WO2023045465A1 - 一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料 - Google Patents

一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料 Download PDF

Info

Publication number
WO2023045465A1
WO2023045465A1 PCT/CN2022/102388 CN2022102388W WO2023045465A1 WO 2023045465 A1 WO2023045465 A1 WO 2023045465A1 CN 2022102388 W CN2022102388 W CN 2022102388W WO 2023045465 A1 WO2023045465 A1 WO 2023045465A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
phthalonitrile
reaction
source
phthalocyanine
Prior art date
Application number
PCT/CN2022/102388
Other languages
English (en)
French (fr)
Inventor
权于
王贤丰
高振聪
解英
张秋菊
Original Assignee
鞍山七彩化学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鞍山七彩化学股份有限公司 filed Critical 鞍山七彩化学股份有限公司
Publication of WO2023045465A1 publication Critical patent/WO2023045465A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0671Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having halogen atoms linked directly to the Pc skeleton

Definitions

  • the invention relates to the field of chemical industry, in particular to a method for preparing chlorinated phthalocyanine pigments and the prepared chlorinated phthalocyanine pigments.
  • Phthalocyanine green is a kind of phthalocyanine pigment, it is the product of chlorination or chlorine and bromine mixed halogenation of phthalocyanine blue (ie copper phthalocyanine), with different numbers of substituted halogen atoms on the benzene ring, it shows different color.
  • the existing production process includes direct condensation process and direct halogenation process.
  • the direct condensation process chlorinate phthalic acid into tetrachlorophthalic anhydride or tetrachlorophthalonitrile, and then conduct condensation reaction with copper salt to obtain phthalocyanine green.
  • Direct halogenation process react phthalonitrile with copper salt to produce copper phthalocyanine, and then chlorinate to produce phthalocyanine green, that is, halogenated copper phthalocyanine.
  • the chlorination reaction to prepare phthalocyanine green after the synthesis of copper phthalocyanine is not only low in efficiency, but also requires media such as AlCl and NaCl when the direct halogenation process is adopted, and the yield is low, the purity is low, the corrosion is large, and the three wastes significantly, the follow-up treatment is cumbersome, and during the chlorination process, the copper atoms in the copper phthalocyanine are often replaced by aluminum, which makes the product dull and affects the quality.
  • the existing patent CN103740125A solves the problem of three wastes caused by catalysts and media, etc., it uses a copper salt reaction bed to carry copper salt, the contact between raw materials is limited, and the generated copper phthalocyanine is easy to form a package on the copper salt, resulting in copper The conversion rate of salt is not high, the product impurities are increased, and the continuous production is affected.
  • the purpose of the present invention is to solve the problems in the above-mentioned prior art, and to provide a method for chlorinating phthalocyanine pigments, which does not require the participation of process media such as AlCl and NaCl, and can continuously prepare chlorinated phthalocyanine in one step Department of pigments.
  • the second purpose is to increase the conversion rate of the metal source in the raw material, so that high-quality chlorinated phthalocyanine pigments can be obtained through simple separation.
  • the inventors of the present invention have studied the method for synthesizing chlorinated phthalocyanine pigments by the contact reaction of chlorine gas, phthalonitrile and powdered metal source, and found that chlorine gas is used as carrier gas to make phthalonitrile and powdery
  • the contact reaction of metal sources in a fluidized state without the participation of process media such as AlCl 3 and NaCl, can directly synthesize chlorinated phthalocyanine pigments in one step, which provides a new idea for the preparation of chlorinated phthalocyanine pigments.
  • the first technical solution of the present invention is a method for preparing chlorinated phthalocyanine pigments, comprising: first step S1, preheating chlorine gas, phthalonitrile and powdered metal sources to 200-300°C; second step S2 , using chlorine gas to fluidize phthalonitrile and powdered metal source, and add it into the reaction device in a fluidized state, and the amount of phthalonitrile relative to the powdered metal source is excessive; the third step S3 is to control the temperature in the reaction device to 150-380 °C, the reaction time is controlled to be 0.01-10min; the fourth step S4 is to separate the solid matter from the reactant to obtain a chlorinated phthalocyanine pigment; the metal source is selected from iron, nickel, zinc, aluminum, sodium, cobalt, At least one of titanium, magnesium, palladium, manganese, copper or salts thereof.
  • the chlorine gas, phthalonitrile and powdery metal source are heated to 200-300°C in a pre-heated manner, and the phthalonitrile and powdery metal source are added in a fluidized state by chlorine gas Into the reaction device, the uniformity of temperature is ensured, and the uniformity of mixing chlorine gas, phthalonitrile and powdered metal source is also ensured. When the three are in contact, a chemical reaction can occur to produce chlorinated phthalocyanine pigments.
  • the reaction is carried out in a short time, which avoids wrapping the metal source with the chlorinated phthalocyanine pigment produced earlier, and improves the conversion rate of the metal source. Due to the excess of phthalonitrile, the metal source can be fully reacted, solid residues can be prevented, and high-quality chlorinated phthalocyanine pigments can be obtained through simple separation.
  • reaction temperature is controlled at 150-380°C, during the reaction of phthalonitrile and the metal source to form phthalocyanine pigments, the polymerization reaction, coordination reaction and halogenation reaction are carried out simultaneously, reducing the probability of impurities.
  • the particle size of the powdered metal source is 100 mesh to 2500 mesh.
  • powdered metal sources with a particle size of 100 mesh to 2500 mesh can avoid excessive changes in the reaction rate caused by too large or too small particle sizes.
  • the second technical solution of the present invention is a chlorinated phthalocyanine pigment, wherein the chlorinated phthalocyanine pigment is prepared by any of the methods described above.
  • the metal source is a copper source, and phthalocyanine green is prepared, and the copper source is selected from copper powder, cupric chloride, cuprous chloride, copper carbonate, copper sulfate, copper oxide, copper hydroxide, copper acetate, sulfurous acid at least one of copper.
