WO2023029124A1 - 空调器的电控盒以及空调器 - Google Patents

空调器的电控盒以及空调器 Download PDF

Info

Publication number
WO2023029124A1
WO2023029124A1 PCT/CN2021/119952 CN2021119952W WO2023029124A1 WO 2023029124 A1 WO2023029124 A1 WO 2023029124A1 CN 2021119952 W CN2021119952 W CN 2021119952W WO 2023029124 A1 WO2023029124 A1 WO 2023029124A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
electric control
control box
radiator
air conditioner
Prior art date
Application number
PCT/CN2021/119952
Other languages
English (en)
French (fr)
Inventor
王锡栋
吕波
凌敬
刘乾坤
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111016612.6A external-priority patent/CN115727402A/zh
Priority claimed from CN202122086936.9U external-priority patent/CN215675453U/zh
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2023029124A1 publication Critical patent/WO2023029124A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components

Definitions

  • the present application relates to the field of air conditioners, in particular to an electric control box of an air conditioner and an air conditioner with the electric control box of the air conditioner.
  • the electric control box of the air conditioner is provided with a radiator, and the radiator is used to cool the components (such as circuit boards, capacitors and terminals, etc.) in the electric control box.
  • the hot air of the radiator is used to cool down and dissipate heat, so that the radiator cannot reliably cool the components in the electric control box, resulting in a low working life of the components in the electric control box, and the inability to reduce the size of the components, resulting in the failure of the components Manufacturing costs are higher.
  • an object of the present application is to propose an electric control box of an air conditioner, which can enable the radiator to reliably cool the components in the electric control box, so that the components in the electric control box can be
  • the temperature of the components is always within a suitable working temperature range, which is beneficial to improving the working life of the components, and can reduce the size of the components, thereby reducing the manufacturing cost of the components.
  • the present application further proposes an air conditioner.
  • the electric control box of the air conditioner includes: a radiator; a support seat, the radiator is installed on the support seat, and the support seat defines a plurality of heat dissipation flow channels, and the plurality of heat dissipation flow channels are located in the support base.
  • the electric control boxes are arranged sequentially in the height direction, and the air outlets of at least two of the plurality of heat dissipation channels correspond to the radiators.
  • a plurality of heat dissipation channels are defined by the support seat of the electric control box.
  • a high-speed negative pressure zone will be formed between the radiator and the fan blades, thereby
  • the air inside the air conditioner will flow through the radiator through multiple heat dissipation channels to cool down the radiator, so that the radiator can reliably cool the components in the electric control box, so that the components in the electric control box can
  • the temperature of the components is always within a suitable working temperature range, which is beneficial to improving the working life of the components, and can reduce the size of the components, thereby reducing the manufacturing cost of the components.
  • the plurality of cooling channels include: a first channel and a second channel, and the first channel is located below the second channel.
  • both the first flow channel and the second flow channel extend obliquely upward toward the radiator.
  • the distance between the lowest point of the first flow channel and the inner surface of the first flow channel opposite to it is K1
  • the radiator The height is H, satisfying the relationship: 0.2H ⁇ K1.
  • the second flow channel is configured as a variable cross-section flow channel, and in the height direction of the second flow channel, the minimum distance between the lower surface and the upper surface of the second flow channel is K2, satisfying the relation: 0.2H ⁇ K2.
  • the support seat includes: a rain shield, the rain shield is arranged on one side of the radiator, and the distance between the rain shield and the radiator is m, Satisfy the relational formula: 0.5(K1+K2) ⁇ m.
  • the support seat defines a main flow channel, and a partition plate is arranged in the main flow channel, and the partition plate divides the main flow channel into the first flow channel and the first flow channel. Describe the second channel.
  • the projection of the lowest point of the upper surface of the second flow channel is located on the side of the projection of the lowest point of the partition plate close to the radiator .
  • the highest point of the partition plate is above the lowest point of the upper surface of the second flow channel.
  • the distance between the highest point of the partition plate and the radiator is Hn, and the height of the radiator is H, which satisfies the relation : 0.4H ⁇ Hn ⁇ 0.6H.
  • the two ends of the first flow channel are respectively provided with the air outlet and the air inlet, and the direction from the air inlet to the air outlet is The cross-sectional area of the first flow channel gradually increases.
  • the two ends of the second flow channel are respectively provided with the air outlet and the air inlet, and the direction from the air inlet to the air outlet
  • the cross-sectional area of the second flow channel first gradually decreases and then gradually increases.
  • the air conditioner according to the present application includes the above-mentioned electric control box of the air conditioner.
  • Fig. 1 is a schematic diagram of an explosion of an outdoor unit of an air conditioner according to an embodiment of the present application
  • Fig. 2 is a schematic cross-sectional view of an electric control box, fan blades and a middle partition according to an embodiment of the present application;
  • Fig. 3 is a schematic cross-sectional view of an electric control box and a middle partition according to an embodiment of the present application
  • Fig. 4 is another schematic cross-sectional view of the electric control box and the middle partition according to the embodiment of the present application;
  • Fig. 5 is a schematic diagram of an electric control box according to an embodiment of the present application.
  • the electric control box 200 of the air conditioner 100 will be described below with reference to FIGS. 1-5 .
  • the electric control box 200 includes: a radiator 10 and a support seat 20 .
  • the radiator 10 is arranged on the support base 20, and the support base 20 can define a plurality of heat dissipation flow channels 21.
  • the air outlets 27 of at least two cooling channels 21 are arranged correspondingly to the radiator 10 .
  • the electric control box 200 can be set on the outdoor unit of the air conditioner 100, of course, the electric control box 200 can also be set on the indoor unit of the air conditioner 100, and for the integrated air conditioner 100, the electric control box 200 can also be Set in the integrated air conditioner 100 , the present application takes the electric control box 200 set in the outdoor unit of the air conditioner 100 as an example for description, but the electric control box 200 of the present application is not limited to be set in the outdoor unit of the air conditioner 100 .
  • the outdoor unit of the air conditioner 100 may include an appearance sheet metal part 30 , fan blades 40 and a middle partition 50
  • the appearance sheet metal part 30 may include: a front panel 31 , a top cover 32 , The left wall (not shown in the figure), the bottom plate (not shown in the figure) and the right wall 33, the appearance sheet metal parts 30 can define the installation space, the electric control box 200, the fan blade 40 and the middle partition 50 are all Can be set in the installation space.
  • the middle partition 50 can be arranged below the electric control box 200, and the fan blade 40 can be arranged on one side of the radiator 10,
  • the air inlets 26 of the plurality of cooling channels 21 defined by the support base 20 may be disposed on the other side of the radiator 10 .
  • the blades 40 can be arranged on the left side of the radiator 10
  • the air inlets 26 of the plurality of cooling channels 21 defined by the support base 20 can be arranged on the right side of the radiator 10 .
  • Components 60 may be arranged in the electric control box 200, and the components 60 may include devices such as a circuit board 61, terminals (not shown in the figure) and capacitors (not shown in the figure).
  • the circuit board 61 can be arranged above the radiator 10, and in the left-right direction shown in FIG.
  • One side of the radiator 10 that is, devices such as terminals and capacitors can be arranged on the right side of the radiator 10 ), the radiator 10 is used to dissipate heat from the components 60 in the electric control box 200 .
  • the heat dissipation of the radiator mainly relies on the hot air passing through the condenser to cool down and dissipate heat, which leads to the fact that the radiator cannot reliably cool the components in the electric control box, and the working life of the components in the electric control box is relatively short. Low, and the size of the components cannot be reduced, resulting in higher manufacturing costs of the components.
