WO2023037770A1 - 電磁波シールドフィルム - Google Patents

電磁波シールドフィルム Download PDF

Info

Publication number
WO2023037770A1
WO2023037770A1 PCT/JP2022/028473 JP2022028473W WO2023037770A1 WO 2023037770 A1 WO2023037770 A1 WO 2023037770A1 JP 2022028473 W JP2022028473 W JP 2022028473W WO 2023037770 A1 WO2023037770 A1 WO 2023037770A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
shielding film
wave shielding
layer
conductive
Prior art date
Application number
PCT/JP2022/028473
Other languages
English (en)
French (fr)
Inventor
恒彦 寺田
浩輔 角
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to KR1020247000417A priority Critical patent/KR20240051914A/ko
Priority to CN202280060420.1A priority patent/CN117917200A/zh
Priority to JP2023546818A priority patent/JPWO2023037770A1/ja
Publication of WO2023037770A1 publication Critical patent/WO2023037770A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to an electromagnetic wave shielding film.
  • the shield layer used in the electromagnetic wave shield film is formed of a thin metal layer formed by vapor deposition, sputtering, plating, or the like, or a conductive paste containing a high content of conductive filler.
  • 5G, etc. will spread in earnest, high frequency and high speed transmission will advance in order to communicate large amounts of data, and noise countermeasures for electronic devices will become even more necessary.
  • a near-field electromagnetic wave absorber having high absorption power for electromagnetic wave noise of several hundred MHz to several GHz and having suppressed anisotropy of electromagnetic wave absorption power is provided on one surface of a plastic film.
  • An electromagnetic wave shielding film of the present invention comprises a metamaterial layer having a first main surface and a second main surface facing the first main surface, and an adhesive layer formed on the second main surface side of the metamaterial layer.
  • the metamaterial layer is formed of a material having conductivity and has a predetermined pattern with a period. It is characterized by comprising a conductive region arranged in a regular pattern and a non-conductive region other than the conductive region.
  • the metamaterial layer consists of a conductive region in which a predetermined pattern made of a conductive material is periodically arranged, and a non-conductive region other than the conductive region.
  • a conductive region in which a predetermined pattern is periodically arranged and made of such a conductive material resonates with an electromagnetic field of a specific frequency, and can shield electromagnetic waves of a specific frequency.
  • the frequency of electromagnetic waves to be shielded can be controlled by adjusting the material, shape, size, arrangement, period, dielectric constant of the material constituting the non-conductive region, etc. of the predetermined pattern.
  • the predetermined pattern is linear, curved, polygonal, circular, elliptical, ring-shaped, C-shaped, U-shaped, L-shaped, crank-shaped, and Jerusalem cross-shaped. at least one pattern selected from the group consisting of By using such a pattern, electromagnetic waves having a desired frequency can be shielded.
  • the non-conductive region is composed of a non-conductive sheet made of a resin composition, and the predetermined pattern is formed so as to be embedded in the non-conductive sheet.
  • a metamaterial layer can be easily formed by embedding a predetermined pattern in a non-conductive sheet made of a resin composition.
  • the resin composition preferably has a dielectric constant of 1 to 20,000. Electromagnetic waves having a desired frequency can be shielded by adjusting the dielectric constant of the resin composition.
  • the resin composition preferably contains a filler, and the filler is preferably an organic filler and/or an inorganic filler.
  • the filler functions as a filler.
  • the adhesive layer is preferably a conductive adhesive layer.
  • the electromagnetic wave shielding film of the present invention is arranged on a printed wiring board. At this time, if the adhesive layer is a conductive adhesive layer, the conductive region of the metamaterial layer and the ground circuit are electrically connected by connecting the adhesive layer to the ground circuit of the printed wiring board. can be done. As a result, the shielding properties of the electromagnetic wave shielding film can be improved.
  • a conductive layer and/or a magnetic layer may be formed between the adhesive layer and the metamaterial layer.
  • a conductive layer and/or a magnetic layer may be formed on the first main surface side of the metamaterial layer.
  • a protective layer is formed on the first main surface side of the metamaterial layer.
  • the protective layer By forming the protective layer, the metamaterial layer and the adhesive layer can be prevented from being damaged by an external impact or the like.
  • the protective layer it is possible to carry the device without touching the metamaterial layer and the adhesive layer, thereby improving handling.
  • Another electromagnetic wave shielding film of the present invention includes a metamaterial layer having a first main surface and a second main surface facing the first main surface, and an adhesive formed on the second main surface side of the metamaterial layer.
  • the metamaterial layer is planarly viewed from the first main surface side and/or the second main surface side, the metamaterial layer is formed of a non-conductive material and has a predetermined It is characterized by comprising a non-conductive region in which a pattern is arranged periodically and a conductive region other than the non-conductive region.
  • the metamaterial layer consists of a non-conductive region in which a predetermined pattern made of a non-conductive material is periodically arranged, and a conductive region other than the non-conductive region. .
  • the conductive region functions as a shield layer.
  • the predetermined pattern formed of the material having non-conductivity when it is arranged periodically, it resonates with the electromagnetic field of the specific frequency, and the electromagnetic wave having the specific frequency can be transmitted.
  • the frequency of the transmitted electromagnetic wave can be controlled by adjusting the material, shape, size, arrangement, period, dielectric constant of the non-conductive material, etc. of the predetermined pattern.
  • the predetermined pattern is linear, curved, polygonal, circular, elliptical, ring-shaped, C-shaped, U-shaped, L-shaped, crank-shaped, and Jerusalem cross-shaped. at least one pattern selected from the group consisting of By using such a pattern, an electromagnetic wave having a desired frequency can be transmitted.
  • the conductive region is composed of a conductive sheet made of a material having conductivity, and the predetermined pattern is formed so as to be embedded in the conductive sheet.
  • a metamaterial layer can be easily formed by embedding a predetermined pattern in a conductive sheet.
  • the non-conductive material preferably has a dielectric constant of 1 to 20,000. Electromagnetic waves having a desired frequency can be shielded by adjusting the dielectric constant of the non-conductive material.
  • the non-conductive material preferably contains a filler, and the filler is preferably an organic filler and/or an inorganic filler.
  • the outline of the predetermined pattern is formed by through holes penetrating from the first main surface to the second main surface of the metamaterial layer, and the material having non-conductivity is air.
  • the material having non-conductivity is air.
  • the adhesive layer is a conductive adhesive layer.
  • the electromagnetic wave shielding film of the present invention is arranged on a printed wiring board. At this time, if the adhesive layer is a conductive adhesive layer, the conductive region of the metamaterial layer and the ground circuit are electrically connected by connecting the adhesive layer to the ground circuit of the printed wiring board. can be done. As a result, the shielding properties of the electromagnetic wave shielding film can be improved.
  • a conductive layer and/or a magnetic layer may be formed between the adhesive layer and the metamaterial layer.
  • a conductive layer and/or a magnetic layer may be formed on the first main surface side of the metamaterial layer.
  • a protective layer is formed on the first main surface side of the metamaterial layer.
  • the protective layer By forming the protective layer, the metamaterial layer and the adhesive layer can be prevented from being damaged by an external impact or the like.
  • the protective layer it is possible to carry the device without touching the metamaterial layer and the adhesive layer, thereby improving handling.
  • an electromagnetic wave shielding film that can block or transmit only electromagnetic waves having a specific frequency.
  • FIG. 1A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 1B is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the first embodiment of the present invention viewed from the first main surface side.
  • FIG. 2A is a plan view schematically showing an example of the shape of a predetermined pattern formed of a conductive material of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 2B is a plan view schematically showing an example of the shape of a predetermined pattern formed of a conductive material of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 1A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 1B is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the first embodiment of the present invention viewed from the first main surface
  • FIG. 2C is a plan view schematically showing an example of the shape of the predetermined pattern formed of the conductive material of the electromagnetic wave shielding film according to the first embodiment of the present invention.
  • FIG. 2D is a plan view schematically showing an example of the shape of the predetermined pattern formed of the conductive material of the electromagnetic wave shielding film according to the first embodiment of the present invention.
  • FIG. 2E is a plan view schematically showing an example of the shape of a predetermined pattern formed of a conductive material of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 2F is a plan view schematically showing an example of the shape of a predetermined pattern formed of a conductive material of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 2G is a plan view schematically showing an example of the shape of the predetermined pattern formed of the conductive material of the electromagnetic wave shielding film according to the first embodiment of the present invention.
  • FIG. 2H is a plan view schematically showing an example of the shape of a predetermined pattern formed of a conductive material of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 2I is a plan view schematically showing an example of the shape of a predetermined pattern formed of a conductive material of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 2J is a plan view schematically showing an example of the shape of the predetermined pattern formed of the conductive material of the electromagnetic wave shielding film according to the first embodiment of the present invention.
  • FIG. 2K is a plan view schematically showing an example of the shape of the predetermined pattern formed of the conductive material of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 3A is a plan view schematically showing an example of a predetermined pattern in the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 3B is a plan view schematically showing an example of a predetermined pattern in the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 3C is a plan view schematically showing an example of a predetermined pattern in the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 3A is a plan view schematically showing an example of a predetermined pattern in the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 3B is a plan view schematically showing an example of a predetermined pattern in the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 3C is a plan view schematically showing an example of a pre
  • FIG. 4 is a plan view schematically showing another example of the metamaterial layer of the electromagnetic wave shielding film according to the first embodiment of the present invention viewed from the first main surface side.
  • FIG. 5A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 5B is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the first embodiment of the present invention, viewed from the first main surface side.
  • FIG. 5C is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the first embodiment of the present invention viewed from the second main surface side.
  • FIG. 5A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 5B is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the first embodiment of the present invention, viewed from the first main surface side.
  • FIG. 6 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 7A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 7B is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the first embodiment of the invention.
  • FIG. 8A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 8B is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the second embodiment of the present invention, viewed from the first main surface side.
  • FIG. 8A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 8B is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the second embodiment of the
  • FIG. 9A is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9B is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9C is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9D is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9A is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9B is a plan view
  • FIG. 9E is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9F is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9G is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • 9H is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9I is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9J is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 9K is a plan view schematically showing an example of the shape of a predetermined pattern formed of a non-conductive material of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 10A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 10B is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the second embodiment of the present invention viewed from the first main surface side.
  • FIG. 10C is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the second embodiment of the present invention viewed from the second main surface side.
  • FIG. 11A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 11B is a plan view schematically showing an example of the metamaterial layer of the electromagnetic wave shielding film according to the second embodiment of the present invention viewed from the first main surface side.
  • FIG. 12 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 13A is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 13B is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film according to the second embodiment of the invention.
  • FIG. 14 is an explanatory diagram schematically showing the positional relationship of each component of the metamaterial layer according to Example 1.
  • FIG. FIG. 15 is a schematic diagram schematically showing a method for evaluating shielding properties of a metamaterial layer.
  • 16A is a chart showing the transmission loss of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 1.
  • FIG. 16B is a chart showing the radiation magnetic field intensity of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 1.
  • FIG. FIG. 17 is an explanatory diagram schematically showing the positional relationship of each component of the metamaterial layer according to Example 2.
  • FIG. 18A is a chart showing the transmission loss of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 2.
  • FIG. 18B is a chart showing the radiated magnetic field intensity of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 2.
  • FIG. FIG. 19 is an explanatory diagram schematically showing the positional relationship of each component of the metamaterial layer according to Example 3.
  • FIG. 20A is a chart showing the transmission loss of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 3.
  • FIG. 20B is a chart showing the radiation magnetic field intensity of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 3.
  • FIG. 21 is an explanatory diagram schematically showing the positional relationship of each component of the metamaterial layer according to Example 4.
  • FIG. 22A is a chart showing the transmission loss of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 4.
  • FIG. 22B is a chart showing the radiated magnetic field intensity of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 4.
  • FIG. 23 is an explanatory diagram schematically showing the positional relationship of each component of the metamaterial layer according to Example 5.
  • FIG. 24A is a chart showing the transmission loss of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 5.
  • FIG. 24B is a chart showing the radiated magnetic field intensity of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 5.
  • FIG. 24A is a chart showing the transmission loss of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 5.
  • FIG. 24B is a chart showing the radiated magnetic field intensity of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 5.
  • FIG. 24A is a chart showing the transmission loss of electromagnetic waves with frequencies of 0 to 10000 MHz when using the metamaterial layer according to Example 5.
  • FIG. 24B is a chart showing the radiated magnetic field intensity of electromagnetic waves with frequencies of 0 to 10000 MHz when using
  • the electromagnetic wave shielding film of the present invention will be specifically described below.
  • the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention.
  • the electromagnetic wave shielding film 1 shown in FIG. 1A is formed on a metamaterial layer 10 having a first main surface 10a and a second main surface 10b facing the first main surface 10a, and on the second main surface 10b side of the metamaterial layer 10. and an adhesive layer 20 .
  • the metamaterial layer 10 consists of conductive regions 11 and non-conductive regions 12 other than the conductive regions 11 .
  • the conductive region 11 is formed by periodically arranging predetermined patterns 11a made of a conductive material.
  • the predetermined pattern 11a is C-shaped and arranged so as to be positioned at the vertexes of a square lattice.
  • the metamaterial layer 10 consists of a conductive region 11 in which a predetermined pattern 11a made of a conductive material is periodically arranged, and a non-conductive region 12 other than the conductive region 11. Become.
  • the conductive region 11 in which the predetermined patterns 11a made of such a conductive material are arranged periodically resonates with an electromagnetic field of a specific frequency, and can shield electromagnetic waves of a specific frequency. .
  • the non-conductive region 12 is composed of a non-conductive sheet 12a made of a resin composition, and the predetermined pattern 11a is formed so as to be embedded in the non-conductive sheet 12a. It is In the electromagnetic wave shielding film 1, the predetermined pattern 11a is formed only on the first main surface 10a side of the metamaterial layer 10, and is not formed on the second main surface 10b side. The metamaterial layer 10 of such a mode can be easily formed by embedding the predetermined pattern 11a in the non-conductive sheet 12a.
  • the predetermined pattern 11a can be formed by forming on the surface of the non-conductive sheet 12a by a normal method such as printing, plating, vapor deposition, etc., and pressing it into the surface.
  • the predetermined pattern 11a may be arranged on the surface of the non-conductive sheet 12a instead of being embedded.
  • the frequency of electromagnetic waves to be shielded can be controlled by adjusting the material, shape, size, arrangement, period of the predetermined pattern 11a, the dielectric constant of the material constituting the non-conductive region 12, and the like. . Preferred aspects of each configuration of the electromagnetic wave shielding film 1 will be described below.
  • the conductive material forming the predetermined pattern 11a is not particularly limited, but is preferably made of copper, silver, aluminum, a carbon material, or the like. Also, the conductive material may be a conductive paste containing these materials.
  • the shape of the predetermined pattern 11a is C-shaped. At least one pattern selected from the group consisting of circular, elliptical, ring-shaped, C-shaped, U-shaped, L-shaped, crank-shaped and Jerusalem cross-shaped is preferred. By using such a pattern, electromagnetic waves having a desired frequency can be shielded.
  • C-shaped predetermined patterns 11a of the same size are arranged so as to be positioned at the vertices of a square lattice.
  • the electromagnetic wave shielding film of the present invention may take any form as long as the predetermined pattern is arranged periodically.
  • the predetermined pattern 11a may be composed of a single figure, or may be composed of a combination of two or more figures. A more specific arrangement of the predetermined pattern will be described below with reference to the drawings.
  • the C-shaped predetermined patterns 11a may be arranged periodically so as to be located at the vertexes of the plane-filled equilateral triangles.
  • the combination of the pattern 11a- 11 and the pattern 11a- 12 is one predetermined pattern 11a.
  • combinations of the patterns 11a11 and 11a12 are periodically arranged vertically and horizontally.
  • the predetermined pattern 11a includes a C-shaped pattern 11a 21 , a pattern 11a 22 and a pattern 11a 23 having the same shape in the horizontal direction (double arrow A in FIG. 3C).
  • the predetermined pattern 11a may be cyclically arranged.
  • a combination of three patterns 11a 21 , 11a 22 and 11a 23 that are continuous in the horizontal direction is one predetermined pattern 11a.
  • the thickness of the predetermined pattern 11a is not particularly limited. More preferably ⁇ 18 ⁇ m. Moreover, when the predetermined pattern 11a is a conductive paste containing these materials, the thickness is preferably 5 to 100 ⁇ m, more preferably 10 to 60 ⁇ m. If the thickness of the predetermined pattern is less than the above thickness, it becomes difficult to obtain sufficient shielding properties. If the thickness of the predetermined pattern exceeds the above thickness, the flexibility of the predetermined pattern decreases, and the predetermined pattern tends to be damaged or peeled off from the non-conductive sheet when the electromagnetic wave shielding film is bent.
  • the resin composition forming the non-conductive sheet 12a is not particularly limited.
  • Thermoplastic resin compositions such as resin compositions, imide resin compositions, amide resin compositions, acrylic resin compositions, phenol resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions
  • Thermosetting resin compositions such as resin compositions and alkyd resin compositions can be used.
  • the material of the resin composition may be one of these alone or a combination of two or more.
  • the non-conductive sheet 12a may partially differ in the type of resin composition. Such an aspect will be described below with reference to the drawings.
  • a C-shaped predetermined pattern 11a is formed on a non-conductive sheet 12a.
  • the non-conductive sheet 12a is composed of a portion 12ai inside the C-shaped predetermined pattern 11a and a portion 12aO other than that.
  • the type of resin composition of the portion 12a i is different from the type of resin composition of the portion 12aO . In this way, by using a partially different resin composition in the non-conductive sheet 12a, the dielectric constant of the non-conductive sheet 12a can be partially changed, so that the frequency of electromagnetic waves to be shielded can be controlled. be able to.
  • the dielectric constant of the resin composition is preferably 1-20,000, more preferably 10-1,000. Electromagnetic waves having a desired frequency can be shielded by adjusting the dielectric constant of the resin composition.
  • the portion The dielectric constant of the resin composition forming the portion 12a i is preferably 10-1000, and the dielectric constant of the resin composition forming the portion 12a O is preferably 10-1000.
  • a resin composition that is a ferroelectric can be used.
  • a ferroelectric for example, the liquid crystal described in paragraphs [0027] to [0037] of Japanese Patent Application No. 2016-26840 Resin composition containing material, Resin composition containing organic ferroelectric material described in paragraphs [0009] to [0016] and paragraphs [0021] to [0024] of Japanese Patent Application No. 2004-341035, Japanese Patent Application No. 2003-320695 and a resin composition containing a ferroelectric substance described in paragraphs [0007] and paragraphs [0015] to [0020] of No.
  • the thickness of the non-conductive sheet 12a is preferably 1 to 3 times the thickness of the predetermined pattern 11a. If the thickness of the non-conductive sheet is less than the thickness of the predetermined pattern, the strength of the non-conductive sheet will be weak and it will be easily damaged. When the thickness of the non-conductive sheet exceeds three times the thickness of the predetermined pattern, the flexibility of the metamaterial layer is reduced. In addition, the entire electromagnetic wave shielding film becomes large, making it difficult to dispose the electromagnetic wave shielding film.
  • the resin composition preferably contains a filler, preferably an organic filler and/or an inorganic filler.
  • a filler preferably an organic filler and/or an inorganic filler.
  • organic fillers examples include particles of melamine resin, phenol resin, fluororesin, urethane resin, silicon resin, and the like.
  • inorganic fillers examples include nitrogen compounds (boron nitride, aluminum nitride, silicon nitride, carbon nitride, titanium nitride, etc.), carbon compounds (silicon carbide, fluorine carbide, boron carbide, titanium carbide, tungsten carbide, diamond, etc.), metals Particles such as oxides (silica, alumina, magnesium oxide, zinc oxide, beryllium oxide, etc.), glass beads, glass fibers and the like are included.
  • nitrogen compounds boron nitride, aluminum nitride, silicon nitride, carbon nitride, titanium nitride, etc.
  • carbon compounds silicon carbide, fluorine carbide, boron carbide, titanium carbide, tungsten carbide, diamond, etc.
  • metals Particles such as oxides (silica, alumina, magnesium oxide, zinc oxide, beryllium oxide, etc.), glass beads, glass fibers and the like are included.
  • the adhesive layer 20 may be a non-conductive adhesive layer or a conductive adhesive layer, but is preferably made of a conductive adhesive layer.
  • the electromagnetic wave shielding film 1 is arranged on a printed wiring board. At this time, if the adhesive layer 20 is a conductive adhesive layer, the conductive region of the metamaterial layer and the ground circuit are electrically connected by connecting the adhesive layer 20 to the ground circuit of the printed wiring board. can do. As a result, the shielding properties of the electromagnetic wave shielding film 1 can be improved.
  • the conductive adhesive layer may be an isotropic conductive adhesive layer or an anisotropic conductive adhesive layer.
  • the adhesive layer 20 preferably comprises an adhesive resin composition and conductive particles.
  • the conductive particles are not particularly limited, but may be fine metal particles, carbon nanotubes, carbon fibers, metal fibers, or the like.
  • Materials for the adhesive resin composition are not particularly limited, but include styrene-based resin compositions, vinyl acetate-based resin compositions, polyester-based resin compositions, polyethylene-based resin compositions, polypropylene-based resin compositions, and imide-based resin compositions.
  • Thermoplastic resin compositions such as materials, amide resin compositions, acrylic resin compositions, phenol resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions
  • a thermosetting resin composition such as a product can be used.
  • the material of the adhesive resin composition may be one of these alone or a combination of two or more.
  • the electromagnetic wave shielding film 1 preferably can specifically shield electromagnetic waves with a frequency of 0.1 to 90 GHz, and more preferably can specifically shield an electromagnetic wave with a frequency of 1 to 30 GHz.
  • a predetermined pattern 11b made of a conductive material is also periodically arranged on the second main surface 10b of the metamaterial layer 10.
  • the configuration is the same as that of the electromagnetic wave shielding film 1 except for the presence.
  • the predetermined pattern 11b is C-shaped and arranged so as to be positioned at the vertices of a square lattice. Further, the predetermined pattern 11a and the predetermined pattern 11b have a left-right reversed shape.
  • a non-conductive sheet 12a is present between the predetermined pattern 11a and the predetermined pattern 11b. Even the electromagnetic wave shielding film of such a mode can shield electromagnetic waves having a desired frequency.
  • the predetermined pattern 11a and the predetermined pattern 11b may have the same shape and may be continuous in the thickness direction of the metamaterial layer 10 . That is, the conductive material forming the predetermined pattern may pass through the non-conductive sheet. Furthermore, in the electromagnetic wave shielding film of the present invention, the predetermined pattern 11a and the predetermined pattern 11b may be continuous while deforming from the first main surface 10a to the second main surface 10b of the metamaterial layer 10 .
  • a shape includes, for example, a split ring shape.
  • the shape and arrangement of the predetermined pattern 11a may be different from the shape and arrangement of the predetermined pattern 11b.
  • the electromagnetic wave shielding film 201 shown in FIG. 6 has the same configuration as the electromagnetic wave shielding film 1 except that the protective layer 30 is formed on the first main surface 10a side of the metamaterial layer 10 .
  • the protective layer 30 is formed on the first main surface 10a side of the metamaterial layer 10.
  • the protective layer 30 is not particularly limited as long as it can protect the metamaterial layer 10 and the adhesive layer 20.
  • it is composed of a thermoplastic resin composition, a thermosetting resin composition, an active energy ray-curable composition, a resin film, or the like.
  • the thermoplastic resin composition include, but are not limited to, styrene resin compositions, vinyl acetate resin compositions, polyester resin compositions, polyethylene resin compositions, polypropylene resin compositions, and imide resin compositions. , acrylic resin compositions, and the like.
  • thermosetting resin composition examples include, but are not limited to, phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, and alkyd resin compositions.
  • active energy ray-curable composition examples include, but are not limited to, polymerizable compounds having at least two (meth)acryloyloxy groups in the molecule.
  • the resin film examples include, but are not limited to, polyphenylene sulfide (PPS) film, polyimide (PI) film, polyethylene naphthalate (PEN) film, polyethylene terephthalate (PET) film, cycloolefin polymer (COP) film, A polyetheretherketone (PEEK) film and the like are included.
  • PPS polyphenylene sulfide
  • PI polyimide
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PEEK polyetheretherketone
  • the protective layer 30 may be composed of a single material, or may be composed of two or more materials.
  • the protective layer 30 may contain a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and a viscosity adjuster, if necessary. agents, anti-blocking agents and the like may also be included.
  • the thickness of the protective layer 30 is not particularly limited and can be appropriately set as necessary, but is preferably 1 to 15 ⁇ m, more preferably 3 to 10 ⁇ m. If the thickness of the protective layer 30 is less than 1 ⁇ m, it is too thin to sufficiently protect the metamaterial layer 10 and the adhesive layer 20 . If the thickness of the protective layer 30 exceeds 15 ⁇ m, the electromagnetic wave shielding film 1 becomes difficult to bend and the protective layer 30 itself is likely to be damaged due to the excessive thickness. Therefore, it becomes difficult to apply to members requiring bending resistance.
  • the electromagnetic wave shielding film 301A shown in FIG. 7A has the same configuration as the electromagnetic wave shielding film 201 except that the conductive layer 40 is formed between the adhesive layer 20 and the metamaterial layer 10 .
  • the electromagnetic wave shielding film 301B shown in FIG. 7B has the same configuration as the electromagnetic wave shielding film 201 except that the conductive layer 40 is formed between the metamaterial layer 10 and the protective layer 30 .
  • the conductive layer 40 When the conductive layer 40 is formed in this manner, the conductive layer 40 functions as a shield layer, and the shielding properties of the entire electromagnetic wave shielding film are improved.
  • the conductive layer 40 may consist of a metal layer or may consist of a conductive adhesive layer.
  • the metal layer 40 may contain at least one metal selected from the group consisting of copper, silver, gold, aluminum, nickel, tin, palladium, chromium, titanium and zinc. preferable. These metals are suitable as shield layers for electromagnetic wave shield films.
  • a metal layer can be formed by arranging a metal foil film, plating, vapor deposition, or the like.
  • the conductive adhesive layer 40 is preferably composed of conductive particles and an adhesive resin composition.
  • the conductive particles are not particularly limited, but may be fine metal particles, carbon nanotubes, carbon fibers, metal fibers, or the like.
  • Materials for the adhesive resin composition are not particularly limited, but include styrene-based resin compositions, vinyl acetate-based resin compositions, polyester-based resin compositions, polyethylene-based resin compositions, polypropylene-based resin compositions, and imide-based resin compositions.
  • Thermoplastic resin compositions such as materials, amide resin compositions, acrylic resin compositions, phenol resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions
  • a thermosetting resin composition such as a product can be used.
  • the material of the adhesive resin composition may be one of these alone or a combination of two or more.
  • Such a conductive adhesive layer can be formed by mixing conductive particles and an adhesive resin composition and coating the mixture with a bar coater or the like.
  • the thickness of the conductive layer 40 is preferably 0.01-60 ⁇ m, more preferably 0.1-20 ⁇ m. If the thickness of the conductive layer is less than 0.01 ⁇ m, the strength of the shield layer is low because the conductive layer is too thin. Therefore, the bending resistance is lowered. In addition, since it becomes difficult to sufficiently reflect and absorb electromagnetic waves, the shielding characteristics are degraded. If the thickness of the conductive layer exceeds 60 ⁇ m, the entire electromagnetic wave shielding film becomes thick and difficult to handle.
  • conductive layer 40 was formed either between adhesive layer 20 and metamaterial layer 10 or between metamaterial layer 10 and protective layer 30 .
  • the conductive layer 40 may be formed both between the adhesive layer 20 and the metamaterial layer 10 and between the metamaterial layer 10 and the protective layer 30 .
  • the protective layer 30 is formed. It may consist of layer 40 only.
  • a magnetic layer may be formed in place of the conductive layer 40 in the electromagnetic wave shielding film of the present invention.
  • a magnetic layer functions as a shield layer, improving the shielding properties of the entire electromagnetic wave shielding film.
  • a soft magnetic material itself such as iron, silicon iron, permalloy, soft ferrite, sendust, permendur, etc. is molded into a sheet, or a sheet of a mixture of soft magnetic material powder and resin is used. can be used.
  • the electromagnetic wave shielding film according to the first embodiment of the present invention described so far, only one metamaterial layer was formed. However, in the electromagnetic wave shielding film according to the first embodiment of the present invention, a plurality of metamaterial layers may be formed. Further, in the electromagnetic wave shielding film according to the first embodiment of the present invention, as long as at least one metamaterial layer is formed, other functional layers may be laminated on the metamaterial layer. Such a functional layer includes a high dielectric layer, and by providing such a high dielectric layer, it is possible to adjust the resonance frequency and shield electromagnetic waves having a desired frequency.
  • the electromagnetic wave shielding film 401 shown in FIG. 8A is formed on the metamaterial layer 50 having the first main surface 50a and the second main surface 50b facing the first main surface 50a, and on the second main surface 50b side of the metamaterial layer 50. and an adhesive layer 60 .
  • the metamaterial layer 50 consists of non-conductive regions 52 and conductive regions 51 other than the non-conductive regions 52 .
  • the non-conductive region 52 is formed by periodically arranging predetermined patterns 52a made of a non-conductive material.
  • the predetermined pattern 52a is C-shaped and arranged so as to be positioned at the vertices of a square lattice.
  • the metamaterial layer 50 includes a non-conductive region 52 in which a predetermined pattern 52a made of a non-conductive material is periodically arranged, and a conductive region 51 other than the non-conductive region 52. Consists of In the electromagnetic wave shielding film 401, the conductive region 51 functions as a shield layer. Further, when the predetermined patterns 52a formed of a non-conductive material are arranged periodically, they resonate with an electromagnetic field of a specific frequency, and can transmit electromagnetic waves of a specific frequency.
  • the conductive region 51 is composed of a conductive sheet 51a, and the predetermined pattern 52a is formed so as to be embedded in the conductive sheet 51a.
  • the predetermined pattern 52a is formed only on the first main surface 50a side of the metamaterial layer 50, and is not formed on the second main surface 50b side.
  • the metamaterial layer 50 of such a mode can be easily formed by embedding the predetermined pattern 52a in the conductive sheet 51a.
  • Such a predetermined pattern 52a can be formed by forming recesses of a predetermined shape on the surface of the conductive sheet 51a by etching or the like and filling the recesses with a non-conductive material.
  • the frequency of electromagnetic waves transmitted can be controlled by adjusting the material, shape, size, arrangement, period, dielectric constant of the non-conductive material, etc. of the predetermined pattern 52a.
  • the non-conductive material constituting the predetermined pattern 52a is not particularly limited, but may be a styrene-based resin composition, a vinyl acetate-based resin composition, a polyester-based resin composition, a polyethylene-based resin composition, Thermoplastic resin compositions such as polypropylene resin compositions, imide resin compositions, amide resin compositions, acrylic resin compositions, phenol resin compositions, epoxy resin compositions, urethane resin compositions, Thermosetting resin compositions such as melamine resin compositions and alkyd resin compositions can be used.
  • the material of the resin composition may be one of these alone or a combination of two or more.
  • the non-conductive material preferably has a dielectric constant of 1 to 20,000, more preferably 10 to 1,000. Electromagnetic waves having a desired frequency can be shielded by adjusting the dielectric constant of the non-conductive material.
  • the resin composition preferably contains a filler, preferably an organic filler and/or an inorganic filler.
  • a filler preferably an organic filler and/or an inorganic filler.
  • organic fillers examples include particles of melamine resin, phenol resin, fluororesin, urethane resin, silicon resin, and the like.
  • inorganic fillers examples include nitrogen compounds (boron nitride, aluminum nitride, silicon nitride, carbon nitride, titanium nitride, etc.), carbon compounds (silicon carbide, fluorine carbide, boron carbide, titanium carbide, tungsten carbide, diamond, etc.), metals Particles such as oxides (silica, alumina, magnesium oxide, zinc oxide, beryllium oxide, etc.), glass beads, glass fibers and the like are included.
  • nitrogen compounds boron nitride, aluminum nitride, silicon nitride, carbon nitride, titanium nitride, etc.
  • carbon compounds silicon carbide, fluorine carbide, boron carbide, titanium carbide, tungsten carbide, diamond, etc.
  • metals Particles such as oxides (silica, alumina, magnesium oxide, zinc oxide, beryllium oxide, etc.), glass beads, glass fibers and the like are included.
  • the predetermined pattern 52a is C-shaped, but in the electromagnetic wave shielding film of the present invention, the predetermined pattern 52a is linear, curved, polygonal, or polygonal, as shown in FIGS. 9A to 9K. At least one pattern selected from the group consisting of circular, elliptical, ring-shaped, C-shaped, U-shaped, L-shaped, crank-shaped and Jerusalem cross-shaped is preferred. By using such a pattern, an electromagnetic wave having a desired frequency can be transmitted.
  • C-shaped predetermined patterns 52a of the same size are arranged so as to be positioned at the vertices of a square lattice.
  • the electromagnetic wave shielding film of the present invention may take any form as long as the predetermined pattern is arranged periodically.
  • the predetermined patterns 52a may be arranged periodically so as to be positioned at the vertices of equilateral triangles filled in the plane.
  • predetermined patterns 52a having different sizes and similarity may be arranged so as to alternately line up at the vertices of a square lattice.
  • a plurality of patterns may be assembled to form a predetermined pattern, and the predetermined pattern may be arranged periodically.
  • the predetermined pattern 52a preferably has a thickness of 0.1 to 35 ⁇ m, more preferably 6 to 18 ⁇ m. If the thickness of the predetermined pattern is less than 0.1 ⁇ m, it becomes difficult for electromagnetic waves having a desired frequency to pass through the electromagnetic wave shielding film. If the thickness of the predetermined pattern exceeds 35 ⁇ m, the flexibility of the predetermined pattern is reduced, and when the electromagnetic wave shielding film is bent, the predetermined pattern is likely to be damaged or easily peeled off from the conductive sheet.
  • the material of the conductive sheet 51a is not particularly limited, but is preferably made of copper, silver, aluminum, a carbon material, or the like.
  • the thickness of the conductive sheet 51a is preferably 1 to 3 times the thickness of the predetermined pattern 52a. If the thickness of the conductive sheet is less than the thickness of the predetermined pattern, the strength of the conductive sheet will be weak and the sheet will be easily damaged. When the thickness of the conductive sheet exceeds three times the thickness of the predetermined pattern, the flexibility of the metamaterial layer is reduced. In addition, the entire electromagnetic wave shielding film becomes large, making it difficult to dispose the electromagnetic wave shielding film. Furthermore, it becomes difficult for electromagnetic waves having a desired frequency to pass through.
  • Preferred aspects of the adhesive layer 60 in the electromagnetic shielding film 401 are the same as those of the adhesive layer 20 in the electromagnetic shielding film 1 described above.
  • the electromagnetic wave shielding film 401 preferably can specifically transmit electromagnetic waves with a frequency of 0.1 to 90 GHz, and more preferably can specifically transmit electromagnetic waves with a frequency of 1 to 30 GHz.
  • predetermined patterns 52b made of a conductive material are also periodically arranged on the second main surface 50b of the metamaterial layer 50.
  • the configuration is the same as that of the electromagnetic wave shielding film 401 except that it is provided.
  • the predetermined pattern 52b is C-shaped and arranged so as to be positioned at the vertices of a square lattice.
  • the predetermined pattern 52a and the predetermined pattern 52b have shapes in which the left and right sides are reversed.
  • a conductive sheet 51a is present between the predetermined pattern 52a and the predetermined pattern 52b. Even the electromagnetic wave shielding film of such a mode can shield electromagnetic waves having a desired frequency.
  • the predetermined pattern 52a and the predetermined pattern 52b may have the same shape and may be continuous in the thickness direction of the metamaterial layer 50 . That is, the non-conductive material forming the predetermined pattern may penetrate the conductive sheet. Further, in the electromagnetic wave shielding film of the present invention, the predetermined pattern 52a and the predetermined pattern 52b may be continuous while deforming from the first main surface 50a to the second main surface 50b of the metamaterial layer 50 .
  • a shape includes, for example, a split ring shape.
  • the shape and arrangement of the predetermined pattern 52a may be different from the shape and arrangement of the predetermined pattern 52b.
  • the electromagnetic wave shielding film 601 shown in FIGS. 11A and 11B includes a metamaterial layer 50 having a first main surface 50a and a second main surface 50b facing the first main surface 50a, and a second main surface 50b of the metamaterial layer 50. and an adhesive layer 60 formed on the side.
  • the metamaterial layer 50 has through holes 55 penetrating from the first major surface 50a to the second major surface 50b.
  • the metamaterial layer 50 consists of non-conductive regions 52 and conductive regions 51 other than the non-conductive regions 52 .
  • the non-conductive region 52 is formed by periodically arranging predetermined patterns 52a.
  • the outline of the predetermined pattern 52a is formed by the through holes 55.
  • the through holes 55 are filled with air. Therefore, it can be said that the predetermined pattern 52a is formed of air, which is a non-conductive material.
  • the predetermined pattern 52a is C-shaped and arranged so as to be positioned at the vertices of a square lattice.
  • electromagnetic waves are less likely to be reflected and absorbed in the through holes 55 . Therefore, it becomes easy to suitably transmit electromagnetic waves having a specific frequency.
  • Preferred aspects of the adhesive layer 60 in the electromagnetic wave shielding film 601 are the same as those of the adhesive layer 60 in the electromagnetic wave shielding film 401 described above.
  • the electromagnetic wave shielding film 701 shown in FIG. 12 has the same configuration as the electromagnetic wave shielding film 401 except that the protective layer 70 is formed on the first main surface 50a side of the metamaterial layer 50 .
  • the protective layer 70 By forming the protective layer 70 on the first main surface 50a side of the metamaterial layer 50, the metamaterial layer 50 and the adhesive layer 60 can be prevented from being damaged by an external impact or the like.
  • the protective layer 70 it is possible to carry the device without touching the metamaterial layer 50 and the adhesive layer 60, thereby improving handling.
  • Preferred aspects of the protective layer 70 in the electromagnetic wave shielding film 701 are the same as those of the protective layer 30 in the electromagnetic wave shielding film 201 described above.
  • the electromagnetic wave shielding film 801A shown in FIG. 13A has the same configuration as the electromagnetic wave shielding film 701 except that the conductive layer 80 is formed between the adhesive layer 60 and the metamaterial layer 50 .
  • the electromagnetic wave shielding film 801B shown in FIG. 13B has the same configuration as the electromagnetic wave shielding film 701 except that the conductive layer 80 is formed between the metamaterial layer 50 and the protective layer 70 .
  • the conductive layer 80 When the conductive layer 80 is formed in this manner, the conductive layer 80 functions as a shield layer, and the shielding properties of the entire electromagnetic wave shielding film are improved.
  • Preferred aspects of the conductive layer 80 in the electromagnetic wave shielding film 801A and the electromagnetic wave shielding film 801B are the same as the preferred aspects of the conductive layer 40 in the electromagnetic wave shielding film 201 described above.
  • the conductive layer 80 was formed either between the adhesive layer 60 and the metamaterial layer 50 or between the metamaterial layer 50 and the protective layer .
  • the conductive layer 80 may be formed both between the adhesive layer 60 and the metamaterial layer 50 and between the metamaterial layer 50 and the protective layer 70 .
  • the protective layer 70 is formed in the electromagnetic shielding film 801A and the electromagnetic shielding film 801B, but the protective layer is not formed in the electromagnetic shielding film of the present invention. It may consist of layer 80 only.
  • a magnetic layer may be formed instead of the conductive layer 80 in the electromagnetic wave shielding film of the present invention.
  • a magnetic layer functions as a shield layer, improving the shielding properties of the entire electromagnetic wave shielding film.
  • a soft magnetic material itself such as iron, silicon iron, permalloy, soft ferrite, sendust, permendur, etc. is molded into a sheet, or a sheet of a mixture of soft magnetic material powder and resin is used. can be used.
  • the metamaterial layer may be formed in multiple layers.
  • other functional layers may be laminated on the metamaterial layer.
  • Such a functional layer includes a high dielectric layer. By providing such a high dielectric layer, it is possible to adjust the resonance frequency and transmit electromagnetic waves having a desired frequency.
  • the electromagnetic wave shielding film according to the first embodiment of the present invention described so far includes, as a metamaterial layer, a conductive region in which a predetermined pattern formed of a conductive material is periodically arranged, and a conductive region It contained only a metamaterial layer (hereinafter also referred to as a “positive metamaterial layer”) consisting of a non-conductive region other than the .
  • the electromagnetic wave shielding film according to the second embodiment of the present invention described so far includes, as a metamaterial layer, a non-conductive region in which a predetermined pattern formed of a non-conductive material is periodically arranged. , and conductive regions other than non-conductive regions (hereinafter also referred to as “negative metamaterial layer”).
  • the electromagnetic wave shielding film of the present invention may contain both a positive metamaterial layer and a negative metamaterial layer.
  • the electromagnetic wave shielding film of the present invention may be formed by laminating a plurality of positive metamaterial layers.
  • the electromagnetic wave shielding film of the present invention may be formed by laminating a plurality of negative metamaterial layers.
  • Example 1 A non-conductive sheet made of a polyimide composition having a thickness of 25 ⁇ m and having a first main surface and a second main surface facing the first main surface was prepared.
  • the dielectric constant of the non-conductive sheet was 3.1.
  • a C-shaped pattern (hereinafter also referred to as a “first C-shaped pattern”) was placed on the first main surface of the non-conductive sheet at the vertices of the square lattice, and a 8 ⁇ 10-5 ⁇ cm A conductive paste was printed.
  • Each first C-shaped pattern had a single shape, the width (line thickness) of the first C-shaped pattern was 1 mm, and the total length (maximum width of the pattern) was 5 mm. Also, the distance between the centers of gravity of the respective first C-shaped patterns was 6 mm.
  • a C-shaped pattern (hereinafter also referred to as a “second C-shaped pattern”) on the second main surface of the non-conductive sheet is positioned on the back side of the first C-shaped pattern.
  • the shape of the second C-shaped pattern seen from the first main surface side was made to be a shape obtained by rotating the first C-shaped pattern seen from the first main surface side by 180 degrees.
  • Each second C-shaped pattern had a single shape, the width (line thickness) of the second C-shaped pattern was 1 mm, and the total length (maximum width of the pattern) was 5 mm.
  • Example 1 a positive metamaterial layer according to Example 1 was produced.
  • the positional relationship of each component of the metamaterial layer according to Example 1 will be described with reference to the drawings.
  • the first C-shaped pattern 11a is arranged on the first main surface 10a side of the non-conductive sheet 12a, and the second main surface 10b side of the non-conductive sheet 12a.
  • a second C-shaped pattern 11b is arranged.
  • the shape of the second C-shaped pattern 11b is obtained by rotating the first C-shaped pattern 11a by 180 degrees.
  • attention is paid to one of the predetermined patterns, and each component is shown separately.
  • there are a plurality of predetermined patterns there are a plurality of predetermined patterns, and these configurations are in close contact with each other.
  • the shielding properties of the metamaterial layer according to Example 1 were evaluated by the following method.
  • a network analyzer 91 product name: N5232A, manufacturer: Keysight Technologies Corporation
  • a microstrip line 92 and a magnetic field probe 93 were connected.
  • the metamaterial layer 10 according to Example 1 was placed on the microstrip line 92 so that the second main surface faced downward.
  • the transmission loss (S21) and the radiation magnetic field strength (S31) of electromagnetic waves with a frequency of 0 to 10000 MHz were measured when the metamaterial layer according to Example 1 was used.
  • the results are shown in Figures 16A and 16B. As shown in FIGS. 16A and 16B, it was found that the metamaterial layer according to Example 1 can shield electromagnetic waves with a frequency of 3000 to 6000 MHz.
  • an electromagnetic wave shielding film according to Example 1 was produced by forming an adhesive layer made of epoxy resin with a thickness of 0.01 mm on the second main surface side of the metamaterial layer according to Example 1.
  • Example 2 A positive metamaterial according to Example 2 by further laminating a non-conductive sheet made of a polyimide composition having a thickness of 25 ⁇ m on the second main surface side of the non-conductive sheet of the metamaterial layer according to Example 1. A layer was made.
  • the positional relationship of each component of the metamaterial layer according to Example 2 will be described with reference to the drawings.
  • the first C-shaped pattern 11a is arranged on the first main surface 10a side of the non-conductive sheet 12a1, and the second main surface 10b side is arranged.
  • the second C-shaped pattern 11b is arranged.
  • the shape of the second C-shaped pattern 11b is obtained by rotating the first C-shaped pattern 11a by 180 degrees.
  • a non-conductive sheet 12a2 is arranged below the second C-shaped pattern 11b.
  • an electromagnetic wave shielding film according to Example 2 was produced by forming an adhesive layer made of epoxy resin with a thickness of 0.01 mm on the second main surface side of the metamaterial layer according to Example 2.
  • Example 3 In the same manner as in Example 2, except that the shape of the second C-shaped pattern seen from the first main surface side was made to be the same shape as the first C-shaped pattern seen from the first main surface side. A positive metamaterial layer according to Example 3 was fabricated.
  • the positional relationship of each component of the metamaterial layer according to Example 3 will be described with reference to the drawings.
  • the first C-shaped pattern 11a is arranged on the first main surface 10a side of the non-conductive sheet 12a1, and the second main surface 10b side is arranged.
  • the second C-shaped pattern 11b is arranged.
  • the first C-shaped pattern 11a and the second C-shaped pattern 11b just overlap when viewed from the first main surface 10a side.
  • a non-conductive sheet 12a2 is arranged below the second C-shaped pattern 11b.
  • FIG. 19 in order to facilitate understanding of the positional relationship of each component of the metamaterial layer 10, attention is paid to one of the predetermined patterns, and each component is shown separately.
  • there are a plurality of predetermined patterns and these configurations are in close contact with each other.
  • an electromagnetic wave shielding film according to Example 3 was produced by forming an adhesive layer made of epoxy resin with a thickness of 0.01 mm on the second main surface side of the metamaterial layer according to Example 3.
  • Example 4 Three non-conductive sheets made of a polyimide composition having a thickness of 25 ⁇ m and having a first main surface and a second main surface opposite to the first main surface were prepared.
  • the dielectric constant of the non-conductive sheet was 3.1.
  • a conductive paste of 8 ⁇ 10 ⁇ 5 ⁇ cm was printed on the first main surface of the first non-conductive sheet so that the first C-shaped pattern was positioned at the vertex of the square lattice.
  • Each first C-shaped pattern had a single shape, the width (line thickness) of the first C-shaped pattern was 1 mm, and the total length (maximum width of the pattern) was 5 mm. Also, the distance between the centers of gravity of the respective first C-shaped patterns was 6 mm.
  • a conductive paste of 8 ⁇ 10 ⁇ 5 ⁇ cm was printed on the second main surface of the first non-conductive sheet so that the second C-shaped pattern was located on the back side of the first C-shaped pattern. At this time, the shape of the second C-shaped pattern seen from the first main surface side was made to be a shape that exactly overlapped with the first C-shaped pattern seen from the first main surface side.
  • first non-conductive sheet third non-conductive sheet and second non-conductive sheet.
  • second non-conductive sheet was rotated by 180 degrees.
  • the shapes of the first C-shaped pattern and the second C-shaped pattern formed on the second non-conductive sheet are The first C-shaped pattern and the second C-shaped pattern formed on the first non-conductive sheet were rotated by 180 degrees.
  • a first C-shaped pattern 11a1 is arranged on the first major surface 10a1 side of the first non-conductive sheet 12a1
  • a second C-shaped pattern 11b- 1 is arranged on the second main surface 10b- 1 side.
  • the first C-shaped pattern 11a- 1 and the second C-shaped pattern 11b- 1 exactly overlap when viewed from the first main surface 10a- 1 side.
  • the first C-shaped pattern 11a2 is arranged on the first main surface 10a2 side of the second non-conductive sheet 12a2 , and the second main surface 10b2 side of the second nonconductive sheet 12a2 is arranged. , the second C-shaped pattern 11b2 is arranged. The first C-shaped pattern 11a2 and the second C-shaped pattern 11b2 just overlap when viewed from the first major surface 10a2 side.
  • the first non-conductive sheet 12a 1 , the third non-conductive sheet 12a 3 and the second non-conductive sheet 12a 2 are laminated in this order from the top.
  • the shapes of the first C-shaped pattern 11a2 and the second C-shaped pattern 11b2 are obtained by rotating the first C-shaped pattern 11a1 and the second C-shaped pattern 11b1 by 180 degrees. shape.
  • FIG. 21 in order to facilitate understanding of the positional relationship of each component of the metamaterial layer 10, attention is paid to one of the predetermined patterns, and each component is shown separately.
  • an electromagnetic wave shielding film according to Example 4 was produced by forming an adhesive layer made of epoxy resin with a thickness of 0.01 mm on the second main surface side of the metamaterial layer according to Example 4.
  • Example 5 A conductive sheet made of a conductive paste with a thickness of 25 ⁇ m and having a first main surface and a second main surface facing the first main surface was prepared.
  • third C-shaped pattern a C-shaped pattern
  • the conductive sheet was masked and etched so that through-holes in a C-shaped pattern (hereinafter also referred to as “third C-shaped pattern”) were formed at the vertices of the square lattice.
  • Each third C-shaped pattern had a single shape, the width (line thickness) of the third C-shaped pattern was 1 mm, and the total length (maximum width of the pattern) was 5 mm. Also, the distance between the centers of gravity of the respective third C-shaped patterns was 6 mm.
  • a non-conductive sheet made of a polyimide composition having a thickness of 25 ⁇ m was laminated on the second main surface side of the conductive sheet to prepare a negative metamaterial layer according to Example 5.
  • the positional relationship of each component of the metamaterial layer according to Example 5 will be described with reference to the drawings.
  • the third C-shaped patterns 52a are arranged by the through holes 55 formed in the conductive sheet 51a.
  • a non-conductive sheet 12a is laminated on the second main surface 50b side of the conductive sheet 51a.
  • FIG. 23 in order to facilitate understanding of the positional relationship of each component of the metamaterial layer 50, attention is paid to one of the predetermined patterns, and each component is shown separately.
  • Electromagnetic wave shielding film 10 Metamaterial layers 10a, 10a 1 , 10a 2, 50a First main surface 10b, 10b 1 , 10b 2, 50b Second main surface 11 Conductive regions 11a, 11a 1 , 11a 2 , 11b, 11b 1 , 11b 2 Predetermined pattern (C-shaped pattern) 11a 11 , 11a 12 , 11a 21 , 11a 22 , 11a 23 Pattern 12 Non-conductive regions 12a, 12a 1 , 12a 2 , 12a 3 Non-conductive sheet 12a i Inside portion 12a ⁇ C-shaped predetermined pattern 20, 60 adhesive layers 30, 70 protective layers 40, 80 conductive layer 50 metamaterial layer 51 conductive region 51a conductive sheet 52 non-conductive regions 52a, 52b predetermined pattern (C-shaped pattern) 55 through hole 91 network analyzer 92 microstrip line 93 magnetic field probe