  • the present invention can not only utilize copper powder, but also can use other powdered copper compounds as copper sources, which expands the use range of raw materials.
  • the molar ratio of phthalonitrile to copper source is greater than 4:1 and less than 40:1, and the molar ratio of chlorine gas to copper source is 5-100:1.
  • the molar ratio of phthalonitrile to copper source is set to be greater than 4:1 and less than 40:1. While ensuring the complete conversion of copper source, avoid excessive phthalonitrile and waste of raw materials.
  • the concentration of phthalonitrile in the reaction device is controlled to 0.01-3.00 g/L.
  • the third technical solution of the present invention is a phthalocyanine green prepared by any method when the metal source is a copper source.
  • the reaction time is controlled within the range of 1-3 minutes.
  • the sources of chlorine, phthalonitrile and copper are preheated to 260° C. to 280° C. in advance.
  • the concentration of phthalonitrile in the reaction device is controlled to be 0.01-3.00 g/L, preferably 0.10-0.90 g/L.
  • fluidization is adopted, high temperature provides activation energy, the temperature range is set to control the reaction time, and chlorine gas, phthalonitrile, and powdered copper sources are fully contacted to obtain relatively high-purity phthalocyanine green. It is suitable for various copper sources; the invention has simple control mode, quick response, high product purity and is suitable for large-scale continuous production.
  • Fig. 1 is the process description diagram of preparing phthalocyanine green
  • Figure 2 is a schematic diagram of the steps for preparing phthalocyanine green.
  • the following takes the preparation of phthalocyanine green as an example to explain the preparation method of chlorinated phthalocyanine pigments.
  • Fig. 1 shows an explanatory diagram of the process for preparing phthalocyanine green.
  • Phthalonitrile, chlorine and powdered copper sources are heated in heating devices 1a, 1b and 1c, respectively.
  • the heating temperature is 200-300°C, and phthalonitrile melts into a liquid state.
  • the liquid phthalonitrile and the powdered copper source are continuously input into the reaction device 3 through the conveying devices 2a and 2c by using the heated chlorine gas.
  • the phthalonitrile and the copper source are fluidized, and continuously enter the reaction device 3 in a fluidized state for contact reaction.
  • Chlorine is preheated to 200 ⁇ 300 °C close to phthalonitrile and powdery copper source in the heating device 1b in advance, when avoiding contact with phthalonitrile and powdery copper source, cause its temperature to change too much, affect the course of the reaction.
  • the ratio of the phthalonitrile and the powdered copper source passed into the reaction device 3 is that the phthalonitrile is in excess.
  • Phthalonitrile and powdered copper source are continuously fed into the reaction device 3, and after reacting in the reaction device 3 for 0.01-10 minutes, the product enters the solid separation device 4, and solid copper phthalocyanine is separated from the product.
  • Figure 2 shows a schematic diagram of the steps for preparing phthalocyanine green.
  • a kind of method for preparing chlorinated phthalocyanine series pigment comprises, the first step S1, preheats phthalonitrile, chlorine and powdery copper source in heating device 1a, 1b, 1c respectively to 200 ⁇ 300°C; through preheating, phthalonitrile is melted into a liquid state, and the temperature of phthalonitrile and powdered copper source is within the reaction temperature range;
  • the preheated chlorine gas is used to add the preheated phthalonitrile and powdered copper source to the reaction device 3 through the delivery device 2a, 2c.
  • the phthalonitrile, powdered copper The source is fluidized, and enters the reaction device 3 in a fluidized state for contact reaction, and the added phthalonitrile is excessive relative to the copper source;
  • the temperature in the reaction device is controlled to 150-380° C., and the reaction time is controlled to be 0.01-10 minutes;
  • the product in the reaction device 3 enters the solid separation device 4, and the solid matter is separated from the product to obtain phthalocyanine green.
  • the copper source refers to a copper salt or pure copper that can participate in the coordination of the nitrogen atom of the phthalocyanine center.
  • Described fluidized state refers to that chlorine gas, phthalonitrile and powdered copper source are fluidized in the reaction device, and the three are fully contacted. Specifically, it refers to the state in which phthalonitrile and powdery copper source are suspended as tiny particles by chlorine gas and flowed in chlorine gas. Contact reaction occurs between the tiny particles at the same time of contact, which shortens the reaction time and prevents the copper phthalocyanine from wrapping the copper source, resulting in an increase in the impurity content of the copper phthalocyanine.
  • the reaction device has a heating function, so that the internal temperature can be controlled at 150-380°C.
  • the reaction temperature is lower than 150°C, the activation energy is insufficient and the reaction rate is slow, which is not suitable for large-scale production.
  • the reaction temperature is higher than 380°C, it will cause the decomposition of raw materials, products and by-products, which is not conducive to improving the purity of phthalocyanine green, reducing the reaction yield and greatly increasing the production cost.
  • the reaction in the reaction device mainly includes three aspects: the polymerization reaction of phthalonitrile to form a macrocycle, the coordination of copper ions, and the chlorination reaction.
  • the substance polymerized into a macrocycle can coordinate with copper ions in time to form copper phthalocyanine, which can be chlorinated in time.
  • the degree of chlorination is low, which will affect the purity of copper phthalocyanine.
  • the present invention sets the reaction time range to 0.01-10 minutes, preferably 1-2 minutes, which can not only allow the raw materials to fully react, but also control the amount of by-products generated when the raw materials and products are under high temperature conditions. For example, avoid pyrolysis of phthalonitrile, early chlorination reaction between phthalonitrile and chlorine, etc.
  • the present invention can adopt the mode of continuous feeding, feed raw materials from one end of the reaction device, and output finished products from the other end. That is, the one-step method of the present invention for preparing phthalocyanine green is especially suitable for large-scale continuous production.
