WO2023029465A1 - 一种发热元件及其制备方法 - Google Patents

一种发热元件及其制备方法 Download PDF

Info

Publication number
WO2023029465A1
WO2023029465A1 PCT/CN2022/084144 CN2022084144W WO2023029465A1 WO 2023029465 A1 WO2023029465 A1 WO 2023029465A1 CN 2022084144 W CN2022084144 W CN 2022084144W WO 2023029465 A1 WO2023029465 A1 WO 2023029465A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
metal silicide
heating
element according
powder
Prior art date
Application number
PCT/CN2022/084144
Other languages
English (en)
French (fr)
Inventor
刘华臣
谭健
吴聪
唐良颖
黄婷
Original Assignee
湖北中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中烟工业有限责任公司 filed Critical 湖北中烟工业有限责任公司
Publication of WO2023029465A1 publication Critical patent/WO2023029465A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material

Definitions

  • the invention belongs to the technical field of novel tobacco, and in particular relates to a heating element and a preparation method thereof.
  • Low-temperature tobacco uses various heat sources to heat special tobacco to produce tobacco-flavored gas. Compared with traditional cigarettes, the temperature of smoke generated is lower, usually below 350°C, so it can greatly reduce the harmful substances produced by tobacco during combustion , greatly reducing the possible harm to the human body.
  • the electric heating method of the MCH ceramic heating element is generally used in low-temperature tobacco appliances.
  • the MCH ceramic heating element is made of tungsten, manganese and other alloy powders together with organic solvents to form a metal paste, and then the metal paste is printed on the alumina ceramic green body as an insulating medium by a screen printing machine, and then in a reducing atmosphere High-temperature co-firing of multi-layer composite materials.
  • the MCH ceramic heating element has the following problems: 1) The ratio formula of the metal paste, preparation speed, storage time, printing environment, printing conditions and firing environment factors will affect the performance of the cermet heating element. Resistance and TCR (temperature coefficient of resistance) electrical indicators, so that the product performance is easy to fluctuate; 2) The heating element is not strong enough, easy to be damaged, and the actual life is low; 3) The heat is transferred to the oxide ceramic through the Joule heat of the metal Then conduct to the tobacco, the heat conduction process is not direct, which affects the heating efficiency; 4) The circuit is not evenly covered on the alumina substrate, and the uniformity is not good during use; 5) The manufacturing process is complicated, difficult to control, and the cost is high.
  • TCR temperature coefficient of resistance
  • the purpose of the present invention is to provide a heating element for low-temperature tobacco products with simple production process, controllable product performance and uniform heating and a preparation method thereof.
  • a heating element comprising a heating element and an insulating filler arranged inside the heating element
  • the heating element is made of metal silicide and non-conductive ceramic, and the mass ratio of the metal silicide to non-conductive ceramic is: 0.1:1 ⁇ 5:1.
  • the metal silicide is composed of Si and metal elements, and the atomic ratio of Si to metal elements is 3:1-0.5:1.
  • the metal element is one or more of Fe, Mo, W, V, Cr and Ta.
  • the non-conductive ceramic is one or more of alumina, aluminum nitride, zirconia, silicon carbide, and silicon nitride.
  • the insulating filler is a high-temperature structural adhesive.
  • the heating element structure has grooves; the insulating filler is filled in the grooves.
  • the ratio of the length of the groove to the length of the heating element is 1:1.1 ⁇ 1:2; the ratio of the width of the groove to the width of the heating element is 1:2 ⁇ 1:10; the depth of the groove is the thickness of the heating element.
  • the shape of the heating element is at least one of sheet shape, round rod shape and prism shape.
  • the heating element further includes a conductive lead for connecting to a power supply and a pure nickel sheet welded to the conductive lead.
  • the present invention also provides a method for preparing a heating element, comprising the following steps:
  • Si powder and metal powder are mixed and ball milled to obtain metal silicide
  • step S4 filling the insulating filler into the pattern of the heating element after welding in step S3 to prepare the heating element.
  • the material used in the preparation of the heating element in the present invention is a composite material composed of metal silicide and non-conductive ceramics.
  • silicon powder and metal powder are mixed and ground to produce metal silicide, and then mixed with non-conductive ceramics to grind
  • the composite material is obtained from the ball, the preparation process is simple, the material ratio is controllable, and the material property is stable, and it is not easily deteriorated by the environment; the obtained composite material is pressed and molded, and the heating element is obtained after high-temperature sintering, and the firing environment can be controlled. control; finally, the heating element is welded with conductive leads and pure nickel sheets, and filled with insulating fillers.