  • the air on one side of 40 will flow through the radiator 10 through a plurality of heat dissipation channels 21 to cool down and dissipate heat from the radiator 10, so that the radiator 10 can be cooled and dissipated quickly, and the radiator 10 can be reliably cooled by electronically controlled
  • the components and parts 60 in the box 200 are conducive to improving the working life of the components and parts 60, and, since the radiator 10 can reliably cool the components and parts 60 in the electric control box 200, there is no need to increase the size of the components and parts 60 to meet the
  • the requirement of heat dissipation can reduce the size of the component 60 , which is beneficial to reduce the manufacturing cost of the component 60 .
  • a plurality of heat dissipation channels 21 are defined by the support base 20 of the electric control box 200.
  • a high-speed negative pressure zone 70 will be formed between the radiator 10 and the fan blade 40, thereby
  • the air inside the air conditioner 100 will flow through the radiator 10 through a plurality of heat dissipation channels 21 to cool down the radiator 10 and dissipate heat, so that the radiator 10 can reliably cool the components 60 in the electric control box 200, thereby
  • the temperature of the components 60 in the electric control box 200 can always be in a suitable working temperature range, which is conducive to improving the working life of the components 60, and can reduce the size of the components 60, thereby reducing the manufacturing cost of the components 60. cost.
  • the first flow channel 22 can be located below the second flow channel 23 , and the air outlets 27 of the first flow channel 22 and the second flow channel 23 can be set corresponding to the radiator 10 .
  • the support seat 20 may include a first support plate 24 and a second support plate 25.
  • the first support plate 24 It can be located under the radiator 10, the first support plate 24 can be used to support and seal the radiator 10, and the second support plate 25 can be located on the side of the radiator 10 away from the fan blade 40, specifically, as shown in FIG.
  • the second support plate 25 In the left and right direction, the second support plate 25 can be located on the right side of the radiator 10, devices such as terminals and capacitors can be arranged above the second support plate 25, and the second support plate 25 can carry out devices such as terminals and capacitors arranged above it.
  • the support seat 20 can be formed as an integral part, or the support seat 20 can also be formed by connecting multiple parts through welding, clamping or screwing, which is not limited in the present application.
  • the intermediate partition 50 may include a first partition plate 51, and the first partition plate 51 may divide the installation space into the air duct chamber 35 and the press chamber 36.
  • the left side of the middle partition 50 can be the air duct chamber 35
  • the right side of the middle partition 50 can be the compressor chamber 36
  • the fan blades 40 can be arranged in the air duct chamber 35
  • the compressor of the air conditioner 100 can be Set in the press chamber 36.
  • the support seat 20 can divide the press chamber 36 into a press side 37 and an electric control side 38.
  • the press side 37 can be located below the electric control side 38, and the entrance of the first flow channel 22
  • the tuyere 26 can be communicated with the compressor side 37
  • the air inlet 26 of the second channel 23 can be communicated with the electric control side 38 .
  • a high-speed negative pressure zone 70 will be formed between the fan blade 40 and the radiator 10.
  • the air in the compressor side 37 can Enter the first flow channel 22 through the air inlet 26 of the first flow channel 22, so as to flow through the radiator 10 to cool the radiator 10 for a period of heat dissipation, and, under the traction of the high-speed negative pressure zone 70, the air in the electronic control side 38 The air can enter the second flow channel 23 through the air inlet 26 of the second flow channel 23 , so as to flow through the radiator 10 to perform two-stage cooling and heat dissipation on the radiator 10 .
  • the first-stage cooling and heat dissipation of the radiator 10 is mainly to dissipate heat on the lower half of the radiator 10
  • the second-stage cooling and heat dissipation of the radiator 10 is mainly to dissipate heat on the upper half of the radiator 10 .
  • the radiator 10 can be cooled and radiated in multiple stages, so that the radiator 10 can be cooled and radiated quickly, and the components 60 in the electric control box 200 can be reliably cooled by the radiator 10.
  • 22 is arranged under the second flow channel 23, which can avoid the air in the first flow channel 22 and the air in the second flow channel 23 from interfering with each other, and can make the air pass through the first flow channel 22 and the second flow channel 23 quickly to prevent heat dissipation
  • the device 10 cools down and dissipates heat.
  • the air in the electronic control side 38 when the air in the electronic control side 38 enters the second flow channel 23 through the air inlet 26 of the second flow channel 23, it can cool down and dissipate the temperature of the terminals and capacitors and other devices arranged above the second support plate 25, Then, the air in the electronic control side 38 can flow through the radiator 10 to perform two-stage cooling and heat dissipation on the radiator 10 . In this way, the temperature of the terminals and capacitors and other devices arranged above the second support plate 25 can be avoided from being too high, which is conducive to ensuring the reliability of the terminals and capacitors and other devices, and is beneficial to improving the service life of the terminals and capacitors and other devices.
  • the radiator 10 of the present application can also rely on the hot air passing through the condenser to cool and dissipate heat.
  • the radiator 10 of the present application can not only rely on the hot air passing through the condenser to cool and dissipate heat, but can Under the traction of the pressure zone 70, the air on the side of the radiator 10 away from the fan blade 40 flows to the high-speed negative pressure zone 70 to cool down the radiator 10 and dissipate heat, so that the radiator 10 can be cooled and dissipated more quickly.
  • a partition plate 51 can be positioned at the left side of a plurality of air inlets 26 of a plurality of cooling flow channels 21, so that the air channel chamber 35 can be separated from the first flow channel 22 and the second flow channel 23, so that the air channel Convection is formed between the cavity 35 and the first flow channel 22 and the second flow channel 23 , so that the flow rate of the air can be increased, which is beneficial to cooling the heat sink 10 and dissipating heat.
  • the first flow channel 22 may face the radiator. 10 extends obliquely upwards, and the second flow passage 23 can also extend obliquely upwards toward the radiator 10.
  • Such arrangement is conducive to increasing the air intake volume of the first flow passage 22 and the second flow passage 23, and can make the first flow passage 22 and the second flow passage 22
  • the air intake of the second flow channel 23 is relatively high, thereby ensuring that a large amount of air passes through the radiator 10 , and avoiding the situation that the radiator 10 is overheated and cannot cool down the components 60 in the electric control box 200 .
  • the lowest point of the first flow channel 22 is opposite to the inside of the first flow channel 22.
  • the spacing distance between the surfaces can be K1
  • the height of the radiator 10 can be H
  • the spacing distance between the lowest point of the first flow channel 22 and the inner surface of the first flow channel 22 opposite to it and the height of the radiator 10 can be Satisfy the relational expression 0.2H ⁇ K1. That is to say, the distance between the lowest point of the first flow channel 22 and the opposite inner surface of the first flow channel 22 may be greater than or equal to 0.2 times the height of the heat sink 10 .
  • the distance between the lowest point of the first flow channel 22 and the opposite inner surface of the first flow channel 22 can be understood as the minimum vertical distance of the first flow channel 22 .
  • K1 throttling will occur in the first flow channel 22, which will reduce the efficiency of the gas flow in the first flow channel 22 and affect the air intake volume of the first flow channel 22.
  • the value range of K1 can be made reasonable, the throttling phenomenon of the first flow channel 22 can be avoided, and the efficiency of the gas flow in the first flow channel 22 can be improved, and the first flow channel can be made
  • the air intake of 22 is larger.
  • K1 also needs to comprehensively consider the actual structural space constraints. In other words, K1 cannot be infinitely enlarged.
  • the second flow channel 23 can be configured as a variable cross-section flow channel, and, in the height direction of the second flow channel 23 (ie, the up-down direction shown in FIG. 4 ),
