WO2023051726A1 - 固化性树脂组合物、层叠体、固化物及电子部件 - Google Patents

固化性树脂组合物、层叠体、固化物及电子部件 Download PDF

Info

Publication number
WO2023051726A1
WO2023051726A1 PCT/CN2022/122745 CN2022122745W WO2023051726A1 WO 2023051726 A1 WO2023051726 A1 WO 2023051726A1 CN 2022122745 W CN2022122745 W CN 2022122745W WO 2023051726 A1 WO2023051726 A1 WO 2023051726A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
photopolymerization initiator
manufactured
mass
Prior art date
Application number
PCT/CN2022/122745
Other languages
English (en)
French (fr)
Inventor
工藤知哉
吕川
浦国斌
加藤贤治
许红金
Original Assignee
太阳油墨(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太阳油墨(苏州)有限公司 filed Critical 太阳油墨(苏州)有限公司
Priority to CN202280048169.7A priority Critical patent/CN117616334A/zh
Publication of WO2023051726A1 publication Critical patent/WO2023051726A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding

Definitions

  • the present invention relates to a curable resin composition, a laminate, a cured product, and an electronic component.
  • a photosensitive resin composition containing a carboxyl group-containing resin having a bisphenol fluorene skeleton and one or more olefinic compounds in one molecule is used.
  • Unsaturated compounds with unsaturated bonds, acylphosphine oxide-based photopolymerization initiators, and epoxy resins are used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2016-139043
  • the conventional photosensitive resin composition has insufficient deep curability and cannot form a fine pattern.
  • more excellent properties such as insulation reliability and outgassing suppression are required, and conventional photosensitive resin compositions are insufficient.
  • the present invention was made in order to solve such problems, and an object of the present invention is to provide a curable resin composition capable of obtaining a cured product having both deep curability, suppression of outgassing, and resolution, and excellent insulation reliability.
  • a curable resin composition containing (A) a carboxyl group-containing resin, (B) an inorganic filler, (C) a thermosetting resin, and (D) a photopolymerization initiator (D-a) Using an acylphosphine photopolymerization initiator with more than 3 functionalities as the (D) photopolymerization initiator, it has successfully obtained physical properties such as excellent deep curability, suppressed outgassing, insulation reliability, and resolution. Excellent curable resin composition, thus completing the present invention.
  • the present invention is as follows.
  • a curable resin composition comprising (A) carboxyl-containing resin, (B) inorganic filler, (C) thermosetting resin, and (D) photopolymerization initiator,
  • the (D-a) trifunctional or more acylphosphine photoinitiator is contained.
  • a laminate comprising the curable resin composition according to any one of 1st to 6th as a resin layer.
  • An electronic component comprising the cured product according to 8.
  • the present invention it is possible to provide a curable resin composition that is excellent in deep curability, suppresses the occurrence of outgassing, has excellent insulation reliability and resolution, and is also excellent in reflectivity and defoaming properties, laminates, and cured products using the same. and electronic components.
  • the present invention is a curable resin composition characterized by comprising (A) carboxyl group-containing resin, (B) inorganic filler, (C) thermosetting resin, (D) photopolymerization initiator, as the aforementioned (D) ) a photopolymerization initiator including (D-a) an acylphosphine-based photopolymerization initiator having 3 or more functions.
  • Carboxyl group-containing resin can be made alkali-developable by containing a carboxyl group.
  • the (A) carboxyl group-containing resin conventionally known various carboxyl group-containing resins having a carboxyl group in the molecule can be used.
  • carboxyl group-containing resin examples include compounds (any one of oligomers and polymers) listed below.
  • (meth)acrylate refers to the term which collectively refers to acrylate, methacrylate, and these mixtures, and the same applies to other similar expressions.
  • aliphatic diisocyanate branched chain aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate and other diisocyanates, and carboxyl-containing diisocyanates such as dimethylol propionic acid and dimethylol butyric acid Alcohol compounds, polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-based polyols, acrylic-based polyols, bisphenol A-based alkylene oxide adduct diols, phenolic Carboxyl group-containing polyurethane resin obtained by polyaddition reaction of diol compounds such as hydroxyl group and alcoholic hydroxyl group compound.
  • carboxyl-containing diisocyanates such as dimethylol propionic acid and dimethylol butyric acid Alcohol compounds, polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-
  • diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, and aromatic diisocyanate, and polycarbonate polyols, polyether polyols, and polyester polyols , polyolefin polyol, acrylic polyol, bisphenol A series alkylene oxide adduct diol, compound having phenolic hydroxyl group and alcoholic hydroxyl group, etc.
  • a terminal carboxyl group-containing polyurethane resin formed by reacting the terminal of a polyurethane resin with an acid anhydride.
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid and adding a dibasic acid anhydride to the generated primary hydroxyl group.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and a compound containing (meth)acrylic acid, etc.
  • the monocarboxylic acid reaction of unsaturated groups, the alcoholic hydroxyl group of the obtained reaction product reacts with polyacid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipic anhydride. resin.
  • a carboxyl group-containing resin having at least any one of an amide structure and an imide structure.
  • Glycidyl (meth)acrylate, ⁇ -methyl glycidyl (meth)acrylate, and methacrylic acid 3 are further added to the carboxyl group-containing resin described in (1) to (13) above, Carboxyl group-containing resins such as 4-epoxycyclohexyl methyl ester and other compounds having one epoxy group and one or more (meth)acryloyl groups in the molecule.
  • the carboxyl group-containing resin is not particularly limited as long as it has a carboxyl group in the molecule, and the resin skeleton is not particularly limited, but preferably does not have a phenolic skeleton from the viewpoint of further improving insulation reliability, reflectivity, and heat discoloration resistance.
  • the carboxyl group-containing resin does not contain a phenol skeleton, coloring due to thermal deterioration is less likely to occur, and thus the reflectance tends to increase.
  • the phenolic skeleton refers to a skeleton derived from an aromatic compound having one or more phenolic hydroxyl groups.
  • carboxyl group-containing resins it is preferable to contain at least one of the carboxyl group-containing resins described in (1), (7), (8), (10), (11), and (14) above. From the viewpoint of improving further insulation reliability, it is preferable to contain the carboxyl group-containing resin described in the above (1) or (14) obtained by using (1).
  • Carboxyl group-containing resin can be used individually by 1 type or in combination of 2 or more types.
  • the acid value of the carboxyl group-containing resin is preferably in the range of 20 to 120 mgKOH/g, more preferably in the range of 30 to 100 mgKOH/g.
  • the weight-average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, it is usually preferably 2,000 to 150,000.
  • the weight average molecular weight is 2000 or more, the non-tackiness of a dry coating film, the moisture resistance of the coating film after exposure, and resolution are favorable.
  • a weight average molecular weight is 150000 or less, developability and storage stability are favorable. More preferably, it is 5,000 to 100,000.
  • the compounding quantity of the above (A) carboxyl group-containing resin is preferably 5-80 mass % with respect to the total solid content of curable resin composition, More preferably, it is 10-70 mass %, More preferably, it is 20-60 mass %. In the case of 5 to 80% by mass, the strength of the coating film is good, the viscosity of the composition is moderate, and the applicability and the like can be improved.
  • the curable resin composition of this invention contains (B) an inorganic filler.
  • the inorganic fillers may be used alone or in combination of two or more.
  • the compounding quantity of an inorganic filler is preferably the range of 35-60 mass % with respect to the total solid content of curable resin composition, More preferably, it is the range of 40-55 mass %.
  • the compounding quantity of an inorganic filler is 40 mass % or more, it exists in the tendency to obtain a curable resin composition more excellent in soldering heat resistance, suppression of outgassing, insulation reliability, reflectance, and heat discoloration resistance. .
  • the compounding quantity of an inorganic filler is 55 mass % or less, it exists in the tendency to obtain a curable resin composition more excellent in defoaming property, resolution, and deep curability.
  • Examples of (B) inorganic fillers include titanium oxide, silicon dioxide, barium sulfate, barium titanate, Neuburg silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, Silicon nitride, aluminum nitride, etc.
  • at least any one of titanium oxide, silicon dioxide, and barium sulfate is preferably contained, which can suppress curing shrinkage of the curable resin composition and improve properties such as adhesion, hardness, and reflectance.
  • titanium oxide usable in the curable resin composition of the present invention titanium oxide produced by the sulfuric acid method or the chlorine method, rutile-type titanium oxide, anatase-type titanium oxide, or hydrated metal oxide-based titanium oxide can be used.
  • Surface treatment titanium oxide for surface treatment based on organic compounds. Titanium oxide is classified into rutile type and anatase type according to the crystal structure. Among them, rutile-type titanium oxide is preferable. Anatase-type titanium oxide has higher whiteness than rutile-type titanium oxide, so it is commonly used. However, anatase-type titanium oxide has photocatalytic activity, and thus may cause discoloration of the resin in the curable resin composition. On the other hand, although the whiteness of rutile type titanium oxide is slightly inferior to that of anatase type, it has almost no photoactivity, so a stable cured product can be obtained.
  • the amount of titanium oxide compounded relative to the total solids of the curable resin composition is preferably 1% by mass to 55% by mass, more preferably 1.5% by mass to 50% by mass.
  • the average particle diameter of the inorganic filler is preferably 50 ⁇ m or less, more preferably 0.1 to 25 ⁇ m, particularly preferably 0.2 to 10 ⁇ m.
  • the average particle diameter refers to the average particle diameter of a single inorganic filler or an inorganic filler dispersion.
  • a nanofiller having an average particle diameter of 100 nm or less may be used in combination.
  • the average particle diameter of the inorganic filler is a volume average particle diameter (D50) including not only the particle diameter of primary particles but also the particle diameter of secondary particles (aggregate).
  • the aforementioned average particle diameter can be measured using a measuring device based on a laser diffraction method such as Microtrac MT3300EXII manufactured by MicrotracBEL Corp., or a measuring device based on a dynamic light scattering method such as Nanotrac Wave II UT151 manufactured by MicrotracBEL Corp., depending on the average particle diameter. .
  • the (B) inorganic filler may be a surface-treated filler (surface-treated filler).
  • the surface treatment of the inorganic filler is not particularly limited, and surface treatment based on coupling agents such as silane-based, titanate-based, aluminate-based, zircoaluminate-based, etc., alumina treatment, etc. that do not introduce organic fillers can be used.
  • Well-known and customary methods such as surface treatment of groups.
  • (B) inorganic filler a commercial item can be used.
  • Commercially available products of titanium oxide include TR-600, TR-700, TR-750, TR-840 manufactured by Fuji Titanium Industry Co., Ltd., R-550 manufactured by Ishihara Sangyo Co., Ltd., R-580, R -630, R-820, CR-50, CR-58, CR-60, CR-90, CR-97, KR-270, KR-310, KR-380 manufactured by Titan Kogyo, Ltd., etc.
  • Examples of commercially available barium sulfate include Sakai Chemical Co., Ltd. B-30, B-31, B-32, B-33, B-34, B-35, B-35T, and the like.
  • silica products examples include SE-40 (manufactured by Tokuyama), MSV25G (manufactured by Ryusen), MLV-2114 (manufactured by Ryusen), SO-E5 (manufactured by Admatechs), SO-E2 (manufactured by Admatechs )wait.
  • the curable resin composition of this invention contains (C) thermosetting resin.