  • chlorine, phthalonitrile, and powdered copper sources are fully contacted by fluidization, and high temperature is used to provide activation energy to control the reaction time, thereby reducing side reactions and by-products;
  • the control method of the present invention is simple, and the reaction Rapid, high product purity, suitable for large-scale continuous production.
  • the theoretical value that phthalonitrile combines with copper source is 4:1, in the present invention, the molar weight of phthalonitrile is set greater than 4 times of copper source molar weight, makes copper source fully react, thereby, makes product phthalonitrile
  • the impurities in cyanine green are phthalonitrile and its dimers or polymers. These by-products can be removed by sublimation, and the purity of the product can be further improved after simple treatment.
  • the concentration of phthalonitrile in the reaction device is controlled to be 0.01-3.00 g/L, preferably 0.10-0.90 g/L.
  • the reaction time is controlled within a range of 1-3 minutes.
  • the control of the reaction time is determined by the flow rate of the raw material and the stroke in the reaction vessel.
  • the flow rate of the material in the direction of the inlet and outlet of the reaction device and the length of the reactor can be used to adjust the length of the reaction time.
  • the flow rate and the reaction time are controlled at 1-2.5 min, the content of crude phthalocyanine green in the product is higher than 94%.
  • the molar ratio of phthalonitrile to copper source is greater than 4:1 and less than 40:1, and the molar ratio of chlorine gas to copper source is 6-20:1 to make a slight excess of phthalonitrile and remove excess phthalonitrile
  • the workload of dinitrile is small, and the amount of chlorine gas is reduced to close to the maximum demand of the reaction, reducing the pressure of tail gas collection and treatment.
  • phthalonitrile adopts excessive setting with respect to copper source, and simultaneously, chlorine gas also adopts excessive setting, makes the occurrence probability of chlorination reaction on the benzene ring of the phthalocyanine that has been combined with copper source increase, improves product The proportion of Phthalocyanine Green.
  • the molar ratio between phthalonitrile and chlorine is 1.25-25:1, preferably 1.5-5.0:1.
  • the copper source is selected from at least one of copper powder, copper chloride, cuprous chloride, copper carbonate, copper sulfate, copper oxide, copper hydroxide, copper acetate, and cuprous sulfate.
  • the powder of the copper source is finer and has lower characteristics of mutual adhesion.
  • cuprous chloride is preferred as the copper source, and its conversion rate is high, and the crude product of phthalocyanine green has a high content in the product.
  • the chlorine gas, phthalonitrile and copper sources are preheated to 260°C-280°C, preferably 260°C, which is beneficial to shorten the reaction time and improve the purity of phthalocyanine green.
  • nitrogen or other inert gases or directly using air as the carrier gas can also be used for fluidization operation on the premise that the chlorine gas meets the requirements of the chlorination reaction.
  • chlorine gas can also be used as the carrier gas of phthalonitrile and copper source simultaneously to transport the three raw materials into the reaction device at the same time.
  • the particle size of the powdered copper source is 100 mesh to 2500 mesh, preferably 1500 mesh to 2500 mesh. It can increase the contact area, which is conducive to the full reaction of the copper source, and avoids the reaction on the surface of the copper source when the particle size is too large, and the center is still wrapped, which reduces the product content and wastes raw materials.
  • the copper source can also be replaced by other metal sources, for example: select iron, nickel, zinc, aluminum, sodium, cobalt, titanium, magnesium, palladium, manganese or the corresponding salts of the above metals to produce other types of phthalocyanines Department of products.
  • a phthalocyanine green is provided, and the phthalocyanine green is prepared by any one of the methods described above.
  • Chlorine, phthalonitrile, and 1500-mesh copper chloride were heated to 200°C at high temperature;
  • the temperature in the reaction device was controlled to be 250 ⁇ 10°C, and the reaction time was within the range of 1.0 to 2.0 minutes, respectively taking 1, 1.5, and 2 minutes to obtain Sample 1.
  • Chlorine, phthalonitrile, and 1500-mesh copper chloride were heated to 300°C at high temperature;
  • the temperature in the reaction device was controlled to be 250 ⁇ 10° C., and the reaction time was 1, 1.5, and 2 minutes in the range of 1.0 to 2.0 minutes, respectively, to obtain sample 2.
  • Chlorine, phthalonitrile, and 1500-mesh copper chloride were heated to 200°C at high temperature;
  • the temperature in the reaction device was controlled to be 150 ⁇ 10° C., and the reaction time was 1, 1.5, and 2 minutes in the range of 1.0 to 2.0 minutes, respectively, to obtain Sample 3.
  • Chlorine, phthalonitrile, and 1500-mesh copper chloride were heated to 200°C at high temperature;
  • the temperature in the reaction device was controlled to be 380 ⁇ 10° C., and the reaction time was 1, 1.5, and 2 minutes in the range of 1.0 to 2.0 minutes, respectively, to obtain sample 4.
  • Chlorine gas, phthalonitrile, and 1500-mesh copper powder are respectively heated to 200°C at high temperature;
  • the temperature in the reaction device was controlled at 280 ⁇ 10°C, and the reaction time was 1, 1.5, and 2 minutes in the range of 1.0 to 2.0 minutes, respectively, to obtain sample 5.
  • Chlorine, phthalonitrile, and 1500-mesh copper carbonate are respectively heated to 200°C at high temperature;
  • the temperature in the reaction device was controlled at 260 ⁇ 10°C, and the reaction time was 1.5, 2, and 2.5 minutes respectively in the range of 1.5 to 2.5 minutes to obtain sample 6.
  • the reaction temperature is at the lowest, the purity of 72.50% and the conversion rate of 74.90% can still be achieved, which is suitable for large-scale production.
  • the temperature reaches above 250°C, the purity reaches above 94.70%.
  • Table 2 shows the mean data for the products obtained using different copper sources.
  • the fluidization method is adopted, the activation energy is provided at high temperature, the chlorine gas, phthalonitrile, and powdered copper sources are fully contacted, and the reaction time is controlled to obtain relatively high-purity phthalocyanine green, which is suitable for various types of copper source; the present invention has simple control mode, quick response, high product purity, and is suitable for large-scale continuous production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料,所述方法采用流化的方式,高温提供活化能,使氯气、邻苯二腈、粉末状金属源充分接触,控制反应时长,获得较高纯度的氯化酞菁系颜料;所述方法控制方式简单,反应迅速,产品纯度高,适用于大规模连续生产。

