温度や湿度などのデータを追加してもよい。これは、温度や湿度が摩擦などのパラメータに影響を与えるためである。
 非常停止検出部170は、産業機械2の非常停止及び非常停止解除を検出し、その検出結果を指令生成部100及びバッファ用モータ指令生成部140に出力する。非常停止検出部170は、例えばサーボアンプ40、サーボアンプ45の励磁状態のオン/オフを検出することで、非常停止及び非常停止解除を検出するようにしてもよい。また、例えば外部から入力される非常停止信号の状態の変化や、オペレータによる非常停止ボタンや非常停止解除ボタンなどの操作状態を検出することで、非常停止及び非常停止解除を検出するようにしてもよい。
 上記構成を備えた制御装置1は、惰走しているバッファ用モータ55を急停止させることなく非常停止を解除することができるので、バッファ用モータで大量の電力を消費することなく産業機械の運転を短時間で再開することが可能となる。図4は、本実施形態による制御装置1において、バッファ用モータ55の惰走中に非常停止を解除した場合のバッファ用モータ55の速度、消費電力及び指令速度の推移を例示するグラフである。本実施形態による制御装置1では、非常停止を解除する際にバッファ用モータ55を急停止させずに、その時点の速度を初速度として速度の制御を行う(符号D)。そのため、急停止が行われることが無く、急停止の際の回生電力を発生させずに(符号E)、バッファ用モータ55の速度をベース速度に復帰させることができる。
 本実施形態による制御装置1の一変形例として、非常停止検出部170が非常停止解除を検出する前に、バッファ用モータ指令生成部140は、現在のバッファ用モータ55の速度と同じ速度に制御するための指令を開始するようにしてもよい。これは、制御装置における非常停止解除の検出に遅れが発生する場合があることを考慮したものである。例えば非常停止及び非常停止解除を励磁状態に基づいて検出する場合、実際に非常停止が解除されてから、そのことを非常停止検出部170が検出するまでにある程度の遅れが生じる場合がある。この遅れが大きいと、非常停止解除時にバッファ用モータ55の制御に影響を与えることがある。図5は、このような状態でバッファ用モータ55の惰走中に非常停止を解除した場合のバッファ用モータ55の速度、消費電力及び指令速度の推移を例示するグラフである。図5に例示するように、このような状態で非常停止を解除すると、この遅れが原因で、バッファ用モータ指令生成部140からの指令の出力に遅れが生じ、一時的に速度指令が無い状態でバッファ用モータ55の速度制御が行われることになる(符号F)。速度指令が無い状態では通常速度が0であるとして速度制御が為される(符号G)。バッファ用モータ55は急減速して回生電力が発生し(符号H)、その後、現在のバッファ用モータ55の速度を初速度としてベース速度Vbへと復帰させる制御が行われる。この時、バッファ用モータ55は急加速して大きな電力が消費される(符号I)。そこで、上記したように非常停止中にバッファ用モータ指令生成部140から常に現在のバッファ用モータ55の速度で制御する指令を出力することで、このような遅れが原因となる消費電力の増加を防止することができるようになる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施の形態の例のみに限定されることなく、適宜の変更を加えることにより様々な態様で実施することができる。
   1 制御装置
   2,4 産業機械
   5 ネットワーク
   6 フォグコンピュータ
   7 クラウドサーバ
   8 電力供給路
   9 共通電源
  11 CPU
  12 ROM
  13 RAM
  14 不揮発性メモリ
  15,17,18,20,21 インタフェース
  22 バス
  30,35 軸制御回路
  40,45 サーボアンプ
  50 サーボモータ
  55 バッファ用モータ
  70 表示装置
  71 入力装置
  72 外部機器
 100 指令生成部
 110 制御部
 120 消費電力計算部
 130 供給電力計算部
 140 バッファ用モータ指令生成部
 150 バッファ用モータ制御部
 160 モータ速度特定部
 170 非常停止検出部
 200 制御用プログラム
 210 設定記憶部

Claims (9)