  • the preparation process is stable and does not require printing process, which avoids the influence of printing environment and printing conditions in the traditional metal paste preparation process, so that all The resistivity error of the prepared heating element is small, and the error limit is only 10 ⁇ •cm, which solves the problem of large fluctuations in heating performance of the heating element during the production process, and greatly improves the yield.
  • the heating element prepared by the method of the present invention has better bending strength and fracture toughness, and is not easily damaged during use, thereby improving the service life of the heating element.
  • the heating element prepared by the present invention is an integral heating element with uniform heating, which can realize direct heating of tobacco, uniform heating, and better thermal efficiency.
  • the manufacturing process of the heating element of the present invention is simple and economical.
  • Fig. 1 is a schematic diagram of a heating element of the present invention.
  • the metal silicide described in the present invention is formed by Si and at least one element in Fe, Mo, W, V, Cr, Ta, and the Fe, Mo, W, V, Cr, Ta described here
  • the element should not be used to limit the present invention, and the metal silicide formed by Si and other metal elements should also be regarded as specifically disclosed herein.
  • the non-conductive ceramic provided in the present invention is a composite ceramic composed of at least one or more of alumina, aluminum nitride, zirconia, silicon carbide, and silicon nitride.
  • the composite ceramics composed of one or more of alumina, aluminum nitride, zirconia, silicon carbide, and silicon nitride described here should not be used to limit the present invention, and other non-conductive ceramics should also be regarded as Specifically disclosed in, such as yttrium oxide.
  • the heating element S1 was prepared by the following steps:
  • the pressed billet is sintered under vacuum to obtain the heating element 11 , the sintering temperature is 1350° C., the holding time is 0.5 h, and the vacuum degree is lower than 0.1 Pa.
  • the insulating filler 12 is filled with non-conductive high-temperature structural glue in the groove-shaped vacancy on the sample after welding, and then the surface is polished and chamfered after waiting for curing to prepare the heating element S1.
  • the heating element S2 is prepared by the following steps:
  • the pressed blank is sintered under vacuum to obtain the heating element 11 , the sintering temperature is 1450° C., the holding time is 5 hours, and the vacuum degree is lower than 0.1 Pa.
  • the pure nickel sheet 14 is clamped by the graphite fixture according to the sequence shown in FIG. 1 , and then the clamped fixture is put into a vacuum furnace for brazing.
  • the brazing temperature is 920°C
  • the holding time is 30min
  • the vacuum degree is lower than 0.1Pa.
  • the insulating filler 12 is filled with non-conductive high-temperature structural glue in the groove-shaped vacancy on the sample after welding, and then the surface is polished and chamfered after waiting for curing to prepare the heating element S2.
  • the pressed billet is sintered under vacuum to obtain the heating element 11 , the sintering temperature is 1420° C., the holding time is 2 hours, and the vacuum degree is lower than 0.1 Pa.
  • the insulating filler 12 is filled with non-conductive high-temperature structural glue in the groove-shaped vacancy on the sample after welding, and then the surface is polished and chamfered after waiting for curing to prepare the heating element S3.
  • the pressed billet is sintered under vacuum to obtain the heating element 11 , the sintering temperature is 1400° C., the holding time is 1 hour, and the vacuum degree is lower than 0.1 Pa.
  • the insulating filler 12 is filled with non-conductive high-temperature structural glue in the groove-shaped vacancy on the sample after welding, and then the surface is polished and chamfered after waiting for curing to prepare the heating element S4.
  • the pressed blank is sintered under vacuum to obtain the heating element 11 , the sintering temperature is 1400° C., the holding time is 1.5 h, and the vacuum degree is lower than 0.1 Pa.
  • the insulating filler 12 is filled with non-conductive high-temperature structural glue in the groove-shaped vacancy on the sample after welding, and then the surface is polished and chamfered after waiting for curing to prepare the heating element S5.
  • the heating element prepared by the method provided by the present invention has room temperature flexural strength ⁇ 300MPa, 400°C flexural strength ⁇ 260MPa, and room temperature fracture toughness KIC ⁇ 7MPa ⁇ m1/2, which can ensure that the product has Long service life;
  • resistivity 1200-2000 ⁇ •cm, which meets the mechanical and electrical performance requirements of heating elements in low-temperature cigarettes.
  • the error limit of resistivity is 10 ⁇ •cm, which shows that the product has good consistency and small fluctuation difference.