  • the minimum distance between the lower surface of the second flow channel 23 and the upper surface of the second flow channel 23 can be K2, and the height of the radiator 10 can be H, the lower surface of the second flow channel 23 and the second flow channel
  • the minimum separation distance between the upper surfaces of the track 23 and the height of the radiator 10 may satisfy the relationship 0.2H ⁇ K2. That is to say, the minimum distance between the lower surface of the second flow channel 23 and the upper surface of the second flow channel 23 may be greater than or equal to 0.2 times the height of the heat sink 10 .
  • the minimum distance between the lower surface of the second flow channel 23 and the upper surface of the second flow channel 23 can be understood as the minimum vertical distance of the second flow channel 23 .
  • K2 throttling will occur in the second flow channel 23, which will reduce the efficiency of the gas flow in the second flow channel 23 and affect the air intake volume of the second flow channel 23.
  • K2 and H are constructed to satisfy the relational expression 0.2H ⁇ K2, which can make the value range of K2 reasonable, can avoid the throttling phenomenon in the second flow channel 23, and is conducive to improving the efficiency of the gas flow in the first flow channel 22, and can Make the air intake volume of the second flow channel 23 larger.
  • K2 also needs to comprehensively consider the actual structural space constraints. In other words, K2 cannot be infinitely enlarged.
  • the second flow channel 23 as a flow channel with variable cross-section, local backflow of gas can be avoided, and the circulation efficiency of gas can be improved.
  • the support seat 20 may include: a rain shield 28, and the rain shield 28 may be arranged on one side of the radiator 10, specifically, as shown in FIG. 4 In the left and right directions shown, the rain shield 28 can be arranged on the left side of the radiator 10, the distance between the rain shield 28 and the radiator 10 can be configured as m, and m and K1, K2 can satisfy the relational expression 0.5(K1+ K2) ⁇ m.
  • the rain shield 28 can be used to block liquid (such as rainwater), so as to avoid the liquid from entering the electric control box 200.
  • liquid such as rainwater
  • the value of m is too small compared to the values of K1 and K2, then It will cause pressure imbalance at the air inlet 26 and air outlet 27 of the first flow channel 22 and the second flow channel 23, which will affect the air intake volume of the first flow channel 22 and the second flow channel 23, and will also affect the first flow channel 22 and the second flow channel. The efficiency of the gas flow in the second channel 23.
  • m, K1, K2 can be made reasonable, and the first flow channel 22 and the second flow channel 23 can be avoided.
  • the pressure imbalance at the air inlet 26 and the air outlet 27 can make the air intake volume of the first flow channel 22 and the second flow channel 23 larger, and can make the gas flow efficiency in the first flow channel 22 and the second flow channel 23 higher , so that the heat dissipation requirement of the radiator 10 can be met.
  • the support seat 20 can define a total flow channel, and a partition plate 29 can be arranged in the total flow channel, and the partition plate 29 can divide the total flow channel into The first flow channel 22 and the second flow channel 23 are arranged in this way to define the first flow channel 22 and the second flow channel 23 .
  • the first end of the first support plate 24 that is, the right end of the first support plate 24 in the left-right direction shown in FIG.
  • the first partition plate 51 can be located on the left side of the first end of the first support plate 24, so that the air channel cavity 35 can be separated from the first flow channel 22 and the second flow channel 23 Convection flow can be formed between the air channel chamber 35 and the first flow channel 22 and the second flow channel 23 , so that the flow rate of the air can be increased, which is beneficial to cooling the heat sink 10 to dissipate heat.
  • the vertical distance between the first end of the first support plate 24 and the partition plate 29 is the distance between the lowest point of the first flow channel 22 and the opposite inner surface of the first flow channel 22 .
  • the projection of the lowest point of the upper surface of the second flow channel 23 can be located at The projection of the lowest point of the partition 29 is close to the side of the radiator 10 .
  • the projection of the lowest point of the upper surface of the second flow channel 23 may be located on the left side of the projection of the lowest point of the partition plate 29 .
  • the highest point of the partition plate 29 can be located on the second flow channel 23 Above the lowest point of the surface, this setting can prevent water mist from flowing onto the circuit board 61 through the second flow channel 23, and can prevent the circuit board 61 from being affected by water mist and malfunction, so that the electric control box 200 can have good waterproof performance.
  • the distance between the highest point of the partition plate 29 and the radiator 10 is It can be Hn
  • the height of the radiator 10 can be H
  • the distance between the highest point of the partition plate 29 and the radiator 10 and the height of the radiator 10 can satisfy the relationship 0.4H ⁇ Hn ⁇ 0.6H.
  • the spacing distance between the highest point of the dividing plate 29 and the radiator 10 can be greater than or equal to the height of the radiator 10 of 0.4 times, and the spacing between the highest point of the dividing plate 29 and the radiator 10 The distance can also be less than or equal to 0.6 times the height of the heat sink 10 .
  • the distance between the highest point of the partition plate 29 and the radiator 10 represents the flow distribution of the first flow channel 22 and the second flow channel 23, and the distance between the highest point of the partition plate 29 and the radiator 10 If the spacing distance is too large or too small, the air intake volume of the first flow channel 22 or the second flow channel 23 will be too low.
  • the air intake volume of the first flow channel 22 will be too low, which will cause poor cooling and heat dissipation of the radiator 10 (i.e. Cause the cooling and heat dissipation of the lower half of the radiator 10 to be poor).
  • the distance between the highest point of the partition plate 29 and the radiator 10 is too large, the air intake volume of the second flow channel 23 will be too low, which will cause poor cooling and heat dissipation in the second stage of the radiator 10 (that is, it will Cause the cooling and heat dissipation of the upper half of the radiator 10 to be poor).
  • Hn and H can be configured to satisfy the relational formula 0.4H ⁇ Hn ⁇ 0.6H, the value range of Hn can be made reasonable, and the flow distribution of the first flow channel 22 and the second flow channel 23 can be made reasonable, so that both The cooling effect of the lower half of the radiator 10 is better, and the cooling effect of the upper half of the radiator 10 is better.
  • the two ends of the first flow channel 22 may be respectively provided with an air outlet 27 and an air inlet 26, and, from the second From the air inlet 26 of the first flow channel 22 to the air outlet 27 of the first flow channel 22, the cross-sectional area of the first flow channel 22 may gradually increase.
  • the two ends of the second flow channel 23 may be respectively provided with an air outlet 27 and an air inlet 26 , and, From the air inlet 26 of the second flow channel 23 to the air outlet 27 of the second flow channel 23, the cross-sectional area of the second flow channel 23 may first gradually decrease and then gradually increase.
  • the flow rate of the air will decrease, and the static pressure of the air will increase.
  • the increase of the static pressure can avoid the phenomenon of local backflow and improve the flow rate of the air.
  • the circulation efficiency is improved, so that the heat exchange between the air and the upper half of the radiator 10 can be sufficient, and the upper half of the radiator 10 can be effectively cooled and dissipated.
  • a plurality of heat dissipation channels 21 are defined by the support seat 20 of the electric control box 200, when the fan blades 40 of the air conditioner 100 When rotating, a high-speed negative pressure zone 70 will be formed between the radiator 10 and the fan blade 40, so that the air inside the air conditioner 100 will flow through the radiator 10 through a plurality of heat dissipation channels 21 to cool down the radiator 10 and dissipate heat.
  • the radiator 10 can reliably cool the components 60 in the electric control box 200, so that the temperature of the components 60 in the electric control box 200 can always be in a suitable working temperature range, which is conducive to improving the performance of the components 60
  • the working life is improved, and the size of the component 60 can be reduced, so that the manufacturing cost of the component 60 can be reduced.
  • first feature and “second feature” may include one or more of these features.
  • a first feature being "on” or “under” a second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact but pass through them. Additional feature contacts between.
  • first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than Second feature.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Abstract

