WO2023027413A1 - 양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지 - Google Patents

양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지 Download PDF

Info

Publication number
WO2023027413A1
WO2023027413A1 PCT/KR2022/012295 KR2022012295W WO2023027413A1 WO 2023027413 A1 WO2023027413 A1 WO 2023027413A1 KR 2022012295 W KR2022012295 W KR 2022012295W WO 2023027413 A1 WO2023027413 A1 WO 2023027413A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
formula
electrode active
cathode
Prior art date
Application number
PCT/KR2022/012295
Other languages
English (en)
French (fr)
Inventor
곽노우
안동준
엄준호
이준원
임채진
박나리
김지혜
정병훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22861623.1A priority Critical patent/EP4300628A1/en
Priority to JP2023560902A priority patent/JP2024512779A/ja
Priority to CN202280027789.2A priority patent/CN117121226A/zh
Publication of WO2023027413A1 publication Critical patent/WO2023027413A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material having a bimodal particle size distribution including positive electrode active materials having different average particle diameters (D 50 ), a manufacturing method thereof, and a lithium secondary battery including the same.
  • lithium secondary batteries are in the limelight as a driving power source for portable devices because of their light weight and high energy density. Accordingly, research and development efforts to improve the performance of lithium secondary batteries are being actively conducted.
  • a lithium secondary battery is an oxidation state when lithium ions are intercalated/deintercalated at the positive and negative electrodes in a state in which an organic electrolyte or polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions. and electrical energy is produced by a reduction reaction.
  • Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO 4 ), etc. have been used as cathode active materials for lithium secondary batteries. .
  • lithium cobalt oxide (LiCoO 2 ) has the advantage of high operating voltage and excellent capacity characteristics, and is widely used and applied as a positive electrode active material for high voltage.
  • due to the price increase and unstable supply of cobalt (Co) there is a limit to mass use as a power source in fields such as electric vehicles, and the need to develop a cathode active material that can replace it has emerged.
  • a nickel-cobalt-manganese-based lithium composite transition metal oxide (hereinafter simply referred to as 'NCM-based lithium composite transition metal oxide') in which a part of cobalt (Co) is substituted with nickel (Ni) and manganese (Mn) has been developed.
  • NCM-based lithium composite transition metal oxides are generally in the form of secondary particles in which primary particles are aggregated, and have a large specific surface area, low particle strength, and high content of lithium by-products, resulting in gas generation during cell operation. There were many, and there were problems with poor stability.
  • the conventionally developed NCM-based lithium composite transition metal oxide has limitations in application to high-voltage batteries, in particular, because stability is not secured.
  • Conventionally developed NCM-based lithium composite transition metal oxides have severe particle breakage during rolling, resulting in increased resistance and gas generation. .
  • NCM-based lithium composite transition metal oxides of high nickel (Ni) content in which the content of nickel (Ni) is increased to secure high capacity, structural and chemical stability are further deteriorated, and it is more difficult to secure thermal stability.
  • a high-content NCM-based lithium composite transition metal oxide has a problem in that long-term life is reduced due to particle breakage after rolling.
  • Patent Document 1 KR 10-2014-0018685 A
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a cathode material with improved crack generation and particle breakage of a cathode material containing a high-Ni lithium composite transition metal oxide. to be
  • an object of the present invention is to provide a cathode material with improved long-term lifespan and a manufacturing method thereof by reducing the surface area exposed after rolling by mitigating cracking and particle breakage of the cathode material and lowering side reactions with the electrolyte solution.
  • a cathode material In order to solve the above problems, a cathode material, a cathode material manufacturing method, a cathode and a lithium secondary battery are provided.
  • the present invention is a positive electrode material having a bimodal particle size distribution including a first positive electrode active material and a second positive electrode active material having different average particle diameters (D 50 ), wherein the first positive electrode active material is lithium represented by the following formula (1)
  • M 1 is at least one selected from Mn and Al
  • M 2 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, It is at least one selected from the group consisting of P, Si and S, and 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1.
  • the present invention provides a cathode material according to (1) above, wherein the lithium composite transition metal oxide represented by Chemical Formula 1 is represented by Chemical Formula 1-1 below.
  • M 2 is 1 selected from the group consisting of Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si and S 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1.
  • the first positive electrode active material is formed on the surface of the lithium composite transition metal oxide, and Al, Ti, W, B, F, P, Mg, Ni, Anode comprising a coating layer containing at least one element selected from the group consisting of Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta and S provide ashes.
  • the present invention provides the positive electrode material according to any one of (1) to (3) above, wherein the second positive electrode active material includes a lithium composite transition metal oxide represented by Formula 2 below.
  • M 3 is at least one selected from Mn and Al
  • M 4 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, At least one selected from the group consisting of P, Si and S, 0.9 ⁇ a' ⁇ 1.1, 0.8 ⁇ x' ⁇ 1, 0 ⁇ y' ⁇ 0.2, 0 ⁇ z' ⁇ 0.2, 0 ⁇ w' ⁇ 0.1 am.
  • the average particle diameter (D 50 ) of the first positive electrode active material is smaller than the average particle diameter (D 50 ) of the second positive electrode active material.
  • the present invention provides the cathode material according to any one of (1) to (5) above, wherein the first cathode active material has an average particle diameter (D 50 ) of 2 ⁇ m or more and 7 ⁇ m or less.
  • the present invention provides the cathode material according to any one of (1) to (6) above, wherein the second cathode active material has an average particle diameter (D 50 ) of greater than 7 ⁇ m and less than or equal to 20 ⁇ m.
  • the present invention provides the cathode material according to any one of (1) to (7) above, wherein the particle size change calculated by Equation 1 below is 6.0 or less.
  • Equation 1 P 0 is the intensity of the maximum peak appearing in the area cumulative particle size distribution graph of the cathode material, and P 1 is the area cumulative particle size distribution graph measured after pressurizing the cathode material with 9 tons. This is the intensity of a peak appearing in a region corresponding to the particle diameter of the P 0 peak.
  • the cathode active material precursor represented by the following Chemical Formula 3 and a lithium raw material are mixed and then first fired to form a plastic product (S10); Forming a first positive electrode active material including a lithium composite transition metal oxide represented by Formula 1 below by secondarily firing the plastic product at a temperature of higher than 850° C. and lower than 890° C. (S20); and mixing the first positive electrode active material with a second positive electrode active material having a different average particle diameter (D 50 ) from that of the first positive electrode active material (S30).
  • M 1 is at least one selected from Mn and Al
  • M 2 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, At least one selected from the group consisting of P, Si and S, 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1,
  • M 1 is at least one selected from Mn and Al
  • M 2 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, It is at least one selected from the group consisting of P, Si and S, and 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1.
  • the present invention provides a method for manufacturing a cathode material according to (9) above, wherein the cathode active material precursor represented by Chemical Formula 3 is represented by Chemical Formula 3-1 below.
  • the raw material containing M 1 is at least one selected from Mn and Al
  • M 2 containing Raw material is at least one selected from the group consisting of Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si, and S.
  • M 1 is at least one selected from Mn and Al
  • M 2 containing Raw material M 2 is at least one selected from the group consisting of Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si, and S.
  • the M 1 -containing raw material is at least one selected from Mn and Al
  • M 2 -containing raw material is at least one selected from the group consisting of Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si, and S It is.
  • it provides a cathode material manufacturing method of further mixing a mixture thereof.
  • the present invention provides a method for manufacturing a cathode material according to any one of (9) to (12) above, wherein the primary firing in step (S10) is performed at a temperature of 600 ° C or more and less than 800 ° C. .
  • a method for manufacturing a phosphorus cathode material is provided.
  • the present invention provides a method for manufacturing a cathode material according to (14) above, wherein the heat treatment in the step (S22) is performed at a temperature of 200 ° C. or more and 700 ° C. or less.
  • the present invention provides a positive electrode comprising the positive electrode material according to any one of (1) to (8) above.
  • the present invention provides a positive electrode according to (16) above; cathode; Provided is a lithium secondary battery including a separator and an electrolyte interposed between a positive electrode and a negative electrode.
  • the positive electrode material of the present invention includes a lithium composite transition metal oxide of high content nickel (High-Ni) to ensure high capacity, while mitigating crack generation and particle breakage, reducing the surface area exposed after rolling, thereby reducing side reactions with the electrolyte. can improve long-term life.
  • High-Ni high content nickel
  • Example 1 is a cross-sectional SEM (Scanning Electron Microscope) image of a first positive electrode active material particle prepared in Example 1.