Abstract

本发明属于新型烟草技术领域,具体涉及一种发热元件及其制备方法。该发热元件包括发热体和设置在所述发热体内部的绝缘填充物;其中,所述发热体由金属硅化物及非导电陶瓷制成,所述金属硅化物与非导电陶瓷的质量之比为:0.1:1~5:1。本发明解决了发热组件在生产过程中发热性能波动差异大的问题,大幅提高成品率;同时通过本发明的方法制备的发热元件具有较优的弯曲强度和断裂韧性,从而提高发热元件的使用寿命。

Description

一种发热元件及其制备方法 技术领域
本发明属于新型烟草技术领域,具体涉及一种发热元件及其制备方法。
背景技术
低温烟草是利用各类热源加热特制烟草以产生烟草风味气体,与传统卷烟相比,产生烟气的温度较低,通常在350℃以下,因此能大幅降低烟草在燃烧过程中所产生的有害物质,极大地降低了对人体可能产生的危害。
目前,低温烟草器具中一般以MCH陶瓷发热体电加热方式为主。MCH陶瓷发热体是将钨锰等合金粉末与有机溶剂一起调制成金属浆料,再通过丝网印刷机将金属浆料被印刷在作为绝缘介质的氧化铝陶瓷生坯上,随后在还原气氛下高温共烧成多层复合材料。
技术问题
然而,申请人研究发现,MCH陶瓷发热体存在着以下问题:1)金属浆料的配比配方、调制速度、存放时间、印刷环境、印刷条件和烧制环境因素均会影响金属陶瓷发热体的电阻和TCR(电阻温度系数)电学指标,从而使得产品性能容易波动;2)发热体强韧性不足,容易被破坏,实际寿命较低;3)发热是通过金属的焦耳热传递给氧化物陶瓷后再传导给烟草,热传导过程不直接,影响加热效率;4)电路在氧化铝基体上并非均匀覆盖,使用过程中均匀性欠佳;5)制造工序复杂,不易控制,成本较高。
技术解决方案
本发明的目的在于针对现有技术的不足之处,提供一种生产工艺简单,产品性能可控,发热均匀的用于低温烟草制品的发热元件及其制备方法。
为解决上述技术问题,本发明采用如下技术方案:
一种发热元件,包括发热体和设置在所述发热体内部的绝缘填充物;
其中,所述发热体由金属硅化物及非导电陶瓷制成,所述金属硅化物与非导电陶瓷的质量之比为:0.1:1~5:1。
优选的,所述金属硅化物由Si与金属元素组成,所述Si与金属元素的原子比为3:1~0.5:1。
优选的,所述金属元素为Fe、Mo、W、V、Cr和Ta中的一种或多种。
优选的,所述非导电性陶瓷为氧化铝、氮化铝、氧化锆、碳化硅、氮化硅中的一种或多种。
优选的,所述绝缘填充物为高温结构胶。
优选的,所述发热体结构中带有凹槽;所述绝缘填充物填充在所述凹槽中。
优选的,所述凹槽的槽长与发热体的长度比为1:1.1~1:2;槽宽与发热体宽度比为1:2~1:10;槽深为发热体的厚度。
优选的,所述发热体的形状为片状、圆棒状、棱柱状中的至少一种。
优选的,所述发热元件还包括用于与电源连接的导电引线和与所述导电引线焊接的纯镍片。
本发明还提供一种发热元件的制备方法,包括以下步骤:
S1: 将Si粉和金属粉末混合球磨得到金属硅化物;
S2: 将S1所述金属硅化物与非导电陶瓷粉末混合球磨后压制成型,并在高温下进行烧结制得发热体;
S3: 将S2所制备的发热体的底脚、导电引线和纯镍片依次装夹后进行钎焊;
S4: 将绝缘填充物填充在步骤S3焊接后的发热体式样中制得所述发热元件。
有益效果
与现有技术相比,本发明的有益效果为:
1、本发明中制备发热体所使用的材料为金属硅化物与非导电陶瓷所组成的复合材料,首先将硅粉与金属粉末混合磨球制得金属硅化物,然后再与非导电陶瓷混合磨球得到该复合材料,制备过程简单、物料配比可控,且材料性质稳定,不易受环境影响而发生变质;再将得到的复合材料压制成型,经高温烧结后得到发热体,烧制环境可控;最后将发热体与导电引线、纯镍片焊接,并填充绝缘填充物,制备工艺稳定,不需要印刷工艺,避免了传统金属浆料制备过程中印刷环境和印刷条件的影响,从而使得所制备的发热元件电阻率误差小,误差限仅为10μΩ•cm,解决了发热组件在生产过程中发热性能波动差异大的问题,大幅提高成品率。
2、通过本发明的方法制备的发热元件具有较优的弯曲强度和断裂韧性,使用过程中不易被破坏,从而提高发热元件的使用寿命。
3、本发明所制备的发热元件为整体式发热,发热均匀,可实现对烟草的直接加热,加热均匀,具有较好的热效率。
4、本发明的发热元件制造工艺简单,经济性好。
附图说明
图 1为本发明的一种发热元件示意图。
其中,11、发热体;12、绝缘填充物;13、底脚;14、纯镍片;15、导电引线。