一种空调器(100)的电控盒(200)以及空调器(100),空调器(100)的电控盒(200)包括:散热器(10);支撑座(20),散热器(10)安装于支撑座(20),支撑座(20)限定出多个散热流道(21),多个散热流道(21)在电控盒(200)的高度方向依次排布,多个散热流道(21)中的至少两个散热流道(21)的出风口与散热器(10)对应。

Description

空调器的电控盒以及空调器
相关申请的交叉引用
本申请要求“广东美的制冷设备有限公司”于2021年08月31日提交的、名称为“空调器的电控盒以及空调器”的、中国专利申请号“202111016612.6”和中国专利申请号“202122086936.9”的优先权。
技术领域
本申请涉及空调器领域,尤其是涉及一种空调器的电控盒以及具有该空调器的电控盒的空调器。
背景技术
相关技术中,空调器的电控盒内设置有散热器,散热器用于冷却电控盒内的元器件(例如电路板、电容和端子等),然而,散热器的过风散热主要依靠经过冷凝器的热风进行降温散热,从而导致散热器无法可靠的冷却电控盒内的元器件,导致电控盒内的元器件的工作寿命较低,并且,无法缩小元器件的尺寸,导致元器件的制造成本较高。
申请内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种空调器的电控盒,该空调器的电控盒可以使散热器能够可靠的冷却电控盒内的元器件,从而能够使电控盒内的元器件的温度始终处于适宜的工作温度区间内,有利于提高元器件的工作寿命,并且,可以缩小元器件的尺寸,从而可以降低元器件的制造成本。
本申请进一步地提出了一种空调器。
根据本申请的空调器的电控盒包括:散热器;支撑座,所述散热器安装于所述支撑座,所述支撑座限定出多个散热流道,多个所述散热流道在所述电控盒的高度方向依次排布,多个所述散热流道中的至少两个所述散热流道的出风口与所述散热器对应。
根据本申请的空调器的电控盒,通过电控盒的支撑座限定出多个散热流道,当空调器的风叶转动时,散热器与风叶之间会形成高速负压区,从而会使空调器内部的空气通过多个散热流道流经散热器,以对散热器进行降温散热,以使散热器能够可靠的冷却电控盒内的元器件,从而能够使电控盒内的元器件的温度始终处于适宜的工作温度区间内,有利于提高元器件的工作寿命,并且,可以缩小元器件的尺寸,从而可以降低元器件的制造成本。
在本申请的一些示例中,多个所述散热流道包括:第一流道和第二流道,所述第一流道位于所述第二流道下方。
在本申请的一些示例中,从所述电控盒的下方至上方方向,所述第一流道和所述第二流道均朝向所述散热器倾斜向上延伸。
在本申请的一些示例中,在所述第一流道的高度方向,所述第一流道的最低点与其相对的所述第一流道的内表面之间的间隔距离为K1,所述散热器的高度为H,满足关系式:0.2H≤K1。
在本申请的一些示例中,所述第二流道构造为变截面流道,在所述第二流道的高度方向,所述第二流道的下表面与上表面间的最小间隔距离为K2,满足关系式:0.2H≤K2。
在本申请的一些示例中,所述支撑座包括:挡雨板,所述挡雨板设于所述散热器的一侧,所述挡雨板与所述散热器间的间隔距离为m,满足关系式:0.5(K1+K2)≤m。
在本申请的一些示例中,所述支撑座限定出总流道,所述总流道内设有分隔板,所述分隔板将所述总流道分隔为所述第一流道和所述第二流道。
在本申请的一些示例中,在所述电控盒的高度方向,所述第二流道的上表面的最低点的投影位于所述分隔板的最低点的投影靠近所述散热器一侧。
在本申请的一些示例中,在所述电控盒的高度方向,所述分隔板的最高点位于所述第二 流道的上表面的最低点的上方。
在本申请的一些示例中,在所述电控盒的高度方向,所述分隔板的最高点与所述散热器间的间隔距离为Hn,所述散热器的高度为H,满足关系式:0.4H≤Hn≤0.6H。
在本申请的一些示例中,在所述第一流道的延伸方向,所述第一流道的两端分别设有所述出风口和进风口,从所述进风口至所述出风口方向所述第一流道的截面积逐渐增加。
在本申请的一些示例中,在所述第二流道的延伸方向,所述第二流道的两端分别设有所述出风口和进风口,从所述进风口至所述出风口方向所述第二流道的截面积先逐渐减小再逐渐增加。
根据本申请的空调器,包括上述的空调器的电控盒。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例所述的空调器的室外机爆炸示意图;
图2是根据本申请实施例所述的电控盒、风叶和中隔板的截面示意图;
图3是根据本申请实施例所述的电控盒和中隔板的截面示意图;
图4是根据本申请实施例所述的电控盒和中隔板的另一个截面示意图;
图5是根据本申请实施例所述的电控盒的示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图5描述根据本申请实施例的空调器100的电控盒200。
如图1-图5所示,根据本申请实施例的电控盒200包括:散热器10和支撑座20。
其中,散热器10设置在支撑座20上,支撑座20能够限定出多个散热流道21,在电控盒200的高度方向(即图2所示的上下方向),多个散热流道21依次排布设置,并且,在多个散热流道21中,至少两个散热流道21的出风口27与散热器10对应设置。
可选地,电控盒200可以设置于空调器100的室外机,当然,电控盒200也可以设置于空调器100的室内机,对于一体式空调器100而言,电控盒200也可以设置在一体式空调器100内,本申请均以电控盒200设置于空调器100的室外机为例进行描述,但本申请的电控盒200不限于设置在空调器100的室外机内。
可以理解的是,如图1所示,空调器100的室外机可以包括外观钣金件30、风叶40和中隔板50,外观钣金件30可以包括:前面板31、顶盖32、左围板(图中未示出)、底板(图中未示出)和右围板33,外观钣金件30可以限定出安装空间,电控盒200、风叶40和中隔板50均可以设置在安装空间内。
可选地,在空调器100的高度方向(即图2所示的上下方向),中隔板50可以设置在电控盒200下方,并且,风叶40可以设置在散热器10的一侧,支撑座20限定出的多个散热流道21的进风口26可以设置在散热器10的另一侧。例如,在图2所示的左右方向,风叶40可以设置在散热器10的左侧,支撑座20限定出的多个散热流道21的进风口26可以设置在散热器10的右侧。