Description

一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料
相关申请的交叉引用
本公开要求以下中国专利申请的优先权:于2021年9月23日申请的、申请号为202111113077.6、发明名称为“一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料”的中国专利申请;于2021年9月30日申请的、申请号为202111165774.6、发明名称为“一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料”的中国专利申请。
技术领域
本发明涉及化工领域,尤其涉及一种制备氯化酞菁系颜料的方法和其制备的氯化酞菁系颜料。
背景技术
酞菁绿是酞菁系颜料的一类,它是酞菁蓝(即铜酞菁)的氯代或氯、溴混合卤代的产物,随着苯环上取代卤原子数不同,表现出不同颜色。
现有生产工艺包括直接缩合工艺和直接卤代工艺。其中,直接缩合工艺:将邻苯二甲酸氯化成四氯苯酐或四氯邻苯二腈,再与铜盐进行缩合反应,制得酞菁绿。直接卤代工艺:将邻苯二腈与铜盐反应制得铜酞菁,再进行氯化,制得酞菁绿,即卤代铜酞菁。但是,合成铜酞菁之后再进行氯代反应制备酞菁绿,不仅效率较低,而且采用直接卤代工艺时,需要AlCl 3和NaCl等介质,收率低,纯度低,腐蚀性大,三废严重,后续处理繁琐,并且氯代过程中,铜酞菁中的铜原子常被铝置换,使产品色泽暗淡,影响质量。
现有专利CN103740125A提出了一种铜酞菁的制造方法:将原材料的邻二甲苯、氨气和空气通入氨氧化反应床中,进行气相氨氧化反应,生成邻苯二腈气体;将上述氨氧化反应床中输出的邻苯二腈气体通入装有铜盐的反应床中,使邻苯二腈气体与铜盐粉末接触,通过调节邻苯二腈气体的通入量控制反应温度生成酞菁铜产品。
现有专利CN103740125A虽然解决了催化剂和介质等造成的三废问题,但其采用铜盐反应床承载铜盐,原料之间的接触受到限制,且生成的酞菁铜容易对铜盐形成包裹,导致铜盐的转换率不高,产品杂质升高,连续生产受到影响等问题。
并且整个反应过程中由于铜盐粉末始终处于过量状态,这些未反应的铜盐粉末与生成 的固体的酞菁铜混合在一起,造成粗品酞菁铜中杂质含量过高。用其制备酞菁绿时,杂质容易对后续工艺造成影响,降低酞菁绿颜料的纯度。
本发明的目的在于解决上述现有技术中的问题,提供一种氯化酞菁系颜料的方法,该方法不需要AlCl 3和NaCl等工艺介质的参与,能够连续一步法的制备氯化酞菁系颜料。
第二目的在于提高原料中金属源的转换率,通过简单分离即可得到高品质的氯化酞菁系颜料。
发明内容
基于以上目的,本发明的发明人对氯气、邻苯二腈和粉末状金属源接触反应合成氯化酞菁系颜料的方法进行了研究,发现用氯气做载气使邻苯二腈与粉末状的金属源在流化状态下接触反应,在没有AlCl 3和NaCl等工艺介质参与的条件下,能一步法直接合成氯化酞菁系颜料为制备氯化酞菁系颜料提供了一个新思路。在这基础上,通过进一步研究,发现在邻苯二腈过量的状态下,如果反应温度、反应时间等条件合适,能抑制生成物包裹金属源的现象出现,提高金属源的转换率,降低氯化酞菁系颜料中的杂质,为制备高品质的酞菁系颜料提供了可能性。
本发明的第一技术方案为一种制备氯化酞菁系颜料的方法,包括,第一步骤S1,预热氯气、邻苯二腈和粉末状金属源至200~300℃;第二步骤S2,利用氯气将邻苯二腈和粉末状金属源流化,在流化状态下加入反应装置内,邻苯二腈相对于粉末状金属源过量;第三步骤S3,控制反应装置内温度150~380℃,控制反应时间为0.01~10min;第四步骤S4,从反应物中分离出固体物质,得到氯化酞菁系颜料;所述金属源选自铁、镍、锌、铝、钠、钴、钛、镁、钯、锰、铜或其盐中至少一种。
本发明的方法中,由于采用预先加热的方式将氯气、邻苯二腈和粉末状金属源至200~300℃,并且通过氯气将邻苯二腈、粉末状金属源以流化状态的方式加入到反应装置内,保证了温度的均匀性,也保证氯气、邻苯二腈和粉末状金属源混合的均匀性,三者在接触的同时即可发生化学反应,生成氯化酞菁系颜料。
由于邻苯二腈、粉末状金属源以流化状态接触,反应在短时间内进行,避免了先生产的氯化酞菁系颜料包裹金属源,提高了金属源转换率。由于邻苯二腈过量,能够使金属源充分反应,防止固体残留,通过简单分离,就可获得高品质的氯化酞菁系颜料。
由于反应温度控制在150~380℃,邻苯二腈和金属源反应生成酞菁系颜料的过程中, 使聚合反应和配位反应以及卤代反应同步进行,降低了杂质发生的概率。
优选的,所述粉末状金属源粒径为100目至2500目。
使用粒径为100目至2500目的粉末状金属源,能够避免粒径过大或过小造成的反应速度变动过大。
本发明的第二技术方案为一种氯化酞菁系颜料,其中,所述氯化酞菁系颜料通过上述任一项所述的方法制备。
优选的,所述金属源为铜源,制备得到酞菁绿,铜源选用铜粉、氯化铜、氯化亚铜、碳酸铜、硫酸铜、氧化铜、氢氧化铜、醋酸铜、硫酸亚铜中至少一种。
本发明不仅可以利用铜粉,也可以使用其他粉末状的铜化合物作为铜源,扩大了原料的使用范围。
优选地,邻苯二腈与铜源摩尔比大于4:1,小于40:1,氯气与铜源摩尔比为5~100:1。