本发明的实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
一方面,本发明中所述的金属硅化物,为Si与Fe、Mo、W、V、Cr、Ta中的至少一种元素形成,此处所阐述的Fe、Mo、W、V、Cr、Ta元素并不应用于限制本发明,Si与其它金属元素所形成的金属硅化物,也应视为在本文中具体公开。
在另一个方面,本发明中提供的非导电性陶瓷为氧化铝、氮化铝、氧化锆、碳化硅、氮化硅中的至少一种或者多种组成的复相陶瓷。此处所述的氧化铝、氮化铝、氧化锆、碳化硅、氮化硅中的一种或者多种组成的复相陶瓷不应用于限制本发明,其它非导电陶瓷也应视为在本文中具体公开,如氧化钇。
下面结合实施例对本发明作进一步说明。
实施例1
通过以下步骤制备发热元件S1:
(1)将Si粉与Fe粉混合球磨,Si与Fe粉原子比为3:1,球磨转速为200rpm,球磨时间为10h,球磨气氛为高纯氩气,球料比10:1得到金属硅化物;
(2)将所得的金属硅化物粉末与非导电陶瓷粉末混合球磨,两者质量百分比为0.1:1,球磨转速为50rpm,球磨时间为6h,球磨介质为无水乙醇,球料比5:1;
(3)将球磨后的粉末料浆在真空干燥箱中进行干燥,真空度低于0.1Pa,加热温度为30℃,干燥时间为1h;
(4)将干燥后的混合粉末在压力机上压制成长度为15mm,宽度为1.2mm,厚度为1mm 的带凹槽的片状,其中,凹槽的长度为13.5mm,宽度为0.6mm,深度为1mm;压制压力为200MPa,保压时间为0.1min。
(5)将压制好的坯料在真空下进行烧结得到发热体11,烧结温度为1350℃,保温时间为0.5h,真空度低于0.1Pa。
(6)将烧结后的发热体11两个底脚13进行打磨至光洁表面,随后进行超声清洗并干燥,处理完后将底脚13上涂覆银基焊膏,然后将底脚13、导电引线15、纯镍片14按照图1所示顺序通过石墨夹具夹紧,随后上述装夹后的夹具放入真空炉中进行钎焊。钎焊温度为680℃,保温时间为5min,真空度低于0.1Pa。
(7)绝缘填充物12采用非导电性高温结构胶填充在焊接后试样上的槽形空位,随后等待固化后对表面进行打磨与倒角,制备得到发热元件S1。
实施例2
通过以下步骤制备发热元件S2:
(1)将Si粉与Cr粉混合球磨,Si与Cr粉的原子比为0.5:1,球磨转速为600rpm,球磨时间为100h,球磨气氛为高纯氩气,球料比30:1得到金属硅化物;
(2)将所得的金属硅化物粉末与非导电陶瓷粉末混合球磨,两者质量百分比为5:1,球磨转速为500rpm,球磨时间为48h,球磨介质为无水乙醇,球料比10:1;
(3)将球磨后的粉末料浆在真空干燥箱中进行干燥,真空度低于0.1Pa,加热温度为150℃,干燥时间为10h;
(4)将干燥后的混合粉末在压力机上压制成长度为30mm,宽度为2mm,厚度为1.2mm 的带凹槽的棱柱状,其中,凹槽的长度为26mm,宽度为0.4mm,深度为1.2mm;压制压力为400MPa,保压时间为5min。
(5)将压制好的坯料在真空下进行烧结得到发热体11,烧结温度为1450℃,保温时间为5h,真空度低于0.1Pa。
(6)将烧结后的样品两个底脚13进行打磨至光洁表面,随后进行超声清洗并干燥,处理完后将底脚13上涂覆银基焊膏,然后将底脚13、导电引线15、纯镍片14按照图1所示顺序通过石墨夹具夹紧,随后上述装夹后的夹具放入真空炉中进行钎焊。钎焊温度为920℃,保温时间为30min,真空度低于0.1Pa。
(7)绝缘填充物12采用非导电性高温结构胶填充于焊接后试样上的槽形空位,随后等待固化后对表面进行打磨与倒角,制备得到发热元件S2。
实施例3
通过以下步骤制备发热元件S3:
(1)将Si粉与Mo、V粉混合球磨,Si与Mo、V的原子比为5:1:1,球磨转速为400rpm,球磨时间为42h,球磨气氛为高纯氩气,球料比20:1得到金属硅化物;
(2)将所得的金属硅化物粉末与非导电陶瓷粉末混合球磨,两者质量百分比为2:1,球磨转速为200rpm,球磨时间为32h,球磨介质为无水乙醇,球料比7:1;
(3)将球磨后的粉末料浆在真空干燥箱中进行干燥,真空度低于0.1Pa,加热温度为120℃,干燥时间为2h;
(4)将干燥后的混合粉末在压力机上压制成长度为25mm,底面直径为2mm 的带凹槽的圆柱状,其中,凹槽的长度为21mm,宽度为0.25mm,深度为2mm; 压制压力为300MPa,保压时间为2min。
(5)将压制好的坯料在真空下进行烧结得到发热体11,烧结温度为1420℃,保温时间为2h,真空度低于0.1Pa。