电控盒200内可以设置有元器件60,元器件60可以包括电路板61、端子(图中未示出)和电容(图中未示出)等器件,可选地,在空调器100的高度方向(即图3所示的上下方向),电路板61可以设置在散热器10的上方,在图3所示的左右方向,端子和电容等器件可以设置在散热器10的远离风叶40的一侧(即端子和电容等器件可以设置在散热器10的右侧),散热器10用于对电控盒200内的元器件60进行散热。
现有技术中,散热器的过风散热主要依靠经过冷凝器的热风进行降温散热,从而导致散热器无法可靠的冷却电控盒内的元器件,导致电控盒内的元器件的工作寿命较低,并且,无法缩小元器件的尺寸,导致元器件的制造成本较高。
而在本申请中,可以理解的是,如图2所示,在风叶40高速转动时,基于伯努利原理,在风叶40和散热器10之间会形成高速负压区70,在高速负压区70的牵引下,散热器10的远离风叶40一侧的空气会向高速负压区70流动,通过支撑座20限定出多个散热流道21,散热器10的远离风叶40一侧的空气会通过多个散热流道21流经散热器10,以对散热器10进行降温散热,从而可以快速对散热器10进行降温散热,可以使散热器10能够可靠的冷却电控盒200内的元器件60,有利于提高元器件60的工作寿命,并且,由于散热器10能够可靠的冷却电控盒200内的元器件60,从而不需要增大元器件60的尺寸以满足散热需求,可以缩小元器件60的尺寸,有利于降低元器件60的制造成本。
由此,通过电控盒200的支撑座20限定出多个散热流道21,当空调器100的风叶40转动时,散热器10与风叶40之间会形成高速负压区70,从而会使空调器100内部的空气通过多个散热流道21流经散热器10,以对散热器10进行降温散热,以使散热器10能够可靠的冷却电控盒200内的元器件60,从而能够使电控盒200内的元器件60的温度始终处于适宜的工作温度区间内,有利于提高元器件60的工作寿命,并且,可以缩小元器件60的尺寸,从而可以降低元器件60的制造成本。
在本申请的一些实施例中,如图2-图5所示,多个散热流道21可以包括第一流道22和第二流道23,其中,在空调器100的高度方向(即图3所示的上下方向),第一流道22可以位于第二流道23的下方,并且,第一流道22和第二流道23的出风口27均可以与散热器10对应设置。
可选地,如图3所示,支撑座20可以包括第一支撑板24和第二支撑板25,在空调器100的高度方向(即图3所示的上下方向),第一支撑板24可以位于散热器10的下方,第一支撑板24可以用于支撑、密封散热器10,第二支撑板25可以位于散热器10的远离风叶40的一侧,具体地,在图3所示的左右方向,第二支撑板25可以位于散热器10的右侧,第二支撑板25上方可以设置有端子和电容等器件,第二支撑板25可以对其上方设置的端子和电容等器件进行保护。
可选地,支撑座20可以为一体成型件,或者支撑座20也可以由多个部件通过焊接或者卡接或者螺接等方式连接形成,本申请对此不作限制。
其中,如图1所示,中隔板50可以包括第一分隔板51,第一分隔板51可以将安装空间分割为风道腔35和压机腔36,具体地,在图2所示的左右方向,中隔板50左侧可以为风道腔35,中隔板50右侧可以为压机腔36,风叶40可以设置在风道腔35内,空调器100的压缩机可以设置在压机腔36内。进一步地,支撑座20可以将压机腔36分割为压机侧37和电控侧38,在空调器100的高度方向,压机侧37可以位于电控侧38下方,第一流道22的进风口26可以与压机侧37连通设置,第二流道23的进风口26可以与电控侧38连通设置。
当风叶40高速转动时,基于伯努利原理,在风叶40和散热器10之间会形成高速负压区70,在高速负压区70的牵引下,压机侧37内的空气能够通过第一流道22的进风口26进入第一流道22,从而能够流经散热器10以对散热器10进行一段降温散热,并且,在高速负压区70的牵引下,电控侧38内的空气能够通过第二流道23的进风口26进入第二流道23,从而能够流经散热器10以对散热器10进行二段降温散热。
需要理解的是,对散热器10进行一段降温散热主要为对散热器10的下半部分进行散热,对散热器10进行二段降温散热主要为对散热器10的上半部分进行散热。
由此,可以对散热器10进行多段降温散热,从而可以快速对散热器10进行降温散热,可以使散热器10能够可靠的冷却电控盒200内的元器件60,并且,通过将第一流道22设置于第二流道23下方,可以避免第一流道22内的空气和第二流道23内的空气相互干扰, 可以使空气能够迅速通过第一流道22和第二流道23以对散热器10进行降温散热。
可以理解的是,电控侧38内的空气在通过第二流道23的进风口26进入第二流道23时,能够对第二支撑板25上方设置的端子和电容等器件进行降温散热,然后,电控侧38内的空气能够流经散热器10以对散热器10进行二段降温散热。这样可以避免第二支撑板25上方设置的端子和电容等器件温度过高,有利于保证端子和电容等器件的使用可靠性,并且,有利于提高端子和电容等器件的使用寿命。
需要强调的是,本申请的散热器10也可以依靠经过冷凝器的热风进行降温散热,换句话说,本申请的散热器10既可以依靠经过冷凝器的热风进行降温散热,又可以在高速负压区70的牵引下,使散热器10的远离风叶40一侧的空气向高速负压区70流动,以对散热器10进行降温散热,从而可以更加快速的对散热器10进行降温散热。
作为本申请的一些实施例,如图2-图4所示,在图3所示的左右方向,第一分隔板51可以位于第一流道22的进风口26的左侧,进一步地,第一分隔板51可以位于多个散热流道21的多个进风口26的左侧,这样设置可以将风道腔35与第一流道22、第二流道23分隔开,可以使风道腔35与第一流道22、第二流道23之间形成对流,从而可以增加空气的流动速率,有利于对散热器10进行降温散热。
在本申请的一些实施例中,如图2-图4所示,在电控盒200的高度方向,从图3所示的下方至图3所示的上方,第一流道22可以朝向散热器10倾斜向上延伸设置,第二流道23也可以朝向散热器10倾斜向上延伸设置,这样设置有利于增大第一流道22和第二流道23的进风量,可以使第一流道22和第二流道23的进风量较高,从而可以保证有大量的空气经过散热器10,可以避免散热器10过热而无法对电控盒200内的元器件60进行降温的情况发生。
在本申请的一些实施例中,如图4所示,在第一流道22的高度方向(即图4所示的上下方向),第一流道22的最低点与其相对的第一流道22的内表面之间的间隔距离可以为K1,并且,散热器10的高度可以为H,第一流道22的最低点与其相对的第一流道22的内表面之间的间隔距离和散热器10的高度可以满足关系式0.2H≤K1。也就是说,第一流道22的最低点与其相对的第一流道22的内表面之间的间隔距离可以大于或者等于0.2倍的散热器10的高度。其中,第一流道22的最低点与其相对的第一流道22的内表面之间的间隔距离可以理解为第一流道22的最小垂直距离。
可以理解的是,若K1过小,第一流道22会出现节流现象,从而会降低第一流道22内的气体流动的效率,会影响第一流道22的进风量,通过将K1和H构造为满足关系式0.2H≤K1的形式,可以使K1的取值范围合理,可以避免第一流道22出现节流现象,有利于提高第一流道22内的气体流动的效率,可以使第一流道22的进风量较大。当然,K1也需要综合考虑实际结构空间限制,换句话说,K1也不能无限放大。
在本申请的一些实施例中,如图4所示,第二流道23可以构造为变截面流道,并且,在第二流道23的高度方向(即图4所示的上下方向),第二流道23的下表面与第二流道23的上表面之间的最小间隔距离可以为K2,并且,散热器10的高度可以为H,第二流道23的下表面与第二流道23的上表面之间的最小间隔距离与散热器10的高度可以满足关系式0.2H≤K2。也就是说,第二流道23的下表面与第二流道23的上表面之间的最小间隔距离可以大于或者等于0.2倍的散热器10的高度。其中,第二流道23的下表面与第二流道23的上表面之间的最小间隔距离可以理解为第二流道23的最小垂直距离。
可以理解的是,若K2过小,第二流道23会出现节流现象,从而会降低第二流道23内的气体流动的效率,会影响第二流道23的进风量,通过将K2和H构造为满足关系式0.2H≤K2的形式,可以使K2的取值范围合理,可以避免第二流道23出现节流现象,有利于提高第一流道22内的气体流动的效率,可以使第二流道23的进风量较大。当然,K2也需要综合考虑实际结构空间限制,换句话说,K2也不能无限放大。并且,通过将第二流道23构造为变截面流道,可以避免出现气体局部回流现象,可以提高气体的流通效率。
进一步地,通过将K1与H构造为满足不等式0.2H≤K1的尺寸形式,并且通过将K2与H构造为满足不等式0.2H≤K2的尺寸形式,可以确保在最小节流工况下,第一流道22和第二流道23的进风量能够满足散热器10的散热需求。
在本申请的一些实施例中,如图2-图5所示,支撑座20可以包括:挡雨板28,挡雨板28可以设置于散热器10的一侧,具体地,在图4所示的左右方向,挡雨板28可以设置在散热器10的左侧,挡雨板28与散热器10之间的间隔距离可以构造为m,m与K1、K2可以满足关系式0.5(K1+K2)≤m。
可以理解的是,挡雨板28可以用于遮挡液体(例如雨水),以避免液体进入电控盒200内部,通过设置挡雨板28,可以降低液体流入电控盒200内部的风险,有利于保证电控盒200内部的元器件60的使用安全性。
并且,需要说明的是,挡雨板28与散热器10之间的间隔距离越大,对散热器10的散热降温效果越好,此外,若m的值同比K1、K2的值过小,则会导致第一流道22和第二流道23的进风口26、出风口27处压力失衡,从而会影响第一流道22和第二流道23的进风量,还会影响第一流道22和第二流道23内的气体流动的效率。
由此,通过将m与K1、K2构造为满足关系式0.5(K1+K2)≤m的形式,可以使m与K1、K2的取值合理,可以避免第一流道22和第二流道23的进风口26、出风口27处压力失衡,可以使第一流道22和第二流道23的进风量较大,可以使第一流道22和第二流道23内的气体流动的效率较高,从而可以满足散热器10的散热需求。
在本申请的一些实施例中,如图3-图5所示,支撑座20可以限定出总流道,总流道内可以设置有分隔板29,分隔板29可以将总流道分隔为第一流道22和第二流道23,这样设置可以限定出第一流道22和第二流道23。并且,可以理解的是,第一支撑板24的第一端(即在图3所示的左右方向,第一支撑板24的右端)与分隔板29可以共同限定出第一流道22的进风口26,可选地,第一分隔板51可以位于第一支撑板24的第一端的左侧,这样设置可以将风道腔35与第一流道22、第二流道23分隔开,可以使风道腔35与第一流道22、第二流道23之间形成对流,从而可以增加空气的流动速率,有利于对散热器10进行降温散热。
可以理解的是,第一支撑板24的第一端与分隔板29的垂直距离即为第一流道22的最低点与其相对的第一流道22的内表面之间的间隔距离。
在本申请的一些实施例中,如图3所示,在电控盒200的高度方向(即图3所示的上下方向),第二流道23的上表面的最低点的投影可以位于分隔板29的最低点的投影靠近散热器10的一侧。换句话说,第二流道23的上表面的最低点的投影可以位于分隔板29的最低点的投影的左侧。
需要说明的是,分隔板29与第二支撑板25之间具有缺口71,当液体(例如雨水)从散热器10的右侧朝向散热器10飞溅时,液体会汇集在第二流道23的外壁面上,并且,在重力的作用下,液体会从第二流道23的外壁面上滴落至分隔板29的表面,滴落至分隔板29的表面的液体在重力的作用下可以滴落至分隔板29与第二支撑板25之间,由于分隔板29与第二支撑板25之间具有缺口71,从分隔板29的表面滴落的液体可以通过缺口71离开电控盒200。这样设置可以进一步降低液体流入电控盒200内部的风险,有利于保证电控盒200内部的元器件60的使用安全性。
在本申请的一些实施例中,如图3所示,在电控盒200的高度方向(即图3所示的上下方向),分隔板29的最高点可以位于第二流道23的上表面的最低点的上方,这样设置可以避免水雾通过第二流道23流至电路板61上,可以避免电路板61受水雾影响而出现故障,从而可以使电控盒200具有良好的防水性能。
在本申请的一些实施例中,如图4所示,在电控盒200的高度方向(即图4所示的上下方向),分隔板29的最高点与散热器10之间的间隔距离可以为Hn,散热器10的高度可以为H,分隔板29的最高点与散热器10之间的间隔距离和散热器10的高度可以满足关系 式0.4H≤Hn≤0.6H。也就是说,分隔板29的最高点与散热器10之间的间隔距离可以大于或者等于0.4倍的散热器10的高度,并且,分隔板29的最高点与散热器10之间的间隔距离还可以小于或者等于0.6倍的散热器10的高度。
可以理解的是,分隔板29的最高点与散热器10之间的间隔距离代表了第一流道22和第二流道23的流量分配,分隔板29的最高点与散热器10之间的间隔距离过大或者过小都会导致第一流道22或者第二流道23的进风量过低。
例如,若分隔板29的最高点与散热器10之间的间隔距离过小,则会导致第一流道22的进风量过低,从而会导致散热器10的一段降温散热较差(即会导致散热器10下半部分的降温散热较差)。若分隔板29的最高点与散热器10之间的间隔距离过大,则会导致第二流道23的进风量过低,从而会导致散热器10的二段降温散热较差(即会导致散热器10上半部分的降温散热较差)。