  • Example 5 is a graph showing the particle size distribution of the positive electrode material powder prepared in Example 1 and Comparative Example 1 before and after 9-ton press.
  • FIG. 6 is a graph showing capacity retention rates and resistance increase rates at 45° C. of monocells including positive electrode materials prepared in Examples 1 and 2 and Comparative Examples 1 to 3.
  • the term 'primary particle' refers to a minimum particle unit that is distinguished as one lump when a cross section of the cathode active material is observed through a scanning electron microscope (SEM), and may be composed of a plurality of crystal grains.
  • the term 'secondary particle' refers to a secondary structure formed by aggregation of a plurality of primary particles.
  • the average particle diameter of the secondary particles may be measured using a particle size analyzer.
  • the term 'particle diameter (D n )' means the particle diameter at the point n % of the area cumulative distribution according to the particle diameter. That is, D 50 is the particle diameter at the 50% point of the area cumulative distribution according to the particle size, D 90 is the particle size at the 90% point of the area cumulative distribution according to the particle size, and D 10 is the particle size at 10% of the area cumulative distribution according to the particle size. is the particle diameter at the point.
  • the D n can be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (e.g.
  • Microtrac S3500 to measure the difference in diffraction pattern according to the particle size when the particles pass through the laser beam to distribute the particle size.
  • yields D 10 , D 50 , and D 90 can be measured by calculating the particle diameters at 10%, 50%, and 90 % of the area cumulative distribution according to the particle diameter in the measuring device.
  • the term 'average particle diameter (D 50 )' refers to the particle diameter at the 50% point, which is the point where the maximum peak appears in the area cumulative particle size distribution measured by the laser diffraction particle size measurement device.
  • the present invention provides a cathode material.
  • the positive electrode material is a positive electrode material having a bimodal particle size distribution including a first positive electrode active material and a second positive electrode active material having different average particle diameters (D 50 ), and the first positive electrode active material is as follows. It includes a lithium composite transition metal oxide represented by Formula 1, and the first positive electrode active material has an average particle diameter (D 50 ) at which the maximum peak of the area cumulative particle size distribution of the first positive electrode active material is measured through a laser diffraction particle size measuring device.
  • the number of primary particles measured in the cross-sectional SEM image of the secondary particles having may be 6 or more and 30 or less.
  • M 1 may be one or more selected from Mn and Al
  • M 2 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F , P, may be at least one selected from the group consisting of Si and S, and may be 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1 .
  • the positive electrode material includes the first positive electrode active material, thereby including a lithium composite transition metal oxide of high-Ni content to ensure high capacity while preventing crack generation and particle breakage.
  • M 1 may include Mn or Mn and Al at the same time.
  • M 2 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si and S It may be one or more selected from the group consisting of, and may include Zr in terms of further improving the structural stability of the lithium composite transition metal oxide.
  • a represents the molar ratio of lithium in the lithium composite transition metal oxide, and may be 0.9 ⁇ a ⁇ 1.1, 0.95 ⁇ a ⁇ 1.08, or 1 ⁇ a ⁇ 1.08. there is.
  • x represents the molar ratio of nickel in the lithium composite transition metal oxide, 0.7 ⁇ x ⁇ 1, 0.80 ⁇ x ⁇ 0.99, 0.80 ⁇ x ⁇ 0.95, 0.80 ⁇ It may be x ⁇ 0.90, or 0.80 ⁇ x ⁇ 0.85, and the capacity characteristics may be further improved within this range.
  • y represents the molar ratio of cobalt in the lithium composite transition metal oxide, and may be 0 ⁇ y ⁇ 0.2, 0 ⁇ y ⁇ 0.15, or 0.01 ⁇ y ⁇ 0.10. .
  • z represents the molar ratio of M 1 in the lithium composite transition metal oxide, and may be 0 ⁇ z ⁇ 0.2, 0 ⁇ z ⁇ 0.15, or 0.01 ⁇ z ⁇ 0.15. there is.
  • w represents the molar ratio of M 2 in the lithium composite transition metal oxide, and may be 0 ⁇ w ⁇ 0.1 or 0 ⁇ w ⁇ 0.05.
  • the lithium composite transition metal oxide represented by Chemical Formula 1 may be represented by Chemical Formula 1-1 below.
  • M 2 is 1 selected from the group consisting of Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si and S It may be more than one species, and may be 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1, where M 2 , a, x, y, z And w is as described in Formula 1 above.
  • the lithium composite transition metal oxide represented by Chemical Formula 1 may be represented by Chemical Formula 1-2 below.
  • M 2 is 1 selected from the group consisting of Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si and S It may be more than one species, and may be 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z1 ⁇ 0.2, 0 ⁇ z2 ⁇ 0.2, 0 ⁇ w ⁇ 0.1, where M 2 , a , x, y and w are as described in Formula 1 above.
  • z1 represents the molar ratio of manganese in lithium composite transition metal oxide, 0 ⁇ z1 ⁇ 0.2, 0 ⁇ z1 ⁇ 0.15, or 0.01 ⁇ z1 ⁇ 0.15.
  • z2 represents the molar ratio of aluminum in the lithium composite transition metal oxide, 0 ⁇ z2 ⁇ 0.2, 0 ⁇ z2 ⁇ 0.15, or 0.01 ⁇ z2 ⁇ 0.15.
  • the first cathode active material is formed on the surface of the lithium composite transition metal oxide, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, It may include a coating layer containing at least one element selected from the group consisting of Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta, and S, in this case, a lithium composite transition metal. Gas generation and transition metal elution due to side reactions with the electrolyte can be effectively prevented by blocking contact between the oxide and the electrolyte, and structural deterioration of the first positive electrode active material can be prevented during charging and discharging by stabilizing the surface structure of the lithium composite transition metal oxide.
  • the first positive active material may be formed on the surface of a lithium composite transition metal oxide and include a coating layer containing at least one element selected from the group consisting of Al, Co, and B, in which case lifespan characteristics may be improved. It can be further improved, and the increase in resistance can be further suppressed.
  • the first positive electrode active material is a secondary particle having an average particle diameter (D 50 ) at which the maximum peak appears in the area cumulative particle size distribution of the first positive electrode active material measured by a laser diffraction particle size measuring device.
  • D 50 average particle diameter
  • the number of primary particles measured in the cross-sectional SEM image may be 6 or more and 30 or less.
  • the number of primary particles measured in a cross-sectional SEM image of secondary particles having an average particle diameter (D 50 ) in which the maximum peak of the area cumulative particle size distribution of the first positive electrode active material appears is 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, or 11 or more, and also 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25 or less, 24 or less, 23 or less It may be less than 22, 21 or less, 20 or less, 19 or less, 18 or less, or 17 or less, and within this range, while preventing degradation of capacity characteristics, by mitigating crack generation and particle breakage. , By reducing the surface area exposed after rolling, it is possible to improve long life by lowering the side reaction with the electrolyte.
  • the first positive electrode active material has an average particle diameter (D 50 ) at which the maximum peak of the area cumulative particle size distribution of the first positive electrode active material measured by a laser diffraction particle size measuring device appears (D 50 ), that is, the number of secondary particles
  • the value of 'number of primary particles/average particle diameter (D 50 )' which is the ratio of the number of primary particles measured in the cross-sectional SEM image to the average particle diameter (D 50 ), is 1.0 or more, 1.1 or more, 1.2 or more, 1.3 or more, 1.4 or more, 1.5 or more, 1.6 or more, 1.7 or more, 1.8 or more, 1.9 or more, 2.0 or more, 2.1 or more, 2.2 or more, 2.3 or more, 2.4 or more, or 2.5 or more, and also 15.0 or less, 14.0 or less, 13.0 or less, 12.0 or less, 11.0 or less, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0
  • the second cathode active material may include a lithium composite transition metal oxide represented by Formula 2 below.
  • M 3 may be one or more selected from Mn and Al, and M 4 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F , P, may be at least one selected from the group consisting of Si and S, 0.9 ⁇ a' ⁇ 1.1, 0.8 ⁇ x' ⁇ 1, 0 ⁇ y' ⁇ 0.2, 0 ⁇ z' ⁇ 0.2, 0 ⁇ w' may be ⁇ 0.1.
  • M 3 may include Mn or Mn and Al at the same time.
  • M 4 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si and S It may be one or more selected from the group consisting of, and may include Zr in terms of further improving the structural stability of the lithium composite transition metal oxide.