(6)将烧结后的发热体11两个底脚13进行打磨至光洁表面,随后进行超声清洗并干燥,处理完后将底脚13上涂覆银基焊膏,然后将底脚13、导电引线15、纯镍片14按照图1所示顺序通过石墨夹具夹紧,随后上述装夹后的夹具放入真空炉中进行钎焊。钎焊温度为900℃,保温时间为10min,真空度低于0.1Pa。
(7)绝缘填充物12采用非导电性高温结构胶填充于焊接后试样上的槽形空位,随后等待固化后对表面进行打磨与倒角,制备得到发热元件S3。
实施例4
通过以下步骤制备发热元件S4:
(1)将Si粉与Cr、W粉混合球磨,Si与Cr、W的原子比为5:2:1,球磨转速为350rpm,球磨时间为48h,球磨气氛为高纯氩气,球料比15:1得到金属硅化物;
(2)将所得的金属硅化物粉末与非导电陶瓷粉末混合球磨,两者质量百分比为1:1,球磨转速为200rpm,球磨时间为22h,球磨介质为无水乙醇,球料比6:1;
(3)将球磨后的粉末料浆在真空干燥箱中进行干燥,真空度低于0.1Pa,加热温度为80℃,干燥时间为2h;
(4)将干燥后的混合粉末在压力机上压制成长度为18mm,宽度为2.2mm,厚度为1.8mm 的带凹槽的棱柱状,其中,凹槽长度为16mm,宽度为0.22mm,深度为1.8mm;压制压力为350MPa,保压时间为1min。
(5)将压制好的坯料在真空下进行烧结得到发热体11,烧结温度为1400℃,保温时间为1h,真空度低于0.1Pa。
(6)将烧结后的发热体11两个底脚13进行打磨至光洁表面,随后进行超声清洗并干燥,处理完后将底脚13上涂覆银基焊膏,然后将底脚13、导电引线15、纯镍片14按照图1所示顺序通过石墨夹具夹紧,随后上述装夹后的夹具放入真空炉中进行钎焊。钎焊温度为800℃,保温时间为12min,真空度低于0.1Pa。
(7)绝缘填充物12采用非导电性高温结构胶填充在焊接后试样上的槽形空位,随后等待固化后对表面进行打磨与倒角,制备得到发热元件S4。
实施例5
通过以下步骤制备发热元件S5:
(1)将Si粉与Fe、Mo粉混合球磨,Si与Fe、Mo的原子比为5:3:1,球磨转速为450rpm,球磨时间为36h,球磨气氛为高纯氩气,球料比20:1得到金属硅化物;
(2)将所得的金属硅化物粉末与非导电陶瓷粉末混合球磨,两者质量百分比为0.5:1,球磨转速为220rpm,球磨时间为18h,球磨介质为无水乙醇,球料比10:1;
(3)将球磨后的粉末料浆在真空干燥箱中进行干燥,真空度低于0.1Pa,加热温度为90℃,干燥时间为3h;
(4)将干燥后的混合粉末在压力机上压制成长度为20mm,宽度为1.8mm,厚度为1mm 的带凹槽的片状棱柱状,其中,凹槽的长度为17mm,宽度为0.3mm,深度为1mm;压制压力为300MPa,保压时间为1min。
(5)将压制好的坯料在真空下进行烧结得到发热体11,烧结温度为1400℃,保温时间为1.5h,真空度低于0.1Pa。
(6)将烧结后的发热体11两个底脚13进行打磨至光洁表面,随后进行超声清洗并干燥,处理完后将底脚13上涂覆银基焊膏,然后将底脚13、导电引线15、纯镍片14按照图1所示顺序通过石墨夹具夹紧,随后上述装夹后的夹具放入真空炉中进行钎焊。钎焊温度为820℃,保温时间为10min,真空度低于0.1Pa。
(7)绝缘填充物12采用非导电性高温结构胶填充于焊接后试样上的槽形空位,随后等待固化后对表面进行打磨与倒角,制备得到发热元件S5。
为了证实通过本发明的特定制备方法制得的发热元件满足低温卷烟中发热元件的力学和电学性能,对实施例1-5中制备的发热元件的室温抗弯强度、400℃抗拉强度、室温断裂韧性和电阻率进行测量,测量的结果如下表1所示。
表1 本发明实施例制备的发热元件的性能
Figure dest_path_image002
从表1可以看出,采用本发明所提供的方法制备的发热元件,其室温抗弯强度≥300MPa,400℃抗弯强度≥260MPa,室温断裂韧性KIC≥7MPa•m1/2,可保证产品具有较长的使用寿命;
另外其电阻率为1200-2000μΩ•cm,满足低温卷烟中发热元件的力学和电学性能需求,电阻率的误差限为10μΩ•cm,表明产品具有良好的一致性,波动差异小。
本发明的保护范围不限于上述的实施例,显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的范围和精神。倘若这些改动和变形属于本发明权利要求及其等同技术的范围,则本发明的意图也包含这些改动和变形。