将邻苯二腈与铜源摩尔比设定大于4:1,小于40:1,在保证铜源完全转换的同时,避免邻苯二腈过量,造成原料浪费。
优选的控制反应装置内邻苯二腈浓度0.01-3.00g/L。
本发明的第三技术方案为,一种酞菁绿,所述酞菁绿通过上述金属源为铜源时的任一方法制备。
根据本发明的一个实施方式,控制反应时间在1~3min范围内。
根据本发明的一个实施方式,预先将氯气、邻苯二腈和铜源预热到260℃~280℃。
根据本发明的一个实施方式,控制反应装置内邻苯二腈浓度0.01~3.00g/L,优选0.10~0.90g/L。
在本发明中,采用流化的方式,高温提供活化能,设定温度范围控制反应时长,使氯气、邻苯二腈、粉末状铜源充分接触,即可获得较高纯度的酞菁绿,适合多种铜源;本发明控制方式简单,反应迅速,产品纯度高,适用于大规模连续生产。
附图说明
图1是制备酞菁绿的工艺说明图;
图2是制备酞菁绿的步骤示意图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,参考标号是指本发明中的组件、技术,以便本发明的优点和特征在适合的环境下实现能更易于被理解。下面的描述是对本发明权利要求的具体化,并且与权利要求相关的其它没有明确说明的具体实现也属于权利要求的范围。
以下以酞菁绿的制备为例,解释说明氯化酞菁系颜料的制备方法。
图1示出了制备酞菁绿的工艺说明图。
邻苯二腈、氯气和粉末状的铜源分别在加热装置1a、1b和1c中加热。加热温度为200~300℃,邻苯二腈熔化成液态。
利用加热后的氯气将液态的邻苯二腈和粉末状铜源通过输送装置2a、2c连续输入到反应装置3。在输送的过程中邻苯二腈和铜源流化,以流化状态连续进入反应装置3接触反应。
氯气预先在加热装置1b中加热到与邻苯二腈和粉末状的铜源相近的200~300℃,避免与邻苯二腈和粉末状铜源接触时,造成其温度发生过大的变动,影响反应的进程。
通入反应装置3中的邻苯二腈与粉末状的铜源的比例为邻苯二腈过量。邻苯二腈与粉末状的铜源连续不断地通入反应装置3,在反应装置3中反应0.01~10min后,产物进入固体分离装置4中,从产物中分离出固体的酞菁铜。
图2示出了制备酞菁绿的步骤示意图。
如图2所示,一种制备氯化酞菁系颜料的方法,包括,第一步骤S1,分别在加热装置1a、1b、1c中预热邻苯二腈、氯气和粉末状铜源至200~300℃;通过预热使邻苯二腈熔化成液态,并使邻苯二腈和粉末状的铜源的温度处于反应温度区域内;
第二步骤S2,利用预热后的氯气通过输送装置2a、2c将预热后的邻苯二腈和粉末状铜源加入反应装置3中,在输送过程中,邻苯二腈、粉末状铜源被流化,以流化状态进入反应装置3接触反应,加入的邻苯二腈相对于铜源过量;
第三步骤S3,控制反应装置内温度150~380℃,控制反应时间为0.01~10min;
第四步骤S4,反应装置3中的产物进入固体分离装置4,从产物中分离出固体物质,得到酞菁绿。
所述铜源是指能够参与酞菁中心的氮原子配位的铜盐或纯铜。
所述流化状态是指将氯气、邻苯二腈和粉末状铜源在反应装置内流化,使三者充分接 触。具体的,指利用氯气将邻苯二腈和粉末状的铜源以微小的颗粒悬浮并在氯气中流动的状态。在接触的同时各微小颗粒间发生接触反应,缩短了反应时间,防止酞菁铜包裹铜源,造成酞菁铜的杂质含量升高。
所述反应装置具备加热功能,使其内部的温度能够被控制在150~380℃。当反应温度低于150℃时,活化能提供不足,反应速率较慢,不适合大规模生产。当反应温度高于380℃时,会造成原料、产物、副产物的分解,不利于提高酞菁绿的纯度,降低反应收率,大幅度增加生产成本。
在邻苯二腈过量的条件下,发生在反应装置内的反应主要包括三个方面:邻苯二腈的聚合成大环的聚合反应、铜离子的配位、氯代反应。当这三个反应同步,相互匹配程度高时,聚合成大环后物质能及时与铜离子配位生成酞菁铜,能及时的氯代反应。防止聚合成大环后的物质无法及时与铜离子配位,或氯化程度低,影响酞菁铜的纯度。
本发明设置反应时间范围为0.01~10min,优选1~2min,既能让原料充分反应,又能控制原料以及产物处于高温条件下生成副产物的数量。例如,避免邻苯二腈高温分解,邻苯二腈与氯气之间提前氯代反应等。
基于上述设置,本发明可以采用连续供料的方式,从反应装置一端加入原料,另一端输出成品。即,本发明的这种一步法制备酞菁绿,尤其适用于大规模连续生产。
在本发明中,采用流化的方式使氯气、邻苯二腈、粉末状铜源充分接触,采用高温提供活化能,控制反应时长,从而减少副反应和副产物;本发明控制方式简单,反应迅速,产品纯度高,适用于大规模连续生产。
邻苯二腈与铜源结合的理论值为4:1,在本发明中,设置邻苯二腈的摩尔量大于铜源摩尔量的4倍,使得铜源能充分反应,从而,使产物酞菁绿中的杂质为邻苯二腈及其二聚或多聚物,这些副产品均可通过升华除杂,可以使产物经过简单处理,即可继续提升其纯度。
根据本发明的一个实施方式,控制反应装置内邻苯二腈浓度为0.01~3.00g/L,优选0.10~0.90g/L。
根据本发明的一个实施方式,其中,所述反应时间控制在1~3min范围。反应时间的控制由原料的流速以及在反应容器内的行程决定,例如,可采用控制物料在反应装置的进出口方向的流速,以及反应器的长度进行反应时间长短的调节。流速和当反应时间控制在1~2.5min时,酞菁绿粗品在产物中的含量高于94%。