  • a' represents the molar ratio of lithium in the lithium composite transition metal oxide, 0.9 ⁇ a' ⁇ 1.1, 0.95 ⁇ a' ⁇ 1.08, or 1 ⁇ a' ⁇ 1.08.
  • x' represents the molar ratio of nickel in the lithium composite transition metal oxide, 0.8 ⁇ x' ⁇ 1, 0.80 ⁇ x' ⁇ 0.99, 0.80 ⁇ x' ⁇ It may be 0.95, 0.80 ⁇ x' ⁇ 0.90, or 0.85 ⁇ x' ⁇ 0.90, and the capacitance characteristics may be further improved within this range.
  • y' represents the molar ratio of cobalt in the lithium composite transition metal oxide, 0 ⁇ y' ⁇ 0.2, 0 ⁇ y' ⁇ 0.15 or 0.01 ⁇ y' ⁇ may be 0.10.
  • z' represents the molar ratio of M 3 in lithium composite transition metal oxide, 0 ⁇ z' ⁇ 0.2, 0 ⁇ z' ⁇ 0.15 or 0.01 ⁇ z'. may be ⁇ 0.15.
  • w' represents the molar ratio of M 4 in the lithium composite transition metal oxide, and may be 0 ⁇ w' ⁇ 0.1 or 0 ⁇ w' ⁇ 0.05.
  • the lithium composite transition metal oxide represented by Chemical Formula 2 may be represented by Chemical Formula 2-1 below.
  • M 4 is 1 selected from the group consisting of Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si and S 0.9 ⁇ a' ⁇ 1.1, 0.8 ⁇ x' ⁇ 1, 0 ⁇ y' ⁇ 0.2, 0 ⁇ z1' ⁇ 0.2, 0 ⁇ z2' ⁇ 0.2, 0 ⁇ w' ⁇ 0.1,
  • M 4 , a', x', y' and w' are as described in Formula 1 above.
  • z1' represents the molar ratio of manganese in the lithium composite transition metal oxide, 0 ⁇ z1' ⁇ 0.2, 0 ⁇ z1' ⁇ 0.15, or 0.01 ⁇ z1 ' may be ⁇ 0.15.
  • z2' represents the molar ratio of aluminum in the lithium composite transition metal oxide, 0 ⁇ z2' ⁇ 0.2, 0 ⁇ z2' ⁇ 0.15, or 0.01 ⁇ z2 ' may be ⁇ 0.15.
  • the average particle diameter (D 50 ) of the first positive active material may be smaller than the average particle diameter (D 50 ) of the second positive electrode active material.
  • the number of primary particles measured in the cross-sectional SEM image of the secondary particles having the average particle diameter (D 50 ) in which the maximum peak of the area cumulative particle size distribution of the first positive electrode active material measured by the laser diffraction particle size measuring device appears is By including the first positive electrode active material in a monolith-lke form as small particles having a large grain size of 6 or more and 30 or less, it is possible to alleviate crack generation and particle breakage, and to By reducing the surface area, it is possible to improve long life by lowering the side reaction with the electrolyte.
  • the first cathode active material may have an average particle diameter (D 50 ) of 2 ⁇ m or more and 7 ⁇ m or less, and in specific examples, 2 ⁇ m or more, 2.5 ⁇ m or more, 3 ⁇ m or more, or 3.5 ⁇ m or more. , or 4 ⁇ m or more, and may also be 7 ⁇ m or less, 6.5 ⁇ m or less, 6 ⁇ m or less, 5.5 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less.
  • D 50 average particle diameter
  • the second cathode active material may have an average particle diameter (D 50 ) of greater than 7 ⁇ m and less than or equal to 20 ⁇ m, and specific examples include 7.5 ⁇ m or more, 8 ⁇ m or more, 8.5 ⁇ m or more, 9 ⁇ m or more, 9.5 ⁇ m or more, or 10 ⁇ m or more. ⁇ m or less, and may also be 20 ⁇ m or less, 19 ⁇ m or less, 18 ⁇ m or less, 17 ⁇ m or less, 16 ⁇ m or less, 15 ⁇ m or less, 14 ⁇ m or less, 13 ⁇ m or less, 12 ⁇ m or less, or 11 ⁇ m or less there is.
  • a positive electrode with a high packing density can be manufactured by filling the first positive electrode active material between particles of the second positive electrode active material, and capacity characteristics can be further improved by including the second positive electrode active material in a large particle size. there is.
  • the positive electrode material includes the first positive electrode active material and the second positive electrode active material in a weight ratio of 1:99 to 50:50, 10:90 to 40:60, or 10:90 to 30:70.
  • a weight ratio of 1:99 to 50:50, 10:90 to 40:60, or 10:90 to 30:70.
  • a small particle size positive electrode active material having a small average particle size is a large particle size positive electrode having a large average particle size
  • An electrode having high energy density can be manufactured by being filled between active material particles.
  • particle breakage occurs in the small-diameter positive electrode active material particles during the positive electrode rolling process, which widens the contact area with the electrolyte, thereby increasing gas generation and deteriorating lifespan characteristics.
  • the positive electrode material according to the present invention includes the first positive electrode active material and the second positive electrode active material in a bimodal form, thereby mitigating crack generation and particle breakage from the first positive electrode active material, and reducing the surface area exposed after rolling. It is possible to further improve the capacity characteristics of the second positive electrode active material while improving the long lifespan by lowering the side reaction with the electrolyte.
  • the positive electrode material may include the first positive electrode active material and the second positive electrode active material in a bimodal form, so that the particle size change calculated by Equation 1 below is 6.0 or less.
  • Equation 1 P 0 is the intensity of the maximum peak appearing in the area cumulative particle size distribution graph of the cathode material, and P 1 is the area cumulative particle size distribution graph measured after pressurizing the cathode material with 9 tons. This is the intensity of a peak appearing in a region corresponding to the particle diameter of the P 0 peak.
  • the positive electrode material has a particle size change calculated by Equation 1 of 6.0 or less, 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less, or 5.1 5.0 or less, 4.9 or less, 4.8 or less, 4.7 or less, or 4.6 or less, and may also be 0 or more, 0.5 or more, 1.0 or more, 1.5 or more, 2.0 or more, 2.5 or more, 3.0 or more, 3.5 or more, or 4.0 or more. Within this range, generation of cracks and particle breakage due to rolling during manufacturing of the anode can be alleviated.
  • the present invention provides a cathode material manufacturing method for manufacturing the cathode material.
  • the cathode material manufacturing method includes mixing a cathode active material precursor represented by the following Chemical Formula 3 and a lithium raw material, and then performing primary firing to form a plastic product (S10); Forming a first positive electrode active material including a lithium composite transition metal oxide represented by Formula 1 below by secondarily firing the plastic product at a temperature of higher than 850° C. and lower than 890° C. (S20); and mixing the first positive electrode active material with a second positive electrode active material having a different average particle diameter (D 50 ) from that of the first positive electrode active material (S30).
  • M 1 may be one or more selected from Mn and Al
  • M 2 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F , P, may be at least one selected from the group consisting of Si and S, and may be 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1 .
  • Chemical Formula 1 may be the same as described above.
  • M 1 may be one or more selected from Mn and Al
  • M 2 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F , P, may be at least one selected from the group consisting of Si and S, and may be 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1.
  • M 1 may include Mn or Mn and Al at the same time.
  • M 2 is Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si and S It may be one or more selected from the group consisting of.
  • x represents the molar ratio of nickel in the cathode active material precursor, 0.7 ⁇ x ⁇ 1, 0.80 ⁇ x ⁇ 0.99, 0.80 ⁇ x ⁇ 0.95, 0.80 ⁇ x ⁇ It may be 0.90 or 0.80 ⁇ x ⁇ 0.85, and the capacity characteristics may be further improved within this range.
  • y represents the molar ratio of cobalt in the positive electrode active material precursor, and may be 0 ⁇ y ⁇ 0.2, 0 ⁇ y ⁇ 0.15, or 0.01 ⁇ y ⁇ 0.10.
  • z represents the molar ratio of M 1 in the positive electrode active material precursor, and may be 0 ⁇ z ⁇ 0.2, 0 ⁇ z ⁇ 0.15, or 0.01 ⁇ z ⁇ 0.15.
  • w represents the molar ratio of M 2 in the cathode active material precursor, and may be 0 ⁇ w ⁇ 0.1 or 0 ⁇ w ⁇ 0.05.
  • the cathode active material precursor represented by Chemical Formula 3 may be represented by Chemical Formula 3-1 below.