Claims (10)

  1. 一种发热元件,其特征在于,包括发热体和设置在所述发热体内部的绝缘填充物;
    其中,所述发热体由金属硅化物和非导电陶瓷制成,所述金属硅化物与非导电陶瓷的质量之比为:0.1:1~5:1。
  2. 根据权利要求1所述的一种发热元件,其特征在于,所述金属硅化物由Si与金属元素组成,所述Si与金属元素的原子比为3:1~0.5:1。
  3. 根据权利要求2所述的一种发热元件,其特征在于,所述金属元素为Fe、Mo、W、V、Cr和Ta中的一种或多种。
  4. 根据权利要求1所述的一种发热元件,其特征在于,所述非导电性陶瓷为氧化铝、氮化铝、氧化锆、碳化硅、氮化硅中的一种或多种。
  5. 根据权利要求1所述的一种发热元件,其特征在于,所述绝缘填充物为高温结构胶。
  6. 根据权利要求1所述的一种发热元件,其特征在于,所述发热体结构中带有凹槽;所述绝缘填充物填充在所述凹槽中。
  7. 根据权利要求6所述的一种发热元件,其特征在于,所述凹槽的槽长与所述发热体的长度比为1:1.1~1:2;槽宽与发热体宽度比为1:2~1:10;槽深为发热体的厚度。
  8. 根据权利要求1所述的一种发热元件,其特征在于,所述发热体的形状为片状、圆棒状、棱柱状中的至少一种。
  9. 根据权利要求1所述的一种发热元件,其特征在于,所述发热元件还包括用于与电源连接的导电引线和与所述导电引线焊接的纯镍片。
  10. 一种根据权利要求1~9中任一项所述的发热元件的制备方法,其特征在于,包括以下步骤:
    S1: 将Si粉和金属粉末混合球磨得到金属硅化物;
    S2: 将S1所述金属硅化物与非导电陶瓷粉末混合球磨后压制成型,并在高温下进行烧结制得发热体;
    S3: 将S2所制备的发热体的底脚、导电引线和纯镍片依次装夹后进行钎焊;
    S4: 将绝缘填充物填充在步骤S3焊接后的发热体式样中制得所述发热元件。
PCT/CN2022/084144 2021-09-06 2022-03-30 一种发热元件及其制备方法 WO2023029465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111036933.2 2021-09-06
CN202111036933.2A CN113582186A (zh) 2021-09-06 2021-09-06 一种发热元件及其制备方法