本发明中,优选邻苯二腈与铜源摩尔比大于4:1,小于40:1,氯气与铜源摩尔比为6~20:1,使邻苯二腈微过量,去除过量的邻苯二腈的工作量小,且将氯气量降低至接近反应最大需求量,减少尾气收集处理压力。
本发明中,邻苯二腈相对于铜源采用过量设置,同时,氯气也采用过量设置,使得氯代反应在已经与铜源结合的酞菁的苯环上的发生几率增大,提高产物中酞菁绿的比例。
邻苯二腈与氯气之间摩尔比为1.25~25:1,优选1.5~5.0:1。
根据本发明的一个实施方式,铜源选用铜粉、氯化铜、氯化亚铜、碳酸铜、硫酸铜、氧化铜、氢氧化铜、醋酸铜、硫酸亚铜中至少一种。
在流化过程中,需要铜源的粉末较细且相互粘连的特性较低,本发明优选氯化亚铜作为铜源,其转化率高,酞菁绿粗品在产物中含量高。
根据本发明的一个实施方式,预先将氯气、邻苯二腈和铜源预热到260℃~280℃,优选260℃,有利于缩短反应时间和提升酞菁绿纯度。
本发明中,除了采用氯气做载气外,还可以在氯气满足氯代反应的需求的前提下,加入氮气或其他惰性气体或直接采用空气作为载气进行流化作业。
氯气与铜源之间不产生反应,采用氯气承载铜源,可以避免氯气在铜源配位前,与苯环发生大量的进行氯代反应,使氯代反应和配位反应不同步,副产物增多。
在本发明中,还可以采用利用氯气同时作为邻苯二腈和铜源的载气,将三种原料同时输送至反应装置内。
根据本发明的一个实施方式,所述粉末状铜源的粒径为100目至2500目,优选1500目~2500目。可以增加接触面积,利于铜源充分反应,避免粒径过大时,铜源表面发生反应、中心仍被包裹,使产物含量降低和原料浪费。
此外,所述铜源还可替换为其他金属源,例如:选用铁、镍、锌、铝、钠、钴、钛、镁、钯、锰或上述各金属对应的盐,生产其他种类的酞菁系产品。
根据本发明的另一个方面,提供了一种酞菁绿,所述酞菁绿通过上述任一项所述的方法制备。
以下以铜源为例,解释说明本发明的技术方案。
实施例1.
氯气、邻苯二腈、1500目氯化铜分别经过高温加热至200℃;
以氯气为载气,将邻苯二腈以11.15g/h、氯化铜以2.6g/h的流速连续一小时加入反应 装置内进行接触反应,其中,氯气与氯化铜摩尔比30:1;
控制反应装置内的温度为250±10℃,反应时间在1.0~2.0min范围内分别取1、1.5、2min,得到样品一。
实施例2.
氯气、邻苯二腈、1500目氯化铜分别经过高温加热至300℃;
以氯气为载气,将邻苯二腈以11.15g/h、氯化铜以2.6g/h的流速连续一小时加入反应装置内进行接触反应,其中,氯气与氯化铜摩尔比30:1;
控制反应装置内的温度为250±10℃,反应时间在1.0~2.0min范围内分别取1、1.5、2min,得到样品二。
实施例3.
氯气、邻苯二腈、1500目氯化铜分别经过高温加热至200℃;
以氯气为载气,将邻苯二腈以11.15g/h、氯化铜以2.6g/h的流速连续一小时加入反应装置内进行接触反应,其中,氯气与氯化铜摩尔比30:1;
控制反应装置内的温度为150±10℃,反应时间在1.0~2.0min范围内分别取1、1.5、2min,得到样品三。
实施例4.
氯气、邻苯二腈、1500目氯化铜分别经过高温加热至200℃;
以氯气为载气,将邻苯二腈以11.15g/h、氯化铜以2.6g/h的流速连续一小时加入反应装置内进行接触反应,其中,氯气与氯化铜摩尔比30:1;
控制反应装置内的温度为380±10℃,反应时间在1.0~2.0min范围内分别取1、1.5、2min,得到样品四。
实施例5.
氯气、邻苯二腈、1500目铜粉分别经过高温加热至200℃;
以氯气为载气,将邻苯二腈以26.42g/h、铜粉以2.2g/h的流速连续一小时加入反应装置内进行接触反应,其中,氯气与氯化铜摩尔比30:1。
控制反应装置内的温度280±10℃,反应时间在1.0~2.0min范围内分别取1、1.5、2min,得样品五。
实施例6.
氯气、邻苯二腈、1500目碳酸铜分别经过高温加热至200℃;
以氯气为载气,将邻苯二腈以14.82g/h、1500目碳酸铜以2.6g/h的流速连续一小时加入反应装置内进行接触反应,其中,氯气与碳酸铜摩尔比25:1。
控制反应装置内的温度260±10℃,反应时间在1.5~2.5min范围内分别取1.5、2、2.5min,得样品六。
分别检测样品一至样品六,并取其各自均值,结果如表1所示。
表1.
Figure PCTCN2022102388-appb-000001
可见,原料预热温度越高,提供的活化能相应增加,可以促进反应进行。反应温度在最低时,仍能达到72.50%的纯度以及74.90%的转化率,适合大规模生产。当温度达到250℃以上时,纯度达到94.70%以上。
表2示出了采用不同的铜源所得的产物的均值数据。
表2.
Figure PCTCN2022102388-appb-000002
Figure PCTCN2022102388-appb-000003
在本发明中,采用流化的方式,高温提供活化能,使氯气、邻苯二腈、粉末状铜源充分接触,控制反应时长,即可获得较高纯度的酞菁绿,适合多种铜源;本发明控制方式简单,反应迅速,产品纯度高,适用于大规模连续生产。
应该注意的是,上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。