  • the lithium source material may be a lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxyhydroxide, etc., for example, Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , Li 3 C 6 H 5 O 7 or mixtures thereof this can be used
  • the lithium source material and the cathode active material precursor may be mixed so that the molar ratio of Li: the total transition metal in the precursor is 1: 1 to 1.2: 1, or 1: 1 to 1.1: 1, ,
  • the combination ratio satisfies the above range, the crystal structure of the positive electrode active material is well developed, so that a positive electrode active material having excellent capacity characteristics and structural stability can be manufactured.
  • M 1 -containing raw material is at least one selected from Mn and Al
  • M 2 -containing raw material Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si, and at least one member selected from the group consisting of S.
  • a mixture thereof is further mixed.
  • M 1 -containing raw material is at least one selected from Mn and Al
  • M 2 -containing raw material M 2 is Zr, B , W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si, and at least one member selected from the group consisting of S.
  • a mixture thereof is further mixed.
  • the M 1 -containing raw material may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing the element M 1 , and specific examples include Mn 2 O 3 , MnO 2 , Mn 3 O 4 , MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, manganese chloride, manganese hydroxide, Al 2 O 3 , Al(OH) 3 , Al(NO 3 ) 3 9H 2 O, Al 2 (SO 4 ) 3 and the like.
  • the M 2 -containing raw material may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing the element M 2 .
  • the M 1 element and the M 2 element are, if necessary, added in the co-precipitation reaction step for preparing the cathode active material precursor, added during mixing with the lithium raw material, or first calcined before the second calcined It can be injected by mixing with the character.
  • input times of the M 1 element and the M 2 element may be the same or different.
  • M 1 element includes Mn and Al
  • Mn is added to the precursor co-precipitation step, and Al is mixed with the lithium raw material or mixed with the first fired plastic product before the second firing.
  • the input timing of the element M 1 and the element M 2 may be appropriately adjusted in consideration of the final composition of the cathode active material to be manufactured.
  • the mixing step with the lithium raw material rather than the co-precipitation reaction of the Al element, or the first fired plastic product before the second firing It can be added in the step of mixing with, and in this case, it is possible to prevent the adverse effect of crystal structure growth by Al in the co-precipitation step.
  • the (S10) step is to mix the cathode active material precursor and the lithium raw material, mix the M 1 -containing raw material and/or M 2 -containing raw material as necessary, and then first sinter to obtain a plastic product It may be a step for preparing.
  • the primary firing of the step (S10) is to remove by-products such as CO 2 or moisture generated during firing by calcining the cathode active material precursor and the lithium raw material in advance, so that the by-products form the cathode This may be performed to prevent adverse effects on the formation of the crystal structure of the active material and to manufacture a positive electrode active material of excellent quality.
  • the first firing of the step (S10) may be performed at a lower temperature than the second firing described below, and specific examples include 600 ° C. or higher, 610 ° C. or higher, 620 ° C. or higher, 630 ° C. It can be carried out at a temperature of 640 ° C or more, and also less than 800 ° C, 790 ° C or less, 780 ° C or less, 770 ° C or less, 760 ° C or less, 750 ° C or less, 740 ° C or less, 730 ° C or less, 720 ° C or less, It can be carried out at a temperature of 710 ° C. or less, or 700 ° C. or less, and effectively removes by-products within this range, and at the same time prevents crystal structure transformation in the first firing step in which by-products exist to develop the crystal structure according to the purpose. can
  • the step (S20) may be a step for forming the first positive electrode active material including the lithium composite transition metal oxide represented by Chemical Formula 1 by secondarily firing the plastic product.
  • the secondary firing of the step (S20) is more than 850 °C, 851 °C or more, 852 °C or more, 853 °C or more, 854 °C or more, 855 °C or more, 860 °C or more, 865 °C or more .
  • the number of primary particles measured in the cross-sectional SEM image of the secondary particles having may be adjusted to be 6 or more and 30 or less.
  • the cathode material manufacturing method includes washing the lithium composite transition metal oxide represented by Chemical Formula 1 with water after the secondary firing of the step (S20) and before performing the step (S30). A step S21 may be further included.
  • the step (S21) is for removing lithium by-products remaining on the surface of the lithium composite transition metal oxide, and may be performed through a method for washing the cathode active material known in the art.
  • the step (S21) may be performed by mixing the lithium composite transition metal oxide and the washing solution, stirring, filtering to remove the washing solution, and then drying. At this time, the drying may be performed at a temperature of 50 °C or more and 150 °C or less.
  • the cathode material manufacturing method if necessary, after the secondary firing of the step (S20) and before performing the step (S30), the lithium composite transition metal represented by Formula 1 A step of forming a coating layer on the surface of the oxide (S22) may be further included.
  • the (S22) step is the lithium composite transition metal oxide represented by Formula 1 and Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V , Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta and S
  • the coating raw material may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing the above elements.
  • the heat treatment in step (S22) may be performed at a temperature of 200 ° C or more and 700 ° C or less, 200 ° C or more and 500 ° C or less, or 240 ° C or more and 400 ° C or less.
  • the cathode material manufacturing method after the secondary firing of the step (S20) and before performing the step (S30), according to the step (S21) or the step (S22) Any one step may be performed, or both of the steps (S21) and (S22) may be performed.
  • the step (S30) is to finally obtain a positive electrode material by mixing the first positive electrode active material and the second positive electrode active material having a different average particle diameter (D 50 ) from the first positive electrode active material.
  • the second cathode active material may be the same as described above.
  • the first positive electrode active material and the second positive electrode active material may be mixed in the weight ratio described above according to the purpose of the present invention.
  • the present invention provides a positive electrode including the positive electrode active material.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material layer may include the positive electrode material.
  • the cathode current collector may include a highly conductive metal, and the cathode active material layer is easily adhered to, but is not particularly limited as long as it is non-reactive within the voltage range of the battery.
  • the cathode current collector may be, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver.
  • the cathode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and adhesion of the cathode active material may be increased by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the positive electrode active material layer may optionally include a conductive material and a binder together with the positive electrode material, if necessary.
  • the cathode material may be included in an amount of 80 wt% to 99 wt%, more specifically, 85 wt% to 98.5 wt%, based on the total weight of the cathode active material layer, and excellent capacity characteristics may be exhibited within this range.
  • the conductive material is used to impart conductivity to the electrode, and any material having electronic conductivity without causing chemical change in the battery may be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive tubes such as carbon nanotubes; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 0.1 wt% to 15 wt% based on the total weight of the cathode active material layer.
  • the binder serves to improve the adhesion between the cathode material particles and the adhesion between the cathode material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylalcohol, polyacrylonitrile, and polymethyl methacrylate.
  • Polymethymethaxrylate carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene- Diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, polyacrylic acid, and polymers in which hydrogen is substituted with Li, Na, or Ca, or various copolymers thereof and a combination thereof, and one of these may be used alone or in a mixture of two or more.
  • the binder may be included in an amount of 0.1 wt% to 15 wt% based on the total weight of the cathode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode material.
  • the positive electrode is coated with a composition for forming a positive electrode active material layer prepared by dissolving or dispersing the positive electrode material and optionally a binder, a conductive material, and a dispersant in a solvent on a positive electrode current collector, followed by drying.
  • a composition for forming a positive electrode active material layer prepared by dissolving or dispersing the positive electrode material and optionally a binder, a conductive material, and a dispersant in a solvent on a positive electrode current collector, followed by drying.
  • it can be prepared by rolling, or by casting the composition for forming the positive active material layer on a separate support, and then laminating a film obtained by peeling from the support on a positive current collector.
  • the solvent may be a solvent commonly used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), dimethylformamide (DMF), acetone, or water, and the like, and one of them alone or a mixture of two or more may be used.
  • the amount of the solvent is used to dissolve or disperse the positive electrode material, conductive material, binder, and dispersant in consideration of the coating thickness and manufacturing yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity during coating for manufacturing the positive electrode Enough is enough.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the lithium secondary battery includes the positive electrode; cathode; It may include a separator and an electrolyte interposed between the positive electrode and the negative electrode.
  • the lithium secondary battery may optionally further include a battery container accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery container.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • copper, stainless steel, aluminum, nickel, titanium, sintering Surface treatment of carbon, copper or stainless steel with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. may be used.