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

特定の周波数を有する電磁波のみを遮断又は透過させることができる電磁波シールドフィルムを提供する。 第1主面及び上記第1主面に対向する第2主面を有するメタマテリアル層と、上記メタマテリアル層の上記第2主面側に形成された接着剤層とを備え、上記メタマテリアル層を上記第1主面側及び/又は上記第2主面側から平面視した際に、上記メタマテリアル層は、導電性を有する材料により形成された所定パターンが周期的に配列された導電性領域と、上記導電性領域以外の非導電性領域とからなることを特徴とする電磁波シールドフィルム。

Description

電磁波シールドフィルム
本発明は、電磁波シールドフィルムに関する。
モバイル機器であるスマートフォン、タブレット端末等には、内部から発生する電磁波や外部から侵入する電磁波を遮蔽するために、電磁波シールドフィルムを貼り付けた、シールド付きフレキシブルプリント配線板が用いられている。電磁波シールドフィルムに用いるシールド層は、蒸着、スパッタ、めっき等で形成された薄膜の金属層や、導電性フィラーを高充填配合した導電性ペースト等により形成されている。今後5G等が本格的に広がるようになれば、大容量のデータを通信するために、高周波、高速伝送化が進み、電子機器のノイズ対策はさらに必要となる。
特許文献1には、数百MHz乃至数GHzの電磁波ノイズに対して高い吸収能を有するとともに、電磁波吸収能の異方性が抑制された近傍界電磁波吸収体として、プラスチックフィルムの一方の面に金属薄膜を形成してなる複数枚の電磁波吸収フィルムを接着してなる近傍界電磁波吸収体であって、少なくとも一枚の電磁波吸収フィルムの金属薄膜は磁性金属の薄膜層を有し、かつ少なくとも一枚の電磁波吸収フィルムの金属薄膜に不規則な幅及び間隔で実質的に平行な多数の断続的な線状痕が複数方向に形成されていることを特徴とする近傍界電磁波吸収体が開示されている。
国際公開2012/090586号
近年、無線給電技術等の普及により、特定の周波数を有する電磁波のみを遮断又は透過させたいという要望が高まっている。
特許文献1に記載の近傍界電磁波吸収体は、広い周波数帯域で電磁波を吸収することができるものの、特定の周波数を有する電磁波のみを遮断又は透過させることはできなかった。
本発明は、上記問題点を解決するためになされた発明であり、本発明の目的は、特定の周波数を有する電磁波のみを遮断又は透過させることができる電磁波シールドフィルムを提供することである。
本発明の電磁波シールドフィルムは、第1主面及び上記第1主面に対向する第2主面を有するメタマテリアル層と、上記メタマテリアル層の上記第2主面側に形成された接着剤層とを備え、上記メタマテリアル層を上記第1主面側及び/又は上記第2主面側から平面視した際に、上記メタマテリアル層は、導電性を有する材料により形成された所定パターンが周期的に配列された導電性領域と、上記導電性領域以外の非導電性領域とからなることを特徴とする。
本発明の電磁波シールドフィルムでは、メタマテリアル層は、導電性を有する材料により形成された所定パターンが周期的に配列された導電性領域と、導電性領域以外の非導電性領域とからなる。
このような導電性を有する材料により形成された所定パターンが周期的に配列された導電性領域は、特定の周波数の電磁界に共振し、特定の周波数を有する電磁波を遮蔽することができる。
なお、遮蔽する電磁波の周波数は、所定パターンの材料、形状、サイズ、配列、周期、非導電性領域を構成する材料の誘電率等を調整することにより制御することができる。
本発明の電磁波シールドフィルムでは、上記所定パターンは、直線状、曲線状、多角形状、円状、楕円状、リング状、C字状、コの字、L字状、クランク状及びエルサレムクロス状からなる群から選択される少なくとも1つのパターンである。
このようなパターンを用いることにより、所望の周波数を有する電磁波を遮蔽することができる。
本発明の電磁波シールドフィルムでは、上記非導電性領域は、樹脂組成物からなる非導電性シートから構成され、上記所定パターンは、上記非導電性シートに埋め込まれるように形成されていることが好ましい。
所定パターンを樹脂組成物からなる非導電性シートに埋め込むことにより容易にメタマテリアル層を形成することができる。
本発明の電磁波シールドフィルムでは、上記樹脂組成物の比誘電率は、1~20000であることが好ましい。
樹脂組成物の比誘電率を調整することにより、所望の周波数を有する電磁波を遮蔽することができる。
本発明の電磁波シールドフィルムでは、上記樹脂組成物は、フィラーを含むことが好ましく、上記フィラーは、有機フィラー及び/又は無機フィラーであることが好ましい。
樹脂組成物に機能的なフィラーを含有させることにより、メタマテリアル層の放熱性や、シールド特性を向上させることができる。また、フィラーは充填剤として機能する。
本発明の電磁波シールドフィルムでは、上記接着剤層は、導電性接着剤層であることが好ましい。
本発明の電磁波シールドフィルムは、プリント配線板に配置されることになる。
この際、接着剤層が導電性接着剤層であると、接着剤層をプリント配線板のグランド回路に接続することで、メタマテリアル層の導電性領域とグランド回路とを電気的に接続することができる。その結果、電磁波シールドフィルムのシールド特性を向上させることができる。
本発明の電磁波シールドフィルムでは、上記接着剤層と上記メタマテリアル層との間には導電層及び/又は磁性体層が形成されていてもよい。また、上記メタマテリアル層の上記第1主面側に導電層及び/又は磁性体層が形成されていてもよい。
電磁波シールドフィルムに導電層や磁性体層が形成されていると、導電層や磁性体層がシールド層として機能し、電磁波シールドフィルム全体のシールド特性が向上する。
本発明の電磁波シールドフィルムでは、上記メタマテリアル層の上記第1主面側に保護層が形成されていることが好ましい。
保護層が形成されていることで、メタマテリアル層及び接着剤層が外部からの衝撃等により損傷することを防ぐことができる。
また、保護層を持つことで、メタマテリアル層及び接着剤層を触れることなく持ち運び等できるので、ハンドリングが向上する。
本発明の別の電磁波シールドフィルムは、第1主面及び上記第1主面に対向する第2主面を有するメタマテリアル層と、上記メタマテリアル層の上記第2主面側に形成された接着剤層とを備え、上記メタマテリアル層を上記第1主面側及び/又は上記第2主面側から平面視した際に、上記メタマテリアル層は、非導電性を有する材料により形成された所定パターンが周期的に配列された非導電性領域と、上記非導電性領域以外の導電性領域とからなることを特徴とする。
本発明の電磁波シールドフィルムでは、メタマテリアル層は、非導電性を有する材料により形成された所定パターンが周期的に配列された非導電性領域と、非導電性領域以外の導電性領域とからなる。
本発明の電磁波シールドフィルムにおいて、導電性領域はシールド層として機能する。
また、非導電性を有する材料により形成された所定パターンが周期的に配列されていると、特定の周波数の電磁界に共振し、特定の周波数を有する電磁波を透過させることができる。
なお、透過する電磁波の周波数は、所定パターンの材料、形状、サイズ、配列、周期、非導電性を有する材料の誘電率等を調整することにより制御することができる。
本発明の電磁波シールドフィルムでは、上記所定パターンは、直線状、曲線状、多角形状、円状、楕円状、リング状、C字状、コの字、L字状、クランク状及びエルサレムクロス状からなる群から選択される少なくとも1つのパターンである。
このようなパターンを用いることにより、所望の周波数を有する電磁波を透過させることができる。
本発明の電磁波シールドフィルムでは、上記導電性領域は、導電性を有する材料からなる導電性シートから構成され、上記所定パターンは、導電性シートに埋め込まれるように形成されていることが好ましい。
所定パターンを導電性シートに埋め込むことにより容易にメタマテリアル層を形成することができる。
本発明の電磁波シールドフィルムでは、上記非導電性を有する材料の比誘電率は、1~20000であることが好ましい。
非導電性を有する材料の比誘電率を調整することにより、所望の周波数を有する電磁波を遮蔽することができる。
本発明の電磁波シールドフィルムでは、上記非導電性を有する材料は、フィラーを含むことが好ましく、上記フィラーは、有機フィラー及び/又は無機フィラーであることが好ましい。
非導電性を有する材料に機能的なフィラーを含有させることにより、メタマテリアル層の放熱性や、シールド特性を向上させることができる。
本発明の電磁波シールドフィルムでは、上記所定パターンの輪郭は、上記メタマテリアル層の上記第1主面から上記第2主面を貫通する貫通孔により形成されており、非導電性を有する材料は空気であることが好ましい。
このような態様の電磁波シールドフィルムでは、貫通孔において、電磁波は反射及び吸収されにくい。そのため、特定の周波数を有する電磁波を好適に透過させやすくなる。
本発明の電磁波シールドフィルムでは、本発明の電磁波シールドフィルムでは、上記接着剤層は、導電性接着剤層であることが好ましい。
本発明の電磁波シールドフィルムは、プリント配線板に配置されることになる。
この際、接着剤層が導電性接着剤層であると、接着剤層をプリント配線板のグランド回路に接続することで、メタマテリアル層の導電性領域とグランド回路とを電気的に接続することができる。その結果、電磁波シールドフィルムのシールド特性を向上させることができる。
本発明の電磁波シールドフィルムでは、上記接着剤層と上記メタマテリアル層との間には導電層及び/又は磁性体層が形成されていてもよい。また、上記メタマテリアル層の上記第1主面側に導電層及び/又は磁性体層が形成されていてもよい。
電磁波シールドフィルムに導電層や磁性体層が形成されていると、導電層や磁性体層がシールド層として機能し、電磁波シールドフィルム全体のシールド特性が向上する。
本発明の電磁波シールドフィルムでは、上記メタマテリアル層の上記第1主面側に保護層が形成されていることが好ましい。
保護層が形成されていることで、メタマテリアル層及び接着剤層が外部からの衝撃等により損傷することを防ぐことができる。
また、保護層を持つことで、メタマテリアル層及び接着剤層を触れることなく持ち運び等できるので、ハンドリングが向上する。
本発明によれば、特定の周波数を有する電磁波のみを遮断又は透過させることができる電磁波シールドフィルムを提供することができる。
図1Aは、本発明の第1実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図1Bは、本発明の第1実施形態に係る電磁波シールドフィルムのメタマテリアル層を第1主面側から平面視した一例を模式的に示す平面図である。 図2Aは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Bは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Cは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Dは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Eは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Fは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Gは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Hは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Iは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Jは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図2Kは、本発明の第1実施形態に係る電磁波シールドフィルムの導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図3Aは、本発明の第1実施形態に係る電磁波シールドフィルムにおける所定パターンの一例を模式的に示す平面図である。 図3Bは、本発明の第1実施形態に係る電磁波シールドフィルムにおける所定パターンの一例を模式的に示す平面図である。 図3Cは、本発明の第1実施形態に係る電磁波シールドフィルムにおける所定パターンの一例を模式的に示す平面図である。 図4は、本発明の第1実施形態に係る電磁波シールドフィルムのメタマテリアル層を第1主面側から平面視した別の一例を模式的に示す平面図である。 図5Aは、本発明の第1実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図5Bは、本発明の第1実施形態に係る電磁波シールドフィルムのメタマテリアル層を第1主面側から平面視した一例を模式的に示す平面図である。 図5Cは、本発明の第1実施形態に係る電磁波シールドフィルムのメタマテリアル層を第2主面側から平面視した一例を模式的に示す平面図である。 図6は、本発明の第1実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図7Aは、本発明の第1実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図7Bは、本発明の第1実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図8Aは、本発明の第2実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図8Bは、本発明の第2実施形態に係る電磁波シールドフィルムのメタマテリアル層を第1主面側から平面視した一例を模式的に示す平面図である。 図9Aは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Bは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Cは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Dは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Eは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Fは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Gは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Hは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Iは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Jは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図9Kは、本発明の第2実施形態に係る電磁波シールドフィルムの非導電性を有する材料により形成された所定パターンの形状の一例を模式的に示す平面図である。 図10Aは、本発明の第2実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図10Bは、本発明の第2実施形態に係る電磁波シールドフィルムのメタマテリアル層を第1主面側から平面視した一例を模式的に示す平面図である。 図10Cは、本発明の第2実施形態に係る電磁波シールドフィルムのメタマテリアル層を第2主面側から平面視した一例を模式的に示す平面図である。 図11Aは、本発明の第2実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図11Bは、本発明の第2実施形態に係る電磁波シールドフィルムのメタマテリアル層を第1主面側から平面視した一例を模式的に示す平面図である。 図12は、本発明の第2実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図13Aは、本発明の第2実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図13Bは、本発明の第2実施形態に係る電磁波シールドフィルムの一例を模式的に示す断面図である。 