Publications (1)

Publication Number Publication Date
WO2023029465A1 true WO2023029465A1 (zh) 2023-03-09

Family

ID=78241200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084144 WO2023029465A1 (zh) 2021-09-06 2022-03-30 一种发热元件及其制备方法

Country Status (2)

Country Link
CN (1) CN113582186A (zh)
WO (1) WO2023029465A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582186A (zh) * 2021-09-06 2021-11-02 湖北中烟工业有限责任公司 一种发热元件及其制备方法
CN114176263A (zh) * 2021-11-09 2022-03-15 深圳麦克韦尔科技有限公司 发热组件、发热组件的制备方法及电子雾化装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261835A (zh) * 2014-09-19 2015-01-07 中南大学 一种二硅化钼发热元件制备方法
US20170303588A1 (en) * 2016-04-22 2017-10-26 Rui Nuno BATISTA Aerosol-generating device comprising semiconductor heaters
CN111246601A (zh) * 2018-11-29 2020-06-05 湖北中烟工业有限责任公司 一种新型陶瓷发热体的组合物及其发热体制备和应用
CN211048400U (zh) * 2019-10-11 2020-07-21 山东东大新材料研究院有限公司 一种电子烟用陶瓷雾化器芯
CN211431079U (zh) * 2019-11-20 2020-09-08 山东东大新材料研究院有限公司 一种电子烟用新型复合陶瓷发热体
CN112021677A (zh) * 2020-09-29 2020-12-04 策控科技(深圳)有限公司 发热装置及加热不燃烧电子烟烟具
CN112374894A (zh) * 2020-04-11 2021-02-19 湖北中烟工业有限责任公司 一种金属硅化物基发热材料及其制备方法
CN112385901A (zh) * 2019-10-23 2021-02-23 湖北中烟工业有限责任公司 一种发热体及其制备方法和用途
CN112617282A (zh) * 2021-01-06 2021-04-09 威滔电子科技(深圳)有限公司 电子烟发热体以及电子烟
CN113197369A (zh) * 2021-05-19 2021-08-03 深圳市基克纳科技有限公司 一种发热体及其制造方法
CN113582186A (zh) * 2021-09-06 2021-11-02 湖北中烟工业有限责任公司 一种发热元件及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130850C2 (de) * 2001-06-28 2003-04-30 Selbach Elmar Paul Verwendung eienr stöchiometrischen Verbindung als Hochtemperatursupraleiter
CN102625495B (zh) * 2011-01-28 2015-04-15 雷彼得 片状中间开缝陶瓷发热体及配方
CN204497384U (zh) * 2015-03-13 2015-07-22 云南中烟工业有限责任公司 一种发热元件导电连接结构
CN111743206A (zh) * 2020-07-22 2020-10-09 深圳市博迪科技开发有限公司 一种面状发热体及其用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261835A (zh) * 2014-09-19 2015-01-07 中南大学 一种二硅化钼发热元件制备方法
US20170303588A1 (en) * 2016-04-22 2017-10-26 Rui Nuno BATISTA Aerosol-generating device comprising semiconductor heaters
CN111246601A (zh) * 2018-11-29 2020-06-05 湖北中烟工业有限责任公司 一种新型陶瓷发热体的组合物及其发热体制备和应用
CN211048400U (zh) * 2019-10-11 2020-07-21 山东东大新材料研究院有限公司 一种电子烟用陶瓷雾化器芯
CN112385901A (zh) * 2019-10-23 2021-02-23 湖北中烟工业有限责任公司 一种发热体及其制备方法和用途
CN211431079U (zh) * 2019-11-20 2020-09-08 山东东大新材料研究院有限公司 一种电子烟用新型复合陶瓷发热体
CN112374894A (zh) * 2020-04-11 2021-02-19 湖北中烟工业有限责任公司 一种金属硅化物基发热材料及其制备方法
CN112021677A (zh) * 2020-09-29 2020-12-04 策控科技(深圳)有限公司 发热装置及加热不燃烧电子烟烟具
CN112617282A (zh) * 2021-01-06 2021-04-09 威滔电子科技(深圳)有限公司 电子烟发热体以及电子烟
CN113197369A (zh) * 2021-05-19 2021-08-03 深圳市基克纳科技有限公司 一种发热体及其制造方法
CN113582186A (zh) * 2021-09-06 2021-11-02 湖北中烟工业有限责任公司 一种发热元件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, JIANYING ET AL.: "Production Technology and Research Status of MoSi2-Based Heating Elements in China", NAIHUO CAILIAO - REFRACTORIES, GAI KAN BIANJIBU, LUOYANG, CN, vol. 46, no. 5, 31 October 2012 (2012-10-31), CN , pages 373 - 376, XP009544212, ISSN: 1001-1935 *
HUANG, YUNDONG: "Analysis of Patents of Philip Morris International Heat-not-burn Smoking Appliances", SCIENCE & TECHNOLOGY ECONOMY MARKET, no. 4, 31 December 2019 (2019-12-31), pages 7 - 9, XP009544213, ISSN: 1009-3788 *