  • the anode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and like the cathode current collector, fine irregularities may be formed on the surface of the current collector to enhance bonding strength of the negative electrode active material.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the negative active material layer may optionally include a binder and a conductive material together with the negative active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the anode active material.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metallic compounds capable of being alloyed with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys, or Al alloys; metal oxides capable of doping and undoping lithium, such as SiO ⁇ (0 ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; or a composite including the metallic compound and the carbonaceous material, such as a Si—C composite or a Sn—C composite, and any one or a mixture of two or more of these may be used.
  • a metal lithium thin film may be used as the anode active material.
  • both low crystalline carbon and high crystalline carbon may be used. Soft carbon and hard carbon are typical examples of low crystalline carbon.
  • High crystalline carbon includes amorphous, platy, scaly, spherical or fibrous natural graphite, artificial graphite, and kish graphite. graphite, pyrolytic carbon, mesophase pitch based carbonfiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived High-temperature calcined carbon such as cokes is representative.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the negative active material layer.
  • the binder of the negative active material layer is a component that assists in the bonding between the conductive material, the active material and the current collector, and is typically 0.1% to 10% by weight based on the total weight of the negative active material layer.
  • binders are polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetra fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluororubber various copolymers thereof, and the like.
  • the conductive material of the negative electrode active material layer is a component for further improving the conductivity of the negative electrode active material, and is 10% by weight or less, preferably 5% by weight or less based on the total weight of the negative electrode active material layer. may be added.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; fluorinated carbon; metal powders such as aluminum and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the negative electrode is prepared by applying a composition for forming a negative electrode active material layer prepared by dissolving or dispersing a negative active material, and optionally a binder and a conductive material in a solvent on a negative electrode current collector and drying it, Alternatively, it may be prepared by casting the composition for forming the negative electrode active material layer on a separate support and then laminating a film obtained by peeling from the support on the negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for the movement of lithium ions, and can be used without particular limitation as long as it is normally used as a separator in a lithium secondary battery.
  • ion movement of the electrolyte It is preferable to have low resistance and excellent ability to absorb electrolyte.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • the electrolyte includes an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in manufacturing a lithium secondary battery, It is not limited to these.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylenecarbonate (EC), propylene carbonate (PC) ) carbonate-based solvents such as; alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a straight-chain,
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonates eg, ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate is more preferable.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF
  • the concentration of the lithium salt is preferably used within the range of 0.1 M to 2.0 M.
  • the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • the electrolyte in addition to the above electrolyte constituents, for the purpose of improving life characteristics of a battery, suppressing battery capacity decrease, and improving battery discharge capacity, for example, halo such as difluoroethylene carbonate, etc.
  • Alkylene carbonate compounds pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli
  • One or more additives such as dinon, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1% to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent capacity characteristics, output characteristics, and life characteristics, mobile phones, notebook computers, portable devices such as digital cameras, hybrid electric vehicles (hybrid electric vehicles), HEV), electric vehicle (EV), etc. are useful in the field of electric vehicles.
  • the appearance of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch shape, or a coin shape.
  • the lithium secondary battery according to the present invention can be used not only as a battery cell used as a power source for a small device, but also can be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for one or more medium or large-sized devices among power storage systems.
  • Power Tool power tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • ZrO 2 was further mixed, and calcined at 640° C. for 5 hours to prepare a plastic product.
  • ZrO 2 was mixed so that Zr was 1,000 ppm based on the total weight of the plastic product.
  • the calcined product was secondarily calcined at 880° C. for 6 hours to prepare a lithium composite transition metal oxide including Zr, LiNi 0.83 Co 0.05 Mn 0.12 O 2 .
  • a positive electrode material was prepared by mixing the prepared positive electrode active material and a positive electrode active material having an average particle diameter (D 50 ) of 10 ⁇ m and having LiNi 0.86 Co 0.05 Mn 0.07 Al 0.02 O 2 in a weight ratio of 2:8.
  • ZrO 2 was further mixed, and calcined at 640° C. for 5 hours to prepare a plastic product.
  • ZrO 2 was mixed so that Zr was 1,000 ppm based on the total weight of the plastic product.
  • Al(OH) 3 is further mixed with the plastic product to have 600 ppm of Al based on the weight of the plastic product, and then secondary firing at 880 ° C. for 6 hours to convert lithium composite containing Zr and Al
  • a metal oxide LiNi 0.83 Co 0.05 Mn 0.12 O 2 was prepared.
  • a positive electrode material was prepared by mixing the prepared positive electrode active material and a positive electrode active material having an average particle diameter (D 50 ) of 10 ⁇ m and having LiNi 0.86 Co 0.05 Mn 0.07 Al 0.02 O 2 in a weight ratio of 2:8.
  • Example 1 a positive electrode material was prepared in the same manner as in Example 1, except that the secondary firing was performed at 800 ° C.
  • Example 1 a positive electrode material was prepared in the same manner as in Example 1, except that the secondary firing was performed at 840 ° C.
  • Example 1 a positive electrode material was prepared in the same manner as in Example 1, except that the secondary firing was performed at 900 ° C.
  • the average particle diameter (D 50 ) of the first positive electrode active material particles means the average particle diameter of the secondary particles.
  • FIG. 1 A cross-sectional SEM image of a sample taken from the positive electrode active material powder of Example 1 is shown in FIG. 1, and a cross-sectional SEM image of a sample taken from the positive electrode active material powder of Comparative Example 1 is shown in FIG. 2, and the positive electrode active material of Comparative Example 2 is shown in FIG.
  • FIG. 3 A cross-sectional SEM image of a sample taken from the powder is shown in FIG. 3 , and a cross-sectional SEM image of a sample taken from the cathode active material powder of Comparative Example 3 is shown in FIG. 4 .
  • the first positive electrode active material prepared in Examples 1 and 2 according to the present invention shows a cross-sectional SEM image of secondary particles having an average particle diameter (D 50 ) of secondary particles. While the number of primary particles is shown in the range limited by the present invention, in the case of Comparative Examples 1 and 2, it exceeded the upper limit of 30, and in the case of Comparative Example 3, it was confirmed that it did not reach the lower limit of 6. there was.
  • the positive electrode material powder was collected and pressed at a pressure of 9 tons, and then the pressed positive electrode material powder was added in water to which a small amount of sodium hexametaphosphate ((NaPO 3 ) 6 ) was added. After dispersing, the area cumulative particle size distribution of the positive electrode material after 9-ton press was measured using a laser diffraction particle size measuring device (S-3500 manufactured by Microtrac).
  • Equation 1 P 0 is the intensity of the maximum peak appearing in the area cumulative particle size distribution graph of the cathode material, and P 1 is the area cumulative particle size distribution graph measured after pressurizing the cathode material with 9 tons. This is the intensity of a peak appearing in a region corresponding to the particle diameter of the P 0 peak.
  • Example 5 is a graph showing the area cumulative particle size distribution of the positive electrode material powders of Example 1 and Comparative Example 1 before and after pressing.
  • NMP N-methyl-2-pyrrolidone
  • a negative electrode slurry was prepared by mixing natural graphite and artificial graphite as negative electrode active materials, carbon black as a conductive material, and SBR and CMC as binders in water at a weight ratio of 95:1.5:3.5.
  • the negative electrode slurry was coated on a copper current collector, dried, and then rolled to prepare a negative electrode.
  • An electrode assembly was prepared by interposing a separator between the positive electrode and the negative electrode, and then placed inside the battery case, and then an electrolyte was injected to prepare a monocell.
  • an electrolyte solution in which 0.7M LiPF 6 and 0.3M LiFSI were dissolved in an organic solvent in which ethylene carbonate: ethylmethyl carbonate: diethyl carbonate was mixed in a volume ratio of 3: 3: 4 was used, and the electrode 100 ⁇ l per injection. Formation was performed on the manufactured monocell, and an initial gas was removed to prepare a monocell for high-temperature life evaluation.
  • the prepared monocell was charged with a constant current of 0.33C and discharged with a constant current of 0.33C at 25 °C to measure initial capacity and resistance. After that, charging and discharging at 0.33C constant current in a 45 ° C chamber and discharging at 0.33 C constant current were performed as one cycle, and charging and discharging were continuously performed in a 25 ° C chamber every 100 cycles.
  • the capacity retention rate and the resistance increase rate compared to the initial capacity and resistance were measured and are shown in Table 3 below.
  • FIG. 6 A graph showing the capacity retention rate and the resistance increase rate for the monocells including the positive electrode materials of Examples 1 and 2 and Comparative Examples 1 to 3 is shown in FIG. 6 .
  • Example 1 94.13 27.19 91.77 37.21 88.87 47.18
  • Example 2 94.36 35.68 91.97 49.45 88.67 61.57
  • Comparative Example 1 93.63 44.36 89.60 64.90 84.57 80.12
  • Comparative Example 2 93.60 45.33 88.55 61.41
  • Comparative Example 3 93.54 47.18 90.71 56.96 80.12 86.35
  • the monocells including the positive electrode materials prepared in Examples 1 and 2 according to the present invention show a small decrease in capacity retention rate and a reduced resistance increase rate as the number of cycles increases.
  • the number of primary particles in the cross-sectional SEM image of the secondary particles having the average particle diameter (D 50 ) of the secondary particles is adjusted to the range limited by the present invention, so that the positive electrode material shows a small change in particle size, and accordingly cracks and This is attributable to reducing side reactions with the electrolyte by reducing the surface area exposed after rolling by mitigating particle breakage.
  • the positive electrode material of the present invention includes a lithium composite transition metal oxide of high content nickel (High-Ni) to ensure high capacity, while mitigating crack generation and particle breakage, thereby reducing the surface area exposed after rolling. , it was confirmed that the long-term lifespan can be improved by lowering the side reaction with the electrolyte.
  • High-Ni high content nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 양극재에 관한 것으로, 평균입경(D50)이 서로 상이한 제1 양극 활물질 및 제2 양극 활물질을 포함하는 바이모달 입도 분포를 갖는 양극재이고, 상기 제1 양극 활물질은 리튬 복합 전이금속 산화물을 포함하며, 레이저 회절 입도 측정 장치를 통해 측정한 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 6 개 이상 30 개 이하인 것인 양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지에 관한 것이다.

Description

양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지
[관련출원과의 상호인용]
본 발명은 2021년 8월 25일에 출원된 한국 특허 출원 제10-2021-0112328호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 평균입경(D50)이 서로 상이한 양극 활물질을 포함하는 바이모달 입도 분포를 갖는 양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자 기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 이 중에서도 리튬 코발트 산화물(LiCoO2)은 작동 전압이 높고 용량 특성이 우수한 장점이 있어, 널리 사용되고 있으며, 고전압용 양극 활물질로 적용되고 있다. 그러나, 코발트(Co)의 가격 상승 및 공급 불안정 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에 한계가 있어, 이를 대체할 수 있는 양극 활물질 개발의 필요성이 대두되었다.
이에 따라, 코발트(Co)의 일부를 니켈(Ni)과 망간(Mn)으로 치환한 니켈코발트망간계 리튬 복합 전이금속 산화물(이하, 간단히 'NCM계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다. 그러나, 종래 개발된 NCM계 리튬 복합 전이금속 산화물은 일반적으로 1차 입자가 응집된 2차 입자 형태로서, 비표면적이 크고, 입자 강도가 낮으며, 리튬 부산물의 함량이 높기 때문에 셀 구동시 가스 발생량이 많고, 안정성이 떨어지는 문제가 있었다. 이와 같이 종래 개발된 NCM계 리튬 복합 전이금속 산화물은 안정성이 확보되지 않아 특히, 고전압 전지에 적용하기에 한계가 있었다. 또한, 전극의 단위 부피당 용량을 증가시키기 위해서는 압연 밀도를 증가시킬 필요가 있는데, 종래 개발된 NCM계 리튬 복합 전이금속 산화물은 압연 시 입자 깨짐 발생이 심해 저항이 증가하고, 가스가 발생하는 문제가 있었다.
특히, 고용량 확보를 위해 니켈(Ni)의 함량을 증가시킨 고함량 니켈(High-Ni)의 NCM계 리튬 복합 전이금속 산화물의 경우, 구조적 및 화학적 안정성이 더욱 저하되고, 열 안정성 확보가 더욱 어렵다. 더욱이, 이러한 고함량 NCM계 리튬 복합 전이금속 산화물은 압연 후 입자 깨짐이 발생하는 현상에 의해 장기 수명이 저하되는 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR 10-2014-0018685 A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 고함량 니켈(High-Ni)의 리튬 복합 전이금속 산화물을 포함하는 양극재의 크랙 발생 및 입자 깨짐이 개선된 양극재를 제공하는 것을 목적으로 한다.
또한, 본 발명은 양극재의 크랙 발생 및 입자 깨짐을 완화함으로써, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명이 개선된 양극재 및 이의 제조방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 양극재, 양극재 제조방법, 양극 및 리튬이차전지를 제공한다.
(1) 본 발명은 평균입경(D50)이 서로 상이한 제1 양극 활물질 및 제2 양극 활물질을 포함하는 바이모달 입도 분포를 갖는 양극재이고, 상기 제1 양극 활물질은 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 포함하며, 상기 제1 양극 활물질은 레이저 회절 입도 측정 장치를 통해 측정한 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 6 개 이상 30 개 이하인 것인 양극재를 제공한다.
[화학식 1]
LiaNixCoyM1 zM2 wO2
상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이다.
(2) 본 발명은 상기 (1)에 있어서, 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물은 하기 화학식 1-1로 표시되는 것인 양극재를 제공한다.
[화학식 1-1]
LiaNixCoyMnzM2 wO2
상기 화학식 1-1에서, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이고, 0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 제1 양극 활물질은 리튬 복합 전이금속 산화물의 표면에 형성되며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함하는 것인 양극재를 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 제2 양극 활물질은 하기 화학식 2로 표시되는 리튬 복합 전이금속 산화물을 포함하는 것인 양극재를 제공한다.
[화학식 2]
Lia'Nix'Coy'M3 z'M4 w'O2
상기 화학식 2에서, M3은 Mn 및 Al으로부터 선택되는 1종 이상이며, M4는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이고, 0.9≤a'≤1.1, 0.8≤x'<1, 0<y'<0.2, 0<z'<0.2, 0≤w'≤0.1이다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 제1 양극 활물질의 평균입경(D50)은 제2 양극 활물질의 평균입경(D50) 보다 작은 것인 양극재를 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 제1 양극 활물질은 평균입경(D50)이 2 ㎛ 이상 7 ㎛ 이하인 것인 양극재를 제공한다.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 제2 양극 활물질은 평균입경(D50)이 7 ㎛ 초과 20 ㎛ 이하인 것인 양극재를 제공한다.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 양극재는 하기 수학식 1로 계산되는 입도 변화량이 6.0 이하인 양극재를 제공한다.
[수학식 1]
입도 변화량 = P0 - P1
상기 수학식 1에서, P0는 상기 양극재의 면적 누적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며, P1은 상기 양극재를 9톤으로 가압한 후 측정한 면적 누적 누적 입도 분포 그래프에서 상기 P0 피크의 입경에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
(9) 본 발명은 하기 화학식 3으로 표시되는 양극 활물질 전구체 및 리튬 원료 물질을 혼합한 후 1차 소성하여 가소성품을 형성하는 단계(S10); 상기 가소성품을 850 ℃ 초과 890 ℃ 이하의 온도로 2차 소성하여 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 포함하는 제1 양극 활물질을 형성하는 단계(S20); 및 상기 제1 양극 활물질과, 제1 양극 활물질과는 평균입경(D50)이 상이한 제2 양극 활물질을 혼합하는 단계(S30)를 포함하는 양극재 제조방법을 제공한다.
[화학식 1]
LiaNixCoyM1 zM2 wO2
상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이고,
[화학식 3]
[NixCoyM1 zM2 w](OH)2
상기 화학식 3에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.7≤x<1, 0<y≤0.2, 0≤z≤0.2, 0≤w≤0.1이다.
(10) 본 발명은 상기 (9)에 있어서, 상기 화학식 3으로 표시되는 양극 활물질 전구체는 하기 화학식 3-1로 표시되는 것인 양극재 제조방법을 제공한다.
[화학식 3-1]
[NixCoyMnz](OH)2
상기 화학식 3-1에서, 0.7≤x<1, 0<y≤0.2, 0≤z≤0.2이다.
(11) 본 발명은 상기 (9) 또는 (10)에 있어서, 상기 (S10) 단계의 1차 소성 시, M1 함유 원료(M1은 Mn 및 Al으로부터 선택되는 1종 이상), M2 함유 원료(M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이다.) 또는 이들의 혼합물을 추가로 혼합하는 것인 양극재 제조방법을 제공한다.
(12) 본 발명은 상기 (9) 내지 (11) 중 어느 하나에 있어서, 상기 (S20) 단계의 2차 소성 시, M1 함유 원료(M1은 Mn 및 Al으로부터 선택되는 1종 이상), M2 함유 원료(M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이다.) 또는 이들의 혼합물을 추가로 혼합하는 것인 양극재 제조방법을 제공한다.