Claims (7)

  1. 一种制备氯化酞菁系颜料的方法,其特征在于:包括,
    第一步骤(S1),预热氯气、邻苯二腈和粉末状的金属源至200~300℃;
    第二步骤(S2),利用氯气分别输送邻苯二腈和粉末状的金属源,使所述邻苯二腈和粉末状的金属源在流化状态下加入反应装置内接触反应,所述邻苯二腈相对于金属源过量;
    第三步骤(S3),控制反应温度为150~380℃,控制反应时间为0.01~10min;
    第四步骤(S4),从反应物中分离出固体物质,得到氯化酞菁系颜料;
    所述金属源选自铁、镍、锌、铝、钠、钴、钛、镁、钯、锰、铜或其盐中至少一种。
  2. 根据权利要求1所述的方法,其特征在于:其中,所述粉末状的金属源的粒径为100目至2500目。
  3. 根据权利要求2所述的方法,其特征在于:所述第三步骤(S3),控制反应温度为230~290℃。
  4. 根据权利要求3所述的方法,其特征在于:所述金属源为铜源,用于制备酞菁绿,铜源选用铜粉、氯化铜、氯化亚铜、碳酸铜、硫酸铜、氧化铜、氢氧化铜、醋酸铜、硫酸亚铜中至少一种。
  5. 根据权利要求4所述的方法,其特征在于:所述第二步骤(S2)中,加入反应装置内的所述邻苯二腈与铜源的摩尔比为大于4:1,小于40:1,氯气与铜源的摩尔比为5~100:1。
  6. 根据权利要求4所述的方法,其特征在于:第二步骤(S2)中,控制反应装置内邻苯二腈浓度为0.01-3.00g/L。
  7. 一种氯化酞菁系颜料,其特征在于:其中,所述氯化酞菁系颜料采用权利要求1~6中任一项所述的方法制备。
PCT/CN2022/102388 2021-09-23 2022-06-29 一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料 WO2023045465A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111113077.6 2021-09-23
CN202111113077 2021-09-23
CN202111165774.6 2021-09-30
CN202111165774.6A CN113754670B (zh) 2021-09-23 2021-09-30 一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料

