WO2023035704A1 - 荧光硅酸锂玻璃陶瓷的制备方法 - Google Patents
荧光硅酸锂玻璃陶瓷的制备方法 Download PDFInfo
- Publication number
- WO2023035704A1 WO2023035704A1 PCT/CN2022/097595 CN2022097595W WO2023035704A1 WO 2023035704 A1 WO2023035704 A1 WO 2023035704A1 CN 2022097595 W CN2022097595 W CN 2022097595W WO 2023035704 A1 WO2023035704 A1 WO 2023035704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- preparation
- time
- melting
- colorant
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 229910052912 lithium silicate Inorganic materials 0.000 title claims abstract description 22
- 239000006017 silicate glass-ceramic Substances 0.000 title claims abstract description 22
- 239000011521 glass Substances 0.000 claims abstract description 120
- 238000002844 melting Methods 0.000 claims abstract description 104
- 230000008018 melting Effects 0.000 claims abstract description 104
- 238000005245 sintering Methods 0.000 claims abstract description 82
- 239000003086 colorant Substances 0.000 claims abstract description 81
- 239000000843 powder Substances 0.000 claims abstract description 48
- 150000003839 salts Chemical class 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000002241 glass-ceramic Substances 0.000 claims abstract description 36
- 230000008569 process Effects 0.000 claims abstract description 27
- 238000004512 die casting Methods 0.000 claims abstract description 25
- 238000005342 ion exchange Methods 0.000 claims abstract description 17
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims abstract description 10
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims abstract description 7
- 159000000000 sodium salts Chemical class 0.000 claims abstract description 7
- 150000003297 rubidium Chemical class 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 238000000748 compression moulding Methods 0.000 claims abstract 2
- 238000010791 quenching Methods 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 claims description 78
- -1 V 2 O 5 Inorganic materials 0.000 claims description 57
- 238000002425 crystallisation Methods 0.000 claims description 36
- 230000008025 crystallization Effects 0.000 claims description 36
- 238000003825 pressing Methods 0.000 claims description 35
- 229910052573 porcelain Inorganic materials 0.000 claims description 24
- 238000003801 milling Methods 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052772 Samarium Inorganic materials 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- GXTNDOSGOPRCEO-UHFFFAOYSA-N [Cr].[Fe].[Zn] Chemical compound [Cr].[Fe].[Zn] GXTNDOSGOPRCEO-UHFFFAOYSA-N 0.000 claims description 3
- NDUKHFILUDZSHZ-UHFFFAOYSA-N [Fe].[Zr] Chemical compound [Fe].[Zr] NDUKHFILUDZSHZ-UHFFFAOYSA-N 0.000 claims description 3
- USEGQPUGEPSVQL-UHFFFAOYSA-N [Pr].[Zr] Chemical compound [Pr].[Zr] USEGQPUGEPSVQL-UHFFFAOYSA-N 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000007850 fluorescent dye Substances 0.000 claims description 3
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 claims description 3
- 238000010309 melting process Methods 0.000 claims description 3
- FGHSTPNOXKDLKU-UHFFFAOYSA-N nitric acid;hydrate Chemical class O.O[N+]([O-])=O FGHSTPNOXKDLKU-UHFFFAOYSA-N 0.000 claims description 3
- KHJHBFLMOSTPIC-UHFFFAOYSA-N prop-2-enylidenechromium Chemical compound C(=C)C=[Cr] KHJHBFLMOSTPIC-UHFFFAOYSA-N 0.000 claims description 3
- DIVGJYVPMOCBKD-UHFFFAOYSA-N [V].[Zr] Chemical compound [V].[Zr] DIVGJYVPMOCBKD-UHFFFAOYSA-N 0.000 claims 1
- 159000000005 rubidium salts Chemical class 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 34
- 239000000463 material Substances 0.000 abstract description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 230000000171 quenching effect Effects 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 132
- 239000000203 mixture Substances 0.000 description 68
- 229910052697 platinum Inorganic materials 0.000 description 66
- 239000002994 raw material Substances 0.000 description 66
- 238000000465 moulding Methods 0.000 description 35
- 239000000156 glass melt Substances 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 29
- 229910019142 PO4 Inorganic materials 0.000 description 28
- 239000010452 phosphate Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 17
- 239000006121 base glass Substances 0.000 description 9
- 238000004031 devitrification Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000000462 isostatic pressing Methods 0.000 description 8
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 7
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 7
- 229910018068 Li 2 O Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- WVMPCBWWBLZKPD-UHFFFAOYSA-N dilithium oxido-[oxido(oxo)silyl]oxy-oxosilane Chemical compound [Li+].[Li+].[O-][Si](=O)O[Si]([O-])=O WVMPCBWWBLZKPD-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- VWVRASTUFJRTHW-UHFFFAOYSA-N 2-[3-(azetidin-3-yloxy)-4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound O=C(CN1C=C(C(OC2CNC2)=N1)C1=CN=C(NC2CC3=C(C2)C=CC=C3)N=C1)N1CCC2=C(C1)N=NN2 VWVRASTUFJRTHW-UHFFFAOYSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- WWSJZGAPAVMETJ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-ethoxypyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)OCC WWSJZGAPAVMETJ-UHFFFAOYSA-N 0.000 description 1
- LPZOCVVDSHQFST-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-ethylpyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CC LPZOCVVDSHQFST-UHFFFAOYSA-N 0.000 description 1
- FYELSNVLZVIGTI-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-5-ethylpyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1CC)CC(=O)N1CC2=C(CC1)NN=N2 FYELSNVLZVIGTI-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2 ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 0.000 description 1
- JVKRKMWZYMKVTQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JVKRKMWZYMKVTQ-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011351 dental ceramic Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000007676 flexural strength test Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003103 lithium disilicate glass Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- the present application relates to the technical field of lithium silicate glass ceramics, in particular to a preparation method of fluorescent lithium silicate glass ceramics.
- Lithium disilicate (Li 2 O ⁇ 2SiO 2 ) glass ceramics are polycrystalline materials with Li 2 Si 2 O 5 as the main crystal phase formed by adding a nucleating agent to the base glass, and the Li 2 Si 2 O 5 crystals are evenly distributed In the glass matrix, it has high mechanical strength and excellent optical properties. Compared with zirconia, glass ceramics have better aesthetic effects and have been widely used in the field of dental restoration.
- Dental restoration materials are required to be closer to natural teeth. Human natural teeth will fluoresce under light in a specific wavelength range, such as artificial light sources in some special occasions. In these cases, dental restoration materials without fluorescence effects cannot achieve simulation effects . At present, most dental restoration materials on the market have no fluorescent effect, and are often realized by fluorescent glaze, but the fluorescent effect is affected by the matrix and is easy to wear, which affects the final effect.
- the method for realizing the fluorescent effect of lithium disilicate glass ceramics is to mix the phosphor powder with the basic glass frit before melting, which affects the crystallization process and leads to uneven crystallization.
- the addition of part of the fluorescent agent also requires a sintering process under a reducing atmosphere, which has high requirements for this process and is difficult to achieve mass production.
- the ion exchange method of glass or glass ceramics mostly adopts the additive method.
- the additive method has a simple and practical process and is easy to produce in large quantities, but the ion exchange rate of the additive method is relatively slow. , mainly because Na + and K + belong to thermal diffusion in molten salt in ion exchange, and the ion migration speed is very slow.
- lithium silicate glass ceramics Therefore, in the field of lithium silicate glass ceramics, it has become an urgent problem to be solved by those skilled in the art to develop lithium silicate glass ceramics with faster ion exchange rate, excellent fluorescence effect and lower cost.
- the purpose of this application is to provide a preparation method of fluorescent lithium silicate glass ceramics, which is used to solve the problems of slow ion exchange rate, complicated process and high production cost in the preparation process of lithium silicate glass ceramics.
- the specific technical scheme is as follows:
- the application provides a preparation method of fluorescent lithium silicate glass-ceramic, which comprises:
- base glass frit comprises the component of following quality:
- the immersion time is preferably 0.5-2 h.
- the following mass components are included in the basic glass frit:
- the powder particle size of the base glass frit is 2-30 ⁇ m, and the particle size of the colorant powder is 0.5-5 ⁇ m.
- the potassium salt is selected from at least one of KNO 3 , K 2 CO 3 and K 2 SiCO 3 , based on the total weight of the molten salt, the KNO 3 content is 96-100 wt%, preferably 97.5 -99.5wt%, K2CO3 content is 0-2wt%, preferably 0.25-1wt %, K2SiCO3 content is 0-3wt%, preferably 0.25-2wt%.