(13) 본 발명은 상기 (9) 내지 (12) 중 어느 하나에 있어서, 상기 (S10) 단계의 1차 소성은 600 ℃ 이상 800 ℃ 미만의 온도로 수행되는 것인 양극재 제조방법을 제공한다.
(14) 본 발명은 상기 (9) 내지 (13) 중 어느 하나에 있어서, 상기 (S20) 단계의 2차 소성 후, 상기 (S30) 단계를 수행하기 전에, 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 수세하는 단계(S21); 및 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물과 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅 원료 물질을 혼합한 후 열처리하여 코팅층을 형성하는 단계(S22) 중 적어도 하나의 단계를 추가로 실시하는 것인 양극재 제조방법을 제공한다.
(15) 본 발명은 상기 (14)에 있어서, 상기 (S22) 단계에서 열처리는 200 ℃ 이상 700 ℃ 이하의 온도로 수행되는 것인 양극재 제조방법을 제공한다.
(16) 본 발명은 상기 (1) 내지 (8) 중 어느 하나에 따른 양극재를 포함하는 양극을 제공한다.
(17) 본 발명은 상기 (16)에 따른 양극; 음극; 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 리튬이차전지를 제공한다.
본 발명의 양극재는 고함량 니켈(High-Ni)의 리튬 복합 전이금속 산화물을 포함하여 고용량 확보가 가능하면서도, 크랙 발생 및 입자 깨짐을 완화함으로써, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명을 개선할 수 있다.
도 1은 실시예 1에서 제조된 제1 양극 활물질 입자의 단면 SEM(Scanning Electron Microscope) 이미지이다.
도 2는 비교예 1에서 제조된 제1 양극 활물질 입자의 단면 SEM(Scanning Electron Microscope) 이미지이다.
도 3은 비교예 2에서 제조된 제1 양극 활물질 입자의 단면 SEM(Scanning Electron Microscope) 이미지이다.
도 4은 비교예 3에서 제조된 제1 양극 활물질 입자의 단면 SEM(Scanning Electron Microscope) 이미지이다.
도 5는 실시예 1 및 비교예 1에서 제조된 양극재 분말의 9톤 프레스 전 및 후의 입도 분포를 나타낸 그래프이다.
도 6은 실시예 1, 2 및 비교예 1 내지 3에서 제조된 양극재를 포함하는 모노셀의 45 ℃에서의 용량 유지율 및 저항 증가율을 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 용어 '1차 입자'는 주사전자현미경(SEM)을 통해 양극 활물질의 단면을 관찰하였을 때 1개의 덩어리로 구별되는 최소 입자 단위를 의미하는 것으로, 복수개의 결정립으로 이루어질 수 있다.
본 발명에서 용어 '2차 입자'는 복수 개의 1차 입자가 응집되어 형성되는 2차 구조체를 의미한다. 상기 2차 입자의 평균입경은 입도 분석기를 이용하여 측정될 수 있다.
본 발명에서 용어 '입경(Dn)'은 입경에 따른 면적 누적 분포의 n % 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 면적 누적 분포의 50 % 지점에서의 입경이며, D90은 입경에 따른 면적 누적 분포의 90 % 지점에서의 입경을, D10은 입경에 따른 면적 누적 분포의 10 % 지점에서의 입경이다. 상기 Dn은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저 빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 면적 누적 분포의 10 %, 50 % 및 90 %가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
본 발명에서 용어 '평균입경(D50)'은 상기 레이저 회절 입도 측정 장치를 통해 측정한 면적 누적 입도 분포의 최대 피크가 나타나는 지점인 50 % 지점에서의 입경을 의미한다.
양극재
본 발명은 양극재를 제공한다.
본 발명의 일 실시예에 따르면, 상기 양극재는 평균입경(D50)이 서로 상이한 제1 양극 활물질 및 제2 양극 활물질을 포함하는 바이모달 입도 분포를 갖는 양극재이고, 상기 제1 양극 활물질은 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 포함하며, 상기 제1 양극 활물질은 레이저 회절 입도 측정 장치를 통해 측정한 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 6 개 이상 30 개 이하인 것인 일 수 있다.
[화학식 1]
LiaNixCoyM1 zM2 wO2
상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상일 수 있고, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1일 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극재는 상기 제1 양극 활물질을 포함함으로써, 고함량 니켈(High-Ni)의 리튬 복합 전이금속 산화물을 포함하여 고용량 확보가 가능하면서도, 크랙 발생 및 입자 깨짐을 완화함으로써, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명을 개선할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, M1은 Mn, 또는 Mn과 Al을 동시에 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 리튬 복합 전이금속 산화물의 구조 안정성을 더욱 향상시키는 측면에서 Zr를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 a는 리튬 복합 전이금속 산화물 내 리튬의 몰비를 나타내는 것으로, 0.9≤a≤1.1, 0.95≤a≤1.08, 또는 1≤a≤1.08일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 x는 리튬 복합 전이금속 산화물 내 니켈의 몰비를 나타내는 것으로, 0.7≤x<1, 0.80≤x≤0.99, 0.80≤x≤0.95, 0.80≤x≤0.90, 또는 0.80≤x≤0.85일 수 있고, 이 범위 내에서 용량 특성을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 y는 리튬 복합 전이금속 산화물 내 코발트의 몰비를 나타내는 것으로, 0<y≤0.2, 0<y≤0.15 또는 0.01≤y≤0.10일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 z는 리튬 복합 전이금속 산화물 내 M1의 몰비를 나타내는 것으로, 0<z≤0.2, 0<z≤0.15 또는 0.01≤z≤0.15일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 w는 리튬 복합 전이금속 산화물 내 M2의 몰비를 나타내는 것으로, 0≤w≤0.1, 또는 0≤w≤0.05일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물은 하기 화학식 1-1로 표시되는 것일 수 있다.
[화학식 1-1]
LiaNixCoyMnzM2 wO2
상기 화학식 1-1에서, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1일 수 있고, 여기서, M2, a, x, y, z 및 w는 앞서 화학식 1에서 기재한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물은 하기 화학식 1-2로 표시되는 것일 수 있다.
[화학식 1-2]
LiaNixCoyMnz1Alz2M2 wO2
상기 화학식 1-2에서, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z1≤0.2, 0<z2≤0.2, 0≤w≤0.1일 수 있고, 여기서, M2, a, x, y 및 w는 앞서 화학식 1에서 기재한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 화학식 1-2에서, 상기 z1은 리튬 복합 전이금속 산화물 내 망간의 몰비를 나타내는 것으로, 0<z1≤0.2, 0<z1≤0.15 또는 0.01≤z1≤0.15일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1-2에서, 상기 z2는 리튬 복합 전이금속 산화물 내 알루미늄의 몰비를 나타내는 것으로, 0<z2≤0.2, 0<z2≤0.15 또는 0.01≤z2≤0.15일 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 양극 활물질은 리튬 복합 전이금속 산화물의 표면에 형성되며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함하는 것일 수 있고, 이 경우, 리튬 복합 전이금속 산화물과 전해액의 접촉을 차단하여 전해액과 부반응에 의한 가스 발생 및 전이금속 용출을 효과적으로 억제할 수 있고, 리튬 복합 전이금속 산화물의 표면 구조를 안정화하여 충방전 시 제1 양극 활물질의 구조 퇴화를 방지할 수 있다. 구체적인 예로, 상기 제1 양극 활물질은 리튬 복합 전이금속 산화물의 표면에 형성되며, Al, Co 및 B로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함하는 것일 수 있고, 이 경우 수명 특성을 더욱 향상시킬 수 있고, 저항 증가를 더욱 억제할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 양극 활물질은 레이저 회절 입도 측정 장치를 통해 측정한 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 6 개 이상 30 개 이하인 것인 일 수 있다. 구체적인 예로, 상기 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 측정되는 1차 입자의 개수는 6 개 이상, 7 개 이상, 8 개 이상, 9 개 이상, 10 개 이상, 또는 11 개 이상일 수 있고, 또한, 30 개 이하, 29 개 이하, 28 개 이하, 27 개 이하, 26 개 이하, 25 개 이하, 24 개 이하, 23 개 이하, 22 개 이하, 21 개 이하, 20 개 이하, 19 개 이하, 18 개 이하, 또는 17 개 이하일 수 있으며, 이 범위 내에서 용량 특성의 저하를 방지하면서도, 크랙 발생 및 입자 깨짐을 완화함으로써, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명을 개선할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 양극 활물질은 레이저 회절 입도 측정 장치를 통해 측정한 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50), 즉 2차 입자의 평균입경(D50)에 대한 상기 단면 SEM 이미지에서 측정되는 1차 입자의 개수의 비인 '1차 입자 개수/평균입경(D50)'의 값이 1.0 이상, 1.1 이상, 1.2 이상, 1.3 이상, 1.4 이상, 1.5 이상, 1.6 이상, 1.7 이상, 1.8 이상, 1.9 이상, 2.0 이상, 2.1 이상, 2.2 이상, 2.3 이상, 2.4 이상, 또는 2.5 이상일 수 있고, 또한, 15.0 이하, 14.0 이하, 13.0 이하, 12.0 이하, 11.0 이하, 10.0 이하, 9.0 이하, 8.0 이하, 7.0 이하, 6.0 이하, 5.0 이하, 또는 4.0 이하일 수 있으며, 이 범위 내에서 용량 특성의 저하를 방지하면서도, 크랙 발생 및 입자 깨짐을 완화함으로써, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명을 개선할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 양극 활물질은 하기 화학식 2로 표시되는 리튬 복합 전이금속 산화물을 포함하는 것일 수 있다.