Publications (1)

Publication Number Publication Date
WO2023045465A1 true WO2023045465A1 (zh) 2023-03-30

Family

ID=78798758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102388 WO2023045465A1 (zh) 2021-09-23 2022-06-29 一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料

Country Status (2)

Country Link
CN (1) CN113754670B (zh)
WO (1) WO2023045465A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754670B (zh) * 2021-09-23 2023-09-01 鞍山七彩化学股份有限公司 一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1244387A (en) * 1968-01-18 1971-09-02 Basf Ag Continuous production of tetrachloro-o-phthalonitrile
CN103740125A (zh) * 2014-01-15 2014-04-23 河北铢峰凯美考科技有限公司 一种铜酞菁颜料的制造方法
CN104804465A (zh) * 2015-04-24 2015-07-29 江苏双乐化工颜料有限公司 酞菁绿颜料精细化清洁生产工艺
CN109181359A (zh) * 2018-08-29 2019-01-11 津正颜科技(天津)有限公司 一种颗粒环保颜料及其制备工艺
CN113754670A (zh) * 2021-09-23 2021-12-07 鞍山七彩化学股份有限公司 一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料
CN113912613A (zh) * 2021-09-23 2022-01-11 鞍山七彩化学股份有限公司 一种制备卤素取代基酞菁蓝的方法和卤素取代基酞菁蓝

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611786B2 (en) * 2017-10-09 2020-04-07 The Board Of Trustees Of The University Of Illinois Manganese (III) catalyzed C—H aminations
CN108148435A (zh) * 2018-01-08 2018-06-12 东台市百彩科技有限公司 一种高着色性酞菁绿颜料清洁生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1244387A (en) * 1968-01-18 1971-09-02 Basf Ag Continuous production of tetrachloro-o-phthalonitrile
CN103740125A (zh) * 2014-01-15 2014-04-23 河北铢峰凯美考科技有限公司 一种铜酞菁颜料的制造方法
CN104804465A (zh) * 2015-04-24 2015-07-29 江苏双乐化工颜料有限公司 酞菁绿颜料精细化清洁生产工艺
CN109181359A (zh) * 2018-08-29 2019-01-11 津正颜科技(天津)有限公司 一种颗粒环保颜料及其制备工艺
CN113754670A (zh) * 2021-09-23 2021-12-07 鞍山七彩化学股份有限公司 一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料
CN113912613A (zh) * 2021-09-23 2022-01-11 鞍山七彩化学股份有限公司 一种制备卤素取代基酞菁蓝的方法和卤素取代基酞菁蓝

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, BAILING ET AL.: "Synthesis of Phthalocyanine Green", JINGXI HUAGONG ZHONGJIANTI = FINE CHEMICAL INTERMEDIATES, JINGXI HUAGONG ZHONGJIANTI,, CH, no. 2, 31 December 1989 (1989-12-31), CH , pages 26 - 30, XP009544992, ISSN: 1009-9212, DOI: 10.19342/j.cnki.issn.1009-9212.1989.02.009 *

Also Published As

Publication number Publication date
CN113754670B (zh) 2023-09-01
CN113754670A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2023045465A1 (zh) 一种制备氯化酞菁系颜料的方法和氯化酞菁系颜料
JP5219287B2 (ja) 銀ナノワイヤーの連続的製造方法
JPH0238501A (ja) 高純度土酸金属微粉末、及びその製造法並びに使用法
FI96306C (fi) Menetelmä titaanidioksidin valmistamiseksi
CN111250148A (zh) 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用
CN108452799A (zh) 一种负载型银催化剂的制备方法及其催化苯甲醇无氧脱氢制苯甲醛的应用
WO2023045466A1 (zh) 一种制备酞菁铜的方法和无卤素酞菁铜
CN113912613B (zh) 一种制备卤素取代基酞菁蓝的方法和卤素取代基酞菁蓝
US3118928A (en) Acrylonitrile production
CN116730945B (zh) 糖精的制备方法
CN113801122B (zh) 一种制备酞菁绿的方法和酞菁绿
CN87100990A (zh) 复合氧化催化剂的制备方法
CN107986977A (zh) 一种以氧化铝为载体的负载型催化剂催化制备对氨基苯酚的方法
CN113321239B (zh) 一种无Cl2法制备多重钙钛矿材料的方法及其应用
CN105801352B (zh) 一种球形乙氧基镁的制备方法
CN116116417B (zh) 一种结构可控石墨烯壳层封装镍纳米粒子催化剂的制备方法及其应用
CN112552324A (zh) 一种三甲基铝的制备方法
CN113979965B (zh) 一种4,5-二氯-2-辛基-4-异噻唑啉-3-酮的连续化生产方法
CN116768259A (zh) 一种纳米碘化亚铜的制备方法
CN109569675B (zh) 一种凹土基负载型催化剂及其制备方法与应用
JPS5891018A (ja) 窒化物微粉末の製造方法
WO2023173357A1 (zh) 一种薄壁碳纳米管的合成方法
CN118271146A (zh) 一种连续流体反应制备全氘代苯的方法
CN117416982A (zh) 助推铝与氯气快速反应生成三氯化铝的方法及装置
CN117696040A (zh) 水分解光催化剂中使用的半导体粒子和使用了其的光催化剂以及它们的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE