WO2023173357A1 - 一种薄壁碳纳米管的合成方法 - Google Patents

一种薄壁碳纳米管的合成方法 Download PDF

Info

Publication number
WO2023173357A1
WO2023173357A1 PCT/CN2022/081423 CN2022081423W WO2023173357A1 WO 2023173357 A1 WO2023173357 A1 WO 2023173357A1 CN 2022081423 W CN2022081423 W CN 2022081423W WO 2023173357 A1 WO2023173357 A1 WO 2023173357A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
thin
walled carbon
calcium
carbon nanotubes
Prior art date
Application number
PCT/CN2022/081423
Other languages
English (en)
French (fr)
Inventor
沈宇栋
万仁涛
Original Assignee
无锡东恒新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡东恒新能源科技有限公司 filed Critical 无锡东恒新能源科技有限公司
Publication of WO2023173357A1 publication Critical patent/WO2023173357A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a method for synthesizing thin-walled carbon nanotubes and belongs to the field of chemical technology.
  • Thin-walled carbon nanotubes are widely used in the fields of energy storage, materials, additives and catalysis due to their excellent electrical conductivity, thermal conductivity, mechanical properties, and large specific surface area.
  • the key parameters that determine the performance of thin-walled carbon nanotubes include tube diameter, tube length, degree of graphitization, etc. Therefore, by regulating the synthesis conditions and particle size of the catalyst, the size of carbon nanotubes can be controlled and synthesized within a certain range.
  • the current technologies for producing thin-walled carbon nanotubes include arc method, chemical vapor deposition method, and catalytic thermal decomposition method.
  • chemical vapor deposition method is widely used.
  • Fluidized beds are popular as equipment for large-scale production of carbon nanotubes.
  • the carbon nanotubes produced by fluidized beds have a multi-walled structure due to the long residence time of the catalyst in the reactor. Therefore, the method of preparing thin-walled carbon nanotubes in a fluidized bed reactor has been hindered.
  • the present invention aims to use specific ultrafine catalyst powder as a catalyst for fluidized bed catalytic cracking of olefins and alcohol carbon sources, and large-scale synthesis of double-walled, triple-walled and other thin-walled small-diameter carbons with a pipe diameter of 2 to 6 nm. nanotube.
  • This method has a simple production process and easy quality control, making it a good method for preparing thin-walled carbon nanotubes.
  • the invention provides a method for preparing thin-walled carbon nanotubes, which includes the following steps:
  • the iron precursor in step (1), can be iron acetate; the cobalt precursor can be cobalt acetate; the aluminum precursor can be aluminum acetate; and the magnesium precursor can be magnesium acetate.
  • the calcium-containing sulfide in step (1) is optionally selected from any one or more of the following: calcium sulfide, calcium sulfate, calcium sulfate dihydrate, calcium sulfite, and calcium thiosulfate.
  • the mass ratio of iron precursor, cobalt precursor, aluminum precursor, and magnesium precursor is 70: (20-25): (8-10): (130-150). Specific optional 70:23:9:140.
  • the mass ratio of citric acid to iron precursor is (150-200):70; preferably 180:70.
  • the concentration of citric acid dispersed in water is controlled at 0.1-0.2g/mL; specifically, 0.12g/mL can be selected.
  • the mass ratio of ammonium heptamolybdate tetrahydrate to the iron precursor is (2-5):70; specifically, 2.75:70 is optional.
  • the amount of calcium-containing sulfide added to the iron precursor is 0.2wt%-0.3wt%.
  • step (1) the temperature of the hydrothermal reaction is 80-100°C; the time is 5-60 min.
  • step (1) the pressure of the high-pressure air is 0.8Mpa.
  • the pyrolysis temperature is 500-600°C.
  • the reduction in step (2) is carried out by introducing 30 slm of helium and 10 slm of hydrogen.
  • the reduction temperature in step (2) is 500°C and the time is 10 minutes.
  • the reaction mixture gas described in step (2) is ethylene, helium and methanol.
  • the volume amounts of ethylene, helium and methanol in the reaction mixture are 1:2:1.
  • the input amount of ethylene in the reaction mixture is 200 slm; the input amount of helium is 400 slm; and the input amount of methanol is 200 slm.
  • the preheating temperature is 600-700°C.
  • the temperature of the fluidized bed reactor in step (2) is controlled at 600-700°C; specifically, 660°C can be selected.
  • step (2) the reaction time during which the reaction mixture gas is introduced into the fluidized bed reactor is 60 minutes.
  • the preparation method specifically includes:
  • the fluidized bed reactor is heated to 660°C, and the matching reducer is heated to 500°C; the reducer adds the above-mentioned ultrafine catalyst powder through the dosing tank, and introduces 30slm helium and 10slm hydrogen for reduction for 10 minutes, and then the catalyst is Transported to the reactor; the air inlet nozzle at the bottom of the reactor is fed into the reaction mixture gas preheated at 600°C, including 200slm ethylene, 400slm helium, and 200slm methanol; the reaction gas is stopped after 60 minutes of reaction, and the product is transported through helium to the storage tank to obtain thin-walled carbon nanotube products.
  • the invention also provides a thin-walled carbon nanotube prepared based on the above method.
  • the invention also provides applications of the above-mentioned thin-walled carbon nanotubes in the fields of energy storage and materials.
  • the present invention adjusts the components of the catalyst and the growth process parameters of carbon nanotubes, that is, introduces a small amount of calcium sulfur compounds into the catalyst, such as calcium sulfide, calcium sulfate, calcium sulfite, calcium thiosulfate, etc., so that the catalyst is slightly poisoned.
  • the primary particle size of the catalyst is reduced, and methanol, ethylene, and helium are used as reaction gases to prepare thin-walled carbon nanotubes.
  • thin-walled carbon nanotubes have significantly improved electrical conductivity without significant change in cost.
  • the present invention uses a spray pyrolysis method to decompose a catalyst precursor mixed solution to prepare ultra-fine catalyst powder, which is used for fluidized bed catalytic cracking of olefins and alcohol carbon sources, and can enable large-scale synthesis of double-wall, triple-wall, etc. with pipe diameters of 2 to 6 nm.
  • This method has a simple production process and easy quality control, making it a good method for preparing thin-walled carbon nanotubes.
  • Figure 1 is the transmission electron microscope pattern of the prepared catalyst. It can be seen that the active components are evenly distributed, and the high-magnification growth of carbon nanotubes is used.
  • Figure 2 is the transmission electron microscope pattern of the prepared thin-walled carbon nanotubes. It is observed that The diameter of the carbon nanotubes prepared was less than 6 nm, indicating that thin-walled carbon nanotubes were successfully prepared.
  • Figure 1 is a transmission electron microscope image of the catalyst obtained in Example 1.
  • Figure 2 is a transmission electron microscope image of the thin-walled carbon nanotubes obtained in Example 1.
  • the fluidized bed reactor with a diameter of 500mm and a height of 6000mm is heated to 660°C, and the matching reducer is heated to 500°C.
  • the reducer adds 200g of the above-mentioned ultrafine catalyst powder as a catalyst through the dosing tank, introduces 30slm helium and 10slm hydrogen for reduction for 10 minutes, and then transports the catalyst to the reactor.
  • the air inlet nozzle at the bottom of the reactor is introduced into the reaction mixture gas preheated at 600°C, including 200slm ethylene, 400slm helium, and 200slm methanol. After 60 minutes of reaction, the reaction gas was stopped, and the product was transported to the storage tank through helium gas to obtain the thin-walled carbon nanotube product.
  • the magnification ratio of the thin-walled carbon nanotubes is 32, that is, 1g of catalyst can obtain 32g of thin-walled carbon nanotube products.
  • Figure 1 shows the transmission electron microscope pattern of the obtained ultrafine catalyst powder. It can be seen that its active components are evenly distributed and can utilize the high-magnification growth of carbon nanotubes.
  • Figure 2 shows the transmission electron microscope pattern of the prepared thin-walled carbon nanotubes. It is observed that the diameter of the carbon nanotubes is less than 6 nm and the number of walls is 2-3 layers, indicating that the thin-walled carbon nanotubes were successfully prepared.
  • the fluidized bed reactor with a diameter of 500mm and a height of 6000mm is heated to 660°C, and the matching reducer is heated to 500°C.
  • the reducer adds 200g of the above-mentioned ultrafine catalyst powder as a catalyst through the dosing tank, introduces 30slm helium and 10slm hydrogen for reduction for 10 minutes, and then transports the catalyst to the reactor.
  • the air inlet nozzle at the bottom of the reactor is introduced into the reaction mixture gas preheated at 600°C, including 200slm ethylene, 400slm helium, and 200slm methanol. After 60 minutes of reaction, the reaction gas was stopped, and the product was transported to the storage tank through helium gas to obtain the thin-walled carbon nanotube product.
  • the thin-walled carbon nanotube has a magnification ratio of 26, a tube diameter less than 6 nm, and a wall number of 2-3 layers.
  • the fluidized bed reactor with a diameter of 500mm and a height of 6000mm is heated to 660°C, and the matching reducer is heated to 500°C.
  • the reducer adds 200g of the above-mentioned ultrafine catalyst powder as a catalyst through the dosing tank, introduces 30slm helium and 10slm hydrogen for reduction for 10 minutes, and then transports the catalyst to the reactor.
  • the air inlet nozzle at the bottom of the reactor is introduced into the reaction mixture gas preheated at 600°C, including 200slm ethylene, 400slm helium, and 200slm methanol. After 60 minutes of reaction, the reaction gas was stopped, and the product was transported to the storage tank through helium gas to obtain the thin-walled carbon nanotube product.
  • the thin-walled carbon nanotube has a magnification ratio of 38, a tube diameter of less than 6 nm, and a wall number of 2-3 layers.
  • the fluidized bed reactor with a diameter of 500mm and a height of 6000mm is heated to 660°C, and the matching reducer is heated to 500°C.
  • the reducer adds 200g of the above-mentioned ultrafine catalyst powder as a catalyst through the dosing tank, passes in 30slm of nitrogen and 10slm of hydrogen for reduction for 10 minutes, and then transports the catalyst to the reactor.
  • the air inlet nozzle at the bottom of the reactor is introduced into the reaction mixture gas preheated at 600°C, including 200slm ethylene, 400slm nitrogen, and 200slm methanol. After 60 minutes of reaction, the flow of reaction gas was stopped, and the product was transported to the storage tank through nitrogen gas to obtain the carbon nanotube product.
  • the carbon nanotube has a yield of 40, a diameter of 13nm, and a wall number of approximately 20 layers.
  • the fluidized bed reactor with a diameter of 500mm and a height of 6000mm is heated to 660°C, and the matching reducer is heated to 500°C.
  • the reducer adds 200g of the above-mentioned ultrafine catalyst powder as a catalyst through the dosing tank, introduces 30slm helium and 10slm hydrogen for reduction for 10 minutes, and then transports the catalyst to the reactor.
  • the air inlet nozzle at the bottom of the reactor is introduced into the reaction mixture gas preheated at 600°C, including 200slm ethylene, 400slm helium, and 200slm methanol. After 60 minutes of reaction, the reaction gas was stopped, and the product was transported to the storage tank through helium gas to obtain the thin-walled carbon nanotube product.
  • the thin-walled carbon nanotube has a magnification ratio of 23, a tube diameter of 11 nm, and a wall number of approximately 18 layers.
  • the fluidized bed reactor with a diameter of 500mm and a height of 6000mm is heated to 660°C, and the matching reducer is heated to 500°C.
  • the reducer adds 200g of the above-mentioned ultrafine catalyst powder as a catalyst through the dosing tank, introduces 30slm helium and 10slm hydrogen for reduction for 10 minutes, and then transports the catalyst to the reactor.
  • the air inlet nozzle at the bottom of the reactor is introduced into the reaction mixture gas preheated at 600°C, including 200slm ethylene, 400slm helium, and 200slm methanol. After 60 minutes of reaction, the reaction gas was stopped, and the product was transported to the storage tank through helium gas to obtain the thin-walled carbon nanotube product.
  • the thin-walled carbon nanotube has a magnification ratio of 34, a tube diameter of 15 nm, and a wall number of approximately 22 layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种薄壁碳纳米管的合成方法,属于化学技术领域。该方法通过设置特定的催化剂的组分和碳纳米管的生长工艺参数,在催化剂中引入特定用量含钙硫化合物,制得催化剂;然后以甲醇、乙烯、氦气作为反应气体,催化制备得到管径约为2~6nm,双壁、三壁的薄壁碳纳米管。该方法生产工艺简单,品质容易管控。

Description

一种薄壁碳纳米管的合成方法 技术领域
本发明涉及一种薄壁碳纳米管的合成方法,属于化学技术领域。
背景技术
薄壁碳纳米管因具有优异的导电性、导热性、力学性能,以及有着较大的比表面积使其被广泛应用于储能领域、材料领域、添加剂及催化领域等。决定薄壁碳纳米管性能的关键参数包括管径、管长、石墨化度等,因而通过调控催化剂的合成条件以及粒径大小,可以使碳纳米管的尺寸在一定范围内可控合成。
目前生产薄壁碳纳米管的技术有电弧法、化学气象沉积法、催化热分解法。化学气象沉积法作为一种成熟的工业技术,被广泛应用。流化床作为大型生产碳纳米管的设备备受欢迎,但流化床生产的碳纳米管由于其催化剂在反应器中停留时间较长,导致其制备的碳纳米管呈多壁结构。因此,在流化床反应器中制备薄壁碳纳米管的方法受到一定阻碍。
发明内容
本发明旨在基于特定超细催化剂粉体作为催化剂,用于流化床催化裂解烯烃和醇类碳源,大规模合成管径2~6nm的双壁、三壁等薄壁的小管径碳纳米管。此方法生产工艺简单,品质容易管控,不失为一种制备薄壁碳纳米管的好方法。
本发明提供一种薄壁碳纳米管的制备方法,包括如下步骤:
(1)制备催化:将铁前驱体、钴前驱体、铝前驱体、镁前驱体和柠檬酸分散在水中,混匀,然后加入四水七钼酸铵和含钙硫化物,混匀、进行水热反应;结束后,经过喷雾干燥塔进行雾化处理,高压空气作为载气,热解得到超细催化剂粉体;
(2)制备薄壁碳纳米管:将上述超细催化剂粉体加入到还原器中,通入和氢气进行还原;然后将还原后的超细催化剂粉体加入到流化床反应器中,并在流化床反应器底部的进气嘴通入预热的反应混合气,反应制备得到薄壁碳纳米管产物。
在本发明的一种实施方式中,步骤(1)中铁前驱体可选乙酸铁;钴前驱体可选乙酸钴;铝前驱体可选乙酸铝;镁前驱体可选乙酸镁。
在本发明的一种实施方式中,步骤(1)中含钙硫化物任选自如下任意一种或多种:硫化钙、硫酸钙、二水硫酸钙、亚硫酸钙、硫代硫酸钙。
在本发明的一种实施方式中,铁前驱体、钴前驱体、铝前驱体、镁前驱体的质量比为70:(20-25):(8-10):(130-150)。具体可选70:23:9:140。
在本发明的一种实施方式中,柠檬酸与铁前驱体的质量比为(150-200):70;优选180:70。
在本发明的一种实施方式中,柠檬酸分散在水的浓度控制在0.1-0.2g/mL;具体可选0.12g/mL。
在本发明的一种实施方式中,四水七钼酸铵与铁前驱体的质量比为(2-5):70;具体可选2.75:70。
在本发明的一种实施方式中,含钙硫化物相对铁前驱体的添加量为0.2wt%-0.3wt%。
在本发明的一种实施方式中,步骤(1)中,水热反应的温度为80-100℃;时间为5-60min。
在本发明的一种实施方式中,步骤(1)中,高压空气的压强为0.8Mpa。
在本发明的一种实施方式中,步骤(1)中,热解的温度为500~600℃。
在本发明的一种实施方式中,步骤(2)中所述还原,是通入30slm氦气和10slm氢气进行还原。
在本发明的一种实施方式中,步骤(2)中所述还原的温度为500℃,时间为10min。
在本发明的一种实施方式中,步骤(2)中所述的反应混合气为乙烯、氦气和甲醇。
在本发明的一种实施方式中,反应混合气中乙烯、氦气和甲醇的通入体积量为1:2:1。
在本发明的一种实施方式中,反应混合气中乙烯的通入量为200slm;氦气的通入量400slm;甲醇的通入量为200slm。
在本发明的一种实施方式中,步骤(2)中,预热的温度为600-700℃。
在本发明的一种实施方式中,步骤(2)中流化床反应器的温度控制在600-700℃;具体可选660℃。
在本发明的一种实施方式中,步骤(2)中流化床反应器通入反应混合气的反应时间为60min。
在本发明的一种实施方式中,制备方法具体包括:
(1)称取280g乙酸铁、92g乙酸钴、37g乙酸铝、560g乙酸镁、720g柠檬酸溶解于6000g纯水,然后加入11g四水七钼酸铵和0.6g二水硫酸钙,设置90℃水浴加热,充分搅拌均匀后,将溶液通过蠕动泵注入喷雾干燥塔的雾化器,0.8MPa高压空气作为载气,500~600℃热解得到粒径D50小于3微米的超细催化剂粉体;
(2)流化床反应器升温至660℃,配套的还原器升温至500℃;还原器通过加剂罐加入上述超细催化剂粉体,通入30slm氦气和10slm氢气还原10min,然后将催化剂输送至反应 器内;反应器底部的进气喷嘴通入600℃预热后的反应混合气体,其中200slm乙烯、400slm氦气、200slm甲醇;反应60min后停止通反应气,将产物通过氦气输送至储罐内,得到薄壁碳纳米管产物。
本发明还基于上述方法制备提供了一种薄壁碳纳米管。
本发明还提供了上述薄壁碳纳米管在储能领域、材料领域中的应用。
有益效果:
本发明通过调整催化剂的组分和碳纳米管的生长工艺参数,即在催化剂中引入少量钙的硫化合物,例如硫化钙、硫酸钙、亚硫酸钙、硫代硫酸钙等,使催化剂发生轻微中毒从而减小催化剂的一次粒径,并且使用甲醇、乙烯、氦气作为反应气体,制备出了薄壁碳纳米管。薄壁碳纳米管相对于直径大于20nm的碳纳米管,导电性能明显提升,且成本没有明显改变。
本发明使用喷雾热解法分解催化剂前驱体混合溶液制备超细催化剂粉体,用于流化床催化裂解烯烃和醇类碳源,可以大规模合成管径2~6nm的双壁、三壁等薄壁的小管径碳纳米管。此方法生产工艺简单,品质容易管控,不失为一种制备薄壁碳纳米管的好方法。附图1为制备的催化剂透射电镜图谱,可以看到其活性组分分布均匀,有利用碳纳米管的高倍率生长,附图2为其制备得到的薄壁碳纳米管透射电镜图谱,观察发现其制备得到的碳纳米管管径小于6nm,表明薄壁碳纳米管被成功制备。
附图说明
图1为实施例1中所得催化剂的透射电镜图。
图2为实施例1所得薄壁碳纳米管的透射电镜图。
具体实施方式
实施例1
(1)称取280g乙酸铁、92g乙酸钴、37g乙酸铝、560g乙酸镁、720g柠檬酸溶解于6000g纯水,然后加入11g四水七钼酸铵和0.6g二水硫酸钙,设置90℃水浴加热,充分搅拌均匀后,将溶液通过蠕动泵注入喷雾干燥塔的雾化器,0.8MPa高压空气作为载气,500~600℃热解得到粒径D50小于3微米的超细催化剂粉体。
(2)直径500mm、高度6000mm的流化床反应器升温至660℃,配套的还原器升温至500℃。还原器通过加剂罐加入上述200g超细催化剂粉体作为催化剂,通入30slm氦气和10slm氢气还原10min,然后将催化剂输送至反应器内。反应器底部的进气喷嘴通入600℃预热后的 反应混合气体,其中200slm乙烯、400slm氦气、200slm甲醇。反应60min后停止通反应气,将产物通过氦气输送至储罐内,得到薄壁碳纳米管产物。该薄壁碳纳米管的倍率为32,即1g催化剂可以得到32g薄壁碳纳米管产物。
图1为所得到超细催化剂粉体的透射电镜图谱,可以看到其活性组分分布均匀,有利用碳纳米管的高倍率生长。图2为制备得到的薄壁碳纳米管的透射电镜图谱,观察发现碳纳米管的管径小于6nm、壁数为2-3层,表明薄壁碳纳米管被成功制备。
实施例2
(1)称取280g乙酸铁、92g乙酸钴、37g乙酸铝、560g乙酸镁、720g柠檬酸溶解于6000g纯水,然后加入11g四水七钼酸铵和0.6g亚硫酸钙,设置90℃水浴加热,充分搅拌均匀后,将溶液通过蠕动泵注入喷雾干燥塔的雾化器,0.8MPa高压空气作为载气,500~600℃热解得到粒径D50小于3微米的超细催化剂粉体。
(2)直径500mm、高度6000mm的流化床反应器升温至660℃,配套的还原器升温至500℃。还原器通过加剂罐加入上述200g超细催化剂粉体作为催化剂,通入30slm氦气和10slm氢气还原10min,然后将催化剂输送至反应器内。反应器底部的进气喷嘴通入600℃预热后的反应混合气体,其中200slm乙烯、400slm氦气、200slm甲醇。反应60min后停止通反应气,将产物通过氦气输送至储罐内,得到薄壁碳纳米管产物。该薄壁碳纳米管的倍率为26,管径小于6nm、壁数为2-3层。
实施例3
(1)称取280g乙酸铁、92g乙酸钴、37g乙酸铝、560g乙酸镁、720g柠檬酸溶解于6000g纯水,然后加入11g四水七钼酸铵和0.6g硫代硫酸钙,设置90℃水浴加热,充分搅拌均匀后,将溶液通过蠕动泵注入喷雾干燥塔的雾化器,0.8MPa高压空气作为载气,500~600℃热解得到粒径D50小于3微米的超细催化剂粉体。
(2)直径500mm、高度6000mm的流化床反应器升温至660℃,配套的还原器升温至500℃。还原器通过加剂罐加入上述200g超细催化剂粉体作为催化剂,通入30slm氦气和10slm氢气还原10min,然后将催化剂输送至反应器内。反应器底部的进气喷嘴通入600℃预热后的反应混合气体,其中200slm乙烯、400slm氦气、200slm甲醇。反应60min后停止通反应气,将产物通过氦气输送至储罐内,得到薄壁碳纳米管产物。该薄壁碳纳米管的倍率为38,管径小于6nm、壁数为2-3层。
对比例1
称取280g乙酸铁、92g乙酸钴、37g乙酸铝、560g乙酸镁、720g柠檬酸溶解于6000g纯水,然后加入11g四水七钼酸铵,设置90℃水浴加热,充分搅拌均匀后,将溶液通过蠕动泵 注入喷雾干燥塔的雾化器,空气作为载气,500~600℃热解得到粒径D50小于10微米的超细催化剂粉体。
直径500mm、高度6000mm的流化床反应器升温至660℃,配套的还原器升温至500℃。还原器通过加剂罐加入上述200g超细催化剂粉体作为催化剂,通入30slm氮气和10slm氢气还原10min,然后将催化剂输送至反应器内。反应器底部的进气喷嘴通入600℃预热后的反应混合气体,其中200slm乙烯、400slm氮气、200slm甲醇。反应60min后停止通反应气,将产物通过氮气输送至储罐内,得到碳纳米管产物。该碳纳米管的产率为40,直径为13nm、壁数约为20层。
对比例2
(1)称取280g乙酸铁、92g乙酸钴、37g乙酸铝、560g乙酸镁、720g柠檬酸溶解于6000g纯水,然后加入11g四水七钼酸铵和0.3g二水硫酸钙,设置90℃水浴加热,充分搅拌均匀后,将溶液通过蠕动泵注入喷雾干燥塔的雾化器,0.8MPa高压空气作为载气,500~600℃热解得到粒径D50小于3微米的超细催化剂粉体。
(2)直径500mm、高度6000mm的流化床反应器升温至660℃,配套的还原器升温至500℃。还原器通过加剂罐加入上述200g超细催化剂粉体作为催化剂,通入30slm氦气和10slm氢气还原10min,然后将催化剂输送至反应器内。反应器底部的进气喷嘴通入600℃预热后的反应混合气体,其中200slm乙烯、400slm氦气、200slm甲醇。反应60min后停止通反应气,将产物通过氦气输送至储罐内,得到薄壁碳纳米管产物。该薄壁碳纳米管的倍率为23,管径11nm、壁数约为18层。
对比例3
(1)称取280g乙酸铁、92g乙酸钴、37g乙酸铝、560g乙酸镁、720g柠檬酸溶解于6000g纯水,然后加入11g四水七钼酸铵和1.0g二水硫酸钙,设置90℃水浴加热,充分搅拌均匀后,将溶液通过蠕动泵注入喷雾干燥塔的雾化器,0.8MPa高压空气作为载气,500~600℃热解得到粒径D50小于3微米的超细催化剂粉体。
(2)直径500mm、高度6000mm的流化床反应器升温至660℃,配套的还原器升温至500℃。还原器通过加剂罐加入上述200g超细催化剂粉体作为催化剂,通入30slm氦气和10slm氢气还原10min,然后将催化剂输送至反应器内。反应器底部的进气喷嘴通入600℃预热后的反应混合气体,其中200slm乙烯、400slm氦气、200slm甲醇。反应60min后停止通反应气,将产物通过氦气输送至储罐内,得到薄壁碳纳米管产物。该薄壁碳纳米管的倍率为34,管径15nm、壁数约为22层。

Claims (10)

  1. 一种薄壁碳纳米管的制备方法,其特征在于,包括如下步骤:
    (1)制备催化:将铁前驱体、钴前驱体、铝前驱体、镁前驱体和柠檬酸分散在水中,混匀,然后加入四水七钼酸铵和含钙硫化物,混匀、进行水热反应;结束后,经过喷雾干燥塔进行雾化处理,高压空气作为载气,热解得到超细催化剂粉体;
    (2)制备薄壁碳纳米管:将上述超细催化剂粉体加入到还原器中,通入和氢气进行还原;然后将还原后的超细催化剂粉体加入到流化床反应器中,并在流化床反应器底部的进气嘴通入预热的反应混合气,反应制备得到薄壁碳纳米管产物。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中铁前驱体为乙酸铁;钴前驱体为乙酸钴;铝前驱体为乙酸铝;镁前驱体为乙酸镁。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)中含钙硫化物任选自如下任意一种或多种:硫化钙、硫酸钙、二水硫酸钙、亚硫酸钙、硫代硫酸钙。
  4. 根据权利要求1所述的方法,其特征在于,铁前驱体、钴前驱体、铝前驱体、镁前驱体的质量比为70:(20-25):(8-10):(130-150)。
  5. 根据权利要求1所述的方法,其特征在于,柠檬酸与铁前驱体的质量比为(150-200):70;柠檬酸分散在水的浓度控制在0.1-0.2g/mL。
  6. 根据权利要求1所述的方法,其特征在于,四水七钼酸铵与铁前驱体的质量比为(2-5):70;含钙硫化物相对铁前驱体的添加量为0.2wt%-0.3wt%。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,步骤(2)中所述的反应混合气为乙烯、氦气和甲醇。
  8. 根据权利要求7所述的方法,其特征在于,反应混合气中乙烯、氦气和甲醇的通入体积量为1:2:1。
  9. 权利要求1-8任一项所述方法制备得到的薄壁碳纳米管。
  10. 权利要求9所述的薄壁碳纳米管在储能领域、材料领域中的应用。
PCT/CN2022/081423 2022-03-14 2022-03-17 一种薄壁碳纳米管的合成方法 WO2023173357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210246652.8 2022-03-14
CN202210246652.8A CN114524430B (zh) 2022-03-14 2022-03-14 一种薄壁碳纳米管的合成方法

Publications (1)

Publication Number Publication Date
WO2023173357A1 true WO2023173357A1 (zh) 2023-09-21

Family

ID=81625818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081423 WO2023173357A1 (zh) 2022-03-14 2022-03-17 一种薄壁碳纳米管的合成方法

Country Status (2)

Country Link
CN (1) CN114524430B (zh)
WO (1) WO2023173357A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209835A (zh) * 2007-12-21 2008-07-02 北京大学 一种合成薄壁碳纳米管的方法
CN102001643A (zh) * 2010-12-08 2011-04-06 清华大学 一种超长碳纳米管及其制备方法
US20120107610A1 (en) * 2000-10-06 2012-05-03 Materials And Electrochemical Research Corporation Double-walled carbon nanotubes and methods for production and application
CN106587010A (zh) * 2016-12-05 2017-04-26 华南理工大学 一种使用碳包覆金属催化剂制备的碳纳米管材料及其制备方法
CN107252682A (zh) * 2017-06-10 2017-10-17 陈永 一种用于有机碳气相生长为碳化物的催化剂的制备方法及其应用
CN109592668A (zh) * 2019-01-25 2019-04-09 厦门大学 一种控制碳纳米管直径的方法
CN110040720A (zh) * 2019-04-22 2019-07-23 中国科学院金属研究所 高纯度、窄直径分布、小直径双壁碳纳米管的制备方法
CN111017906A (zh) * 2019-12-25 2020-04-17 清华大学 超长手性碳纳米管和制备方法、应用及高性能光电器件
CN112371131A (zh) * 2020-11-25 2021-02-19 诺瑞(深圳)新技术有限公司 碳纳米管生长催化剂及其制备方法和碳纳米管的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018498A (ja) * 2008-07-11 2010-01-28 Shinshu Univ カーボンナノチューブの製造方法及びカーボンナノチューブ
CN111495381A (zh) * 2019-01-31 2020-08-07 新奥石墨烯技术有限公司 一种片状催化剂的制备方法、片状催化剂及其在制备超细碳纳米管中的应用
CN110227472A (zh) * 2019-06-26 2019-09-13 内蒙古科技大学 高性能加氢Cu基催化剂及其制备方法及应用
CN111170309B (zh) * 2020-02-11 2023-01-06 江西铜业技术研究院有限公司 一种超长少壁碳纳米管阵列的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107610A1 (en) * 2000-10-06 2012-05-03 Materials And Electrochemical Research Corporation Double-walled carbon nanotubes and methods for production and application
CN101209835A (zh) * 2007-12-21 2008-07-02 北京大学 一种合成薄壁碳纳米管的方法
CN102001643A (zh) * 2010-12-08 2011-04-06 清华大学 一种超长碳纳米管及其制备方法
CN106587010A (zh) * 2016-12-05 2017-04-26 华南理工大学 一种使用碳包覆金属催化剂制备的碳纳米管材料及其制备方法
CN107252682A (zh) * 2017-06-10 2017-10-17 陈永 一种用于有机碳气相生长为碳化物的催化剂的制备方法及其应用
CN109592668A (zh) * 2019-01-25 2019-04-09 厦门大学 一种控制碳纳米管直径的方法
CN110040720A (zh) * 2019-04-22 2019-07-23 中国科学院金属研究所 高纯度、窄直径分布、小直径双壁碳纳米管的制备方法
CN111017906A (zh) * 2019-12-25 2020-04-17 清华大学 超长手性碳纳米管和制备方法、应用及高性能光电器件
CN112371131A (zh) * 2020-11-25 2021-02-19 诺瑞(深圳)新技术有限公司 碳纳米管生长催化剂及其制备方法和碳纳米管的制备方法

Also Published As

Publication number Publication date
CN114524430B (zh) 2023-09-01
CN114524430A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
US10179739B2 (en) Catalytic method for multi-wall carbon nanotubes
CN100391831C (zh) 制备碳纳米笼的方法
JP5193191B2 (ja) ドライパウダー注入装置、および、単層カーボンナノチューブの生産方法
CN108675300B (zh) 一种核壳结构纳米复合颗粒及其制备方法、其制备装置
WO2022075846A1 (en) Integrated manufacturing of core-shell particles for li-ion batteries
KR20080016371A (ko) 기상반응법을 이용한 니켈 나노분말의 제조방법
KR101876293B1 (ko) 다중벽 탄소나노튜브 대량 생산을 위한 연속적 제조 공정 및 탄소나노튜브 제조용 촉매
JP2021175707A (ja) 複合品を製造するシステム及び方法
JP2021175705A (ja) 複合品を製造するシステム及び方法
CN115285976A (zh) 碳纳米管、碳纳米管流化床制备工艺
JP2015151277A (ja) 気相法微細炭素繊維の製造方法
WO2023173357A1 (zh) 一种薄壁碳纳米管的合成方法
CN114572965A (zh) 一种碳纳米管的制备方法
KR20070110739A (ko) 탄소나노튜브 합성용 촉매의 제조 방법 및 이의 제조 장치
KR100892753B1 (ko) 탄소나노튜브 합성용 촉매의 제조 장치 및 방법
KR20080000033A (ko) 탄소나노튜브 합성용 촉매의 제조 방법 및 이의 제조 장치
WO2023159700A1 (zh) 一种超细催化剂粉体的合成方法
CN100372761C (zh) 在固态下制备石墨结构空心碳纳米球的方法
CN110040720A (zh) 高纯度、窄直径分布、小直径双壁碳纳米管的制备方法
US10421061B2 (en) Preparation method of alumina-carbon nano tube composite powder material
KR102230246B1 (ko) 탄소나노튜브의 연속 합성 방법
WO2013132871A1 (ja) 炭素繊維の製造方法および炭素繊維
KR20080016138A (ko) 탄소나노화이버의 제조 방법 및 이의 제조 장치
CN111482153A (zh) 管式反应器装置及其使用方法
KR101109046B1 (ko) 컵형 탄소나노튜브 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931392

Country of ref document: EP

Kind code of ref document: A1