- the fluorescent agent contained in the molten salt is selected from Eu (europium), Dy (dysprosium), Tm (thulium), Er (erbium), Ho (holmium), Yb (ytterbium), Nd ( At least one of nitric acid hydrates of neodymium), Sm (samarium), and Gd (gadolinium), based on the total weight of sodium salt, potassium salt, cesium salt and/or rubidium salt, the content of the fluorescent agent is 1-2wt%.
- the temperature of the molten salt is 250-660°C, preferably 420-500°C.
- the temperature of the melting process is 1250-1650°C, preferably 1450-1550°C, and the time is 30-180min, preferably 40-120min.
- the degree of vacuum is 300-5000Pa, preferably 1000-3500Pa
- the sintering temperature is 400-950°C
- the time is 30-240min, preferably 40-120min.
- the CAD/CAM processing process is as follows: milling the green body to obtain a prosthesis, and then crystallizing and sintering the prosthesis in a porcelain furnace to obtain a glass-ceramic prosthesis, wherein the crystal
- the sintering temperature is 850-920°C
- the vacuum degree is 1000-3500Pa
- the time is 40-120min.
- the hot die casting temperature is 850-1050° C., preferably 880-930° C.
- the hot die casting time is 5-60 min, preferably 10-20 min.
- the present application provides a method for preparing fluorescent lithium silicate glass-ceramic.
- a lithium silicate glass-ceramic restoration is prepared, and the lithium silicate glass-ceramic restoration contains a higher content of Na 2 O and The basic glass of K 2 O can improve the ion exchange efficiency and shorten the production time.
- the prepared lithium silicate glass-ceramic restoration is immersed in the molten salt containing potassium salt and fluorescent agent, which can be increased by ion exchange for a short time.
- the strength of lithium silicate glass-ceramic restorations and endow them with fluorescence, the fluorescence effect is controllable, and the fluorescence effect is excellent.
- the composition of the base glass frit of glass ceramics is shown on the basis of oxides.
- the "base glass composition based on oxides” refers to the basic glass composition obtained by converting the basic glass material that is completely decomposed during melting and exists in the form of oxides in the glass ceramics.
- the composition of each basic glass material The sub-expression is recorded as SiO 2 , Al 2 O 3 and so on according to the custom.
- the content of each component in the basic glass frit can be carried out by known methods, such as inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and other methods. Quantitative.
- ICP-AES inductively coupled plasma atomic emission spectrometry
- ICP-MS inductively coupled plasma mass spectrometry
- Quantitative Quantitative.
- the application provides a preparation method of fluorescent lithium silicate glass-ceramic, which comprises:
- base glass frit comprises the component of following quality:
- the immersion time is preferably 0.5-2 h.
- the colorants include CeO 2 , Pr 2 O 3 , Cr 2 O 3 , Co 2 O 3 , Nd 2 O 3 , V 2 O 5 , NiO, MnO, Er 2 O 3 , Zirconium At least one of vanadium yellow, zirconium iron red, zirconium praseodymium yellow, chrome iron red, chrome tin red, and iron chromium zinc brown, based on the total weight of the basic glass frit, the content of the colorant is 0-5wt%.
- the following mass components are included in the basic glass frit:
- SiO 2 is a network forming component of glass, which has the functions of improving the thermal stability, chemical durability, weather resistance of glass, increasing the viscosity of molten glass, and easily forming molten glass; but when the content of SiO 2 is too high, there will be The devitrification resistance of the glass tends to decrease, and SiO 2 is the main component of the main crystal phase of lithium disilicate. Therefore, the content of SiO 2 is preferably within the above range.
- Li 2 O is a component that contributes to lowering the specific gravity of the glass, and has the effect of improving the melting property of the glass and increasing the average linear thermal expansion coefficient, but when the Li 2 O content is too high, the devitrification resistance of the glass decreases; Li 2 O is the main component of the main crystal phase of lithium disilicate, so the content of Li 2 O is preferably within the above range.
- K 2 O has the effect of improving the thermal stability of glass, but when the content of K 2 O is too high, the chemical durability and weather resistance of glass ceramics tend to decrease, so the content of K 2 O is preferably within the above range.
- Na 2 O has the effect of improving the thermal stability of glass, but when the content of Na 2 O is too high, the chemical durability and weather resistance of glass ceramics tend to decrease, so the content of Na 2 O is preferably within the above range.
- Al 2 O 3 is a glass component that can improve the durability and weather resistance of glass. It can be regarded as the network composition of glass. However, when the content of Al 2 O 3 is too high, the devitrification resistance of glass ceramics will decrease. , so the content of Al 2 O 3 is preferably within the above range.
- P 2 O 5 is a network-forming component of the glass, and is an essential component for containing a large amount of highly dispersed components in the glass.
- glass ceramics with high thermal stability can be obtained.
- CaO is a glass component that has the effect of improving the thermal stability and devitrification resistance of glass, but when the CaO content is too high, the high dispersibility is impaired, and the thermal stability and devitrification resistance of glass ceramics are reduced.
- the content is preferably within the above range.
- ZrO 2 is a glass component that has the effect of improving the thermal stability and devitrification resistance of glass, but when the ZrO 2 content is too high, it shows a tendency to reduce thermal stability; ZrO 2 can be used as a nucleation agent in glass ceramics. agent, so the content of ZrO 2 is preferably within the above range.
- the content of Tb 4 O 7 is preferably within the above range. .
- B 2 O 3 is a network-forming component of glass and has the effect of improving the thermal stability of glass ceramics.
- the content of B 2 O 3 is preferably within the above-mentioned range. .
- the powder particle size of the base glass frit is preferably 2-30 ⁇ m, and the particle size of the colorant powder is preferably 0.5-5 ⁇ m.
- the potassium salt is selected from at least one of KNO 3 , K 2 CO 3 and K 2 SiCO 3 , based on the total weight of the molten salt, the content of KNO 3 is 96-100 wt%, preferably 97.5-99.5 wt%, K 2 CO 3 content is 0-2 wt%, preferably 0.25-1 wt%, K 2 SiCO 3 content is 0-3 wt%, preferably 0.25-2 wt%.
- the fluorescent agent contained in the molten salt is selected from at least one of the nitric acid hydrates of Eu, Dy, Tm, Er, Ho, Yb, Nd, Sm, Gd, based on sodium salt, potassium
- the content of fluorescent agent is 1-2wt% of the total weight of salt, cesium salt and/or rubidium salt.
- the temperature of the molten salt is 250-660°C, preferably 420-500°C.
- the temperature of the melting process is 1250-1650°C, preferably 1450-1550°C, and the time is 30-180min, preferably 40-120min.
- the vacuum degree is 300-5000Pa, preferably 1000-3500Pa
- the sintering temperature is 400-950°C
- the time is 30-240min, preferably 40-120min.
- the CAD/CAM process is: milling the green body to obtain a prosthesis, and then crystallizing and sintering the prosthesis in a porcelain furnace to obtain a glass-ceramic prosthesis, wherein the crystallization
- the sintering temperature is 850-920°C
- the vacuum degree is 1000-3500Pa
- the time is 40-120min.
- the present application has no particular limitation on the milling processing equipment, as long as the purpose of the present application can be achieved, for example, it can be a 5-axis processing machine.
- the present application has no particular limitation on the model of the ceramic furnace, as long as the purpose of the present application can be achieved.
- the hot die casting process is as follows: first prepare the wax-type of the restoration, then embed the wax-type of the restoration with an investment material, solidify to obtain the embedding ring, heat the embedding ring to melt the wax-type and After volatilization, put the green body on the sprue opening of the investment ring, put it into the die-casting furnace together with the investment ring for die-casting, remove the investment material after cooling, and obtain a glass ceramic restoration.
- the hot die-casting temperature is 850-1050 °C, The temperature is preferably 880-930°C, and the hot die casting time is 5-60 minutes, preferably 10-20 minutes.
- the application has no special limitation on the investment material, as long as the purpose of the application can be achieved, for example, the investment material is phosphate.
- the fluorescent lithium silicate glass ceramics of the examples and the comparative examples were tested to obtain the flexural strength of the glass ceramics.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the obtained green body is processed into a restoration by CAD/CAM process , and then carry out crystallization and sintering of the prosthesis in a porcelain furnace.
- the crystallization and sintering temperature is 850°C
- the vacuum degree is 1000Pa
- the time is 40min.
- the time is 2h
- the final restoration is obtained after completion.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the pressure is 20MPa
- the green body after forming is vacuum sintered
- the sintering temperature is 560°C
- the vacuum degree is 3500Pa
- the time 120min.
- Crystallization and sintering the crystallization and sintering temperature is 920°C, the vacuum degree is 3500Pa, and the time is 120min.
- the restoration is immersed in the molten salt 4 in Table 3, the temperature of the molten salt is 420°C, and the time is 2h. After completion, the final restoration is obtained .
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the formed green body is vacuum sintered at a sintering temperature of 820°C, a vacuum degree of 1000Pa, and a time of 90 minutes.