  • thermosetting resin for example, epoxy resin, blocked isocyanate compound, amino resin, maleimide compound, benzoxazine resin, carbodiimide resin, cyclocarbonate compound, oxa Cyclobutane compounds, episulfide resins, melamine derivatives, etc.
  • Thermosetting resin may be used individually by 1 type, and may use it in combination of 2 or more types.
  • thermosetting resin from the viewpoint of obtaining a curable resin composition that is excellent in deep curability, suppresses the occurrence of outgassing, and is also excellent in physical properties such as insulation reliability and heat discoloration resistance, an epoxy resin is suitable.
  • an epoxy resin for example, known and commonly used epoxy resins such as bisphenol A type, bisphenol F type, aminophenol type, and phenol novolac type epoxy resins can be used suitably.
  • epoxy resins can be used individually or in combination of 2 or more types in curable resin composition of this invention.
  • either a liquid epoxy resin or a solid epoxy resin may be used.
  • thermosetting resins include, for example, jER828, jER834, jER1001, jER1004 manufactured by Mitsubishi Chemical Corporation, EPICLON840, EPICLON850, EPICLON1050, EPICLON2055 manufactured by DIC Corporation, Nippon Steel Chemical & Materials Co., Ltd.
  • Bisphenol A type epoxy resins such as Epotote YD-011, YD-013, YD-127, YD-128 manufactured by the company, and NPEL-128E (all trade names) manufactured by Nan Ya Plastics Co., Ltd.; manufactured by Mitsubishi Chemical Corporation Brominated epoxy resins such as jERYL903, EPICLON152 and EPICLON165 manufactured by DIC Corporation, Epotote YDB-400 and YDB-500 (both trade names) manufactured by Nippon Steel Chemical & Materials Co., Ltd.; jER152 and jER154 manufactured by Mitsubishi Chemical Corporation , EPICLON N-730, EPICLON N-770, EPICLON N-865 manufactured by DIC Corporation, Epotote YDCN-701, YDCN-704 manufactured by Nippon Steel Chemical & Materials Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd., Novolac-type epoxy resins such as EOCN-1025, EOCN-
  • Bisphenol F-type epoxy resins such as Epotote YDF-170, YDF-175, YDF-2004 (all trade names) manufactured by the company; Epotote ST-2004, ST-2007, ST- 3000 (both trade names) and other hydrogenated bisphenol A epoxy resins; jER604 manufactured by Mitsubishi Chemical Corporation, Epotote YH-434 manufactured by Nippon Steel Chemical & Materials Co., Ltd., Sumiepoxy ELM-120 manufactured by Sumitomo Chemical Co., Ltd.
  • Glycidylamine-type epoxy resins such as Glycidylamine type epoxy resins, both are brand names); Cycloaliphatic epoxy resins such as Celoxide 2021 (trade name) manufactured by Daicel Chemical Industry Co., Ltd.; YL-933 manufactured by Mitsubishi Chemical Corporation, Nippon Kayaku Trihydroxyphenylmethane-type epoxy resins such as EPPN-501 and EPPN-502 (both trade names) manufactured by Mitsubishi Chemical Corporation; YL-6056, YX-4000, and YL-6121 (both trade names ) and other xylenol type or biphenol type epoxy resins or their mixtures; EBPS-200 manufactured by Nippon Kayaku Co., Ltd., EPX-30 manufactured by ADEKA Corporation, and EXA-1514 manufactured by DIC Corporation (all Bisphenol S type epoxy resin such as jER157S (trade name) manufactured by Mitsubishi Chemical Corporation; bisphenol A novolak type epoxy resin such as jER157S (trade name) manufactured by Mitsubishi Chemical Corporation; jER YL
  • thermosetting resin 1-50 mass % normally with respect to the total solid content of curable resin composition, More preferably, it is 5-35 mass %.
  • the curable resin composition of the present invention contains (D-a) an acylphosphine-based photopolymerization initiator having a trifunctional or higher function as (D) a photopolymerization initiator.
  • an acylphosphine photopolymerization initiator By compounding an acylphosphine photopolymerization initiator with a function of (D-a)3 or more, it is possible to obtain excellent deep curability, suppression of outgassing, resolution, soldering heat resistance, insulation reliability, reflectance, and thermal discoloration resistance. Also excellent curable resin composition.
  • the trifunctional or more acylphosphine photopolymerization initiator is a photopolymerization initiator having three or more acylphosphine skeletons in one molecule, and is preferably represented by the following formula I.
  • a independently of each other represents O, S or NR 3 ;
  • G is the residue of a polyfunctional compound (core) G-(AH) m+n , wherein each of AH represents an alcoholic hydroxyl group or an amino group or a thiol group;
  • n and n satisfy that m+n is a number between 3 and 10;
  • n is a number between 3 and 8;
  • R 1 and R 2 are independently C 1 -C 18 alkyl, C 6 -C 12 aryl and C 5 -C 12 cycloalkyl, each of which can be unbroken or broken by the following groups: 1 More than one oxygen and/or sulfur atom and/or one or more substituted or unsubstituted imino groups, or R and R can be independently of each other five to six members containing oxygen and/or nitrogen and/or sulfur atoms Heterocyclic group, wherein, aforementioned R 1 and R 2 are each optionally substituted by aryl, alkyl, aryloxy, alkoxy, heteroatom and/or heterocyclic group;
  • Y is O or S
  • R 3 is hydrogen or C 1 -C 4 alkyl
  • the photopolymerization initiator of formula (I) does not contain a photocurable ethylenically unsaturated group.
  • m+n is a number between 3-8, more preferably a number between 3-6.
  • m is a number between 3-6, more preferably a number between 3-5.
  • the compound of formula (I) has alcoholic hydroxyl and/or amino and/or thiol groups.
  • A is only oxygen.
  • G-(AH) m+n is a polyhydric (polyhydric) compound selected from the group consisting of monomeric polyols, oligomer polyols, and polymer polyols, and mixtures thereof.
  • A is sulfur alone.
  • G-(AH) m+n is a polythiol compound.
  • A is nitrogen alone.
  • G-(AH) m+n is a linear or branched polyamine.
  • A is a mixture of oxygen and/or nitrogen and/or sulfur.
  • G-(AH) m+n is a compound containing different functional groups, for example, a compound containing an amino group and a hydroxyl group.
  • G-(AH) m+n has a number average molecular weight of 1500 or less, more preferably 800 or less, further preferably 500 or less.
  • Table 1 shows typical trifunctional or higher acylphosphine photopolymerization initiators included in formula (1).
  • PI-3, PI-4, PI-10, PI-11, PI-12, PI-14, and PI-17 are particularly preferred.
  • a, b, c, and d in Table 1 are each independent numbers, and are appropriately selected so that the number average molecular weight of the trifunctional or higher acylphosphine photopolymerization initiator becomes a desired value.
  • the acylphosphine photopolymerization initiator having (D-a)3 or more functions may be used alone or in combination of two or more.
  • Such a trifunctional or higher acylphosphine photopolymerization initiator can be produced by the method described in Japanese Patent No. 6599446, for example.
  • the curable resin composition of this invention further contains (D-b) a hydroxy ketone type photoinitiator as said (D) photoinitiator.
  • (D-a) an acylphosphine photopolymerization initiator having a trifunctional or higher function and (D-b) a hydroxyketone photopolymerization initiator provides a curable resin composition more excellent in insulation reliability and reflectance.
  • the amount of the (D-b) hydroxyketone-based photopolymerization initiator to be blended is preferably 3% by mass or more and 35% by mass or less, more preferably 3 mass % or more and 30 mass % or less.
  • the compounding quantity of the said (D-b) hydroxy ketone type photoinitiator is 3 mass % or more, the surface curability, insulation reliability, and reflectance of the hardened
  • the compounding quantity of the said (D-b) hydroxy ketone type photoinitiator is 30 mass % or less, surface curability, resolution, deep curability, insulation reliability, and reflectance are further improved.
  • Examples of (D-b) hydroxyketone-based photopolymerization initiators include 2-hydroxy-2-methyl-1-phenylacetone, 1-hydroxycyclohexyl-phenylketone, 1-[4-(2-hydroxyethyl Oxy)phenyl]-2-hydroxy-methylacetone, 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methyl Propan-1-one, etc.
  • Omnirad 184 examples include Omnirad 184, Omnirad 1173, Omnirad 2959, and Omnirad 127 manufactured by IGM RESINS B.V., Inc.
  • photopolymerization initiator other photopolymerization initiators may be used in addition to the (D-a) trifunctional or higher acylphosphine photopolymerization initiator and (D-b) hydroxyketone photopolymerization initiator.
  • photopolymerization initiators are not particularly limited as long as they are generally used in curable resin compositions.
  • photopolymerization initiators examples include monoacylphosphine photopolymerization initiators, bisacylphosphine photopolymerization initiators, benzophenone, N,N'-tetraalkyl-4,4'-di Aminobenzophenone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-methyl-1-[4-(methylthio) Aromatic ketones such as phenyl]-2-morpholino-acetone-1, 4,4'-bis(dimethylamino)benzophenone (Michler's ketone), 4,4'-bis(diethyl Amino)benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1-morpholinobenzophenone)-butanone-1 , 2-ethylanthraquinone, phenanthrene quinone and other aromatic ketones,
  • the aforementioned (D) photopolymerization initiator is preferably composed of only photopolymerization initiators that are liquid at room temperature.
  • the inventors have found that the surface curability of a cured product of a curable resin composition is further improved when only a liquid photopolymerization initiator is used, compared to when a solid photopolymerization initiator is used.
  • room temperature means 25°C.
  • photopolymerization initiators that are liquid at room temperature include Omnipol TP, Omnirad 1173, Omnirad MBF, and 2-hydroxy-2-methyl-1-phenylacetone manufactured by IGM RESINS B.V., Inc.
  • the curable resin composition of this invention can mix
  • the aforementioned photopolymerizable monomer that can be used in the aforementioned curable resin composition is photocured by irradiation with active energy rays to make the resin composition of the present invention insoluble in an aqueous alkali solution, or contribute to the insolubility of the resin composition of the present invention in alkaline aqueous solution.
  • photopolymerizable monomers examples include diacrylates of diols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; hexanediol, trimethylolpropane, and pentaerythritol; , dipentaerythritol, trihydroxyethyl isocyanurate and other polyhydric alcohols or their ethylene oxide adducts or propylene oxide adducts and other polyacrylic esters; phenoxy acrylate, bisphenol A di Acrylic esters, polyacrylic acid esters such as ethylene oxide adducts or propylene oxide adducts of these phenols; glycerin diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether , polyacrylic acid esters of glycidyl ether such as triglycidyl iso
  • examples include: epoxy acrylate resins obtained by reacting polyfunctional epoxy resins such as cresol novolak type epoxy resins with acrylic acid; Epoxy urethane acrylate compounds obtained by reacting acrylates with half carbamate compounds of diisocyanates such as isophorone diisocyanate, etc. This epoxy acrylate-based resin improves photocurability without reducing dry-to-touch properties.
  • the compounding amount thereof is 1 to 50 parts by mass, or more, relative to 100 parts by mass of the aforementioned (A) carboxyl group-containing resin. Preferably it is a ratio of 5 to 30 parts by mass.
  • the said compounding quantity is 1 mass part or more, photocurability becomes high, and it becomes easy to form a pattern by alkali image development after active energy ray irradiation.
  • it is 50 mass parts or less, the solubility to aqueous alkali solution does not fall, and coating-film strength becomes favorable.
  • these photopolymerizable monomers and polymerization initiators may be used alone or as a mixture of two or more kinds.
  • the curable resin composition of this invention may contain the organic solvent used for preparation of a composition, and viscosity adjustment.
  • the organic solvent include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum-based solvents, and the like.
  • ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbit Alcohol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether and other glycol ethers; ethyl acetate, butyl acetate, Diethylene glycol ethyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol butyl ether acetate and other esters; ethanol, propanol, ethylene glycol, propylene glycol, propy
  • Such organic solvents may be used alone or as a mixture of two or more.
  • the curable resin composition of the present invention may also be compounded with well-known and commonly used thickeners such as micropowdered silica, organic bentonite, and montmorillonite, and defoamers such as silicone-based, fluorine-based, and polymer-based antifoaming agents and/or as needed.
  • well-known and commonly used additives such as leveling agents, imidazole-based, thiazole-based, triazole-based silane coupling agents, antioxidants, and rust inhibitors.
  • Another aspect of this invention provides the laminated body which has the said curable resin composition as a resin layer.
  • the laminated body which has the said curable resin composition as a resin layer.
  • it can take the form of a laminated body provided with the 1st film (support body) and the layer which consists of the said curable resin composition formed on this 1st film.
  • the curable resin composition of the present invention is diluted with the above-mentioned organic solvent to adjust to an appropriate viscosity, and the curable resin composition of the present invention is diluted with a chipped wheel coater, a knife coater, a lip coater, a rod coater, or an extruder. Press coater, reverse coater, transfer roll coater, gravure coater, spray coater, etc. to coat the first film with a uniform thickness, usually, dry at a temperature of 50-130°C for 1- In 30 minutes, a resin layer as a dry coating film can be produced.
  • the film thickness of the resin layer is not particularly limited, and is usually appropriately selected within the range of 10 to 150 ⁇ m, preferably 20 to 60 ⁇ m, in terms of the film thickness after drying.
  • a plastic film is used, preferably a polyester film such as polyethylene terephthalate, a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film or the like.
  • the thickness of the first film is not particularly limited, and is usually appropriately selected within the range of 10 to 150 ⁇ m.
  • a peelable second film on the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer.
  • the peelable second film for example, polyethylene film, polytetrafluoroethylene film, polypropylene film, surface-treated paper, etc. can be used.
  • the adhesive force between the resin layer and the second film is less than The adhesive force between the resin layer and the first film is sufficient.
  • Another aspect of the present invention provides a cured product obtained from the aforementioned curable resin composition or a laminate thereof.
  • the curable resin composition of the present invention is adjusted to a viscosity suitable for the coating method as necessary, and it is applied to a printed circuit on which a circuit is formed, for example, by screen printing, curtain coating, spray coating, roll coating, or the like.
  • the organic solvent contained in the composition is volatilized and dried at a temperature of, for example, 60 to 100° C. to form a non-tacky coating film.
  • the obtained coating film or the resin layer of the above-mentioned laminate is selectively exposed by active energy ray irradiation through a photomask formed with a predetermined exposure pattern as necessary, and the unexposed part is developed with a developer, Form a resist pattern.
  • a cured product having high reflectance and excellent discoloration resistance, heat resistance, and flexibility can be obtained as an insulating film of an electronic component.
  • the heating for volatilization drying and thermal curing after coating the curable resin composition of the present invention can use hot air circulation drying furnace, IR furnace, hot plate, convection oven, etc.
  • Another aspect of this invention provides the electronic component which has the said hardened
  • Such electronic components are used, for example, in backlights of liquid crystal displays such as portable terminals, personal computers, and televisions, and light-emitting elements such as LEDs.
  • the curable resin compositions of Examples 1-11 and Comparative Examples 1-3 were obtained by mixing each component shown in Tables 2-3 at the compounding ratio (mass basis, including a diluent solvent) shown there.
  • the weight average molecular weight (Mw) of the resin solution thus obtained was 15,000, the solid content was 39%, and the acid value of the solid content was 79.8 mgKOH/g.
  • the weight-average molecular weight of the obtained carboxyl group-containing resin was obtained by using a pump LC-6AD manufactured by Shimadzu Corporation and three columns Shodex (registered trademark) KF-804, KF-803, and KF manufactured by Showa Denko Corporation. -802 high performance liquid chromatography to determine.
  • triphenylphosphine was injected
  • the solid content of the resin solution thus obtained was 64%, and the acid value of the solid content was 89 mgKOH/g.
  • a solution formed from 150 ml of dichloromethane, 3.49 g of triethylamine and 5.31 g of phenyl(2,4,6-trimethylbenzoyl)phosphine chloride was heated to 50° C. under a nitrogen atmosphere.
  • 1.5 g of Aionico GL/609 (ethoxylated glycerol, Lamberti SpA) were added and the solution was stirred for 2 hours.
  • the resulting reaction mixture was cooled to room temperature and 10 ml of deionized water was added.
  • the solvent was removed under reduced pressure to obtain 2.99 g of a viscous liquid photopolymerization initiator.
  • a solution formed from 70 ml of toluene, 2.44 g of triethylamine and 3.5 g of phenyl(2,4,6-trimethylbenzoyl)phosphine chloride was heated to 50° C. under a nitrogen atmosphere.
  • 3 g of Sorbilene RE/20 (sorbitol ethoxylate, Lamberti SpA) were added and the solution was stirred for 1 hour.
  • the resulting reaction mixture was cooled to room temperature, and 50 ml of deionized water was added.
  • the solvent was removed under reduced pressure to obtain 2.1 g of a viscous liquid photopolymerization initiator.
  • the curable resin compositions of the above-mentioned examples and comparative examples were coated on the entire surface by screen printing on the copper-clad laminate substrate pretreated by polishing and grinding, dried at 80° C. for 30 minutes, and cooled to At room temperature, a resin layer with a thickness of 40 ⁇ m was formed.
  • a resin layer For the resin layer, use a DI exposure machine equipped with an LED light source (Ledia 6 manufactured by SCREEN Co., Ltd.), and perform full-surface exposure with a 385nm light source output of 100% and an exposure amount of 1000mJ/ cm2 , using a 1% by mass sodium carbonate aqueous solution at 30°C , Image development was performed for 50 seconds under the condition of a spray pressure of 0.15 MPa. Then, the resin layer was cured for 60 minutes (post-curing) in the hot-air circulation type drying oven adjusted to 150 degreeC, and the board
  • the curable resin compositions of the above-mentioned examples and comparative examples were coated on the entire surface by screen printing on the FR-4 substrate pretreated by polishing and grinding, and dried at 80° C. for 30 minutes in a hot air circulation drying oven. , cooled to room temperature to form a resin layer with a thickness of 40 ⁇ m.
  • the upper surface (exposed surface) of the above-mentioned composition after drying is formed with a line/space (L/S) of 30 ⁇ m/30 ⁇ m, 40 ⁇ m/40 ⁇ m, 50 ⁇ m/50 ⁇ m, 60 ⁇ m/60 ⁇ m, 70 ⁇ m/70 ⁇ m , 80 ⁇ m/80 ⁇ m, 90 ⁇ m/90 ⁇ m, 100 ⁇ m/100 ⁇ m, and 200 ⁇ m/200 ⁇ m patterns were overlaid with an LED exposure machine (Ledia 6 manufactured by SCREEN Co., Ltd.) with a 385nm light source output power of 100% and an exposure amount of 1000mJ/ cm2 . The negative exposes the resin layer.
  • L/S line/space
  • the process of applying the curable resin compositions of the above-mentioned Examples and Comparative Examples to the dried double-sided printed board in a direction parallel to the pattern so that the cured film thickness becomes 120 ⁇ m by the screen printing method was carried out.
  • the entire face of the pre-treated face After leaving still at room temperature for 30 minutes, it dried at 80 degreeC for 30 minutes in the hot-air circulation type drying oven, and produced the defoaming property evaluation board
  • the defoaming property evaluation substrate was observed with a 20-magnification optical microscope, the number of bubbles between circuits was counted, and the defoaming property was evaluated as follows based on the number of bubbles.
  • the resin surface of the evaluation substrate A was observed and evaluated at a magnification of 40 times using an optical microscope, and the presence or absence of surface damage or development corrosion in a range of 10 cm ⁇ 10 cm was confirmed.
  • the evaluation criteria are as follows.
  • a curable resin composition having an excellent surface state evaluation result has excellent surface curability.
  • the minimum design line width remaining on the substrate was visually confirmed, and the resolution was evaluated according to the following criteria.
  • the minimum design line width exceeds 70 ⁇ m and is 90 ⁇ m or less.
  • L * a * b * of the cured coating film was measured using the spectrophotometer CM-2600d by Konica Minolta Corporation. Then, heat treatment was performed at 200° C. for 1 hour (that is, accelerated deterioration), and L * a * b * was measured in the same manner. From the measured value, ⁇ E * ab was calculated by the following formula.
  • L * 1 , a * 1 , b * 1 respectively represent the value of L * , a *, b * before heat treatment
  • L * 2 , a * 2 , b * 2 respectively represent the value of L * after heat treatment * , a * , b * values.
  • ⁇ E * ab is calculated as the difference between the initial value and the accelerated deterioration in the L * a * b * chromaticity system. The larger the value, the easier it is to change color, which means that the resistance to heat discoloration is low.
  • the evaluation criteria are as follows.
  • ⁇ : ⁇ E * ab is 2 or more and less than 4
  • the opening shape was evaluated according to the following evaluation criteria from the difference between the width of the top of the opening and the width of the bottom.
  • (Bottom value of opening) - (Top value of opening) is 80 ⁇ m or more and less than 100 ⁇ m
  • rosin-based flux was applied to the surface of the cured product, and then immersed in a solder bath at 260° C. for 20 seconds several times. After dipping, it is naturally cooled until the substrate reaches room temperature, and dipped in a solder bath again. After dipping several times, the appearance after cleaning the flux with denatured alcohol was visually observed, and the evaluation was performed according to the following evaluation criteria.
  • a powder sample was collected from the formed cured product, placed in a thermal desorption unit (TDU) manufactured by GERSTEL Co., Ltd., heated at a heat extraction temperature of 260°C for 10 minutes, and collected at -60°C with liquid nitrogen
  • TDU thermal desorption unit
  • the collected exhaust components were separated and analyzed with a gas chromatograph-mass spectrometer (6890N/5973N) manufactured by Agilent Technologies, and quantified in terms of n-dodecane.
  • the exhaust gas in Example 1 was set as 100% by mass, according to the following criteria Make an evaluation.
  • Exhaust component exceeds 150% by mass and is 250% by mass or less
  • the exhaust gas component exceeds 250% by mass.
  • the curable resin composition of the aforementioned examples and comparative examples is coated on the entire surface by screen printing, and then heated by hot air circulation. Drying was carried out at 80° C. for 30 minutes in a drying oven to form a resin layer with a thickness of 40 ⁇ m. Next, it was heated at 150° C. for 60 minutes in a hot-air circulation drying oven to form a cured product of the resin layer, thereby producing an insulation reliability evaluation substrate.
  • the evaluation substrate was placed in a high-temperature and high-humidity tank under an atmosphere of 85°C and a humidity of 85%, and a voltage of 3.5V was applied to conduct an insulation reliability test in the tank.
  • the in-slot insulation resistance value of the cured product when various times elapsed was evaluated in accordance with the following criteria.
  • the reflectance at 450 nm of the obtained cured product was measured using a spectrophotometer CM-2600d manufactured by Konica Minolta Corporation, and evaluation was performed in accordance with the following criteria.
  • the reflectance is less than 70%
  • Example 3 compared with Example 3 in which only the acylphosphine photopolymerization initiator with (D-a) 3 or more functions was used, the acylphosphine photopolymerization initiator with (D-a) 3 or more functions and (D-b) hydroxyl
  • Example 1 to 2 and 10 of the ketone-based photopolymerization initiator the evaluations of the insulation reliability and the reflectance were more excellent results.
  • Example 10 Compared with Example 10 in which a solid (D-b) hydroxyketone photopolymerization initiator was used together with a liquid (D-a) trifunctional or higher acylphosphine photopolymerization initiator, the liquid (D-b) The evaluation of the surface state of Examples 1 and 2 of the hydroxyketone photopolymerization initiator was a more excellent result.
  • the curable resin composition of the present invention is excellent in deep curability, suppresses the occurrence of outgassing, and is also excellent in physical properties such as insulation reliability and thermal discoloration resistance.
  • the curable resin composition of the present invention, laminates using the same, and cured products thereof are suitably used as insulating materials for printed wiring boards of electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

提供深部固化性优异、抑制排气发生、且绝缘可靠性、分辨率之类的物性也优异的固化性树脂组合物、层叠体、固化物及电子部件。一种固化性树脂组合物,其包含(A)含羧基树脂、(B)无机填充剂、(C)热固化性树脂、以及(D)光聚合引发剂,作为前述(D)光聚合引发剂,包含(D-a)3官能以上的酰基膦系光聚合引发剂。

Description

固化性树脂组合物、层叠体、固化物及电子部件 技术领域
本发明涉及固化性树脂组合物、层叠体、固化物及电子部件。
背景技术
近年来,关于电子设备,伴随小型化、高性能化的要求,搭载的半导体芯片的高密度化、高功能化推进,安装半导体芯片的印刷电路板也要求小型高密度化。其结果,最近对印刷电路板所使用的绝缘材料也要求进一步的微细化、高性能化。
作为这种绝缘材料,如专利文献1中记载那样,使用了如下的感光性树脂组合物等,所述组合物含有:具有双酚芴骨架的含羧基树脂、1分子中含1个以上烯属不饱和键的不饱和化合物、酰基氧化膦系光聚合引发剂及环氧树脂。
现有技术文献
专利文献
专利文献1:日本特开2016-139043
发明内容
发明要解决的问题
然而,以往的感光性树脂组合物其深部固化性不充分,无法形成微细图案。另外,特别是对于封装基板等高性能基板所使用的绝缘材料,要求绝缘可靠性、排气抑制之类的特性也更优异,以往的感光性树脂组合物是不足的。
本发明是为了解决这种问题而做出的,其目的在于,提供能够得到能兼顾深部固化性、抑制排气发生、分辨率且绝缘可靠性也优异的固化物的固化性树脂组合物。
用于解决问题的方案
本发明人等进行了深入研究,其结果,通过在包含(A)含羧基树脂、(B)无机填充剂、(C)热固化性树脂、(D)光聚合引发剂的固化性树脂组合物中使用(D-a)3官能以上的酰基膦系光聚合引发剂作为(D)光聚合引发剂,成功获得了深部固化性优异、抑制排气发生、且绝缘可靠性、分辨率之类的物性也优异的固化性树脂组合物,由此完成了本发明。
即,本发明如下所述。
1.一种固化性树脂组合物,其特征在于,包含(A)含羧基树脂、(B)无机填充剂、(C)热固化性树脂、以及(D)光聚合引发剂,
作为前述(D)光聚合引发剂,包含(D-a)3官能以上的酰基膦系光聚合引发剂。
2.根据第1项所述的固化性树脂组合物,其特征在于,前述(D)光聚合引发剂还包含(D-b)羟基酮系光聚合引发剂。
3.根据第2项所述的固化性树脂组合物,其特征在于,相对于(D-a)3官能以上的酰基膦系光聚合引发剂的配混量,前述(D-b)羟基酮系光聚合引发剂的配混量为3质量%以上且30质量%以下。
4.根据第1~第3中任一项所述的固化性树脂组合物,其特征在于,前述(D)光聚合引发剂仅由在室温下为液态的光聚合引发剂组成。
5.根据第1~第3中任一项所述的固化性树脂组合物,其特征在于,(A)含羧基树脂不具有酚骨架。
6.根据第1~第3中任一项所述的固化性树脂组合物,其特征在于,相对于固化性树脂组合物的总固体成分,前述(B)无机填充剂的配混量为40质量%以上且55质量%以下。
7.一种层叠体,其特征在于,其具有第1~第6中任一项所述的固化性树脂组合物作为树脂层。
8.一种固化物,其特征在于,其是使第1项~第6项所述的固化性树脂组合物、或第7项所述的层叠体的树脂层固化而得到的。
9.一种电子部件,其具备8所述的固化物。
发明的效果
根据本发明,能够提供深部固化性优异、抑制排气发生、且绝缘可靠性、分辨率也优异、进而反射率、脱泡性也优异的固化性树脂组合物、使用其的层叠体、固化物及电子部件。
具体实施方式
本发明为一种固化性树脂组合物,其特征在于,包含(A)含羧基树脂、(B)无机填充剂、(C)热固化性树脂、(D)光聚合引发剂,作为前述(D)光聚合引发剂,包含(D-a)3官能以上的酰基膦系光聚合引发剂。
以下对本发明的固化性树脂组合物的各成分进行详细说明。
(A)含羧基树脂
含羧基树脂能够通过包含羧基而制成为碱显影性。作为(A)含羧基树脂,可以使用分子中具有羧基的现有公知的各种含羧基树脂。另外,从光固化性、耐显影性的观点出发,优选除了包含羧基之外还在分子内具有烯属不饱和键,但也可以仅使用不具有烯属不饱和双键的含羧基树脂。
作为含羧基树脂的具体例,可以举出以下中列举的化合物(低聚物和聚合物中的任意者)。需要说明的是,本说明书中,(甲基)丙烯酸酯是指,统称丙烯酸酯、甲基丙烯酸酯和它们的混合物的术语,对于其他类似的表现也同样。
(1)通过(甲基)丙烯酸等不饱和羧酸、与苯乙烯、α-甲基苯乙烯、(甲基)丙烯酸低级烷基酯、异丁烯等含不饱和基团的化合物的共聚而得到的含羧基树脂。
(2)利用脂肪族二异氰酸酯、支链脂肪族二异氰酸酯、脂环式二异氰酸酯、芳香族二异氰酸酯等二异氰酸酯、和二羟甲基丙酸、二羟甲基丁酸等含羧基的二元醇化合物、以及聚碳酸酯系多元醇、聚醚系多元醇、聚酯系多元醇、聚烯烃系多元醇、丙烯酸类多元醇、双酚A系环氧烷加成物二醇、具有酚性羟基和醇性羟基的化合物等二醇化合物的加聚反应而得到的含羧基的聚氨酯树脂。
(3)利用脂肪族二异氰酸酯、支链脂肪族二异氰酸酯、脂环式二异氰酸酯、芳香族二异氰酸酯等二异氰酸酯化合物、和聚碳酸酯系多元醇、聚醚系多元醇、聚酯系多元醇、聚烯烃系多元醇、丙烯酸类多元醇、双酚A系环氧烷加成物二醇、具有酚性羟基和醇性羟基的化合物等二醇化合物的加聚反应而得到聚氨酯树脂,使该聚氨酯树脂的末端与酸酐反应而成的含末端羧基聚氨酯树脂。
(4)利用二异氰酸酯、和双酚A型环氧树脂、氢化双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、联二甲酚型环氧树脂、联苯酚型环氧树脂等2官能环氧树脂的(甲基)丙烯酸酯或其部分酸酐改性物、含羧基的二元醇化合物、以及二醇化合物的加聚反应而得到的含羧基的聚氨酯树脂。
(5)上述(2)或(4)的树脂的合成中加入(甲基)丙烯酸羟基烷基酯等分子中具有1个羟基和1个以上(甲基)丙烯酰基的化合物而进行了末端(甲基)丙烯酰化的含羧基的聚氨酯树脂。
(6)上述(2)或(4)的树脂的合成中加入异佛尔酮二异氰酸酯和季戊四醇三丙烯酸酯的等摩尔反应物等、分子中具有1个异氰酸酯基和1个以上(甲基)丙烯酰基的化合物而进行了末端(甲基)丙烯酰化的含羧基的聚氨酯树脂。
(7)使多官能环氧树脂与(甲基)丙烯酸反应,在存在于侧链的羟基上加成苯二甲酸酐、四氢苯二甲酸酐、六氢苯二甲酸酐等二元酸酐而成的含羧基树脂。
(8)使进一步用表氯醇将2官能环氧树脂的羟基环氧化而成的多官能环氧树脂与(甲基)丙烯 酸反应,在生成的羟基上加成二元酸酐而成的含羧基树脂。
(9)使多官能氧杂环丁烷树脂与二羧酸反应,在生成的伯羟基上加成二元酸酐而成的含羧基的聚酯树脂。
(10)使1分子中具有多个酚性羟基的化合物与环氧乙烷、环氧丙烷等环氧烷反应而得到反应产物,使该反应产物与含不饱和基团的单羧酸反应,使由此得到的反应产物与多元酸酐反应而得到的含羧基树脂。
(11)使1分子中具有多个酚性羟基的化合物与碳酸亚乙酯、碳酸亚丙酯等环状碳酸酯化合物反应而得到反应产物,使该反应产物与含不饱和基团的单羧酸反应,使由此得到的反应产物与多元酸酐反应而得到的含羧基树脂。
(12)使1分子中具有多个环氧基的环氧化合物与对羟基苯乙醇等1分子中具有至少1个醇性羟基和1个酚性羟基的化合物、和(甲基)丙烯酸等含不饱和基团的单羧酸反应,使得到的反应产物的醇性羟基与马来酸酐、四氢苯二甲酸酐、偏苯三酸酐、均苯四酸酐、己二酸酐等多元酸酐反应而得到的含羧基树脂。
(13)具有酰胺结构和酰亚胺结构中的至少任意一者的含羧基树脂。
(14)在上述(1)~(13)等中记载的含羧基树脂上进一步加成(甲基)丙烯酸缩水甘油酯、(甲基)丙烯酸α-甲基缩水甘油酯、甲基丙烯酸3,4-环氧环己基甲酯等分子中具有1个环氧基和1个以上(甲基)丙烯酰基的化合物而成的含羧基树脂。
(A)含羧基树脂只要是分子中具有羧基的树脂即可,对树脂骨架没有特别限定,从绝缘可靠性、反射率、耐热变色性的进一步改善的观点出发,优选不具有酚骨架。含羧基树脂内不含酚骨架的情况下,不易发生由热劣化导致的着色,因此有反射率提高的倾向。酚骨架是指,源自具有1个或多个酚性羟基的芳香族类化合物的骨架。
上述含羧基树脂中,优选包含上述(1)、(7)、(8)、(10)、(11)、(14)中记载的含羧基树脂中的至少任1种。从改善进一步的绝缘可靠性的观点出发,优选包含上述(1)或使用(1)得到的(14)中记载的含羧基树脂。
(A)含羧基树脂可以单独使用1种或使用2种以上组合而成的混合物。
(A)含羧基树脂的酸值优选处于20~120mgKOH/g的范围、更优选为30~100mgKOH/g的范围。通过将(A)含羧基树脂的酸值设为上述范围,良好的碱显影成为可能,能够形成良好的固化物的图案。
(A)含羧基树脂的重均分子量根据树脂骨架而异,通常优选为2000~150000。重均分子量为2000以上的情况下,干燥涂膜的不粘性、曝光后的涂膜的耐湿性、分辨率良好。另一方面,重均分子量为150000以下的情况下,显影性和贮藏稳定性良好。更优选为5000~100000。
上述那样的(A)含羧基树脂的配混量相对于固化性树脂组合物的总固体成分优选为5~80质量%、更优选为10~70质量%、进一步优选为20~60质量%。5~80质量%的情况下,涂膜强度良好,组合物的粘性适度,能够提高涂布性等。
(B)无机填充剂
本发明的固化性树脂组合物包含(B)无机填充剂。(B)无机填充剂可以单独使用1种,也可以组合使用2种以上。
(B)无机填充剂的配混量相对于固化性树脂组合物的总固体成分优选为35~60质量%的范围、更优选为40~55质量%的范围。(B)无机填充剂的配混量为40质量%以上时,有获得焊接耐热性、排气的抑制、绝缘可靠性、反射率、耐热变色性更加优异的固化性树脂组合物的倾向。(B)无机填充剂的配混量为55质量%以下时,有获得脱泡性、分辨率、深部固化性更加优异的固化性树脂组合物的 倾向。
作为(B)无机填充剂,例如有可列举出氧化钛、二氧化硅、硫酸钡、钛酸钡、诺伊堡硅土、滑石、粘土、碳酸镁、碳酸钙、氧化铝、氢氧化铝、氮化硅、氮化铝等。其中,优选包含氧化钛、二氧化硅、硫酸钡之中的至少任一种,能够抑制固化性树脂组合物的固化收缩,改善密合性、硬度、反射率等特性。其中,从反射率的观点出发,特别优选至少包含氧化钛。
作为本发明的固化性树脂组合物中可使用的氧化钛,可以使用通过硫酸法、氯法制造的氧化钛、金红石型氧化钛、锐钛矿型氧化钛、或实施了基于水合金属氧化物的表面处理、基于有机化合物的表面处理的氧化钛。氧化钛根据晶体结构而被分类为金红石型和锐钛矿型。它们之中,优选金红石型氧化钛。锐钛矿型氧化钛与金红石型相比白色度更高,因而常用。但是,锐钛矿型氧化钛具有光催化活性,因此有时引起固化性树脂组合物中的树脂的变色。与此相对,金红石型氧化钛尽管白色度稍差于锐钛矿型,但几乎不具有光活性,因此能够得到稳定的固化物。
(B)无机填充剂包含氧化钛的情况下,从实现由氧化钛带来的反射率提高效果与分辨率的平衡的观点出发,氧化钛的配混量相对于固化性树脂组合物的总固体成分量优选为1质量%以上且55质量%以下、更优选为1.5质量%以上且50质量%以下。
(B)无机填充剂的平均粒径优选为50μm以下、更优选为平均粒径0.1~25μm、特别优选为平均粒径0.2~10μm。此处,平均粒径是指,单独的无机填充剂或无机填充剂分散液的平均粒径。另外,也可以在一部分中组合使用平均粒径100nm以下的纳米填料。此处,本说明书中,无机填充剂的平均粒径是不仅包括一次颗粒的粒径、还包括二次颗粒(聚集体)的粒径在内的体积平均粒径(D50)。前述平均粒径可以与平均粒径相应地使用MicrotracBEL Corp.制的Microtrac MT3300EXII等基于激光衍射法的测定装置、MicrotracBEL Corp.制的Nanotrac Wave II UT151)等基于动态光散射法的测定装置来进行测定。
另外,(B)无机填充剂也可以为经表面处理的填料(表面处理填料)。(B)无机填充剂的表面处理没有特别限定,可以使用基于硅烷系、钛酸酯系、铝酸酯系、锆铝酸酯系等的偶联剂的表面处理、氧化铝处理等不导入有机基团的表面处理等公知惯用的方法。
作为(B)无机填充剂,可以使用市售品。作为氧化钛的市售品,可列举出Fuji Titanium Industry Co.,Ltd.制TR-600、TR-700、TR-750、TR-840、石原产业株式会社制R-550、R-580、R-630、R-820、CR-50、CR-58、CR-60、CR-90、CR-97、Titan Kogyo,Ltd.制KR-270、KR-310、KR-380等等。
作为硫酸钡的市售品,可列举出堺化学株式会社制B-30、B-31、B-32、B-33、B-34、B-35、B-35T等。
作为二氧化硅的市售品,可列举出SE-40(Tokuyama制)、MSV25G(龙森制)、MLV-2114(龙森制)、SO-E5(Admatechs制)、SO-E2(Admatechs制)等。
(C)热固化性树脂
本发明的固化性树脂组合物包含(C)热固化性树脂。作为(C)热固化性树脂,例如可以使用环氧树脂、封端异氰酸酯化合物、氨基树脂、马来酰亚胺化合物、苯并恶嗪树脂、碳二亚胺树脂、环碳酸酯化合物、氧杂环丁烷化合物、环硫树脂、三聚氰胺衍生物等。(C)热固化性树脂可以单独使用1种,也可以组合使用2种以上。
作为(C)热固化性树脂,从获得深部固化性优异、抑制排气发生、且绝缘可靠性、耐热变色性之类的物性也优异的固化性树脂组合物的观点出发,含有环氧树脂是合适的。作为环氧树脂,例如可以适宜使用双酚A型、双酚F型、氨基酚型、苯酚酚醛清漆型的环氧树脂等公知惯用的环氧树脂。
需要说明的是,本发明的固化性树脂组合物中,可以将这些环氧树脂单独使用,或者组合使用2种以上。另外,可以使用液态环氧树脂,也可以使用固体的环氧树脂。
作为(C)热固化性树脂的市售品,可列举出例如三菱化学株式会社制的jER828、jER834、jER1001、jER1004、DIC株式会社制的EPICLON840、EPICLON850、EPICLON1050、EPICLON2055、日铁化学&材料株式会社制的Epotote YD-011、YD-013、YD-127、YD-128、Nan Ya Plastics公司制的NPEL-128E(均为商品名)等双酚A型环氧树脂;三菱化学株式会社制的jERYL903、DIC株式会社制的EPICLON152、EPICLON165、日铁化学&材料株式会社制的Epotote YDB-400、YDB-500(均为商品名)等溴化环氧树脂;三菱化学株式会社制的jER152、jER154、DIC株式会社制的EPICLON N-730、EPICLON N-770、EPICLON N-865、日铁化学&材料株式会社制的Epotote YDCN-701、YDCN-704、日本化药株式会社制的EPPN-201、EOCN-1025、EOCN-100,EOCN-104S、RE-306(均为商品名)等酚醛清漆型环氧树脂;DIC株式会社制的EPICLON830、三菱化学株式会社制的jER807、日铁化学&材料株式会社制的Epotote YDF-170、YDF-175、YDF-2004(均为商品名)等双酚F型环氧树脂;日铁化学&材料株式会社制的Epotote ST-2004、ST-2007、ST-3000(均为商品名)等氢化双酚A型环氧树脂;三菱化学株式会社制的jER604、日铁化学&材料株式会社制的Epotote YH-434、住友化学株式会社制的Sumiepoxy ELM-120(均为商品名)等缩水甘油胺型环氧树脂;Daicel Chemical Industry Co.,Ltd.制的Celoxide2021(商品名)等脂环式环氧树脂;三菱化学株式会社制的YL-933、日本化药株式会社制的EPPN-501、EPPN-502(均为商品名)等三羟基苯基甲烷型环氧树脂;三菱化学株式会社制的YL-6056、YX-4000、YL-6121(均为商品名)等联二甲苯酚型或联苯酚型环氧树脂或它们的混合物;日本化药株式会社制的EBPS-200、株式会社ADEKA制的EPX-30、DIC株式会社制的EXA-1514(均为商品名)等双酚S型环氧树脂;三菱化学株式会社制的jER157S(商品名)等双酚A酚醛清漆型环氧树脂;三菱化学株式会社制的jER YL-931(商品名)等四羟苯基乙烷型环氧树脂;日产化学株式会社制的TEPIC(商品名)等杂环式环氧树脂;日本油脂株式会社制的Blemmer DGT(商品名)等邻苯二甲酸二缩水甘油酯树脂;日铁化学&材料株式会社制的ZX-1063(商品名)等四缩水甘油基二甲苯酚乙烷(tetraglycidyl xylenoyl ethane)树脂;日铁化学&材料株式会社制的ESN-190、ESN-360、DIC株式会社制的HP-4032、EXA-4750、EXA-4700(均为商品名)等含萘基环氧树脂;DIC株式会社制的HP-7200、HP-7200H(均为商品名)等具有二环戊二烯骨架的环氧树脂;日本油脂株式会社制的CP-50S、CP-50M(均为商品名)等甲基丙烯酸缩水甘油酯共聚系环氧树脂;环己基马来酰亚胺与甲基丙烯酸缩水甘油酯的共聚环氧树脂等,这些环氧化合物可以单独使用或组合使用2种以上。
(C)热固化性树脂的配混量相对于固化性树脂组合物的总固体成分通常为1~50质量%、更优选为5~35质量%。
(D)光聚合引发剂
本发明的固化性树脂组合物包含(D-a)3官能以上的酰基膦系光聚合引发剂作为(D)光聚合引发剂。通过配混(D-a)3官能以上的酰基膦系光聚合引发剂,能够得到深部固化性优异、抑制排气发生、且分辨率、焊接耐热性、绝缘可靠性、反射率、耐热变色性也优异的固化性树脂组合物。
(D-a)3官能以上的酰基膦系光聚合引发剂为1分子中具有3个以上的酰基膦骨架的光聚合引发剂,优选由下述式I表示。
Figure PCTCN2022122745-appb-000001
式中,
A彼此独立地表示O、S或NR 3
G是多官能化合物(核芯)G-(A-H) m+n的残基,其中A-H各自表示醇性羟基或氨基或硫醇基;
m及n满足m+n为处于3~10之间的数;
m为处于3~8之间的数;
R 1及R 2彼此独立地是C 1-C 18的烷基、C 6-C 12的芳基及C 5-C 12的环烷基,各自可以不断开或被如下基团断开:1个以上的氧和/或硫原子和/或1个以上的取代或未取代亚氨基,或者R 1及R 2可以彼此独立地是含有氧和/或氮和/或硫原子的五至六元杂环基,其中,前述R 1及R 2各自任选被芳基、烷基、芳氧基、烷氧基、杂原子和/或杂环基团取代;
R 2可以为R 1-(C=O)-;
Y为O或S;
R 3为氢或C 1~C 4的烷基;
其中,式(I)的光聚合引发剂不含光固化性烯属不饱和基团。
优选的是,式(I)中,m+n为处于3~8之间的数、更优选为处于3~6之间的数。
优选的是,式(I)中,m为处于3~6之间的数、更优选为处于3~5之间的数。
当n不是0时,式(I)的化合物具有醇性羟基和/或氨基和/或硫醇基。
本发明的一个方式中,式(I)中,A仅为氧。此时,G-(A-H) m+n为多羟基(多元羟基)化合物,选自由单体多元醇、低聚物多元醇和聚合物多元醇及其混合物组成的组。
本发明的另一个方式中,式(I)中,A为单独的硫。此时,G-(A-H) m+n为多硫醇化合物。
本发明的又另一个方式中,式(I)中,A为单独的氮。此时,G-(A-H) m+n为线型或支链多胺。
式(I)中,A为氧和/或氮和/或硫的混合。此时,G-(A-H) m+n为包含不同官能团的化合物、例如包含氨基及羟基的化合物。
优选的是G-(A-H) m+n具有1500以下、更优选800以下、进一步优选500以下的数均分子量。
将式(1)中包括的代表性的3官能以上的酰基膦系光聚合引发剂示于表1。这些当中,特别优选PI-3、PI-4、PI-10、PI-11、PI-12、PI-14、PI-17。通过包含这种3官能以上的酰基膦系光聚合引发剂,能够得到排气受到抑制、绝缘可靠性更加优异的固化物。
【表1】
Figure PCTCN2022122745-appb-000002
Figure PCTCN2022122745-appb-000003
Figure PCTCN2022122745-appb-000004
Figure PCTCN2022122745-appb-000005
Figure PCTCN2022122745-appb-000006
Figure PCTCN2022122745-appb-000007
Figure PCTCN2022122745-appb-000008
表1中的a、b、c和d分别为独立的数,为了使3官能以上的酰基膦系光聚合引发剂的数均分子量为期望值而适当选择。
本发明的固化性树脂组合物中,可以单独使用(D-a)3官能以上的酰基膦系光聚合引发剂,或者可以组合使用2种以上。
这种3官能以上的酰基膦系光聚合引发剂例如可以通过日本特许6599446号中记载的方法来制造。
本发明的固化性树脂组合物优选进一步包含(D-b)羟基酮系光聚合引发剂作为前述(D)光聚合引发剂。通过(D-a)3官能以上的酰基膦系光聚合引发剂与(D-b)羟基酮系光聚合引发剂的组合,能够得到绝缘可靠性、反射率更加优异的固化性树脂组合物。
前述(D-b)羟基酮系光聚合引发剂的配混量相对于(D-a)3官能以上的酰基膦系光聚合引发剂的配混量优选为3质量%以上且35质量%以下、更优选为3质量%以上且30质量%以下。前述(D-b)羟基酮系光聚合引发剂的配混量为3质量%以上时,固化性树脂组合物的固化物的表面固化性、绝缘可靠性、反射率进一步改善。前述(D-b)羟基酮系光聚合引发剂的配混量为30质量%以下时,表面固化性、分辨率、深部固化性、绝缘可靠性、反射率进一步改善。