通过将Hn和H构造为满足关系式0.4H≤Hn≤0.6H的形式,可以使Hn的取值范围合理,可以使第一流道22和第二流道23的流量分配合理,从而既可以使散热器10下半部分的降温散热效果较佳,又可以使散热器10上半部分的降温散热效果较佳。
在本申请的一些实施例中,如图3和图4所示,在第一流道22的延伸方向,第一流道22的两端分别可以设置有出风口27和进风口26,并且,从第一流道22的进风口26至第一流道22的出风口27方向,第一流道22的截面积可以逐渐增加。
需要解释的是,从第一流道22的进风口26至第一流道22的出风口27方向,通过将第一流道22的截面积设置为逐渐增加的结构形式,可以提高第一流道22的进风量,从而可以使较多的空气经过散热器10的下半部分,可以对散热器10的下半部分进行有效的降温散热。
在本申请的一些实施例中,如图3和图4所示,在第二流道23的延伸方向,第二流道23的两端分别可以设置有出风口27和进风口26,并且,从第二流道23的进风口26至第二流道23的出风口27方向,第二流道23的截面积可以先逐渐减小然后再逐渐增加。
需要解释的是,从第二流道23的进风口26至第二流道23的出风口27方向,通过将第二流道23的截面积设置为先逐渐减小然后再逐渐增加的结构形式,基于伯努利方程(即静压+动压=常数),当空气从第二流道23的进风口26进入到第二流道23内时会经过两个阶段,在第一阶段,由于第二流道23的截面积逐渐减小,因此,空气的流动速率会变大(此时空气的动压增大,静压减小),可以使较多的空气进入第二流道23内。
在第二阶段,由于第二流道23的截面积逐渐增加,空气的流动速率会减小,并且,空气的静压会增大,静压增大可以避免出现局部回流现象,可以提高空气的流通效率,从而可以使空气与散热器10的上半部分换热充分,可以对散热器10的上半部分进行有效的降温散热。
根据本申请实施例的空调器100,包括上述实施例的空调器100的电控盒200,通过电控盒200的支撑座20限定出多个散热流道21,当空调器100的风叶40转动时,散热器10与风叶40之间会形成高速负压区70,从而会使空调器100内部的空气通过多个散热流道21流经散热器10,以对散热器10进行降温散热,以使散热器10能够可靠的冷却电控盒200内的元器件60,从而能够使电控盒200内的元器件60的温度始终处于适宜的工作温度区间内,有利于提高元器件60的工作寿命,并且,可以缩小元器件60的尺寸,从而可以降低元器件60的制造成本。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。
在本申请的描述中,“多个”的含义是两个或两个以上。
在本申请的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。
在本申请的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种空调器的电控盒,其中,包括:
    散热器;
    支撑座,所述散热器安装于所述支撑座,所述支撑座限定出多个散热流道,多个所述散热流道在所述电控盒的高度方向依次排布,多个所述散热流道中的至少两个所述散热流道的出风口与所述散热器对应。
  2. 根据权利要求1所述的空调器的电控盒,其中,多个所述散热流道包括:第一流道和第二流道,所述第一流道位于所述第二流道下方。
  3. 根据权利要求2所述的空调器的电控盒,其中,从所述电控盒的下方至上方方向,所述第一流道和所述第二流道均朝向所述散热器倾斜向上延伸。
  4. 根据权利要求3所述的空调器的电控盒,其中,在所述第一流道的高度方向,所述第一流道的最低点与其相对的所述第一流道的内表面之间的间隔距离为K1,所述散热器的高度为H,满足关系式:0.2H≤K1。
  5. 根据权利要求4所述的空调器的电控盒,其中,所述第二流道构造为变截面流道,在所述第二流道的高度方向,所述第二流道的下表面与上表面间的最小间隔距离为K2,满足关系式:0.2H≤K2。
  6. 根据权利要求5所述的空调器的电控盒,其中,所述支撑座包括:挡雨板,所述挡雨板设于所述散热器的一侧,所述挡雨板与所述散热器间的间隔距离为m,满足关系式:0.5(K1+K2)≤m。
  7. 根据权利要求3-6中任一项所述的空调器的电控盒,其中,所述支撑座限定出总流道,所述总流道内设有分隔板,所述分隔板将所述总流道分隔为所述第一流道和所述第二流道。
  8. 根据权利要求7所述的空调器的电控盒,其中,在所述电控盒的高度方向,所述第二流道的上表面的最低点的投影位于所述分隔板的最低点的投影靠近所述散热器一侧。
  9. 根据权利要求7或8所述的空调器的电控盒,其中,在所述电控盒的高度方向,所述分隔板的最高点位于所述第二流道的上表面的最低点的上方。
  10. 根据权利要求7-9中任一项所述的空调器的电控盒,其中,在所述电控盒的高度方向,所述分隔板的最高点与所述散热器间的间隔距离为Hn,所述散热器的高度为H,满足关系式:0.4H≤Hn≤0.6H。
  11. 根据权利要求2-10中任一项所述的空调器的电控盒,其中,在所述第一流道的延伸方向,所述第一流道的两端分别设有所述出风口和进风口,从所述进风口至所述出风口方向所述第一流道的截面积逐渐增加。
  12. 根据权利要求2-11中任一项所述的空调器的电控盒,其中,在所述第二流道的延伸方向,所述第二流道的两端分别设有所述出风口和进风口,从所述进风口至所述出风口方向所述第二流道的截面积先逐渐减小再逐渐增加。
  13. 一种空调器,其中,包括根据权利要求1-12中任一项所述的空调器的电控盒。
PCT/CN2021/119952 2021-08-31 2021-09-23 空调器的电控盒以及空调器 WO2023029124A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111016612.6 2021-08-31
CN202111016612.6A CN115727402A (zh) 2021-08-31 2021-08-31 空调器的电控盒以及空调器
CN202122086936.9 2021-08-31
CN202122086936.9U CN215675453U (zh) 2021-08-31 2021-08-31 空调器的电控盒以及空调器