- the obtained green body is processed by a hot die-casting process
- the hot die casting temperature is 930°C for 20 minutes, and the restoration is immersed in the molten salt 6 in Table 3, the temperature of the molten salt is 420°C, and the time is 2 hours. After completion, the final restoration is obtained.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the crystallization and sintering temperature is 880°C
- the vacuum degree is 1500Pa
- the time 60
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the obtained green body is processed into a prosthesis by CAD/CAM technology, and then Carry out crystallization and sintering of the restoration in a porcelain furnace, the crystallization and sintering temperature is 920°C, the vacuum degree is 3500Pa, and the time is 40min. h, Final restoration obtained after completion.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the pressure is 20MPa
- the green body after forming is vacuum sintered
- the sintering temperature is 950°C
- the vacuum degree is 3500Pa
- the time is 20min.
- the restoration was immersed in the molten salt 12 in Table 3, the temperature of the molten salt was 500° C., and the time was 0.5 h. After completion, the final restoration was obtained.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the colorant particle size is 4 ⁇ m
- the pressure is 22MPa, and then isostatic pressure molding, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 880°C, the vacuum degree is 2000Pa, and the time is 60min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 900°C, the vacuum degree was 3000Pa, and the time was 90 minutes. The restoration was immersed in the molten salt 14 in Table 3. 1.5h, the final restoration is obtained after completion.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the pressure is 15MPa, and then isostatic pressure molding, the pressure is 260MPa, the green body after forming is vacuum sintered, the sintering temperature is 600°C, the vacuum degree is 2500Pa, and the time is 70min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then, the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 900°C, the vacuum degree was 2000Pa, and the time was 60 minutes. 1h, the final restoration was obtained after completion.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the particle size of the colorant is 4 ⁇ m
- the pressure is 15MPa, and then isostatic pressure molding, the pressure is 260MPa, the green body after forming is vacuum sintered, the sintering temperature is 860°C, the vacuum degree is 2400Pa, and the time is 50min.
- the die-casting temperature was 910°C for 15 minutes, and the restoration was immersed in the molten salt 18 in Table 3, the temperature of the molten salt was 470°C, and the time was 1.3
- the raw materials can be selected from oxides, carbonate compounds, and phosphate compounds.
- the raw materials are fully mixed and poured into a platinum crucible, and the platinum crucible is put into a furnace for melting.
- the melting temperature is 1300°C and the melting time is 160 minutes. Pour the melted glass into cold water to obtain a glass melt.
- the pressure is 22MPa, and then isostatic pressure molding, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 500°C, the vacuum degree is 3200Pa, and the time is 30min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then carry out crystallization and sintering of the prosthesis in a porcelain furnace. The crystallization and sintering temperature is 870°C, the vacuum degree is 1600Pa, and the time is 50min. It takes 1.1h, and the final restoration is obtained after completion.
- the raw materials can be selected from oxides, carbonate compounds, and phosphate compounds.
- the pressure is 30MPa, and then the isostatic pressure is formed, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 750°C, the vacuum degree is 3100Pa, and the time is 45min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then, the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 910°C, the vacuum degree was 3400Pa, and the time was 70 minutes. The restoration was immersed in the molten salt 22 in Table 3. 1.2h, the final restoration is obtained after completion.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the obtained green body is processed into a restoration by CAD/CAM process , and then crystallize and sinter the prosthetic body in a porcelain furnace, the crystallization and sintering temperature is 850°C, the vacuum degree is 1000Pa, and the time is 40min.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the obtained green body is processed into a restoration by CAD/CAM process , and then carry out crystallization and sintering of the restoration in a porcelain furnace.
- the crystallization and sintering temperature is 850°C
- the vacuum degree is 1000Pa
- the time is 40min.
- the final restoration is obtained after completion.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the molding pressure is 20MPa
- the green body after molding is vacuum sintered
- the sintering temperature is 560°C
- the vacuum degree is 3500Pa
- the time is 120min.
- Carry out crystallization and sintering Carry out crystallization and sintering, the temperature of crystallization and sintering is 920°C, the degree of vacuum is 3500Pa, and the time is 120min. After completion, the final restoration is obtained.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the crystallization and sintering temperature is 920°C
- the vacuum degree is 3500Pa
- the time is 120min.
- the restoration is immersed in the molten salt 3 in Table 3.
- the temperature of the molten salt is 420°C, and the time is 2h. After completion, the final restoration is obtained. .
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the obtained green body is processed into a restoration by hot die casting process.
- the hot die-casting temperature is 930°C and the time is 20 minutes, and the final restoration is obtained after completion.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the obtained green body is processed into a restoration by hot die casting process.
- the hot die-casting temperature was 930°C for 20 minutes, and the restoration was immersed in the molten salt 5 in Table 3, the temperature of the molten salt was 420°C, and the time was 2 hours. After completion, the final restoration was obtained.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the pressure is 20MPa, and then the isostatic pressure is formed, the pressure is 250MPa, the green body after forming is vacuum sintered, the sintering temperature is 600°C, the vacuum degree is 3500Pa, and the time is 40min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then the prosthesis was crystallized and sintered in a porcelain furnace, the crystallization and sintering temperature was 880°C, the vacuum degree was 1500Pa, and the time was 60 minutes.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the pressure is 20MPa, and then the isostatic pressure is formed, the pressure is 250MPa, the green body after forming is vacuum sintered, the sintering temperature is 600°C, the vacuum degree is 3500Pa, and the time is 40min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then, the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 880°C, the vacuum degree was 1500 Pa, and the time was 60 minutes. 0.5h, the final restoration is obtained after completion.
- the raw material can choose its oxide compound, carbonate compound, phosphate compound.
- the pressure is 30MPa, and then isostatic pressure molding, the pressure is 200MPa, the green body after forming is vacuum sintered, the sintering temperature is 680°C, the vacuum degree is 3500Pa, and the time is 40min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 920°C, the vacuum degree was 3500 Pa, and the time was 40 minutes. After completion, the final prosthesis was obtained.
- the raw material can choose its oxide compound, carbonate compound, phosphate compound.
- the pressure is 30MPa, and then isostatic pressure molding, the pressure is 200MPa, the green body after forming is vacuum sintered, the sintering temperature is 680°C, the vacuum degree is 3500Pa, and the time is 40min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then, the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 920°C, the vacuum degree was 3500Pa, and the time was 40 minutes. 0.5h, the final restoration is obtained after completion.
- the raw material can choose its oxide compound, carbonate compound, phosphate compound.
- the raw material can choose its oxide compound, carbonate compound, phosphate compound.
- the pressure is 20MPa
- the green body after forming is vacuum sintered
- the sintering temperature is 950°C
- the vacuum degree is 3500Pa
- the time is 20min.
- the restoration was immersed in the molten salt 11 in Table 3, the temperature of the molten salt was 500° C., and the time was 0.5 h. After completion, the final restoration was obtained.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the colorant particle size is 4 ⁇ m
- the pressure is 22MPa, and then isostatic pressure molding, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 880°C, the vacuum degree is 2000Pa, and the time is 60min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then the prosthesis was crystallized and sintered in a porcelain furnace, the crystallization and sintering temperature was 900°C, the vacuum degree was 3000Pa, and the time was 90min.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the pressure is 22MPa, and then isostatic pressure molding, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 880°C, the vacuum degree is 2000Pa, and the time is 60min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then, the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 900°C, the vacuum degree was 3000Pa, and the time was 90 minutes. 1.5h, the final restoration is obtained after completion.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the raw material can be selected from its oxides, carbonate compounds, phosphate compounds.
- the particle size of the colorant was 3 ⁇ m, and the powder was poured into a mold CAD mold for dry pressing, and the molding pressure was 15MPa, then isostatic pressure forming, the pressure is 260MPa, the green body after forming is vacuum sintered, the sintering temperature is 600°C, the vacuum degree is 2500Pa, and the time is 70min.
- the obtained green body is processed into a restoration by CAD/CAM technology, and then The prosthesis was crystallized and sintered in a porcelain furnace.
- the crystallization and sintering temperature was 900°C, the vacuum degree was 2000 Pa, and the time was 60 minutes. After completion, the final prosthesis was obtained.
- the raw material can choose its oxide, carbonate compound, phosphate compound.
- the colorant particle size is 3 ⁇ m
- the pressure is 15MPa, and then isostatic pressure molding, the pressure is 260MPa, the green body after forming is vacuum sintered, the sintering temperature is 600°C, the vacuum degree is 2500Pa, and the time is 70min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then, the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 900°C, the vacuum degree was 2000Pa, and the time was 60 minutes. 1h, the final restoration was obtained after completion.
- the raw material can choose its oxide compound, carbonate compound, phosphate compound.
- the particle size of the colorant is 4 ⁇ m, and the powder is poured into a mold Press mold for dry pressing and molding
- the pressure is 15MPa, and then isostatic pressure molding, the pressure is 260MPa, the green body after forming is vacuum sintered, the sintering temperature is 860°C, the vacuum degree is 2400Pa, and the time is 50min.
- the die-casting temperature is 910°C, and the time is 15 minutes. After completion, the final restoration is obtained.
- the raw material can choose its oxide compound, carbonate compound, phosphate compound.
- the particle size of the colorant is 4 ⁇ m, and the powder is poured into a mold Press mold for dry pressing and molding
- the pressure is 15MPa, and then isostatic pressure molding, the pressure is 260MPa, the green body after forming is vacuum sintered, the sintering temperature is 860°C, the vacuum degree is 2400Pa, and the time is 50min.
- the die-casting temperature was 910°C for 15 minutes, and the restoration was immersed in the molten salt 17 in Table 3, the temperature of the molten salt was 470°C, and the time was 1.3 hours. After completion, the final restoration was obtained.
- the raw materials can be selected from oxides, carbonate compounds, and phosphate compounds.
- the raw materials are fully mixed and poured into a platinum crucible, and the platinum crucible is put into a furnace for melting.
- the melting temperature is 1300°C and the melting time is 160 minutes. Pour the melted glass into cold water to obtain a glass melt.
- the obtained glass frit dry the obtained glass frit and grind it to a particle size of 40 ⁇ m, mix it evenly with the colorant 10 in Table 2, the particle size of the colorant is 7 ⁇ m, pour the powder into the mold CAD mold for dry pressing, and form
- the pressure is 22MPa, and then isostatic pressure molding, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 500°C, the vacuum degree is 3200Pa, and the time is 30min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then the prosthesis was crystallized and sintered in a porcelain furnace, the crystallization and sintering temperature was 870°C, the vacuum degree was 1600Pa, and the time was 50 minutes.
- the raw materials can be selected from oxides, carbonate compounds, and phosphate compounds.
- the raw materials are fully mixed and poured into a platinum crucible, and the platinum crucible is put into a furnace for melting.
- the melting temperature is 1300°C and the melting time is 160 minutes. Pour the melted glass into cold water to obtain a glass melt.
- the pressure is 22MPa, and then isostatic pressure molding, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 500°C, the vacuum degree is 3200Pa, and the time is 30min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then, the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 870°C, the vacuum degree was 1600Pa, and the time was 50 minutes.
- the restoration was immersed in the molten salt 19 in Table 3. 1.1h, the final restoration is obtained after completion.
- the raw materials can be selected from oxides, carbonate compounds, and phosphate compounds.
- the pressure is 30MPa, and then isostatic pressure molding, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 750°C, the vacuum degree is 3100MPa, and the time is 45min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 910°C, the vacuum degree was 3400Pa, and the time was 70 minutes.
- the raw materials can be selected from oxides, carbonate compounds, and phosphate compounds.
- the pressure is 30MPa, and then the isostatic pressure is formed, the pressure is 180MPa, the green body after forming is vacuum sintered, the sintering temperature is 750°C, the vacuum degree is 3100Pa, and the time is 45min.
- the obtained green body is processed into a restoration by CAD/CAM technology. Then, the prosthesis was crystallized and sintered in a porcelain furnace. The crystallization and sintering temperature was 910°C, the vacuum degree was 3400Pa, and the time was 70 minutes. 1.2h, the final restoration is obtained after completion.
- the glass ceramics obtained by the preparation method of the present application showed better fluorescence properties.
- Example 7 and Example 8 by adjusting the composition of the fluorescent agent in the molten salt, the fluorescent effect of the glass-ceramic of the present application can be regulated; taking Example 1 and Comparative Example 1-1 as examples, it can be seen that by The glass-ceramic of Example 1 of the present application has higher strength by performing short-time low-temperature ion exchange in molten salt.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
本申请提供了一种荧光硅酸锂玻璃陶瓷的制备方法,其包括:将基础玻璃料通过熔制、水淬成玻璃熔块,其中基础玻璃料包括SiO 2:45-75wt%,Li 2O:6-20wt%,K 2O:1-14wt%,Na 2O:2-15wt%,Al 2O 3:2-12wt%,P 2O 5:0-13wt%,CaO:0-4wt%,ZrO 2:0-22wt%,Tb 4O 7:0-10wt%,B 2O 3:0-8wt%;将玻璃熔块粉体与着色剂粉体混合,倒入磨具压制成型后进行热处理得到成型坯体,进行真空气氛烧结,进一步将坯体通过CAD/CAM或热压铸工艺加工得到玻璃陶瓷修复体,最后将玻璃陶瓷修复体浸没在包含钠盐、钾盐、铯盐和/或铷盐以及荧光剂的熔盐中,得到离子交换增强的荧光玻璃陶瓷修复体。通过本申请提供的荧光硅酸锂玻璃陶瓷的制备方法可以通过短时间的离子交换来增加硅酸锂玻璃陶瓷修复体的强度和赋予其荧光性。
Description
本申请要求于2021年09月08日提交中国专利局、申请号为202111052961.3、发明名称为“通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及硅酸锂玻璃陶瓷技术领域,特别是涉及一种荧光硅酸锂玻璃陶瓷的制备方法。
二硅酸锂(Li
2O·2SiO
2)玻璃陶瓷通过在基础玻璃中添加形核剂,形成以Li
2Si
2O
5为主晶相的多晶材料,Li
2Si
2O
5晶体均匀分布在玻璃基质中,使其具有较高的机械强度和优异的光学性能,相比于氧化锆,玻璃陶瓷的美学效果更好,在齿科修复领域已经广泛应用。齿科修复材料要求更接近天然牙,人的天然牙在特定波长范围的光照射下会发出荧光,例如一些特殊场合的人造光源,在这些情况下,无荧光效果的牙科修复材料无法达到仿真效果。目前市场上大多数齿科修复材料无荧光效果,往往通过荧光釉来实现,但是荧光效果受基体影响、并且容易磨损,影响最终效果。
目前,二硅酸锂玻璃陶瓷实现荧光效果的方法是在熔制前将荧光粉与基础玻璃料混合,这种方式对析晶过程造成影响,导致析晶不均匀。部分荧光剂的加入还需要在还原气氛下进行烧结过程,对于该过程要求较高,难以实现批量化生产。
目前,玻璃或玻璃陶瓷的离子交换方法多数采用添加剂法,相比于双段离子交换法和外加电场法而言添加剂法的工艺简单实用,易于大批量生产,但是添加剂法的离子交换速率较慢,主要是因为离子交换中Na
+和K
+在熔盐中属于热扩散,离子迁移速度很慢。
因此,在硅酸锂玻璃陶瓷领域,开发出离子交换速率更快,荧光效果优秀,成本更低的硅酸锂玻璃陶瓷,成为本领域技术人员亟待解决的问题。
发明内容
本申请的目的在于提供一种荧光硅酸锂玻璃陶瓷的制备方法,用以解决在硅酸锂玻璃陶瓷制备过程中离子交换速率过慢,工艺复杂,生产成本较高的问题。具体技术方案如下:
本申请提供一种荧光硅酸锂玻璃陶瓷的制备方法,其包括:
(1)配制基础玻璃料,其中,基础玻璃料包含以下质量的组分:
(2)将基础玻璃料通过熔制、水淬成玻璃熔块;
(3)将玻璃熔块烘干研磨成粒径1-50μm的基础玻璃粉体,与粒径0-10μm的着色剂粉体混合,倒入磨具压制成型,经等静压或直接干压后进行热处理得到成型坯体;
(4)将得到的成型坯体进行真空气氛烧结;
(5)将坯体通过CAD/CAM(计算机辅助设计/计算机辅助制造)或热压铸工艺加工得到玻璃陶瓷修复体;
(6)将玻璃陶瓷修复体浸没在熔盐中,浸没时间为0.2-8h,得到离子交换增强的荧光玻璃陶瓷修复体,其中,熔盐包含钠盐、钾盐、铯盐和/或铷盐以及荧光剂。
在本申请的一些实施方案中,浸没时间优选为0.5-2h。
在本申请的一些实施方案中,着色剂包括CeO
2、Pr
2O
3、Cr
2O
3、Co
2O
3、Nd
2O
3、V
2O
5、NiO、MnO、Er
2O
3、锆钒黄、锆铁红、锆镨黄、铬铁红、铬锡红、铁铬锌棕中的至少一种,基于基础玻璃料总重量,着色剂含量为0-5wt%。
在本申请的一些实施方案中,基础玻璃料中包含以下质量的组分:
在本申请的一些实施方案中,基础玻璃料的粉体粒径为2-30μm,所述着色剂粉体粒径为0.5-5μm。
在本申请的一些实施方案中,钾盐选自KNO
3、K
2CO
3和K
2SiCO
3中的至少一种,基于熔盐的总重量,KNO
3含量为96-100wt%,优选为97.5-99.5wt%,K
2CO
3含量为0-2wt%,优选为0.25-1wt%,K
2SiCO
3含量为0-3wt%,优选为0.25-2wt%。
在本申请的一些实施方案中,熔盐中包含的荧光剂选自Eu(铕)、Dy(镝)、Tm(铥)、Er(铒)、Ho(钬)、Yb(镱)、Nd(钕)、Sm(钐)、Gd(钆)的硝酸水合物中的至少一种,基于钠盐、钾盐、铯盐和/或铷盐的总重量,荧光剂的含量为1-2wt%。
在本申请的一些实施方案中,熔盐的温度为250-660℃,优选为420-500℃。
在本申请的一些实施方案中,熔制过程的温度为1250-1650℃,优选为1450-1550℃,时间为30-180min,优选为40-120min。
在本申请的一些实施方案中,在真空气氛烧结过程中,真空度为300-5000Pa,优选为1000-3500Pa,烧结温度为400-950℃,时间为30-240min,优选为40-120min。
在本申请的一些实施方案中,CAD/CAM加工过程为:将坯体进行铣削加工,得到修复体,再将修复体在烤瓷炉中进行晶化烧结,得到玻璃陶瓷修复体,其中,晶化烧结温度为850-920℃,真空度为1000-3500Pa,时间为40-120min。
在本申请的一些实施方案中,在热压铸过程中,热压铸温度为850-1050℃,优选880-930℃,热压铸时间为5-60min,优选10-20min。
本申请的有益效果:
本申请提供了一种荧光硅酸锂玻璃陶瓷的制备方法,通过本申请的制备方法,制备得到硅酸锂玻璃陶瓷修复体,该硅酸锂玻璃陶瓷修复体含有更高含量的Na
2O和K
2O的基础玻璃,可以提高离子交换效率,缩短生产时间,将制备好的硅酸锂玻璃陶瓷修复体浸没在含钾盐和荧光剂的熔盐中,可以通过短时间的离子交换来增加硅酸锂玻璃陶瓷修复体的强度和赋予其荧光性,荧光效果可控,荧光效果优秀。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
下面将对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,只要没有特别记载,玻璃陶瓷的基础玻璃料的组成以氧化物为基准表示。其中“氧化物为基准的基础玻璃组成”是指按照基础玻璃料在熔融时全部分解而在玻璃陶瓷中以氧化物的形式存在的物质进行换算而得到的基础玻璃组成,各基础玻璃料的组分表达按照习惯记为SiO
2、Al
2O
3等。
在本申请中,基础玻璃料中各组分的含量可以通过公知的方法,例如电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱分析法(ICP-MS)等方法进行定量。
本申请提供一种荧光硅酸锂玻璃陶瓷的制备方法,其包括:
(1)配制基础玻璃料,其中,基础玻璃料包含以下质量的组分:
(2)将基础玻璃料通过熔制、水淬成玻璃熔块;
(3)将玻璃熔块烘干研磨成粒径1-50μm的基础玻璃粉体,与粒径0-10μm的着色剂粉体混合,倒入磨具压制成型,经等静压或直接干压后进行热处理得到成型坯体;
(4)将得到的成型坯体进行真空气氛烧结;
(5)将坯体通过CAD/CAM或热压铸工艺加工得到玻璃陶瓷修复体;
(6)将玻璃陶瓷修复体浸没在熔盐中,浸没时间为0.2-8h,得到离子交换增强的荧光 玻璃陶瓷修复体,其中,熔盐包含钠盐、钾盐、铯盐和/或铷盐以及荧光剂。
在本申请的一些实施方案中,浸没时间优选为0.5-2h。
在本申请的一些实施方案中,着色剂包括CeO
2、Pr
2O
3、Cr
2O
3、Co
2O
3、Nd
2O
3、V
2O
5、NiO、MnO、Er
2O
3、锆钒黄、锆铁红、锆镨黄、铬铁红、铬锡红、铁铬锌棕中的至少一种,基于基础玻璃料总重量,着色剂含量为0-5wt%。
在本申请的一些实施方案中,基础玻璃料中包含以下质量的组分:
其中,SiO
2是玻璃的网络形成成分,具有改善玻璃的热稳定性、化学耐久性、耐候性、提高熔融玻璃的粘度、容易将熔融玻璃成型的作用;但是SiO
2的含量过高时,存在玻璃的耐失透性降低的倾向,SiO
2是二硅酸锂主晶相的主要成分。因此,SiO
2的含量优选为上述范围。
其中,Li
2O是有助于玻璃的低比重化的成分,具有改善玻璃的熔融性同时增大平均线性热膨胀系数的作用,但是Li
2O含量过高时,玻璃的耐失透性降低;Li
2O是二硅酸锂主晶相的主要成分,因此Li
2O的含量优选为上述范围。
其中,K
2O具有改善玻璃的热稳定性的作用,但是K
2O含量过高时,玻璃陶瓷的化学耐久性和耐候性有降低的趋势,因此K
2O的含量优选为上述范围。
其中,Na
2O具有改善玻璃的热稳定性的作用,但是Na
2O含量过高时,玻璃陶瓷的化学耐久性和耐候性有降低的趋势,因此Na
2O的含量优选为上述范围。
其中,Al
2O
3是具有改善玻璃的耐久性和耐候性作用的玻璃成分,可以将其视为玻璃的网络组成成分,但是Al
2O
3含量过高时,玻璃陶瓷的耐失透性降低,因此Al
2O
3的含量优选 为上述范围。
其中,P
2O
5是玻璃的网络形成成分,是为了在玻璃中大量含有高分散成分的必要成分,在上述含量的优选范围中,可以得到热稳定性高的玻璃陶瓷。
其中,CaO是具有改善玻璃的热稳定性及耐失透性的作用的玻璃成分,但是CaO含量过高时,损害高分散性,玻璃陶瓷的热稳定性及耐失透性降低,因此CaO的含量优选为上述范围。
其中,ZrO
2是具有改善玻璃的热稳定性及耐失透性的作用的玻璃成分,但是ZrO
2含量过高时,显示出热稳定性降低的倾向;ZrO
2在玻璃陶瓷中可以作为形核剂,因此ZrO
2的含量优选为上述范围。
其中,Tb
4O
7的含量过高时,玻璃的热稳定性和耐失透性降低,因此从抑制热稳定性及耐失透性降低的观点考虑,Tb
4O
7的含量优选为上述范围。
其中,B
2O
3是玻璃的网络形成成分,具有改善玻璃陶瓷热稳定性的作用,但是其含量过高时,存在耐失透性降低的倾向,因此B
2O
3的含量优选为上述范围。
此外,本申请发明人发现,Na
2O、Li
2O、Al
2O
3和B
2O
3可以提高玻璃陶瓷的离子交换能力。
在本申请的一些实施方案中,基础玻璃料的粉体粒径优选2-30μm,着色剂粉体粒径优选0.5-5μm。
在本申请的一些实施方案中,钾盐选自KNO
3、K
2CO
3和K
2SiCO
3中的至少一种,基于所述熔盐的总重量,KNO
3含量为96-100wt%,优选97.5-99.5wt%,K
2CO
3含量为0-2wt%,优选0.25-1wt%,K
2SiCO
3含量为0-3wt%,优选0.25-2wt%。
在本申请的一些实施方案中,熔盐中包含的荧光剂选自Eu、Dy、Tm、Er、Ho、Yb、Nd、Sm、Gd的硝酸水合物中的至少一种,基于钠盐、钾盐、铯盐和/或铷盐的总重量,荧光剂的含量为1-2wt%。
在本申请的一些实施方案中,熔盐的温度为250-660℃,优选420-500℃。
在本申请的一些实施方案中,熔制过程的温度为1250-1650℃,优选1450-1550℃,时间为30-180min,优选40-120min。
在申请的一些实施方案中,在真空气氛烧结过程中,真空度为300-5000Pa,优选为1000-3500Pa,烧结温度为400-950℃,时间为30-240min,优选为40-120min。
在本申请的一些实施方案中,CAD/CAM过程为:将坯体进行铣削加工,得到修复体, 再将修复体在烤瓷炉中进行晶化烧结,得到玻璃陶瓷修复体,其中,晶化烧结温度为850-920℃,真空度为1000-3500Pa,时间为40-120min。本申请对铣削加工设备没有特别限制,只要能够实现本申请目的即可,例如可以为5轴加工机。本申请对烤瓷炉的型号没有特别限制,只要能实现本申请目的即可。
在本申请的一些实施方案中,热压铸过程为:先制备修复体的蜡型,然后用包埋料包埋修复体蜡型,固化得到包埋圈,对包埋圈加热使蜡型熔融并挥发后,将坯体放在包埋圈的铸道口,与包埋圈一起放入压铸炉进行压铸,冷却后去除包埋料,得到玻璃陶瓷修复体,其中,热压铸温度850-1050℃,优选880-930℃,热压铸时间为5-60min,优选10-20min。本申请对包埋料没有特别限制,只要能实现本申请的目的即可,例如,包埋料为磷酸盐。
具体测试过程:
玻璃陶瓷挠曲强度测试:
通过TH-8201万能材料试验机,根据ISO6872-2015牙科陶瓷标准,对实施例及对比例的荧光硅酸锂玻璃陶瓷进行测试,得到玻璃陶瓷的挠曲强度。
辉度测试:
通过随机抽取20名实验人员通过将荧光硅酸锂玻璃陶瓷放置在标准光源对色灯箱内进行观察,并进行1-10分打分,最终取其平均值,1-4分为ΙΙΙ级,5-7分为ΙΙ级,8-10为Ι级,其中,Ι级为荧光亮,ΙΙ级为荧光较亮,ΙΙΙ级为荧光较弱。
实施例
实施例1
根据表1中的配方1,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm后,与表2中的着色剂1混合均匀,着色剂粒径为0.5μm,将粉体倒入模具CAD模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为400℃,真空度1000Pa,时间为120min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为850℃,真空度1000Pa,时间为40min,将修复体浸没到表3中的熔盐2中,熔盐温度420℃,时间为2h,完成后得到最终的修复体。
实施例2
根据表1中的配方2,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm,与表2中的着色剂2混合均匀,着色剂粒径为0.5μm,将粉体倒入模具CAD模具中干压成型,成型压力为20MPa,成型后的坯体真空烧结,烧结温度为560℃,真空度3500Pa,时间为120min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为920℃,真空度3500Pa,时间120min,将修复体浸没到表3中的熔盐4中,熔盐温度420℃,时间为2h,完成后得到最终的修复体。
实施例3
根据表1中的配方3,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm后,与表2中的着色剂3混合均匀,着色剂粒径为0.5μm,将粉体倒入模具Press(热压铸)模具中干压成型,成型压力为18MPa,然后等静压力成型,压力为220MPa,成型后的坯体真空烧结,烧结温度为820℃,真空度1000Pa,时间为90min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为930℃,时间20min,将修复体浸没到表3的熔盐6中,熔盐温度420℃,时间为2h,完成后得到最终的修复体。
实施例4
根据表1中的配方4,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表中的着色剂4混合均匀,着色剂粒径为5μm,将粉体倒入模具CAD模具中干压成型,成型压力为20MPa,然后等静压力成型,压力为250MPa,成型后的坯体真空烧结,烧结温度为600℃,真空度3500Pa,时间为40min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度880℃,真空度1500Pa,时间60min,将修复体浸没到表3的熔盐8中,熔盐温度500℃,时间为0.5h,完成后得到最终的修复体。
实施例5
根据表1中的配方5,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料 充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表2的着色剂5混合均匀,着色剂粒径为5μm,将粉体倒入模具CAD模具中干压成型,成型压力为30MPa,然后等静压力成型,压力为200MPa,成型后的坯体真空烧结,烧结温度为680℃,真空度3500Pa,时间为40min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为920℃,真空度3500Pa,时间40min,将修复体浸没到表3的熔盐10中,熔盐温度500℃,时间为0.5h,完成后得到最终的修复体。
实施例6
根据表1中的配方6,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表2中的着色剂6混合均匀,着色剂粒径为5μm,将粉体倒入模具Press模具中干压成型,成型压力为20MPa,成型后的坯体真空烧结,烧结温度为950℃,真空度3500Pa,时间为20min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为880℃,时间10min,将修复体浸没到表3的熔盐12中,熔盐温度500℃,时间为0.5h,完成后得到最终的修复体。
实施例7
根据表1的配方7,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1500℃,熔制时间为60min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径15μm后,与表2中的着色剂7混合均匀,着色剂粒径为4μm,将粉体倒入模具CAD模具中干压成型,成型压力为22MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为880℃,真空度2000Pa,时间为60min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为900℃,真空度3000Pa,时间90min,将修复体浸没到表3的熔盐14中,熔盐温度450℃,时间为1.5h,完成后得到最终的修复体。
实施例8
根据表1中的配方8,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料 充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1520℃,熔制时间为70min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径12μm后,与表2中的着色剂8混合均匀,着色剂粒径为3μm,将粉体倒入模具CAD模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为600℃,真空度2500Pa,时间为70min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为900℃,真空度2000Pa,时间60min,将修复体浸没到表3的熔盐16中,熔盐温度480℃,时间为1h,完成后得到最终的修复体。
实施例9
根据表1中的配方9,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1480℃,熔制时间为80min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径20μm后,与表2中的着色剂9混合均匀,着色剂粒径为4μm,将粉体倒入模具Press模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为860℃,真空度2400Pa,时间为50min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为910℃,时间15min,将修复体浸没到表3的熔盐18中,熔盐温度470℃,时间为1.3h,完成后得到最终的修复体。
实施例10
根据表1的配方10,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1300℃,熔制时间为160min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径40μm后,与表2中的着色剂10混合均匀,着色剂粒径为7μm,将粉体倒入模具CAD模具中干压成型,成型压力为22MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为500℃,真空度3200Pa,时间为30min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为870℃,真空度1600Pa,时间为50min,将修复体浸没到表3的熔盐20中,熔盐温度300℃,时间为1.1h,完成后得到最终的修复体。
实施例11
根据表1的配方11,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充 分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1600℃,熔制时间为160min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径50μm后,与表2中的着色剂10混合均匀,着色剂粒径为9μm,将粉体倒入模具CAD模具中干压成型,成型压力为30MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为750℃,真空度3100Pa,时间为45min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为910℃,真空度3400Pa,时间70min,将修复体浸没到表3的熔盐22中,熔盐温度600℃,时间为1.2h,完成后得到最终的修复体。
对比例1-1
根据表1中的配方1,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm后,与表2中的着色剂1混合均匀,着色剂粒径为0.5μm,将粉体倒入模具CAD模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为400℃,真空度1000Pa,时间为120min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为850℃,真空度1000Pa,时间40min。
对比例1-2
根据表1中的配方1,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm后,与表2中的着色剂1混合均匀,着色剂粒径为0.5μm,将粉体倒入模具CAD模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为400℃,真空度1000Pa,时间为120min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为850℃,真空度1000Pa,时间40min,将修复体浸没到表3的熔盐1中,熔盐温度420℃,时间为2h,完成后得到最终的修复体。
对比例2-1
根据表1中的配方2,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料 充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm后,与表2中的着色剂2混合均匀,着色剂粒径为0.5μm,将粉体倒入模具CAD模具中干压成型,成型压力为20MPa,成型后的坯体真空烧结,烧结温度为560℃,真空度3500Pa,时间为120min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为920℃,真空度3500Pa,时间120min,完成后得到最终的修复体。
对比例2-2
根据表1的配方2,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm后,与表2中的着色剂2混合均匀,着色剂粒径为0.5μm,将粉体倒入模具CAD模具中干压成型,成型压力为20MPa,成型后的坯体真空烧结,烧结温度为560℃,真空度1000Pa,时间为120min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为920℃,真空度3500Pa,时间120min,将修复体浸没到表3的熔盐3中,熔盐温度420℃,时间为2h,完成后得到最终的修复体。
对比例3-1
根据表1的配方3,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm后,与表2中的着色剂3混合均匀,着色剂粒径为0.5μm,将粉体倒入模具Press模具中干压成型,成型压力为18MPa,然后等静压力成型,压力为220MPa,成型后的坯体真空烧结,烧结温度为820℃,真空度1000Pa,时间为90min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为930℃,时间20min,完成后得到最终的修复体。
对比例3-2
根据表1的配方3,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1450℃,熔制时间为120min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径2μm后,与表2中的着色剂3混合均匀,着色剂粒径为0.5μm,将粉体倒入模具Press 模具中干压成型,成型压力为18MPa,然后等静压力成型,压力为220MPa,成型后的坯体真空烧结,烧结温度为820℃,真空度1000Pa,时间为90min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为930℃,时间20min,将修复体浸没到表3的熔盐5中,熔盐温度420℃,时间为2h,完成后得到最终的修复体。
对比例4-1
根据表1的配方4,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表2中的着色剂4混合均匀,着色剂粒径为5μm,将粉体倒入模具CAD模具中干压成型,成型压力为20MPa,然后等静压力成型,压力为250MPa,成型后的坯体真空烧结,烧结温度为600℃,真空度3500Pa,时间为40min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为880℃,真空度1500Pa,时间60min。
对比例4-2
根据表1的配方4,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表2中的着色剂4混合均匀,着色剂粒径为5μm,将粉体倒入模具CAD模具中干压成型,成型压力为20MPa,然后等静压力成型,压力为250MPa,成型后的坯体真空烧结,烧结温度为600℃,真空度3500Pa,时间为40min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为880℃,真空度1500Pa,时间60min,将修复体浸没到表3的熔盐7中,熔盐温度500℃,时间为0.5h,完成后得到最终的修复体。
对比例5-1