作为(D-b)羟基酮系光聚合引发剂,可列举出2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基-苯基酮、1-[4-(2-羟基乙氧基)苯基]-2-羟基-甲基丙酮、2-羟基-1-(4-(4-(2-羟基-2-甲基丙酰基)苄基)苯基)-2-甲基丙烷-1-酮等。
作为市售品,可列举出IGM RESINS B.V.公司制的Omnirad184、Omnirad1173、Omnirad2959、Omnirad127等。
作为前述(D)光聚合引发剂,除了使用(D-a)3官能以上的酰基膦系光聚合引发剂及(D-b)羟基酮系光聚合引发剂之外,还可以使用其它光聚合引发剂。该其它光聚合引发剂只要是通常用于固化性树脂组合物的物质即可,没有特别限制。
作为该其它光聚合引发剂,例如可列举出单酰基膦系光聚合引发剂、双酰基膦系光聚合引发剂、二苯甲酮、N,N’-四烷基-4,4’-二氨基二苯甲酮、2-苄基-2-二甲基氨基-1-(4-吗啉代苯基)-丁酮-1、2-甲基-1-[4-(甲硫基)苯基]-2-吗啉代-丙酮-1等芳香族酮、4,4’-双(二甲基氨基)二苯甲酮(米蚩酮)、 4,4’-双(二乙基氨基)二苯甲酮、4-甲氧基-4’-二甲基氨基二苯甲酮、2-苄基-2-二甲基氨基-1-吗啉代苯酮)-丁酮-1、2-乙基蒽醌、菲醌等芳香族酮、苯偶姻甲醚、苯偶姻乙醚、苯偶姻苯醚等苯偶姻醚、甲基苯偶姻、乙基苯偶姻等苯偶姻、苯偶酰二甲基缩酮等苯偶酰衍生物、2-(邻氯苯基)-4,5-二苯基咪唑二聚体、2-(邻氯苯基)-4,5-二(间甲氧基苯基)咪唑二聚体、2-(邻氟苯基)-4,5-二苯基咪唑二聚体、2-(邻甲氧基苯基)-4,5-二苯基咪唑二聚体、2,4-二(对甲氧基苯基)-5-苯基咪唑二聚体、2-(2,4-二甲氧基苯基)-4,5-二苯基咪唑二聚体等的2,4,5-三芳基咪唑二聚体、9-苯基吖啶、1,7-双(9,9’-吖啶基)庚烷等吖啶衍生物、N-苯基甘氨酸、N-苯基甘氨酸衍生物、香豆素系化合物等等。
前述(D)光聚合引发剂优选仅由在室温下为液态的光聚合引发剂组成。发明人发现了,与使用固体状的光聚合引发剂的情况相比,仅使用液态的光聚合引发剂的情况下,固化性树脂组合物的固化物的表面固化性进一步改善。此处,室温是指25℃。作为在室温下为液态的光聚合引发剂,例如可列举出IGM RESINS B.V.公司制的Omnipol TP、Omnirad 1173、Omnirad MBF、2-羟基-2-甲基-1-苯基丙酮等。
其它成分
本发明的固化性树脂组合物中,可以配混分子中具有烯属不饱和基团的光聚合性单体。
前述固化性树脂组合物中可使用的前述光聚合性单体通过活性能量射线照射而发生光固化,使本发明的树脂组合物不溶于碱水溶液、或有助于本发明的树脂组合物不溶于碱水溶液。作为这种光聚合性单体,可列举出乙二醇、甲氧基四乙二醇、聚乙二醇、丙二醇等二醇的二丙烯酸酯类;己二醇、三羟甲基丙烷、季戊四醇、二季戊四醇、三羟乙基异氰脲酸酯等多元醇或它们的环氧乙烷加成物或环氧丙烷加成物等的多元丙烯酸酯类;苯氧基丙烯酸酯、双酚A二丙烯酸酯、及这些酚类的环氧乙烷加成物或环氧丙烷加成物等的多元丙烯酸酯类;甘油二缩水甘油醚、甘油三缩水甘油醚、三羟甲基丙烷三缩水甘油醚、异氰脲酸三缩水甘油酯等缩水甘油醚的多元丙烯酸酯类;及三聚氰胺丙烯酸酯、和/或与上述丙烯酸酯对应的各甲基丙烯酸酯类等。
进而,可列举出:使甲酚酚醛清漆型环氧树脂等多官能环氧树脂与丙烯酸反应而成的环氧丙烯酸酯树脂;进一步使该环氧丙烯酸酯树脂的羟基与季戊四醇三丙烯酸酯等羟基丙烯酸酯和异佛尔酮二异氰酸酯等二异氰酸酯的半氨基甲酸酯化合物反应而成的环氧氨基甲酸酯丙烯酸酯化合物等。这种环氧丙烯酸酯系树脂能提高光固化性,而不会降低指触干燥性。
包含这种在分子中具有2个以上烯属不饱和基团的光聚合性单体的情况下,其配混量相对于前述(A)含羧基树脂100质量份为1~50质量份、更优选为5~30质量份的比例。前述配混量为1质量份以上的情况下,光固化性变高,容易通过活性能量射线照射后的碱显影来形成图案。另一方面,50质量份以下的情况下,对碱水溶液的溶解性不会降低,涂膜强度变得良好。
本发明的固化性组合物中,配混有前述光聚合性单体的情况下,这些光聚合性单体及聚合引发剂可以单独使用或以2种以上的混合物的形式使用。
进而,本发明的固化性树脂组合物也可以含有用于组合物的制备、粘度调整的有机溶剂。作为有机溶剂,可列举出酮类、芳香族烃类、二醇醚类、二醇醚乙酸酯类、酯类、醇类、脂肪族烃、石油系溶剂等。更具体而言,有甲基乙基酮、环己酮等酮类;甲苯、二甲苯、四甲基苯等芳香族烃类;溶纤剂、甲基溶纤剂、丁基溶纤剂、卡必醇、甲基卡必醇、丁基卡必醇、丙二醇单甲醚、二丙二醇单甲醚、二丙二醇二乙醚、三乙二醇单乙醚等二醇醚类;乙酸乙酯、乙酸丁酯、二乙二醇乙醚乙酸酯、二丙二醇甲醚乙酸酯、丙二醇甲醚乙酸酯、丙二醇乙醚乙酸酯、丙二醇丁醚乙酸酯等酯类;乙醇、丙醇、乙二醇、丙二醇等醇类;辛烷、癸烷等脂肪族烃;石油醚、石脑油、氢化石脑油、溶剂石脑油等石油系溶剂等。
这种有机溶剂可以单独使用或以2种以上的混合物的形式使用。
本发明的固化性树脂组合物还可以根据需要配混微粉二氧化硅、有机膨润土、蒙脱石等公知惯用的增稠剂、有机硅系、氟系、高分子系等的消泡剂和/或流平剂、咪唑系、噻唑系、三唑系等的硅烷偶联剂、抗氧化剂、防锈剂等那样的公知惯用的添加剂类。
本发明的另一个方式提供具有上述固化性树脂组合物作为树脂层的层叠体。例如可以制成层叠体的形态,所述层叠体具备第一膜(支承体)和在该第一膜上形成的由上述固化性树脂组合物形成的层。
层叠体化时,将本发明的固化性树脂组合物用前述有机溶剂稀释并调整为适当的粘度,用缺角轮涂布机、刮刀涂布机、唇口涂布机、棒涂机、挤压涂布机、反向涂布机、转移辊涂布机、凹版涂布机、喷涂机等以均匀的厚度涂布在第一膜上,通常,在50~130℃的温度下干燥1~30分钟,能够制成作为干燥涂膜的树脂层。对树脂层的膜厚没有特别限制,通常在以干燥后的膜厚计为10~150μm、优选为20~60μm的范围内适宜选择。
作为第一膜,使用塑料薄膜,优选使用聚对苯二甲酸乙二醇酯等聚酯薄膜、聚酰亚胺薄膜、聚酰胺酰亚胺薄膜、聚丙烯薄膜、聚苯乙烯薄膜等塑料薄膜。对第一膜的厚度没有特别限制,通常在10~150μm的范围内适宜选择。
此时,在第一膜上形成了树脂层后,为了防止灰尘附着于在树脂层的表面等目的,优选在树脂层的表面进一步层叠可剥离的第二膜。作为可剥离的第二膜,例如可以使用聚乙烯薄膜、聚四氟乙烯薄膜、聚丙烯薄膜、经表面处理的纸等,在剥离第二膜时,树脂层与第二膜的粘接力小于树脂层与第一膜的粘接力即可。
本发明的另一方式提供由前述固化性树脂组合物或其层叠体得到的固化物。
本发明的固化性树脂组合物根据需要调整为适于涂布方法的粘度,将其例如通过丝网印刷法、帘涂法、喷涂法、辊涂法等方法涂布到形成有电路的印刷电路板上,根据需要在例如60~100℃的温度下使组合物中所含的有机溶剂挥发干燥,从而能够形成不粘性的涂膜。然后,对于得到的涂膜或前述层叠体的树脂层,根据需要,透过形成有规定曝光图案的光掩模选择性地通过活性能量射线照射进行曝光,将未曝光部用显影液进行显影,形成抗蚀图案。进而,通过例如加热至140~180℃的温度使其热固化,从而得到高反射率且具有优异的耐变色性、耐热性、柔软性的固化物作为电子部件的绝缘膜。
用于在涂布本发明的固化性树脂组合物后进行的挥发干燥、热固化的的加热可以使用热风循环式干燥炉、IR炉、热板、对流烘箱等(使用具备基于蒸气的空气加热方式的热源的设备,使干燥机内的热风对流接触的方法;以及,利用喷嘴向支承体吹送的方式)来进行。
本发明的另一方式提供具有前述固化物的电子部件。这种电子部件用于例如便携终端、个人计算机、电视等的液晶显示器的背光、LED等发光元件。
实施例
以下示出实施例和比较例,对本发明进行具体说明,但本发明当然不限定于下述实施例。需要说明的是,以下“份”和“%”在没有特别说明的情况下均为质量基准。
通过将表2~3所示的各成分以其示出的配混比(质量基准、包含稀释溶剂)进行混合,从而得到实施例1~11和比较例1~3的固化性树脂组合物。
【表2】
Figure PCTCN2022122745-appb-000009
【表3】
Figure PCTCN2022122745-appb-000010
*-:因无法制作基板而未评价
备注:
A-1合成例1的含羧基树脂溶液(固体成分39%)
A-2合成例2的含羧基树脂溶液(固体成分64%)
B-1 CR-97、石原产业株式会社、氧化钛(固体成分100%)
B-2 SiO 2(固体成分100%)Admatechs株式会社制SO-E2
B-3 BaSO 4(固体成分100%)堺化学工业株式会社制BARIACE B-30
C-1 NPEL-128E、Nan Ya Plastics公司制、双酚A型环氧树脂(固体成分100%)
C-2 N-770-75EA、DIC社制、苯酚酚醛清漆型的多官能环氧树脂(固体成分75%)
D-1合成例3的光聚合引发剂,表1的PI-3的结构所示的3官能以上的酰基氧化膦型、在室温下为液态的光聚合引发剂
D-2合成例4的光聚合引发剂,表1的PI-4的结构所示的3官能以上的酰基氧化膦型、在室温下为液态的光聚合引发剂
D-3 2-羟基-2-甲基-1-苯基丙酮(2-Hydroxy-2-methyl-1-phenylpropanone)、在室温下为液态的光聚合引发剂
D-4 1-羟基环己基-苯基酮(1-hydroxycyclohexyl-phenyl ketone)、在室温下为固态的光聚合引发剂
D-5Omnirad 369、2-苄基-2-(二甲氨基)-1-[4-(4-吗啉基)苯基]-1-丁酮(2-Benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone)、在室温下为固体状的光聚合引发剂、IGM RESINS B.V.公司制
D-6 Omnirad 819、phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide、在室温下为固体状的光聚合引发剂、IGM RESINS B.V.公司制
合成例1(不具有酚骨架含羧基树脂的合成)
在具备温度计、搅拌机、滴液漏斗和回流冷凝器的烧瓶中将作为溶剂的二丙二醇单甲醚900.0份加热至110℃,用3小时滴加甲基丙烯酸174.0份、ε-己内酯改性甲基丙烯酸(平均分子量314)174.0份、甲基丙烯酸甲酯77.0份、二丙二醇单甲醚222.0份、以及作为聚合催化剂的过氧化2-乙基己酸叔丁酯(日本油脂株式会社制Perbutyl O)12.0份的混合物,进而在110℃下搅拌3小时,使聚合催化剂失活,得到树脂溶液。