  1.  産業機械を駆動する駆動用のモータと共通の電源から電力が供給されているバッファ用モータを制御する制御装置であって、
     前記バッファ用モータの現在の速度を特定するモータ速度特定部と、
     非常停止の状態を検出する非常停止検出部と、
     前記非常停止検出部により非常停止の解除が検出されて以降の所定のタイミングにおいて、前記モータ速度特定部が特定した前記バッファ用モータの速度を初速度として、予め定めた所定の加速度で予め定めた所定のベース速度まで前記バッファ用モータの速度を復帰させるための指令を生成するバッファ用モータ指令生成部と、
     前記バッファ用モータ指令生成部が生成した指令に基づいて前記バッファ用モータを制御するバッファ用モータ制御部と、
    を備えた制御装置。
  2.  前記所定のタイミングは、前記非常停止検出部により非常停止の解除が検出された時点である、
    請求項1に記載の制御装置。
  3.  前記所定のタイミングは、前記非常停止検出部により非常停止の解除が検出された以降において、前記バッファ用モータの速度が予め定めた所定の閾値以下となった時点である、
    請求項1に記載の制御装置。
  4.  前記モータ速度特定部は、センサで検出された前記バッファ用モータの速度を、前記バッファ用モータの現在の速度として特定する、
    請求項1に記載の制御装置。
  5.  前記モータ速度特定部は、前記バッファ用モータの過去の速度から予測した速度を、前記バッファ用モータの現在の速度として特定する、
    請求項1に記載の制御装置。
  6.  前記モータ速度特定部は、前記バッファ用モータの速度の履歴から予測した速度を、前記バッファ用モータの現在の速度として特定する、
    請求項1に記載の制御装置。
  7.  前記バッファ用モータ指令生成部は、前記非常停止検出部が非常停止解除を検出する前に、前記モータ速度特定部により特定された前記バッファ用モータの現在の速度と同じ速度に制御するための指令を開始する、
    請求項1~6のいずれか1つに記載の制御装置。
  8.  前記モータ速度特定部は、非常停止を掛けた時刻における前記バッファ用モータの速度と、非常停止から現在までに掛かった時間とに基づいて予測した速度を、前記バッファ用モータの現在の速度として特定する、
    請求項1または4に記載の制御装置。
  9.  非常停止解除後、前記バッファ用モータがベース速度に到達するまでは、前記バッファ用モータのトルクをあらかじめ定めた所定の閾値以下に制限する、
    請求項1~8のいずれか1つに記載の制御装置。
PCT/JP2021/036140 2021-09-30 2021-09-30 制御装置 WO2023053343A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021008011.3T DE112021008011T5 (de) 2021-09-30 2021-09-30 Steuervorrichtung
JP2022504264A JP7064063B1 (ja) 2021-09-30 2021-09-30 制御装置
CN202180102504.2A CN117957504A (zh) 2021-09-30 2021-09-30 控制装置
PCT/JP2021/036140 WO2023053343A1 (ja) 2021-09-30 2021-09-30 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036140 WO2023053343A1 (ja) 2021-09-30 2021-09-30 制御装置

Publications (2)

Publication Number Publication Date
WO2023053343A1 true WO2023053343A1 (ja) 2023-04-06
WO2023053343A9 WO2023053343A9 (ja) 2024-02-01

Family

ID=81534491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036140 WO2023053343A1 (ja) 2021-09-30 2021-09-30 制御装置

Country Status (4)

Country Link
JP (1) JP7064063B1 (ja)
CN (1) CN117957504A (ja)
DE (1) DE112021008011T5 (ja)
WO (1) WO2023053343A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539613A (ja) * 2006-06-06 2009-11-19 アーベーベー・リサーチ・リミテッド サイクリックな製造マシンをローダーまたはアンローダー・マシンと調整して運転するための改善された方法及びシステム
JP2017005913A (ja) * 2015-06-12 2017-01-05 ファナック株式会社 非常停止時にサーボモータを制御して停止させるサーボモータ停止制御装置
JP2021019418A (ja) * 2019-07-19 2021-02-15 ファナック株式会社 サーボ制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1815972B1 (en) * 2006-02-06 2013-12-18 ABB Research Ltd. Press line system and method
JP2017162300A (ja) 2016-03-10 2017-09-14 ファナック株式会社 複数の製造機械の稼働状態を調整する機械制御装置および生産システム
JP6640812B2 (ja) 2017-10-13 2020-02-05 ファナック株式会社 蓄電装置を有するモータ駆動システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539613A (ja) * 2006-06-06 2009-11-19 アーベーベー・リサーチ・リミテッド サイクリックな製造マシンをローダーまたはアンローダー・マシンと調整して運転するための改善された方法及びシステム
JP2017005913A (ja) * 2015-06-12 2017-01-05 ファナック株式会社 非常停止時にサーボモータを制御して停止させるサーボモータ停止制御装置
JP2021019418A (ja) * 2019-07-19 2021-02-15 ファナック株式会社 サーボ制御装置

Also Published As

Publication number Publication date
DE112021008011T5 (de) 2024-06-06
JPWO2023053343A1 (ja) 2023-04-06
CN117957504A (zh) 2024-04-30
JP7064063B1 (ja) 2022-05-09
WO2023053343A9 (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
CN102208888B (zh) 电动机驱动系统、电动机控制器和安全功能扩展器
JP5689704B2 (ja) モータ制御装置およびモータ制御方法
US9409295B2 (en) Method for controlling a robot
JP4226632B2 (ja) 異常時モータ減速停止制御手段を有する数値制御装置
JP2008027376A (ja) 数値制御装置
JP6272599B1 (ja) 制御装置およびモータ制御システム
US6704875B1 (en) Method of operation controller having processor for controlling industrial machine
JP5778891B2 (ja) ロボット制御装置
WO2023053343A1 (ja) 制御装置
WO2023139763A1 (ja) 制御装置
WO2023139764A1 (ja) 制御装置
JP6457778B2 (ja) 数値制御装置
WO1990008353A1 (en) Anomaly detecting method in a servo system
JP5030628B2 (ja) 干渉チェックシステム
JPH06246674A (ja) 産業用ロボットのブレーキ異常検出方法
CN114928294A (zh) 机器人的安全控制系统、安全控制方法及机器人
CN115913900A (zh) 设备停机方法、装置、终端设备以及存储介质
JPH1110580A (ja) 産業用ロボットの駆動軸制御方法及びその装置
US9811069B2 (en) Servomotor control apparatus
JPH10277887A (ja) 位置検出器異常時の電動機制御方法
JPH0739190A (ja) 自動機械のブレーキ異常検出方法
WO2013153607A1 (ja) 位置決め装置
JPH11245191A (ja) 産業用ロボットの駆動軸制御方法及びその装置
JP2001202134A (ja) 制御装置、制御方法、および、制御装置の警報出力方法
US10924039B2 (en) Motor control device and control method for motor control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022504264

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102504.2

Country of ref document: CN