根据表1的配方5,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表2中的着色剂5混合均匀,着色剂粒径为5μm,将粉体倒入模具CAD模具中干压成型,成型压力为30MPa,然后等静压力成型,压力为200MPa,成型后的坯体真 空烧结,烧结温度为680℃,真空度3500Pa,时间为40min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为920℃,真空度3500Pa,时间40min,完成后得到最终的修复体。
对比例5-2
根据表1的配方5,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表2中的着色剂5混合均匀,着色剂粒径为5μm,将粉体倒入模具CAD模具中干压成型,成型压力为30MPa,然后等静压力成型,压力为200MPa,成型后的坯体真空烧结,烧结温度为680℃,真空度3500Pa,时间为40min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为920℃,真空度3500Pa,时间40min,将修复体浸没到表3的熔盐9中,熔盐温度500℃,时间为0.5h,完成后得到最终的修复体。
对比例6-1
根据表1的配方6,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表2中的着色剂色料6混合均匀,着色剂粒径为5μm,将粉体倒入模具Press模具中干压成型,成型压力为20MPa,成型后的坯体真空烧结,烧结温度为950℃,真空度3500Pa,时间为20min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为880℃,时间10min,完成后得到最终的修复体。
对比例6-2
根据表1的配方6,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1550℃,熔制时间为40min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径30μm后,与表2中的着色剂6混合均匀,着色剂粒径为5μm,将粉体倒入模具Press模具中干压成型,成型压力为20MPa,成型后的坯体真空烧结,烧结温度为950℃,真空度3500Pa,时间为20min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为880℃,时间10min,将修复体浸没到表3的熔盐11中,熔盐温度500℃,时间为0.5h,完成后得到最 终的修复体。
对比例7-1
根据表1的配方7,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1500℃,熔制时间为60min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径15μm后,与表2中的着色剂7混合均匀,着色剂粒径为4μm,将粉体倒入模具CAD模具中干压成型,成型压力为22MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为880℃,真空度2000Pa,时间为60min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为900℃,真空度3000Pa,时间90min。
对比例7-2
根据表1的配方7,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1500℃,熔制时间为60min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后粒径磨到15μm后,与表2中的着色剂7混合均匀,着色剂粒径为4μm,将粉体倒入模具CAD模具中干压成型,成型压力为22MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为880℃,真空度2000Pa,时间为60min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为900℃,真空度3000Pa,时间90min,将修复体浸没到表3的熔盐13中,熔盐温度450℃,时间为1.5h,完成后得到最终的修复体。
对比例8-1
根据表1的配方8,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。原料可以选为其氧化物、碳酸盐化合物、磷酸盐化合物。充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1520℃,熔制时间为70min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后粒径磨到12μm后,与表2中的着色剂8混合均匀,着色剂粒径为3μm,将粉体倒入模具CAD模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为600℃,真空度2500Pa,时间为70min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为900℃,真空度2000Pa,时间60min,完成后得到最终的修复体。
对比例8-2
根据表1的配方8,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1520℃,熔制时间为70min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后粒径磨到12μm后,与表2中的着色剂8混合均匀,着色剂粒径为3μm,将粉体倒入模具CAD模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为600℃,真空度2500Pa,时间为70min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为900℃,真空度2000Pa,时间60min,将修复体浸没到表3的熔盐15中,熔盐温度480℃,时间为1h,完成后得到最终的修复体。
对比例9-1
根据表1的配方9,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1480℃,熔制时间为80min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后粒径磨到20μm后,与表2中的着色剂9混合均匀,着色剂粒径为4μm,将粉体倒入模具Press模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为860℃,真空度2400Pa,时间为50min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为910℃,时间15min,完成后得到最终的修复体。
对比例9-2
根据表1的配方9,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1480℃,熔制时间为80min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后粒径磨到20μm后,与表2中的着色剂9混合均匀,着色剂粒径为4μm,将粉体倒入模具Press模具中干压成型,成型压力为15MPa,然后等静压力成型,压力为260MPa,成型后的坯体真空烧结,烧结温度为860℃,真空度2400Pa,时间为50min,得到的坯体通过热压铸工艺加工成修复体,热压铸温度为910℃,时间15min,将修复体浸没到表3的熔盐17中,熔盐温度470℃,时间为1.3h,完成后得到最终的修复体。
对比例10-1
根据表1的配方10,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料 充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1300℃,熔制时间为160min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径40μm后,与表2中的着色剂10混合均匀,着色剂粒径为7μm,将粉体倒入模具CAD模具中干压成型,成型压力为22MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为500℃,真空度3200Pa,时间为30min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为870℃,真空度1600Pa,时间50min。
对比例10-2
根据表1的配方10,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1300℃,熔制时间为160min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径40μm后,与表2中的着色剂10混合均匀,着色剂粒径为7μm,将粉体倒入模具CAD模具中干压成型,成型压力为22MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为500℃,真空度3200Pa,时间为30min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为870℃,真空度1600Pa,时间50min,将修复体浸没到表3的熔盐19中,熔盐温度300℃,时间为1.1h,完成后得到最终的修复体。
对比例11-1
根据表1的配方11,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1600℃,熔制时间为160min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径50μm后,与表2中的着色剂11混合均匀,着色剂粒径为9μm,将粉体倒入模具CAD模具中干压成型,成型压力为30MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为750℃,真空度3100MPa,时间为45min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为910℃,真空度3400Pa,时间70min。
对比例11-2
根据表1的配方11,原料可以选择其氧化物、碳酸盐化合物、磷酸盐化合物。将原料充分混合均匀后倒入铂金坩埚中,将铂金坩埚放入炉内熔制,熔制温度为1600℃,熔制时间 为160min,将熔制好的玻璃液倒入冷水中,得到玻璃熔块,将得到的玻璃熔块烘干后研磨至粒径50μm后,与表2中的着色剂11混合均匀,着色剂粒径为9μm,将粉体倒入模具CAD模具中干压成型,成型压力为30MPa,然后等静压力成型,压力为180MPa,成型后的坯体真空烧结,烧结温度为750℃,真空度3100Pa,时间为45min,得到的坯体通过CAD/CAM工艺加工成修复体,再将修复体在烤瓷炉中进行晶化烧结,晶化烧结温度为910℃,真空度3400Pa,时间70min,将修复体浸没到表3的熔盐21中,熔盐温度600℃,时间为1.2h,完成后得到最终的修复体。
各实施例和对比例的基础玻璃料配方见表1;
各实施例和对比例的着色剂配方见表2;
各实施例和对比例所用熔盐的配方见表3;
各实施例和对比例的玻璃陶瓷挠曲强度及辉度结果见表4。
表1基础玻璃料的配方
表2着色剂的配方
表2中,“/”表示不含有。
表4玻璃陶瓷挠曲强度和辉度结果
从表4中可以看出,相比于未在熔盐中进行离子交换和熔盐中未添加荧光剂的对比例1-1到11-2,本申请制备方法得到的玻璃陶瓷表现出更好的荧光性能。从实施例7和实施例8可以看出,通过调节熔盐中荧光剂的组成,可以对本申请的玻璃陶瓷荧光效果进行调控;以实施例1和对比例1-1为例可以看出,通过在熔盐中进行短时间低温离子交换,本申请实施例1的玻璃陶瓷强度更高。
以上所述仅为本申请的较佳实施例,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。
Claims (11)
- 根据权利要求1所述的制备方法,其中,所述着色剂包括CeO 2、Pr 2O 3、Cr 2O 3、Co 2O 3、Nd 2O 3、V 2O 5、NiO、MnO、Er 2O 3、锆钒黄、锆铁红、锆镨黄、铬铁红、铬锡红、铁铬锌棕中的至少一种,基于所述基础玻璃料总重量,所述着色剂含量为0-5wt%。
- 根据权利要求1所述的制备方法,其中,所述基础玻璃料的粉体粒径为2-30μm,所述着色剂粉体粒径为0.5-5μm。