将该树脂溶液冷却后,添加Daicel公司制Cyclomer A200(甲基丙烯酸3,4-环氧环己基甲酯)289.0份、三苯基膦3.0份、对苯二酚单甲醚1.3份,升温至100℃,进行搅拌,从而进行环氧基的开环加成反应,得到不具有酚骨架的含羧基树脂溶液。
由此得到的树脂溶液的重均分子量(Mw)为15000、且固体成分为39%、固形物的酸值为79.8mgKOH/g。
需要说明的是,得到的含羧基树脂的重均分子量利用连接有岛津制作所株式会社制泵LC-6AD与昭和电工株式会社制三根柱Shodex(注册商标)KF-804、KF-803、KF-802的高效液相色谱仪来测定。
合成例2(含有酚骨架的含羧基树脂的合成)
在二乙二醇单乙醚乙酸酯600g中投入邻甲酚酚醛清漆型环氧树脂〔DIC株式会社制、EPICLON N-695、软化点95℃、环氧当量214、平均官能团数7.6〕1070g(缩水甘油基数(芳香环总数):5.0摩尔)、丙烯酸360g(5.0摩尔)、以及对苯二酚1.5g,加热搅拌至100℃,均匀溶解。
接着,投入三苯基膦4.3g,加热至110℃并反应2小时后,升温至120℃,进而进行12小时反应。在得到的反应液中投入芳香族系烃(Solvesso150)415g、四氢邻苯二甲酸酐456.0g(3.0摩尔),在110℃下进行4小时反应,冷却,得到不具有酚骨架的含羧基树脂溶液。
由此得到的树脂溶液的固体成分为64%、固体成分的酸值为89mgKOH/g。
合成例3(PI-3的光聚合引发剂的合成)
将由150ml二氯甲烷、3.49g三乙胺和5.31g苯基(2,4,6-三甲基苯甲酰基)氯化膦形成的溶液在氮气气氛下加热至50℃。添加1.5g Aionico GL/609(乙氧基化甘油,Lamberti S.p.A),将溶液搅拌2小时。将所得反应混合物冷却至室温,添加10ml去离子水。分离有机相,用100ml饱和NaHCO 3水溶液洗涤3次,用100ml水洗涤2次,在Na 2SO 4上干燥。在减压下去除溶剂,得到粘稠液体的光聚合引发剂2.99g。
合成例4(PI-4的光聚合引发剂的合成)
将由70ml甲苯、2.44g三乙胺和3.5g苯基(2,4,6-三甲基苯甲酰基)氯化膦形成的溶液在氮气气氛下加热至50℃。添加3g Sorbilene RE/20(乙氧基化山梨糖醇,Lamberti S.p.A),将溶液搅拌1小时。将所得反应混合物冷却至室温,添加50ml去离子水。分离有机相,用50ml饱和NaHCO 3水溶液洗涤1次,用500ml水洗涤2次,最后在Na 2SO 4上干燥。在减压下去除溶剂,得到粘稠液体的光聚合引发剂2.1g。
特性试验
评价基板A的制作
将上述实施例和比较例的固化性树脂组合物通过丝网印刷而整面涂布到通过抛光研磨进行了前处理的敷铜箔层积板基板上,在80℃下干燥30分钟,冷却至室温,形成厚度40μm的树脂层。对于树脂层,使用搭载LED光源的DI曝光机(SCREEN公司制Ledia6),以385nm光源输出功率100%且1000mJ/cm 2的曝光量进行整面曝光,使用30℃的1质量%的碳酸钠水溶液,以喷雾压力0.15MPa的条件进行50秒显影。然后,用调整至150℃的热风循环式干燥炉使树脂层固化60分钟(后固化),得到评价基板A。
评价基板B的制作
将上述实施例和比较例的固化性树脂组合物通过丝网印刷而整面涂布到通过抛光研磨进行了前处理的FR-4基板上,用热风循环式干燥炉在80℃下干燥30分钟,冷却至室温,形成厚度40μm的树脂层。对于树脂层的表面,将干燥后的上述组合物的上表面(露出面)用形成有线/间隔(L/S)为30μm/30μm、40μm/40μm、50μm/50μm、60μm/60μm、70μm/70μm、80μm/80μm、90μm/90μm、100μm/100μm、200μm/200μm的图案的负片覆盖,使用LED曝光机(SCREEN公司制Ledia6),以385nm光源输出功率100%且1000mJ/cm 2的曝光量隔着负片对树脂层进行曝光。然后,使用30℃的1质量%的碳酸钠水溶液,以喷雾压力0.15MPa的条件进行50秒显影。然后,用调整至150℃的热风循环式干燥炉使树脂层固化60分钟(后固化),得到评价基板B。
(1)脱泡性评价
在具有铜厚105μm、L/S为40μm/300μm、电路长度为2cm的直线图案的双面印刷基板的一个面上,进行抛光研磨作为前处理,然后,水洗并使水充分干燥。
接着,将上述实施例和比较例的固化性树脂组合物通过丝网印刷法以固化后的膜厚成为120μm的方式、沿与图案平行的方向涂布于干燥后的双面印刷基板的进行过前处理的面的整面。在室温下静置30分钟后,用热风循环式干燥炉在80℃下干燥30分钟,制作脱泡性评价基板。对脱泡性评价基板用20倍的光学显微镜进行观察,计数电路与电路之间的气泡数,根据气泡数如下评价脱泡性。
◎:100μm以上的气泡为5个以下
〇:100μm以上的气泡超过5个且为10个以下
(2)表面状态评价
使用光学显微镜以40倍的倍率观测评价基板A的树脂表面,确认10cm×10cm的范围内存在的表面的损伤或显影腐蚀的有无。评价基准如下所述。
◎:未发生损伤或显影腐蚀。
〇:发生了显影腐蚀,确认到不足10个的损伤。
×:发生了显影腐蚀,且确认到10个以上的损伤。
表面状态评价的结果优异的固化性树脂组合物,其表面固化性优异。
(3)分辨率评价
对于评价基板B,目视确认基板上残留的最小设计线宽,据此按照以下的基准进行分辨率的评价。
◎:在最小设计线宽70μm以下残留线
〇:在最小设计线宽超过70μm且为90μm以下残留线
×:设计线宽超过90μm的情况下也完全未残留线
(4)耐热变色性评价
对于上述评价基板A,使用柯尼卡美能达公司制分光测色计CM-2600d测定固化涂膜的L *a *b *。然后,在200℃下进行1小时加热处理(即加速劣化),以同样的方法测定L *a *b *。由测定所得的值用下述式算出ΔE *ab。
ΔE *ab=((L * 2-L * 1) 2+(a * 2-a * 1) 2+(b * 2-b * 1) 2) 0.5
(式中,L * 1、a * 1、b * 1分别表示加热处理前的L *、a *、b *的值,L * 2、a * 2、b * 2分别表示加热处理后的L *、a *、b *的值。)
此处,ΔE *ab计算的是L *a *b *色度体系中初始值与加速劣化后的差,数值越大,则越容易发生变色,表示耐热变色性低。
评价基准如下。
◎:ΔE *ab不足2
〇:ΔE *ab为2以上且不足4
×:ΔE *ab为4以上
(5)深部固化性
对于评价基板B,用光学显微镜观测基板上残留的线宽200μm的截面,由其开口Top的宽度与Bottom的宽度的差异,以下述评价基准评价开口形状。
◎:(开口Bottom宽度)-(开口Top宽度)不足80μm
〇:(开口Bottom值)-(开口Top值)为80μm以上且不足100μm
×:(开口Bottom值)-(开口Top值)为100μm以上
开口Top值的宽度与Bottom的宽度的差异越小,则表示其为深部固化性越优异的固化性树脂组合物。需要说明的是,比较例1、3中,未残留200μm的线,因此无法评价深部固化性,记作×评价。
(6)焊接耐热性
对于评价基板A,向固化物表面涂布松香系助焊剂后,在260℃的焊料槽中数次浸渍20秒。浸渍后,自然冷却至基板达到室温,再次向焊料槽中浸渍。进行数次浸渍后,目视观察用变性酒精清洗助焊剂后的外观,按照以下的评价基准进行评价。
◎:即使进行4次以上在焊料槽中的浸渍,也未观察到固化物的剥离。
〇:即使进行2次以上在焊料槽中的浸渍,,也未观察到固化物的剥离,但是在进行4次时观察到固化物的剥离。
×:在进行2次在焊料槽中的浸渍时,观察到固化物的剥离。
(7)排气
对于评价基板A,从形成的固化物采集粉末样品,放入到GERSTEL株式会社制热脱附装置(TDU)后,以260℃的热提取温度加热10分钟,用液氮在-60℃下收集所发生的排气成分。收集的排气成分用Agilent Technologies公司制气相色谱-质谱仪(6890N/5973N)进行分离分析,以正十二烷换算定量,将实施例1的排气量设为100质量%,按照以下的基准进行评价。
◎:排气成分为150质量%以下
〇:排气成分超过150质量%且为250质量%以下
×:排气成分超过250质量%。
(8)绝缘可靠性
将形成有L/S=100μm/100μm的梳型电极的基板通过抛光研磨进行前处理后,通过丝网印刷整面涂布前述实施例及比较例的固化性树脂组合物后,用热风循环式干燥炉在80℃下干燥30分钟,形成厚 度40μm的树脂层。接着,用热风循环式干燥炉在150℃下加热60分钟,形成树脂层的固化物,制作绝缘可靠性评价基板。将评价基板放入85℃、湿度85%的气氛下的高温高湿槽,施加电压3.5V,进行槽内绝缘可靠性试验。对于固化物经过各种时间时的槽内绝缘电阻值,按照下述判断基准进行评价。
◎:经过800小时后为10 7Ω以上
〇:经过500小时后为10 7Ω以上,但经过800小时时不足10 7Ω
×:经过500小时时不足10 7Ω
(9)反射率
对于评价基板A,使用柯尼卡美能达公司制分光测色计CM-2600d测定所得到的固化物的450nm下的反射率,按照下述判断基准进行评价。
◎:反射率75%以上
〇:反射率70%以上且不足75%
×:反射率不足70%
将前述各评价试验的结果一并示于上述表2~3。
由表2~3明显可见,作为(D)光聚合引发剂使用(D-a)3官能以上的酰基膦系光聚合引发剂的实施例1~11的脱泡性、分辨率、深部固化性、排气、绝缘可靠性、反射率的评价均为优异的结果。需要说明的是,与仅使用(D-a)3官能以上的酰基膦系光聚合引发剂的实施例3相比,同时使用(D-a)3官能以上的酰基膦系光聚合引发剂和(D-b)羟基酮系光聚合引发剂的实施例1~2、10的绝缘可靠性、反射率的评价为更加优异的结果。其中,跟与液态的(D-a)3官能以上的酰基膦系光聚合引发剂一起还使用了固体状的(D-b)羟基酮系光聚合引发剂的实施例10相比,使用液态的(D-b)羟基酮系光聚合引发剂的实施例1~2的表面状态的评价为更加优异的结果。
与此相对,与(D-b)羟基酮系光聚合引发剂一起使用了非酰基膦系的光聚合引发剂的比较例1的表面状态、分辨率、深部固化性、焊接耐热性、排气、绝缘可靠性、反射率、耐热变色性变得不良。仅使用(D-b)羟基酮系光聚合引发剂的比较例2的表面状态、分辨率、深部固化性变得不良,无法制作评价基板。与(D-b)羟基酮系光聚合引发剂一起还使用了2官能的酰基膦系的光聚合引发剂的比较例3的分辨率、深部固化性、排气、绝缘可靠性、反射率变得不良。
由这些结果可以判明,本发明的固化性树脂组合物的深部固化性优异、抑制排气发生、且绝缘可靠性、耐热变色性之类的物性也优异。本发明的固化性树脂组合物、使用其的层叠体、它们的固化物适宜用于电子部件的印刷电路板所用的绝缘材料。