Publications (1)

Publication Number Publication Date
WO2023029124A1 true WO2023029124A1 (zh) 2023-03-09

Family

ID=85410790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119952 WO2023029124A1 (zh) 2021-08-31 2021-09-23 空调器的电控盒以及空调器

Country Status (1)

Country Link
WO (1) WO2023029124A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151423A (ja) * 1997-08-05 1999-02-26 Hitachi Ltd 空気調和機の室外ユニット
CN203132008U (zh) * 2013-02-05 2013-08-14 广东美的电器股份有限公司 空调器室外机用的电控盒和空调器室外机
CN104613557A (zh) * 2015-02-05 2015-05-13 广东美的暖通设备有限公司 空调室外机以及具有其的空调器和电控盒组件
US20150271949A1 (en) * 2014-03-18 2015-09-24 Lg Electronics Inc. Outdoor unit of air conditioner
CN205825265U (zh) * 2016-06-01 2016-12-21 广东美的暖通设备有限公司 空调室外机和空调器
CN205842887U (zh) * 2016-07-26 2016-12-28 珠海格力电器股份有限公司 空调室外机的电器盒散热结构及空调室外机
CN206831704U (zh) * 2017-04-12 2018-01-02 青岛海尔空调器有限总公司 一种空调室外机
CN207570038U (zh) * 2017-12-08 2018-07-03 珠海格力电器股份有限公司 电器盒及具有其的空调室外机
CN208296128U (zh) * 2018-06-15 2018-12-28 Tcl空调器(中山)有限公司 散热装置、空调室外机和空调器
CN215675453U (zh) * 2021-08-31 2022-01-28 广东美的制冷设备有限公司 空调器的电控盒以及空调器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151423A (ja) * 1997-08-05 1999-02-26 Hitachi Ltd 空気調和機の室外ユニット
CN203132008U (zh) * 2013-02-05 2013-08-14 广东美的电器股份有限公司 空调器室外机用的电控盒和空调器室外机
US20150271949A1 (en) * 2014-03-18 2015-09-24 Lg Electronics Inc. Outdoor unit of air conditioner
CN104613557A (zh) * 2015-02-05 2015-05-13 广东美的暖通设备有限公司 空调室外机以及具有其的空调器和电控盒组件
CN205825265U (zh) * 2016-06-01 2016-12-21 广东美的暖通设备有限公司 空调室外机和空调器
CN205842887U (zh) * 2016-07-26 2016-12-28 珠海格力电器股份有限公司 空调室外机的电器盒散热结构及空调室外机
CN206831704U (zh) * 2017-04-12 2018-01-02 青岛海尔空调器有限总公司 一种空调室外机
CN207570038U (zh) * 2017-12-08 2018-07-03 珠海格力电器股份有限公司 电器盒及具有其的空调室外机
CN208296128U (zh) * 2018-06-15 2018-12-28 Tcl空调器(中山)有限公司 散热装置、空调室外机和空调器
CN215675453U (zh) * 2021-08-31 2022-01-28 广东美的制冷设备有限公司 空调器的电控盒以及空调器

Similar Documents

Publication Publication Date Title
CN207340352U (zh) 一种空调电控盒
CN110519967B (zh) 功率模块
CN215675453U (zh) 空调器的电控盒以及空调器
CN210808085U (zh) 电控柜和空调器
WO2018149032A1 (zh) 散热组件和制冷装置
CN111895519B (zh) 散热器和空调室外机
WO2023029124A1 (zh) 空调器的电控盒以及空调器
CN111397044A (zh) 半导体空调
CN207778627U (zh) 空调机的室外机
CN212081528U (zh) 半导体空调
CN115727402A (zh) 空调器的电控盒以及空调器
CN202551578U (zh) 空调控制器散热装置及使用该散热装置的移动空调器
CN208090843U (zh) 散热片和具有该散热片的空调器
CN212081681U (zh) 半导换热器组件及半导体空调
WO2018072587A1 (zh) 一种用于提高冷凝器换热效率的装置、换热设备和空调
CN219108094U (zh) 一种散热结构以及室内机机组
CN220357544U (zh) 一种风阻可控的新型风冷散热器
CN220083204U (zh) 一种空调单元及机柜温控系统
CN213931207U (zh) 散热器和空调室外机
CN218062742U (zh) 一种散热型吹风扇结构
CN213931204U (zh) 一种电控盒及空调
CN216346717U (zh) 散热器、电器盒及空调
CN219893701U (zh) 一种高散热效率的无刷电机控制板安装盒
CN215378189U (zh) 一种散热性能良好的plc配电柜
CN218523737U (zh) 电器盒及空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021955654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021955654

Country of ref document: EP

Effective date: 20240320

NENP Non-entry into the national phase

Ref country code: DE