- 根据权利要求1所述的制备方法,其中,所述熔盐中包含钾盐,所述钾盐选自KNO 3、K 2CO 3和K 2SiCO 3中的至少一种,基于所述熔盐的总重量,所述KNO 3含量为96-99.5wt%,优选为97.5-99.5wt%,所述K 2CO 3含量为0-2wt%,优选为0.25-1wt%,所述K 2SiCO 3含量为0-3wt%,优选为0.25-2wt%。
- 根据权利要求1所述的制备方法,其中,所述熔盐中包含的荧光剂选自Eu、Dy、Tm、Er、Ho、Yb、Nd、Sm、Gd的硝酸水合物中的至少一种,基于所述钠盐、钾盐、铯盐和/或铷盐的总重量,所述荧光剂的含量为1-2wt%。
- 根据权利要求1所述的制备方法,其中,所述熔盐的温度为250-660℃,优选420-500℃。
- 根据权利要求1所述的制备方法,其中,所述熔制过程的温度为1250-1650℃,优选1450-1550℃,时间为30-180min,优选40-120min。
- 根据权利要求1所述的制备方法,其中,在所述真空气氛烧结过程中,真空度为300-5000Pa,优选1000-3500Pa,烧结温度为400-950℃,时间为30-240min。
- 根据权利要求1所述的制备方法,其中,所述CAD/CAM加工过程为:将所述坯体进行铣削加工,再将加工后的坯体在烤瓷炉中进行晶化烧结,得到所述玻璃陶瓷修复体,其中,所述晶化烧结温度为850-920℃,真空度为1000-3500Pa,时间为40-120min。
- 根据权利要求1所述的制备方法,其中,在所述热压铸过程中,热压铸温度为850-1050℃,优选880-930℃,热压铸时间为5-60min,优选10-20min。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111052961.3A CN113716871B (zh) | 2021-09-08 | 2021-09-08 | 通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法 |
CN202111052961.3 | 2021-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023035704A1 true WO2023035704A1 (zh) | 2023-03-16 |
Family
ID=78682753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/097595 WO2023035704A1 (zh) | 2021-09-08 | 2022-06-08 | 荧光硅酸锂玻璃陶瓷的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113716871B (zh) |
WO (1) | WO2023035704A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113716871B (zh) * | 2021-09-08 | 2023-06-06 | 深圳爱尔创口腔技术有限公司 | 通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法 |
CN113754288B (zh) * | 2021-09-08 | 2023-01-03 | 深圳爱尔创口腔技术有限公司 | 通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法 |
CN114028240A (zh) * | 2021-12-24 | 2022-02-11 | 深圳爱尔创口腔技术有限公司 | 一种二硅酸锂玻璃陶瓷修复体及其制备方法 |
CN115028365B (zh) * | 2022-06-24 | 2023-08-08 | 成都光明光电有限责任公司 | 玻璃陶瓷、玻璃陶瓷制品及其制造方法 |
CN115531605B (zh) * | 2022-10-28 | 2023-09-12 | 深圳玉汝成口腔材料有限公司 | 一种牙科玻璃陶瓷修复体及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104271523A (zh) * | 2011-11-30 | 2015-01-07 | 康宁股份有限公司 | 着色的碱金属铝硅酸盐玻璃制品 |
CN105377216A (zh) * | 2013-05-03 | 2016-03-02 | 登士柏国际公司 | 制造坯体的方法以及坯体 |
US20180244564A1 (en) * | 2015-08-25 | 2018-08-30 | Ivoclar Vivadent Ag | Lithium Silicate- Low Quartz Glass Ceramic |
CN110981204A (zh) * | 2019-12-27 | 2020-04-10 | 深圳爱尔创口腔技术有限公司 | 一种荧光硅酸锂玻璃材料及其制备方法与应用 |
CN111417601A (zh) * | 2017-11-28 | 2020-07-14 | 康宁股份有限公司 | 化学强化的生物活性玻璃陶瓷 |
CN113716871A (zh) * | 2021-09-08 | 2021-11-30 | 深圳爱尔创口腔技术有限公司 | 通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法 |
CN113754288A (zh) * | 2021-09-08 | 2021-12-07 | 深圳爱尔创口腔技术有限公司 | 通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1255942A (en) * | 1968-02-20 | 1971-12-01 | Nat Res Dev | Improvements in or relating to the production of porcelain articles |
JPS6312688A (ja) * | 1986-07-01 | 1988-01-20 | Osaka Cement Kk | 希土類元素−チタン酸塩系蛍光体の合成方法 |
CN107365064B (zh) * | 2017-06-26 | 2021-03-02 | 东旭光电科技股份有限公司 | 离子交换熔盐组合物和钢化盖板玻璃及其钢化方法 |
CN107841306A (zh) * | 2017-10-24 | 2018-03-27 | 上海理工大学 | 一种二价铕离子激活玻璃态荧光材料及其制备方法和应用 |
CN109180022B (zh) * | 2018-11-14 | 2021-07-27 | 福州大学 | 齿科微晶玻璃化学钢化用熔盐及其使用方法 |
CN113264684A (zh) * | 2021-06-11 | 2021-08-17 | 辽宁爱尔创生物材料有限公司 | 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体 |
-
2021
- 2021-09-08 CN CN202111052961.3A patent/CN113716871B/zh active Active
-
2022
- 2022-06-08 WO PCT/CN2022/097595 patent/WO2023035704A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104271523A (zh) * | 2011-11-30 | 2015-01-07 | 康宁股份有限公司 | 着色的碱金属铝硅酸盐玻璃制品 |
CN105377216A (zh) * | 2013-05-03 | 2016-03-02 | 登士柏国际公司 | 制造坯体的方法以及坯体 |
US20180244564A1 (en) * | 2015-08-25 | 2018-08-30 | Ivoclar Vivadent Ag | Lithium Silicate- Low Quartz Glass Ceramic |
CN111417601A (zh) * | 2017-11-28 | 2020-07-14 | 康宁股份有限公司 | 化学强化的生物活性玻璃陶瓷 |
CN110981204A (zh) * | 2019-12-27 | 2020-04-10 | 深圳爱尔创口腔技术有限公司 | 一种荧光硅酸锂玻璃材料及其制备方法与应用 |
CN113716871A (zh) * | 2021-09-08 | 2021-11-30 | 深圳爱尔创口腔技术有限公司 | 通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法 |
CN113754288A (zh) * | 2021-09-08 | 2021-12-07 | 深圳爱尔创口腔技术有限公司 | 通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113716871A (zh) | 2021-11-30 |
CN113716871B (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023035704A1 (zh) | 荧光硅酸锂玻璃陶瓷的制备方法 | |
US10391039B2 (en) | Al2O3-free lithium silicate glass composition | |
JP3411067B2 (ja) | 波長上方変換透明化ガラスセラミックスおよびその製造方法 | |
CN113024120B (zh) | 具有透度及颜色渐变效果的二硅酸锂玻璃陶瓷的制备方法 | |
WO2022257624A1 (zh) | 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体 | |
US11414340B2 (en) | High strength lithium silicate glass ceramic having high shielding property | |
JPS6320779B2 (zh) | ||
CN105347685A (zh) | 微晶玻璃及其制备方法 | |
CN109592907B (zh) | 白光LED用硼铋酸盐玻璃基Ce:YAG玻璃陶瓷及其制备方法 | |
CN113754288B (zh) | 通过离子交换增强的荧光硅酸锂玻璃陶瓷及其制备方法 | |
CN104529166A (zh) | 一种Ce:YAG微晶玻璃及其在白光LED中的应用 | |
CN108328932A (zh) | 一种Ce、Er、Tb、Y共掺的齿科微晶玻璃及其制备和应用 | |
CN105174724A (zh) | 一种用于牙科修复体的锂基玻璃陶瓷制备方法 | |
WO2022262419A1 (zh) | 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体 | |
CN113087389A (zh) | 具有不同透光性的硅酸锂玻璃或硅酸锂玻璃陶瓷坯体的制备方法 | |
WO2023061045A1 (zh) | 一种硅酸锂玻璃陶瓷修复体及其制备方法 | |
CN104909562B (zh) | 一种高折射环保红宝石玻璃及制备方法 | |
CN112811821B (zh) | 一种稀土掺杂yag高结晶度透明微晶玻璃及其制备方法 | |
CN113698101B (zh) | 一种颜色渐变的玻璃陶瓷成品、制备方法及其应用 | |
CN106927681B (zh) | 一种锂钠钾共掺的齿科微晶玻璃及其制备和应用 | |
CN113149429B (zh) | 一种含金属纳米颗粒的高硼硅玻璃及其制备方法 | |
US11583374B2 (en) | Process for the preparation of a glass-ceramic blank for dental purposes | |
CN110284021B (zh) | 提高足金、足银硬度的中间合金及其制备方法与应用 | |
CN114538780B (zh) | 一种前牙饰面瓷材料及其制备方法 | |
KR20210103499A (ko) | 구리 알루미노보로실리케이트 유리 및 이의 사용 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22866180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22866180 Country of ref document: EP Kind code of ref document: A1 |