図14は、実施例1に係るメタマテリアル層の各構成の位置関係を模式的に示す説明図である。 図15は、メタマテリアル層のシールド特性の評価方法を模式的に示す模式図である。 図16Aは、実施例1に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失を示すチャートである。 図16Bは、実施例1に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の放射磁界強度を示すチャートである。 図17は、実施例2に係るメタマテリアル層の各構成の位置関係を模式的に示す説明図である。 図18Aは、実施例2に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失を示すチャートである。 図18Bは、実施例2に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の放射磁界強度を示すチャートである。 図19は、実施例3に係るメタマテリアル層の各構成の位置関係を模式的に示す説明図である。 図20Aは、実施例3に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失を示すチャートである。 図20Bは、実施例3に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の放射磁界強度を示すチャートである。 図21は、実施例4に係るメタマテリアル層の各構成の位置関係を模式的に示す説明図である。 図22Aは、実施例4に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失を示すチャートである。 図22Bは、実施例4に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の放射磁界強度を示すチャートである。 図23は、実施例5に係るメタマテリアル層の各構成の位置関係を模式的に示す説明図である。 図24Aは、実施例5に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失を示すチャートである。 図24Bは、実施例5に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の放射磁界強度を示すチャートである。
以下、本発明の電磁波シールドフィルムについて具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
[第1実施形態]
まず、本発明の第1実施形態に係る電磁波シールドフィルムについて説明する。
図1Aに示す電磁波シールドフィルム1は、第1主面10a及び第1主面10aに対向する第2主面10bを有するメタマテリアル層10と、メタマテリアル層10の第2主面10b側に形成された接着剤層20とを備える。
図1A及び図1Bに示すように、メタマテリアル層10は、導電性領域11と、導電性領域11以外の非導電性領域12とからなる。
また、導電性領域11は、導電性を有する材料により形成された所定パターン11aが周期的に配列されて形成されている。
図1Bに示すように、電磁波シールドフィルム1では、所定パターン11aはC字状であり、正方格子の頂点に位置するように配列されている。
電磁波シールドフィルム1では、メタマテリアル層10は、導電性を有する材料により形成された所定パターン11aが周期的に配列された導電性領域11と、導電性領域11以外の非導電性領域12とからなる。
このような導電性を有する材料により形成された所定パターン11aが周期的に配列された導電性領域11は、特定の周波数の電磁界に共振し、特定の周波数を有する電磁波を遮蔽することができる。
図1Aに示すように、電磁波シールドフィルム1では、非導電性領域12は、樹脂組成物からなる非導電性シート12aから構成され、所定パターン11aは、非導電性シート12aに埋め込まれるように形成されている。
電磁波シールドフィルム1では、所定パターン11aは、メタマテリアル層10の第1主面10a側のみに形成されており、第2主面10b側には形成されていない。
このような態様のメタマテリアル層10は、所定パターン11aを非導電性シート12aに埋め込むことにより容易に形成することができる。
所定パターン11aは、非導電性シート12aの表面に印刷、めっき、蒸着等の通常の方法で形成し、プレスすることにより押し込むことで形成することができる。
なお、本発明の電磁波シールドフィルムでは、所定パターン11aは、埋め込まれず、非導電性シート12aの表面に配置されていてもよい。
電磁波シールドフィルム1において、遮蔽する電磁波の周波数は、所定パターン11aの材料、形状、サイズ、配列、周期、非導電性領域12を構成する材料の誘電率等を調整することにより制御することができる。
以下、電磁波シールドフィルム1の各構成の好ましい態様について説明する。
電磁波シールドフィルム1では、所定パターン11aを構成する導電性を有する材料としては、特に限定されないが、銅、銀、アルミニウム、炭素材料等からなることが好ましい。また、導電性を有する材料は、これらの材料を含む導電性ペーストであっても良い。
電磁波シールドフィルム1では、所定パターン11aの形状は、C字状であるが、本発明の電磁波シールドフィルムでは所定パターン11aは、図2A~図2Kにそれぞれ示すように、直線状、曲線状、多角形状、円状、楕円状、リング状、C字状、コの字、L字状、クランク状及びエルサレムクロス状からなる群から選択される少なくとも1つのパターンであることが好ましい。
このようなパターンを用いることにより、所望の周波数を有する電磁波を遮蔽することができる。
図1Bに示す電磁波シールドフィルム1では、同じ大きさのC字状の所定パターン11aが、正方格子の頂点に位置するように配列されている。
しかし、本発明の電磁波シールドフィルムでは、所定パターンが周期的に配列されていればどのような態様であっても良い。
例えば、所定パターン11aは、1種単独の図形で構成されていてもよく、2種以上の図形の組み合わせにより形成されていてもよい。
より具体的な所定パターンの配列を以下に図面を用いて説明する。
本発明の電磁波シールドフィルムでは、図3Aに示すように、C字状の所定パターン11aが、平面充填した正三角形の頂点に位置するように周期的に配列されていても良い。
本発明の電磁波シールドフィルムでは、図3Bに示すように、所定パターン11aは、C字状のパターン11a11と、パターン11a11よりも大きいC字状のパターン11a12とからなり、パターン11a11と、パターン11a12とが正方格子の頂点に交互に並ぶように配列されている。
この態様では、パターン11a11と、パターン11a12との組み合わせが、一つの所定パターン11aである。つまり、この場合、パターン11a11とパターン11a12との組み合わせが、縦横に周期的に配列されていると言える。
本発明の電磁波シールドフィルムでは、図3Cに示すように、所定パターン11aは、同じ形状のC字状のパターン11a21、パターン11a22及びパターン11a23が横方向(図3C中、両矢印Aで示す方向)に3つ連続して並んで形成されており、この所定パターン11aが周期的に配列されていてもよい。
この態様では、横方向に連続する3つのパターン11a21、パターン11a22及びパターン11a23の組み合わせが、一つの所定パターン11aである。
電磁波シールドフィルム1では、所定パターン11aの厚さは特に限定されないが、所定パターン11aが、銅、銀、アルミニウム、炭素材料等からなる場合には、0.1~35μmであることが好ましく、6~18μmであることがより好ましい。また、所定パターン11aが、これらの材料を含む導電性ペーストである場合には、5~100μmであることが好ましく、10~60μmであることがより好ましい。
所定パターンの厚さが上記の厚さ未満であると、充分なシールド特性が得られにくくなる。
所定パターンの厚さが上記の厚さを超えると、所定パターンの柔軟性が低下し、電磁波シールドフィルムを曲げた際に、所定パターンが破損しやすくなったり、非導電性シートから剥がれやすくなる。
電磁波シールドフィルム1では、非導電性シート12aを形成する樹脂組成物は特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、アクリル系樹脂組成物等の熱可塑性樹脂組成物や、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。
樹脂組成物の材料はこれらの1種単独であってもよく、2種以上の組み合わせであってもよい。
また、電磁波シールドフィルム1では、非導電性シート12aにおいて部分的に樹脂組成物の種類が異なっていてもよい。このような態様について以下に図面を用いて説明する。
図4に示すメタマテリアル層10では、C字状の所定パターン11aが非導電性シート12aに形成されている。
非導電性シート12aは、C字状の所定パターン11aの内側の部分12aとそれ以外の部分12aОとからなる。図4において、部分12aの樹脂組成物の種類と、部分12aОの樹脂組成物の種類は異なる。
このように、非導電性シート12aにおいて部分的に異なる樹脂組成物を用いることにより、部分的に非導電性シート12aの比誘電率を変化させることができるので、遮蔽する電磁波の周波数を制御することができる。
電磁波シールドフィルム1では、樹脂組成物の比誘電率は、1~20000であることが好ましく、10~1000であることがより好ましい。
樹脂組成物の比誘電率を調整することにより、所望の周波数を有する電磁波を遮蔽することができる。
なお、図4に示すように、非導電性シート12aにおいて、C字状の所定パターン11aの内側の部分12aとそれ以外の部分12aОとが異なる樹脂組成物により構成されている場合、部分12a部分12aを構成する樹脂組成物の比誘電率は、10~1000であることが好ましく、部分12aОを構成する樹脂組成物の比誘電率は、10~1000であることが好ましい。
このような樹脂組成物としては、強誘電体である樹脂組成物を用いることができ、強誘電体としては、例えば、特願2016-26840号の段落[0027]~[0037]に記載の液晶材料を含む樹脂組成物、特願2004-341035号の段落[0009]~[0016]及び段落[0021]~[0024]に記載の有機強誘電体材料を含む樹脂組成物、特願2003-320695号の段落[0007]及び段落[0015]~[0020]に記載の強誘電体物質を含む樹脂組成物等が挙げられる。
電磁波シールドフィルム1では、非導電性シート12aの厚さは、所定パターン11aの1~3倍であることが好ましい。
非導電性シートの厚さが所定パターンの厚さ未満であると、非導電性シートの強度が弱くなり、破損しやすくなる。
非導電性シートの厚さが所定パターンの厚さの3倍を超えると、メタマテリアル層の柔軟性が低下する。また、電磁波シールドフィルム全体が大きくなり、電磁波シールドフィルムを配置しにくくなる。
電磁波シールドフィルム1では、樹脂組成物は、フィラーを含むことが好ましく、有機フィラー及び/又は無機フィラーであることが好ましい。
樹脂組成物に機能的なフィラーを含有させることにより、メタマテリアル層の放熱性や、シールド特性を向上させることができる。また、フィラーは充填剤として機能する。
有機フィラーとしては、例えば、メラミン樹脂、フェノール樹脂、フッ素樹脂、ウレタン樹脂、シリコン樹脂等の粒子が挙げられる。
無機フィラーとしては、例えば、窒素化合物(窒化ホウ素、窒化アルミニウム、窒化ケイ素、窒化炭素、窒化チタン等)、炭素化合物(炭化ケイ素、炭化フッ素、炭化ホウ素、炭化チタン、炭化タングステン、ダイヤモンド等)、金属酸化物(シリカ、アルミナ、酸化マグネシウム、酸化亜鉛、酸化ベリリウム等)等の粒子、ガラスビーズ、ガラス繊維等が挙げられる。
電磁波シールドフィルム1では、接着剤層20は非導電性接着剤層であってもよく、導電性接着剤層であってもよいが、導電性接着剤層からなることが好ましい。
電磁波シールドフィルム1は、プリント配線板に配置されることになる。
この際、接着剤層20が導電性接着剤層であると、接着剤層20をプリント配線板のグランド回路に接続することで、メタマテリアル層の導電性領域とグランド回路とを電気的に接続することができる。その結果、電磁波シールドフィルム1のシールド特性を向上させることができる。
接着剤層20が導電性接着剤層である場合、導電性接着剤層は等方導電性接着材層であってもよく、異方性導電性接着剤層であってもよい。
接着剤層20が導電性接着剤層である場合、接着剤層20は、接着性樹脂組成物と導電性粒子とからなることが好ましい。
導電性粒子としては、特に限定されないが、金属微粒子、カーボンナノチューブ、炭素繊維、金属繊維等であってもよい。
接着性樹脂組成物の材料としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、アクリル系樹脂組成物等の熱可塑性樹脂組成物や、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。
接着性樹脂組成物の材料はこれらの1種単独であってもよく、2種以上の組み合わせであってもよい。
電磁波シールドフィルム1では、周波数が0.1~90GHzである電磁波を特異的に遮蔽できることが好ましく、周波数が1~30GHzである電磁波を特異的に遮蔽できることがより好ましい。
次に、本発明の第1実施形態の別の態様について説明する。
図5A、図5B及び図5Cに示す電磁波シールドフィルム101は、メタマテリアル層10の第2主面10bにも導電性を有する材料により形成された所定パターン11bが周期的に配列されて形成されている以外は、上記電磁波シールドフィルム1と同じ構成である。
図5Cに示すように、電磁波シールドフィルム101では、所定パターン11bはC字状であり、正方格子の頂点に位置するように配列されている。
また、所定パターン11aと、所定パターン11bとは左右を逆にした形状である。
なお、所定パターン11aと、所定パターン11bとの間には、非導電性シート12aが存在している。
このような態様の電磁波シールドフィルムであっても、所望の周波数を有する電磁波を遮蔽することができる。
また、本発明の電磁波シールドフィルムでは、所定パターン11aと、所定パターン11bとは同じ形状であり、メタマテリアル層10の厚さ方向に連続していてもよい。つまり、所定パターンを形成する導電性を有する材料が非導電性シートを貫通していてもよい。
さらに、本発明の電磁波シールドフィルムでは、所定パターン11aと所定パターン11bとが、メタマテリアル層10の第1主面10aから第2主面10bにかけて変形しながら連続していてもよい。このような形状としては、例えば、スプリットリング状の形状が挙げられる。
また、本発明の電磁波シールドフィルムでは、所定パターン11aの形状及び配列と、所定パターン11bの形状及び配列とは異なっていてもよい。
次に、本発明の第1実施形態のさらに別の態様について説明する。
図6に示す電磁波シールドフィルム201は、メタマテリアル層10の第1主面10a側に保護層30が形成されている以外は、上記電磁波シールドフィルム1と同じ構成である。
メタマテリアル層10の第1主面10a側に保護層30が形成されていることで、メタマテリアル層10及び接着剤層20が外部からの衝撃等により損傷することを防ぐことができる。
また、保護層30を持つことで、メタマテリアル層10及び接着剤層20を触れることなく持ち運び等できるので、ハンドリングが向上する。
保護層30は、メタマテリアル層10及び接着剤層20を保護できれば特に限定されないが、例えば、熱可塑性樹脂組成物、熱硬化性樹脂組成物、活性エネルギー線硬化性組成物、樹脂フィルム等から構成されていることが好ましい。
上記熱可塑性樹脂組成物としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アクリル系樹脂組成物等が挙げられる。
上記熱硬化性樹脂組成物としては、特に限定されないが、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等が挙げられる。
上記活性エネルギー線硬化性組成物としては、特に限定されないが、例えば、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する重合性化合物等が挙げられる。
上記樹脂フィルムとしては、特に限定されないが、例えば、ポリフェニレンサルファイド(PPS)フィルム、ポリイミド(PI)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリエチレンテレフタラート(PET)フィルム、シクロオレフィンポリマー(COP)フィルム、ポリエーテルエーテルケトン(PEEK)フィルム等が挙げられる。
保護層30は1種単独の材料から構成されていてもよく、2種以上の材料から構成されていてもよい。
保護層30には、必要に応じて、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、粘度調節剤、ブロッキング防止剤等が含まれていてもよい。
保護層30の厚さは、特に限定されず、必要に応じて適宜設定することができるが、1~15μmであることが好ましく、3~10μmであることがより好ましい。
保護層30の厚さが1μm未満であると、薄すぎるのでメタマテリアル層10及び接着剤層20を充分に保護しにくくなる。
保護層30の厚さが15μmを超えると、厚すぎるので電磁波シールドフィルム1が折り曲りにくくなり、また、保護層30自身が破損しやすくなる。そのため、耐折り曲げ性が要求される部材へ適用しにくくなる。
次に、本発明の第1実施形態のさらに別の態様について説明する。
図7Aに示す電磁波シールドフィルム301Aは、接着剤層20と、メタマテリアル層10との間に導電層40が形成されている以外は、上記電磁波シールドフィルム201と同じ構成である。
図7Bに示す電磁波シールドフィルム301Bは、メタマテリアル層10と、保護層30との間に導電層40が形成されている以外は、上記電磁波シールドフィルム201と同じ構成である。
このように導電層40が形成されていると、導電層40がシールド層として機能し、電磁波シールドフィルム全体のシールド特性が向上する。
導電層40は、金属層からなっていてもよく、導電性接着剤層からなっていてもよい。
導電層40が、金属層からなる場合、金属層は、銅、銀、金、アルミニウム、ニッケル、錫、パラジウム、クロム、チタン及び亜鉛からなる群から選択される少なくとも1種の金属を含むことが好ましい。
これらの金属は、電磁波シールドフィルムのシールド層として適している。
このような金属層は、金属箔膜の配置、めっき、蒸着等の方法で形成することができる。
導電層40が、導電性接着剤層からなる場合、導電性接着剤層は、導電性粒子と、接着性樹脂組成物とから構成されていることが好ましい。
導電性粒子としては、特に限定されないが、金属微粒子、カーボンナノチューブ、炭素繊維、金属繊維等であってもよい。
接着性樹脂組成物の材料としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、アクリル系樹脂組成物等の熱可塑性樹脂組成物や、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。
接着性樹脂組成物の材料はこれらの1種単独であってもよく、2種以上の組み合わせであってもよい。
このような導電性接着剤層は、導電性粒子と、接着性樹脂組成物とを混合し、当該混合物をバーコーター等で塗布することにより形成することができる。
導電層40の厚さは、0.01~60μmであることが好ましく、0.1~20μmであることがより好ましい。
導電層の厚さが0.01μm未満であると、導電層が薄すぎるためシールド層の強度が低くなる。そのため、耐折り曲げ性が低下する。また、電磁波を充分に反射及び吸収しにくくなるのでシールド特性が低下する。
導電層の厚さが60μmを超えると、電磁波シールドフィルム全体が厚くなり扱いにくくなる。
電磁波シールドフィルム301A及び電磁波シールドフィルム301Bでは、接着剤層20とメタマテリアル層10との間及びメタマテリアル層10と保護層30との間のいずれかに導電層40が形成されていた。
しかし、本発明の電磁波シールドフィルムでは、接着剤層20とメタマテリアル層10との間及びメタマテリアル層10と保護層30との間の両方に導電層40が形成されていてもよい。
上記電磁波シールドフィルム301A及び電磁波シールドフィルム301Bでは、保護層30が形成されているが、本発明の電磁波シールドフィルムでは、保護層が形成されておらず、メタマテリアル層10、接着剤層20及び導電層40のみからなっていてもよい。
また、電磁波シールドフィルム301A及び電磁波シールドフィルム301Bでは、導電層40が形成されているが、本発明の電磁波シールドフィルムでは、導電層40の代わりに、磁性体層が形成されていてもよい。このような磁性体層はシールド層として機能し、電磁波シールドフィルム全体のシールド特性が向上する。
磁性体層としては、鉄、ケイ素鉄、パーマロイ、ソフトフェライト、センダスト、パーメンジュール等の軟磁性材料自体をシート状に成型したものや軟磁性材料の粉体と樹脂を混合したものをシート状に成型したものを用いることができる。
これまで説明してきた本発明の第1実施形態に係る電磁波シールドフィルムでは、メタマテリアル層が1層だけ形成されていた。しかし、本発明の第1実施形態に係る電磁波シールドフィルムでは、メタマテリアル層は、複数層が形成されていても良い。また、本発明の第1実施形態に係る電磁波シールドフィルムでは、メタマテリアル層が少なくとも1層形成されていれば、メタマテリアル層に他の機能層が積層されていてもよい。
このような機能層としては、高誘電体層が挙げられ、このような高誘電体層を設けることで、共振周波数を調整し、所望の周波数を有する電磁波を遮蔽することができる。
[第2実施形態]
次に、本発明の第2実施形態に係る電磁波シールドフィルムについて説明する。
図8Aに示す電磁波シールドフィルム401は、第1主面50a及び第1主面50aに対向する第2主面50bを有するメタマテリアル層50と、メタマテリアル層50の第2主面50b側に形成された接着剤層60とを備える。
図8A及び図8Bに示すように、メタマテリアル層50は、非導電性領域52と、非導電性領域52以外の導電性領域51とからなる。
また、非導電性領域52は、非導電性を有する材料により形成された所定パターン52aが周期的に配列されて形成されている。
図8A及び図8Bに示すように、電磁波シールドフィルム401では、所定パターン52aはC字状であり、正方格子の頂点に位置するように配列されている。
電磁波シールドフィルム401では、メタマテリアル層50は、非導電性を有する材料により形成された所定パターン52aが周期的に配列された非導電性領域52と、非導電性領域52以外の導電性領域51とからなる。
電磁波シールドフィルム401において、導電性領域51はシールド層として機能する。
また、非導電性を有する材料により形成された所定パターン52aが周期的に配列されていると、特定の周波数の電磁界に共振し、特定の周波数を有する電磁波を透過させることができる。
図8Aに示すように、電磁波シールドフィルム401では、導電性領域51は、導電性シート51aから構成され、所定パターン52aは、導電性シート51aに埋め込まれるように形成されている。
図8Aに示すように、電磁波シールドフィルム401では、所定パターン52aは、メタマテリアル層50の第1主面50a側のみに形成されており、第2主面50b側には形成されていない。
このような態様のメタマテリアル層50は、所定パターン52aを導電性シート51aに埋め込むことにより容易に形成することができる。
このような所定パターン52aは、導電性シート51aの表面にエッチング等により所定の形状の凹部を形成し、当該凹部に非導電性を有する材料を充填すること等により形成することができる。
電磁波シールドフィルム401において、透過する電磁波の周波数は、所定パターン52aの材料、形状、サイズ、配列、周期、非導電性を有する材料の誘電率等を調整することにより制御することができる。
電磁波シールドフィルム401では、所定パターン52aを構成する非導電性を有する材料は、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、アクリル系樹脂組成物等の熱可塑性樹脂組成物や、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。
樹脂組成物の材料はこれらの1種単独であってもよく、2種以上の組み合わせであってもよい。
電磁波シールドフィルム401では、非導電性を有する材料の比誘電率は、1~20000であることが好ましく、10~1000であることがより好ましい。
非導電性を有する材料の比誘電率を調整することにより、所望の周波数を有する電磁波を遮蔽することができる。
電磁波シールドフィルム401では、樹脂組成物は、フィラーを含むことが好ましく、有機フィラー及び/又は無機フィラーであることが好ましい。
樹脂組成物に機能的なフィラーを含有させることにより、メタマテリアル層の放熱性や、シールド特性を向上させることができる。また、フィラーは充填剤として機能する。
有機フィラーとしては、例えば、メラミン樹脂、フェノール樹脂、フッ素樹脂、ウレタン樹脂、シリコン樹脂等の粒子等が挙げられる。
無機フィラーとしては、例えば、窒素化合物(窒化ホウ素、窒化アルミニウム、窒化ケイ素、窒化炭素、窒化チタン等)、炭素化合物(炭化ケイ素、炭化フッ素、炭化ホウ素、炭化チタン、炭化タングステン、ダイヤモンド等)、金属酸化物(シリカ、アルミナ、酸化マグネシウム、酸化亜鉛、酸化ベリリウム等)等の粒子、ガラスビーズ、ガラス繊維等が挙げられる。
電磁波シールドフィルム401では、所定パターン52aは、C字状であるが、本発明の電磁波シールドフィルムでは所定パターン52aは、図9A~図9Kにそれぞれ示すように、直線状、曲線状、多角形状、円状、楕円状、リング状、C字状、コの字、L字状、クランク状及びエルサレムクロス状からなる群から選択される少なくとも1つのパターンであることが好ましい。
このようなパターンを用いることにより、所望の周波数を有する電磁波を透過させることができる。
図8Bに示す電磁波シールドフィルム401では、同じ大きさのC字状の所定パターン52aが、正方格子の頂点に位置するように配列されている。
しかし、本発明の電磁波シールドフィルムでは、所定パターンが周期的に配列されていればどのような態様であっても良い。
例えば、所定パターン52aが、平面充填した正三角形の頂点に位置するように周期的に配列されていても良い。
また、大きさが異なり相似である所定パターン52aが、正方格子の頂点に交互に並ぶように配列されていてもよい。
また、複数のパターンが集合して所定パターンを形成しており、当該所定パターンが周期的に配列されていてもよい。
電磁波シールドフィルム401では、所定パターン52aの厚さは、0.1~35μmであることが好ましく、6~18μmであることがより好ましい。
所定パターンの厚さが0.1μm未満であると、所望の周波数を有する電磁波が電磁波シールドフィルムを透過しにくくなる。
所定パターンの厚さが35μmを超えると、所定パターンの柔軟性が低下し、電磁波シールドフィルムを曲げた際に、所定パターンが破損しやすくなったり、導電性シートから剥がれやすくなる。
電磁波シールドフィルム401では、導電性シート51aの材料は、特に限定されないが、銅、銀、アルミニウム、炭素材料等からなることが好ましい。
電磁波シールドフィルム401では、導電性シート51aの厚さは、所定パターン52aの1~3倍であることが好ましい。
導電性シートの厚さが所定パターンの厚さ未満であると、導電性シートの強度が弱くなり、破損しやすくなる。
導電性シートの厚さが所定パターンの厚さの3倍を超えると、メタマテリアル層の柔軟性が低下する。また、電磁波シールドフィルム全体が大きくなり、電磁波シールドフィルムを配置しにくくなる。さらに、所望の周波数を有する電磁波が透過しにくくなる。
電磁波シールドフィルム401における接着剤層60の好ましい態様は、上記電磁波シールドフィルム1における接着剤層20の好ましい態様と同じである。
電磁波シールドフィルム401では、周波数が0.1~90GHzである電磁波を特異的に透過できることが好ましく、周波数が1~30GHzである電磁波を特異的に透過できることがより好ましい。
次に、本発明の第2実施形態の別の態様について説明する。
図10A、図10B及び図10Cに示す電磁波シールドフィルム501は、メタマテリアル層50の第2主面50bにも導電性を有する材料により形成された所定パターン52bが周期的に配列されて形成されている以外は、上記電磁波シールドフィルム401と同じ構成である。
図10Cに示すように、電磁波シールドフィルム501では、所定パターン52bはC字状であり、正方格子の頂点に位置するように配列されている。
また、所定パターン52aと、所定パターン52bとは左右を逆にした形状である。
なお、所定パターン52aと、所定パターン52bとの間には、導電性シート51aが存在している。
このような態様の電磁波シールドフィルムであっても、所望の周波数を有する電磁波を遮蔽することができる。
また、本発明の電磁波シールドフィルムでは、所定パターン52aと、所定パターン52bとは同じ形状であり、メタマテリアル層50の厚さ方向に連続していてもよい。つまり、所定パターンを形成する非導電性を有する材料が導電性シートを貫通していてもよい。
また、本発明の電磁波シールドフィルムでは、所定パターン52aと所定パターン52bとが、メタマテリアル層50の第1主面50aから第2主面50bにかけて変形しながら連続していてもよい。このような形状としては、例えば、スプリットリング状の形状が挙げられる。
また、本発明の電磁波シールドフィルムでは、所定パターン52aの形状及び配列と、所定パターン52bの形状及び配列とは異なっていてもよい。
次に、本発明の第2実施形態のさらに別の態様について説明する。
図11A及び図11Bに示す電磁波シールドフィルム601は、第1主面50a及び第1主面50aに対向する第2主面50bを有するメタマテリアル層50と、メタマテリアル層50の第2主面50b側に形成された接着剤層60とを備える。
また、メタマテリアル層50は、第1主面50aから第2主面50bを貫通する貫通孔55を有する。
図11A及び図11Bに示すように、メタマテリアル層50は、非導電性領域52と、非導電性領域52以外の導電性領域51とからなる。
また、非導電性領域52は、所定パターン52aが周期的に配列されて形成されている。
所定パターン52aの輪郭は、貫通孔55により形成されている。
メタマテリアル層50において、貫通孔55は、空気により充填されている。そのため、所定パターン52aは、非導電性を有する材料である空気により形成されていると言える。
図11Bに示すように、電磁波シールドフィルム601では、所定パターン52aはC字状であり、正方格子の頂点に位置するように配列されている。
このような態様の電磁波シールドフィルム601では、貫通孔55において、電磁波は反射及び吸収されにくい。そのため、特定の周波数を有する電磁波を好適に透過させやすくなる。
電磁波シールドフィルム601における接着剤層60の好ましい態様は、上記電磁波シールドフィルム401における接着剤層60の好ましい態様と同じである。
次に、本発明の第2実施形態のさらに別の態様について説明する。
図12に示す電磁波シールドフィルム701は、メタマテリアル層50の第1主面50a側に保護層70が形成されている以外は、上記電磁波シールドフィルム401と同じ構成である。
メタマテリアル層50の第1主面50a側に保護層70が形成されていることで、メタマテリアル層50及び接着剤層60が外部からの衝撃等により損傷することを防ぐことができる。
また、保護層70を持つことで、メタマテリアル層50及び接着剤層60を触れることなく持ち運び等できるので、ハンドリングが向上する。
電磁波シールドフィルム701における保護層70の好ましい態様は、上記電磁波シールドフィルム201における保護層30の好ましい態様と同じである。
次に、本発明の第2実施形態のさらに別の態様について説明する。
図13Aに示す電磁波シールドフィルム801Aは、接着剤層60と、メタマテリアル層50との間に導電層80が形成されている以外は、上記電磁波シールドフィルム701と同じ構成である。
図13Bに示す電磁波シールドフィルム801Bは、メタマテリアル層50と、保護層70との間に導電層80が形成されている以外は、上記電磁波シールドフィルム701と同じ構成である。
このように導電層80が形成されていると、導電層80がシールド層として機能し、電磁波シールドフィルム全体のシールド特性が向上する。
電磁波シールドフィルム801A及び電磁波シールドフィルム801Bにおける導電層80の好ましい態様は、上記電磁波シールドフィルム201における導電層40の好ましい態様と同じである。
電磁波シールドフィルム801A及び電磁波シールドフィルム801Bでは、接着剤層60とメタマテリアル層50との間及びメタマテリアル層50と保護層70との間のいずれかに導電層80が形成されていた。
しかし、本発明の電磁波シールドフィルムでは、接着剤層60とメタマテリアル層50との間及びメタマテリアル層50と保護層70との間の両方に導電層80が形成されていてもよい。
上記電磁波シールドフィルム801A及び電磁波シールドフィルム801Bでは、保護層70が形成されているが、本発明の電磁波シールドフィルムでは、保護層が形成されておらず、メタマテリアル層50、接着剤層60及び導電層80のみからなっていてもよい。
また、電磁波シールドフィルム801A及び電磁波シールドフィルム801Bでは、導電層80が形成されているが、本発明の電磁波シールドフィルムでは、導電層80の代わりに、磁性体層が形成されていてもよい。このような磁性体層はシールド層として機能し、電磁波シールドフィルム全体のシールド特性が向上する。
磁性体層としては、鉄、ケイ素鉄、パーマロイ、ソフトフェライト、センダスト、パーメンジュール等の軟磁性材料自体をシート状に成型したものや軟磁性材料の粉体と樹脂を混合したものをシート状に成型したものを用いることができる。
これまで説明してきた本発明の第2実施形態に係る電磁波シールドフィルムでは、メタマテリアル層が1層だけ形成されていた。しかし、本発明の第2実施形態に係る電磁波シールドフィルムでは、メタマテリアル層は、複数層が形成されていても良い。また、本発明の第2実施形態に係る電磁波シールドフィルムでは、メタマテリアル層が少なくとも1層形成されていれば、メタマテリアル層に他の機能層が積層されていてもよい。
このような機能層としては、高誘電体層が挙げられ、このような高誘電体層を設けることで、共振周波数を調整し、所望の周波数を有する電磁波を透過させることができる。
[その他の実施形態]
これまで説明してきた本発明の第1実施形態に係る電磁波シールドフィルムは、メタマテリアル層として、導電性を有する材料により形成された所定パターンが周期的に配列された導電性領域と、導電性領域以外の非導電性領域とからなるメタマテリアル層(以下、「ポジティブ型のメタマテリアル層」とも記載する)のみを含んでいた。
また、これまで説明してきた本発明の第2実施形態に係る電磁波シールドフィルムは、メタマテリアル層として、非導電性を有する材料により形成された所定パターンが周期的に配列された非導電性領域と、非導電性領域以外の導電性領域とからなるメタマテリアル層(以下、「ネガティブ型のメタマテリアル層」とも記載する)のみを含んでいた。
しかし、本発明の電磁波シールドフィルムは、ポジティブ型のメタマテリアル層及びネガティブ型のメタマテリアル層の両方を含んでいてもよい。
本発明の電磁波シールドフィルムでは、ポジティブ型のメタマテリアル層が複数層積層されて形成されていてもよい。
本発明の電磁波シールドフィルムでは、ネガティブ型のメタマテリアル層が複数層積層されて形成されていてもよい。
以下に本発明をより具体的に説明する実施例を示すが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
厚さ25μmのポリイミド組成物からなり、第1主面及び第1主面に対向する第2主面を有する非導電性シートを準備した。非導電性シートの比誘電率は、3.1であった。
次に、非導電性シートの第1主面にC字状のパターン(以下、「第1C字状パターン」とも記載する)が正方格子の頂点に位置されるように、8×10-5Ωcmの導電性ペーストを印刷した。
各第1C字状パターンは単一の形状であり、第1C字状パターンの幅(線の太さ)は1mmであり、全長(パターンの最大幅)は、5mmであった。
また、各第1C字状パターンの重心間の距離は、6mmであった。
次に、非導電性シートの第2主面にC字状パターン(以下、「第2C字状パターン」とも記載する)が、第1C字状パターンの裏側に位置するように、8×10-5Ωcmの導電性ペーストを印刷した。
この際、第1主面側から見た第2C字状パターンの形状を、第1主面側から見た第1C字状パターンが180度回転した形状となるようにした。
各第2C字状パターンは単一の形状であり、第2C字状パターンの幅(線の太さ)は1mmであり、全長(パターンの最大幅)は、5mmであった。
以上の工程を経て、実施例1に係るポジティブ型のメタマテリアル層を作製した。
ここで、実施例1に係るメタマテリアル層の各構成の位置関係を、図面を用いて説明する。
図14に示すように、実施例1に係るメタマテリアル層10では、非導電性シート12aの第1主面10a側に第1C字状パターン11aが配置されており、第2主面10b側に第2C字状パターン11bが配置されている。
第2C字状パターン11bの形状は、第1C字状パターン11aを180度回転させた形状である。
なお、図14では、メタマテリアル層10の各構成の位置関係の理解を容易にするために、所定パターンの1つに着目し、各構成を分離して示しているが、実際の実施例1に係るメタマテリアル層では、所定パターンは複数あり、これらの構成は密着している。
(シールド特性評価)
次に、実施例1に係るメタマテリアル層のシールド特性を以下の方法で評価した。
まず、図15に示すように、マイクロストリップライン92及び磁界プローブ93が接続されたネットワークアナライザ91(製品名:N5232A、製造元:キーサイトテクノロジー株式会社)を準備した。
次に、マイクロストリップライン92上に実施例1に係るメタマテリアル層10を、第2主面が下側になるように配置した。
その後、実施例1に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失(S21)及び放射磁界強度(S31)を測定した。
結果を図16A及び図16Bに示す。
図16A及び図16Bに示すように、実施例1に係るメタマテリアル層は、周波数3000~6000MHzの電磁波を遮蔽できることが判明した。
次に、実施例1に係るメタマテリアル層の第2主面側に、厚さ0.01mmのエポキシ樹脂からなる接着剤層を形成することにより実施例1に係る電磁波シールドフィルムを作製した。
(実施例2)
実施例1に係るメタマテリアル層の非導電性シートの第2主面側に、厚さ25μmのポリイミド組成物からなる非導電性シートをさらに積層することにより実施例2に係るポジティブ型のメタマテリアル層を作製した。
ここで、実施例2に係るメタマテリアル層の各構成の位置関係を、図面を用いて説明する。
図17に示すように、実施例2に係るメタマテリアル層10では、非導電性シート12aの第1主面10a側に第1C字状パターン11aが配置されており、第2主面10b側に第2C字状パターン11bが配置されている。
第2C字状パターン11bの形状は、第1C字状パターン11aを180度回転させた形状である。
また、第2C字状パターン11bの下側に非導電性シート12aが配置されている。
なお、図17では、メタマテリアル層10の各構成の位置関係の理解を容易にするために、所定パターンの1つに着目し、各構成を分離して示しているが、実際の実施例2に係るメタマテリアル層では、所定パターンは複数あり、これらの構成は密着している。
(シールド特性評価)
実施例1に係るシールド特性評価と同じ方法で、実施例2に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失(S21)及び放射磁界強度(S31)を測定した。
結果を図18A及び図18Bに示す。
図18A及び図18Bに示すように、実施例2に係るメタマテリアル層は、周波数2500~5000MHzの電磁波を遮蔽できることが判明した。
次に、実施例2に係るメタマテリアル層の第2主面側に、厚さ0.01mmのエポキシ樹脂からなる接着剤層を形成することにより実施例2に係る電磁波シールドフィルムを作製した。
(実施例3)
第1主面側から見た第2C字状パターンの形状が、第1主面側から見た第1C字状パターンと同じ形状になるようにした以外は、実施例2と同様にして、実施例3に係るポジティブ型のメタマテリアル層を作製した。
ここで、実施例3に係るメタマテリアル層の各構成の位置関係を、図面を用いて説明する。
図19に示すように、実施例3に係るメタマテリアル層10では、非導電性シート12aの第1主面10a側に第1C字状パターン11aが配置されており、第2主面10b側に第2C字状パターン11bが配置されている。
第1C字状パターン11aと、第2C字状パターン11bとは、第1主面10a側から見た際に、丁度重なっている。
また、第2C字状パターン11bの下側に非導電性シート12aが配置されている。
なお、図19では、メタマテリアル層10の各構成の位置関係の理解を容易にするために、所定パターンの1つに着目し、各構成を分離して示しているが、実際の実施例3に係るメタマテリアル層では、所定パターンは複数あり、これらの構成は密着している。
(シールド特性評価)
実施例1に係るシールド特性評価と同じ方法で、実施例3に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失(S21)及び放射磁界強度(S31)を測定した。
結果を図20A及び図20Bに示す。
図20A及び図20Bに示すように、実施例3に係るメタマテリアル層は、周波数5000~7000MHzの電磁波を遮蔽できることが判明した。
次に、実施例3に係るメタマテリアル層の第2主面側に、厚さ0.01mmのエポキシ樹脂からなる接着剤層を形成することにより実施例3に係る電磁波シールドフィルムを作製した。
(実施例4)
厚さ25μmのポリイミド組成物からなり、第1主面及び第1主面に対向する第2主面を有する非導電性シートを3枚準備した。非導電性シートの比誘電率は、3.1であった。
次に、1つ目の非導電性シートの第1主面に第1C字状パターンが正方格子の頂点に位置されるように、8×10-5Ωcmの導電性ペーストを印刷した。
各第1C字状パターンは単一の形状であり、第1C字状パターンの幅(線の太さ)は1mmであり、全長(パターンの最大幅)は、5mmであった。
また、各第1C字状パターンの重心間の距離は、6mmであった。
次に、1つ目の非導電性シートの第2主面に第2C字状パターンが、第1C字状パターンの裏側に位置するように、8×10-5Ωcmの導電性ペーストを印刷した。
この際、第1主面側から見た第2C字状パターンの形状を、第1主面側から見た第1C字状パターンと丁度重なるような形状とした。
次に、同様に2つ目の非導電性シートに第1C字状パターン及び第2C字状パターンを形成した。
次に、1つ目の非導電性シート、3つ目の非導電性シート及び2つ目の非導電性シートの順になるように、これらの非導電性シートを積層した。この際、2つ目の非導電性シートを180度回転させた。
これにより、1つ目の非導電性シートの第1主面側から見た際に、2つ目の非導電性シートに形成された第1C字状パターン及び第2C字状パターンの形状が、1つ目の非導電性シートに形成された第1C字状パターン及び第2C字状パターンを180度回転させた形状となるようにした。
以上の工程を経て、実施例4に係るポジティブ型のメタマテリアル層を形成した。
ここで、実施例4に係るメタマテリアル層の各構成の位置関係を、図面を用いて説明する。
図21に示すように、実施例4に係るメタマテリアル層10では、1つ目の非導電性シート12aの第1主面10a側に第1C字状パターン11aが配置されており、第2主面10b側に第2C字状パターン11bが配置されている。
第1C字状パターン11aと、第2C字状パターン11bとは、第1主面10a側から見た際に、丁度重なっている。
実施例4に係るメタマテリアル層10では、2つ目の非導電性シート12aの第1主面10a側に第1C字状パターン11aが配置されており、第2主面10b側に第2C字状パターン11bが配置されている。
第1C字状パターン11aと、第2C字状パターン11bとは、第1主面10a側から見た際に、丁度重なっている。
実施例4に係るメタマテリアル層10では、上から順に1つ目の非導電性シート12a、3つ目の非導電性シート12a及び2つ目の非導電性シート12aが積層されている。
実施例4に係るメタマテリアル層10では、第1C字状パターン11a及び第2C字状パターン11bの形状は、第1C字状パターン11a及び第2C字状パターン11bを180度回転させた形状である。
なお、図21では、メタマテリアル層10の各構成の位置関係の理解を容易にするために、所定パターンの1つに着目し、各構成を分離して示しているが、実際の実施例4に係るメタマテリアル層では、所定パターンは複数あり、これらの構成は密着している。
(シールド特性評価)
実施例1に係るシールド特性評価と同じ方法で、実施例4に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失(S21)及び放射磁界強度(S31)を測定した。
結果を図22A及び図22Bに示す。
図22A及び図22Bに示すように、実施例4に係るメタマテリアル層は、周波数3000~5000MHzの電磁波を遮蔽できることが判明した。
次に、実施例4に係るメタマテリアル層の第2主面側に、厚さ0.01mmのエポキシ樹脂からなる接着剤層を形成することにより実施例4に係る電磁波シールドフィルムを作製した。
(実施例5)
厚さ25μmの導電性ペーストからなり、第1主面及び第1主面に対向する第2主面を有する導電性シートを準備した。
次に、導電性シートにC字状パターンの貫通孔(以下、「第3C字状パターン」とも記載する)が正方格子の頂点に形成されるように、マスキング及びエッチングを行った。
各第3C字状パターンは単一の形状であり、第3C字状パターンの幅(線の太さ)は1mmであり、全長(パターンの最大幅)は、5mmであった。
また、各第3C字状パターンの重心間の距離は、6mmであった。
次に、導電性シートの第2主面側に、厚さ25μmのポリイミド組成物からなる非導電性シートを積層し、実施例5に係るネガティブ型のメタマテリアル層を作製した。
ここで、実施例5に係るメタマテリアル層の各構成の位置関係を、図面を用いて説明する。
図23に示すように、実施例5に係るメタマテリアル層50では、導電性シート51aに形成された貫通孔55により第3C字状パターン52aが配列されている。
そして、導電性シート51aの第2主面50b側に非導電性シート12aが積層されている。
なお、図23では、メタマテリアル層50の各構成の位置関係の理解を容易にするために、所定パターンの1つに着目し、各構成を分離して示しているが、実際の実施例5に係るメタマテリアル層では、所定パターンは複数あり、これらの構成は密着している。
(シールド特性評価)
実施例1に係るシールド特性評価と同じ方法で、実施例5に係るメタマテリアル層を用いた場合の、周波数0~10000MHzの電磁波の伝送損失(S21)及び放射磁界強度(S31)を測定した。
結果を図24A及び図24Bに示す。
図24A及び図24Bに示すように、実施例5に係るメタマテリアル層は、周波数400~8000MHzの電磁波を透過できることが判明した。
1、101、201、301A、301B、401、501、601、701、801A、801B 電磁波シールドフィルム
10 メタマテリアル層
10a、10a、10a2、50a 第1主面
10b、10b、10b2、50b 第2主面
11 導電性領域
11a、11a、11a、11b、11b、11b 所定パターン(C字状パターン)
11a11、11a12、11a21、11a22、11a23 パターン
12 非導電性領域
12a、12a、12a、12a 非導電性シート
12a C字状の所定パターンの内側の部分
12aО C字状の所定パターンの内側以外の部分
20、60 接着剤層
30、70 保護層
40、80 導電層
50 メタマテリアル層
51 導電性領域
51a 導電性シート
52 非導電性領域
52a、52b 所定パターン(C字状パターン)
55 貫通孔
91 ネットワークアナライザ
92 マイクロストリップライン
93 磁界プローブ