Claims (9)

  1. 一种固化性树脂组合物,其特征在于,包含(A)含羧基树脂、(B)无机填充剂、(C)热固化性树脂、以及(D)光聚合引发剂,
    作为所述(D)光聚合引发剂,包含(D-a)3官能以上的酰基膦系光聚合引发剂。
  2. 根据权利要求1所述的固化性树脂组合物,其特征在于,所述(D)光聚合引发剂还包含(D-b)羟基酮系光聚合引发剂。
  3. 根据权利要求2所述的固化性树脂组合物,其特征在于,相对于(D-a)3官能以上的酰基膦系光聚合引发剂的配混量,所述(D-b)羟基酮系光聚合引发剂的配混量为3质量%以上且30质量%以下。
  4. 根据权利要求1~3中任一项所述的固化性树脂组合物,其特征在于,所述(D)光聚合引发剂仅由在室温下为液态的光聚合引发剂组成。
  5. 根据权利要求1~3中任一项所述的固化性树脂组合物,其特征在于,(A)含羧基树脂不具有酚骨架。
  6. 根据权利要求1~3中任一项所述的固化性树脂组合物,其特征在于,相对于固化性树脂组合物的总固体成分,所述(B)无机填充剂的配混量为40质量%以上且55质量%以下。
  7. 一种层叠体,其特征在于,其具有权利要求1~6中任一项所述的固化性树脂组合物作为树脂层。
  8. 一种固化物,其特征在于,其是使权利要求1~6中任一项所述的固化性树脂组合物、或权利要求7所述的层叠体的树脂层固化而得到的。
  9. 一种电子部件,其具备权利要求8所述的固化物。
PCT/CN2022/122745 2021-09-30 2022-09-29 固化性树脂组合物、层叠体、固化物及电子部件 WO2023051726A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280048169.7A CN117616334A (zh) 2021-09-30 2022-09-29 固化性树脂组合物、层叠体、固化物及电子部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111161250.XA CN115903377A (zh) 2021-09-30 2021-09-30 固化性树脂组合物、干膜、固化物及电子部件
CN202111161250.X 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051726A1 true WO2023051726A1 (zh) 2023-04-06

Family

ID=85750351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122745 WO2023051726A1 (zh) 2021-09-30 2022-09-29 固化性树脂组合物、层叠体、固化物及电子部件

Country Status (2)

Country Link
CN (2) CN115903377A (zh)
WO (1) WO2023051726A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569389A (zh) * 2015-10-12 2017-04-19 东友精细化工有限公司 自发光感光树脂组合物、滤色器和包括滤色器的显示设备
CN112920730A (zh) * 2019-12-05 2021-06-08 日东电工株式会社 层叠体
CN113448166A (zh) * 2020-03-25 2021-09-28 太阳油墨制造株式会社 固化性树脂组合物、干膜、固化物和电子部件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569389A (zh) * 2015-10-12 2017-04-19 东友精细化工有限公司 自发光感光树脂组合物、滤色器和包括滤色器的显示设备
CN112920730A (zh) * 2019-12-05 2021-06-08 日东电工株式会社 层叠体
CN113448166A (zh) * 2020-03-25 2021-09-28 太阳油墨制造株式会社 固化性树脂组合物、干膜、固化物和电子部件

Also Published As

Publication number Publication date
CN115903377A (zh) 2023-04-04
CN117616334A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
KR102624058B1 (ko) 경화성 수지 조성물, 드라이 필름, 경화물 및 프린트 배선판
KR20140110954A (ko) 드라이 필름 및 그것을 사용한 프린트 배선판, 프린트 배선판의 제조 방법, 및 플립 칩 실장 기판
JP6877202B2 (ja) ネガ型光硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP6698333B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP6767153B2 (ja) ドライフィルム、硬化物およびプリント配線板
JP2017198747A (ja) ドライフィルム、硬化物およびプリント配線板
JP2017003967A (ja) アルカリ現像可能な樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2022025366A (ja) ドライフィルム、ドライフィルムセット、その硬化物および電子部品
JP2020166207A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2020148815A (ja) 硬化性樹脂組成物、そのドライフィルムおよび硬化物、これを有する電子部品並びに硬化性樹脂組成物の硬化物の製造方法
JP6748478B2 (ja) ドライフィルム、硬化物およびプリント配線板
KR102501591B1 (ko) 경화성 수지 조성물, 드라이 필름, 경화물 및 프린트 배선판
WO2020202691A1 (ja) 感光性樹脂組成物、ドライフィルム、硬化物、および、電子部品
JP7187227B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP7113644B2 (ja) ドライフィルム、硬化物およびプリント配線板
JP7216480B2 (ja) 光硬化性熱硬化性樹脂組成物及びドライフィルム及び硬化物ならびにプリント配線板
TWI819431B (zh) 阻焊劑組合物、乾膜、印刷線路板及其製造方法
WO2023051726A1 (zh) 固化性树脂组合物、层叠体、固化物及电子部件
JP2021138916A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物および電子部品
JP6783600B2 (ja) 硬化性樹脂組成物、ドライフィルム、プリント配線板、および、プリント配線板の製造方法
KR20240072152A (ko) 경화성 수지 조성물, 라미네이트, 경화 생성물 및 전자 부품
WO2023051718A1 (zh) 固化性树脂组合物、层叠体、固化物及电子部件
JP7383388B2 (ja) 硬化性組成物、ドライフィルム、硬化物および電子部品
JP7254567B2 (ja) 硬化性組成物
TW202136404A (zh) 硬化性樹脂組成物、乾膜、硬化物及電子零件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280048169.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2401001843

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20247009898

Country of ref document: KR

Kind code of ref document: A