Also Published As

Publication number Publication date
CN113582186A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023029465A1 (zh) 一种发热元件及其制备方法
WO2020151597A1 (zh) 烟支加热组件及电加热吸烟装置
WO2020107910A1 (zh) 一种新型陶瓷发热体的组合物及其发热体制备和应用
CN106376107B (zh) 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
CN109288140A (zh) 一种电子烟用多孔陶瓷发热体及其制备方法
CN110577399B (zh) 基于感应加热的多场耦合闪速烧结系统
EP2676946B1 (en) Ti3sic2 material, electrode, spark plug, and processes for production thereof
CN101913879B (zh) 氮化硅材料及其制备方法和氮化硅发热器件及其制备方法
TW201733963A (zh) 陶瓷構件
WO2023083016A1 (zh) 发热组件、发热组件的制备方法及电子雾化装置
JP2002160974A (ja) 窒化アルミニウム焼結体、窒化アルミニウム焼結体の製造方法、セラミック基板およびセラミック基板の製造方法
JP4454191B2 (ja) セラミックヒータの製造方法
CN107046739A (zh) 大功率氮化硅陶瓷加热片及其内硬外软的制作方法
KR102543746B1 (ko) 세라믹 발열체, 및 이의 제조 방법 및 용도
EP1845754A1 (en) Heating element
CN103024954B (zh) 一种氮化硅复合陶瓷发热体材料及其制备方法
WO2023179109A1 (zh) 气溶胶产生装置及其发热体和用于制备发热体的材料
JP4803651B2 (ja) セラミックヒータの製造方法およびグロープラグの製造方法
JP3568194B2 (ja) 半導体熱処理用セラミックヒーター
EP1298961A2 (en) Flexible graphite felt heating elements and a process for radiating infrared
TWI240985B (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
JP2534847B2 (ja) セラミツクヒ−タ
JP2537606B2 (ja) セラミツクヒ−タ
CN107277946A (zh) 一种高温陶瓷加热板
CN117024168B (zh) 一种利用SiO2粉末制备LaCrO3连接材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862612

Country of ref document: EP

Kind code of ref document: A1