 

Claims (21)

  1. 第1主面及び前記第1主面に対向する第2主面を有するメタマテリアル層と、前記メタマテリアル層の前記第2主面側に形成された接着剤層とを備え、
    前記メタマテリアル層を前記第1主面側及び/又は前記第2主面側から平面視した際に、前記メタマテリアル層は、導電性を有する材料により形成された所定パターンが周期的に配列された導電性領域と、前記導電性領域以外の非導電性領域とからなることを特徴とする電磁波シールドフィルム。
  2. 前記所定パターンは、直線状、曲線状、多角形状、円状、楕円状、リング状、C字状、コの字、L字状、クランク状及びエルサレムクロス状からなる群から選択される少なくとも1つのパターンである請求項1に記載の電磁波シールドフィルム。
  3. 前記非導電性領域は、樹脂組成物からなる非導電性シートから構成され、
    前記所定パターンは、前記非導電性シートに埋め込まれるように形成されている請求項1又は2に記載の電磁波シールドフィルム。
  4. 前記樹脂組成物の比誘電率は、1~20000である請求項3に記載の電磁波シールドフィルム。
  5. 前記樹脂組成物は、フィラーを含む請求項3又は4に記載の電磁波シールドフィルム。
  6. 前記フィラーは、有機フィラー及び/又は無機フィラーである請求項5に記載の電磁波シールドフィルム。
  7. 前記接着剤層は、導電性接着剤層である請求項1~6のいずれかに記載の電磁波シールドフィルム。
  8. 前記接着剤層と前記メタマテリアル層との間には導電層及び/又は磁性体層が形成されている請求項1~7のいずれかに記載の電磁波シールドフィルム。
  9. 前記メタマテリアル層の前記第1主面側に導電層及び/又は磁性体層が形成されている請求項1~8のいずれかに記載の電磁波シールドフィルム。
  10. 前記メタマテリアル層の前記第1主面側に保護層が形成されている請求項1~9のいずれかに記載の電磁波シールドフィルム。
  11. 第1主面及び前記第1主面に対向する第2主面を有するメタマテリアル層と、前記メタマテリアル層の前記第2主面側に形成された接着剤層とを備え、
    前記メタマテリアル層を前記第1主面側及び/又は前記第2主面側から平面視した際に、前記メタマテリアル層は、非導電性を有する材料により形成された所定パターンが周期的に配列された非導電性領域と、前記非導電性領域以外の導電性領域とからなることを特徴とする電磁波シールドフィルム。
  12. 前記所定パターンは、直線状、曲線状、多角形状、円状、楕円状、リング状、C字状、コの字、L字状、クランク状及びエルサレムクロス状からなる群から選択される少なくとも1つのパターンである請求項11に記載の電磁波シールドフィルム。
  13. 前記導電性領域は、導電性を有する材料からなる導電性シートから構成され、
    前記所定パターンは、前記導電性シートに埋め込まれるように形成されている請求項11又は12に記載の電磁波シールドフィルム。
  14. 前記非導電性を有する材料の比誘電率は、1~20000である請求項11~13のいずれかに記載の電磁波シールドフィルム。
  15. 前記非導電性を有する材料は、フィラーを含む請求項11~14のいずれかに記載の電磁波シールドフィルム。
  16. 前記フィラーは、有機フィラー及び/又は無機フィラーである請求項15に記載の電磁波シールドフィルム。
  17. 前記所定パターンの輪郭は、前記メタマテリアル層の前記第1主面から前記第2主面を貫通する貫通孔により形成されている請求項11に記載の電磁波シールドフィルム。
  18. 前記接着剤層は、導電性接着剤層である請求項11~17のいずれかに記載の電磁波シールドフィルム。
  19. 前記接着剤層と前記メタマテリアル層との間に導電層及び/又は磁性体層が形成されている請求項11~18のいずれかに記載の電磁波シールドフィルム。
  20. 前記メタマテリアル層の前記第1主面側に導電層及び/又は磁性体層が形成されている請求項11~19のいずれかに記載の電磁波シールドフィルム。
  21. 前記メタマテリアル層の前記第1主面側に保護層が形成されている請求項11~20のいずれかに記載の電磁波シールドフィルム。

     
PCT/JP2022/028473 2021-09-07 2022-07-22 電磁波シールドフィルム WO2023037770A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247000417A KR20240051914A (ko) 2021-09-07 2022-07-22 전자파 실드 필름
CN202280060420.1A CN117917200A (zh) 2021-09-07 2022-07-22 电磁屏蔽膜
JP2023546818A JPWO2023037770A1 (ja) 2021-09-07 2022-07-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-145521 2021-09-07
JP2021145521 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023037770A1 true WO2023037770A1 (ja) 2023-03-16

Family

ID=85506537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028473 WO2023037770A1 (ja) 2021-09-07 2022-07-22 電磁波シールドフィルム

Country Status (5)

Country Link
JP (1) JPWO2023037770A1 (ja)
KR (1) KR20240051914A (ja)
CN (1) CN117917200A (ja)
TW (1) TW202312854A (ja)
WO (1) WO2023037770A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320695A (ja) 2002-05-07 2003-11-11 Kuromikku:Kk 感熱媒体への書込装置
JP2004341035A (ja) 2003-05-13 2004-12-02 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置およびそれを用いた光中継伝送方式
WO2012090586A1 (ja) 2010-12-27 2012-07-05 Kagawa Seiji 近傍界電磁波吸収体
JP2016026840A (ja) 2015-11-11 2016-02-18 株式会社大都技研 遊技台
WO2019239976A1 (ja) * 2018-06-11 2019-12-19 コニカミノルタ株式会社 非接触読み取りタグ、非接触読み取りタグの製造方法、判別装置及び識別情報判別システム
JP2021082896A (ja) * 2019-11-15 2021-05-27 昭和電工マテリアルズ株式会社 電磁波周波数選択透過材及び車両用部品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225863B1 (ko) 2011-02-08 2013-01-24 금호타이어 주식회사 나노 실리카-나노 은 복합체를 포함하는 타이어 트레드용 고무 조성물 및 그를 이용한 타이어

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320695A (ja) 2002-05-07 2003-11-11 Kuromikku:Kk 感熱媒体への書込装置
JP2004341035A (ja) 2003-05-13 2004-12-02 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置およびそれを用いた光中継伝送方式
WO2012090586A1 (ja) 2010-12-27 2012-07-05 Kagawa Seiji 近傍界電磁波吸収体
JP2016026840A (ja) 2015-11-11 2016-02-18 株式会社大都技研 遊技台
WO2019239976A1 (ja) * 2018-06-11 2019-12-19 コニカミノルタ株式会社 非接触読み取りタグ、非接触読み取りタグの製造方法、判別装置及び識別情報判別システム
JP2021082896A (ja) * 2019-11-15 2021-05-27 昭和電工マテリアルズ株式会社 電磁波周波数選択透過材及び車両用部品

Also Published As

Publication number Publication date
JPWO2023037770A1 (ja) 2023-03-16
CN117917200A (zh) 2024-04-19
KR20240051914A (ko) 2024-04-22
TW202312854A (zh) 2023-03-16

Similar Documents

Publication Publication Date Title
KR101790684B1 (ko) 복합 전자파 흡수 시트
KR101953599B1 (ko) 높은 방열성을 가지는 전자파 흡수 필름
US9674992B2 (en) Electromagnetic interference shielding film
JP4181197B2 (ja) シート体ならびにそれを備えるアンテナ装置および電子情報伝達装置
EP2633746B1 (en) Composite film for board level emi shielding
EP2624676A1 (en) Electromagnetic wave shielding sheet for use in wireless power transmission
CN107836062A (zh) 散热片和包括该散热片的无线电力传输模块
US20100052992A1 (en) Sheet Member for Improving Communication, and Antenna Device and Electronic Information Transmitting Apparatus Provided Therewith
KR102147185B1 (ko) 전자파 흡수 복합 시트
JP4833571B2 (ja) 電磁波吸収体
JP4796469B2 (ja) シート体、アンテナ装置および電子情報伝達装置
CN110600888A (zh) 用于制造射频吸收器表皮的方法
CN107039743A (zh) 配置为减少射频暴露的天线设备
JP4108677B2 (ja) 電磁波吸収体
JP4528334B2 (ja) 電磁波吸収体
JP3647447B2 (ja) 電磁波吸収体
CN103929933A (zh) 抑制电磁波干扰结构及具有该结构的软性印刷电路板
JP5085026B2 (ja) 電磁波吸収体
WO2023037770A1 (ja) 電磁波シールドフィルム
JP6461416B1 (ja) 電磁波吸収複合シート
JP2008270793A (ja) 電磁波吸収体および建材ならびに電磁波吸収方法
WO2007037494A1 (ja) シート体、アンテナ装置および電子情報伝達装置
JP2012038836A (ja) 磁性体コア
JPH1187980A (ja) 複合磁性シート
JP2003174280A (ja) 電磁波吸収体およびその製造方法ならびに電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546818

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280060420.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022867092

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867092

Country of ref document: EP

Effective date: 20240408