[화학식 2]
Lia'Nix'Coy'M3 z'M4 w'O2
상기 화학식 2에서, M3은 Mn 및 Al으로부터 선택되는 1종 이상일 수 있고, M4는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 0.9≤a'≤1.1, 0.8≤x'<1, 0<y'<0.2, 0<z'<0.2, 0≤w'≤0.1일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, M3은 Mn, 또는 Mn과 Al을 동시에 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, M4는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 리튬 복합 전이금속 산화물의 구조 안정성을 더욱 향상시키는 측면에서 Zr를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, 상기 a'는 리튬 복합 전이금속 산화물 내 리튬의 몰비를 나타내는 것으로, 0.9≤a'≤1.1, 0.95≤a'≤1.08, 또는 1≤a'≤1.08일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, 상기 x'는 리튬 복합 전이금속 산화물 내 니켈의 몰비를 나타내는 것으로, 0.8≤x'<1, 0.80≤x'≤0.99, 0.80≤x'≤0.95, 0.80≤x'≤0.90, 또는 0.85≤x'≤0.90일 수 있고, 이 범위 내에서 용량 특성을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, 상기 y'는 리튬 복합 전이금속 산화물 내 코발트의 몰비를 나타내는 것으로, 0<y'<0.2, 0<y'≤0.15 또는 0.01≤y'≤0.10일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, 상기 z'는 리튬 복합 전이금속 산화물 내 M3의 몰비를 나타내는 것으로, 0<z'<0.2, 0<z'≤0.15 또는 0.01≤z'≤0.15일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, 상기 w'는 리튬 복합 전이금속 산화물 내 M4의 몰비를 나타내는 것으로, 0≤w'≤0.1, 또는 0≤w'≤0.05일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 리튬 복합 전이금속 산화물은 하기 화학식 2-1로 표시되는 것일 수 있다.
[화학식 2-1]
Lia'Nix'Coy'Mnz1'Alz2'M4 w'O2
상기 화학식 2-1에서, M4는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 0.9≤a'≤1.1, 0.8≤x'<1, 0<y'<0.2, 0<z1'<0.2, 0<z2'<0.2, 0≤w'≤0.1일 수 있고, 여기서, M4, a', x', y' 및 w'는 앞서 화학식 1에서 기재한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 화학식 2-1에서, 상기 z1'은 리튬 복합 전이금속 산화물 내 망간의 몰비를 나타내는 것으로, 0<z1'≤0.2, 0<z1'≤0.15 또는 0.01≤z1'≤0.15일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2-1에서, 상기 z2'는 리튬 복합 전이금속 산화물 내 알루미늄의 몰비를 나타내는 것으로, 0<z2'≤0.2, 0<z2'≤0.15 또는 0.01≤z2'≤0.15일 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 양극 활물질의 평균입경(D50)은 제2 양극 활물질의 평균입경(D50) 보다 작은 것일 수 있다. 이 경우, 레이저 회절 입도 측정 장치를 통해 측정한 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 6 개 이상 30 개 이하인 그레인 크기(grain size)가 커 단입자 유사(monolith-lke) 형태의 제1 양극 활물질을 소입자로 포함함으로써, 크랙 발생 및 입자 깨짐을 완화할 수 있고, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명을 개선할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 양극 활물질은 평균입경(D50)이 2 ㎛ 이상 7 ㎛ 이하인 것일 수 있고, 구체적인 예로, 2 ㎛ 이상, 2.5 ㎛ 이상, 3 ㎛ 이상, 3.5 ㎛ 이상, 또는 4 ㎛ 이상인 것일 수 있고, 또한, 7 ㎛ 이하, 6.5 ㎛ 이하, 6 ㎛ 이하, 5.5 ㎛ 이하, 5 ㎛ 이하, 또는 4.5 ㎛ 이하인 것일 수 있다. 또한, 상기 제2 양극 활물질은 평균입경(D50)이 7 ㎛ 초과 20 ㎛ 이하인 것일 수 있고, 구체적인 예로, 7.5 ㎛ 이상, 8 ㎛ 이상, 8.5 ㎛ 이상, 9 ㎛ 이상, 9.5 ㎛ 이상, 또는 10 ㎛ 이상인 것일 수 있고, 또한, 20 ㎛ 이하, 19 ㎛ 이하, 18 ㎛ 이하, 17 ㎛ 이하, 16 ㎛ 이하, 15 ㎛ 이하, 14 ㎛ 이하, 13 ㎛ 이하, 12 ㎛ 이하, 또는 11 ㎛ 이하인 것일 수 있다. 이 범위 내에서 제2 양극 활물질 입자 사이에 제1 양극 활물질이 채워짐으로써 충진 밀도(packing density)가 높은 양극을 제조할 수 있고, 제2 양극 활물질을 대입경으로 포함함으로써 용량 특성을 더욱 개선할 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극재는 제1 양극 활물질 및 제2 양극 활물질은 1:99 내지 50:50, 10:90 내지 40:60, 또는 10:90 내지 30:70의 중량비로 포함할 수 있고, 이 범위 내에서 제1 양극 활물질로부터 크랙 발생 및 입자 깨짐을 완화할 수 있고, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명을 개선함과 동시에, 제2 양극 활물질로부터 용량 특성을 더욱 향상시킬 수 있다.
본 발명과 같이, 평균입경(D50)이 서로 상이한 양극 활물질을 포함하는 바이모달 양극재를 사용하여 양극 활물질층 제조하면, 작은 평균 입경을 갖는 소입경 양극 활물질이 큰 평균 입경을 갖는 대입경 양극 활물질 입자 사이에 충진되어 에너지 밀도가 높은 전극을 제조할 수 있다. 그러나, 종래의 바이모달 양극재의 경우, 양극 압연 과정에서 소입경 양극 활물질 입자에 입자 깨짐이 발생하여 전해액과의 접촉 면적이 넓어지고, 이로 인해 가스 발생량 증가하고 수명 특성이 저하된다는 문제점이 있다. 이를 개선하기 위해, 소성 온도를 높여 제조된 단입자 형태의 양극 활물질을 소입경 양극 활물질로 사용하는 방안이 고려될 수 있으나, 단입자 형태의 양극 활물질의 경우 용량 특성이 나빠 고용량 구현에 한계가 있을 뿐 아니라, 소입경 양극 활물질의 입자 강도가 너무 높아져 압연 과정에서 대입경 양극 활물질에 크랙을 발생시킬 수 있다는 문제점이 있다. 그러나, 본 발명에 따른 양극재는 상기 제1 양극 활물질 및 상기 제2 양극 활물질을 바이모달의 형태로 포함함으로써, 제1 양극 활물질로부터 크랙 발생 및 입자 깨짐을 완화할 수 있고, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명을 개선함과 동시에, 제2 양극 활물질로부터 용량 특성을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극재는 상기 제1 양극 활물질 및 상기 제2 양극 활물질을 바이모달의 형태로 포함함으로써, 하기 수학식 1로 계산되는 입도 변화량이 6.0 이하인 것일 수 있다.
[수학식 1]
입도 변화량 = P0 - P1
상기 수학식 1에서, P0는 상기 양극재의 면적 누적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며, P1은 상기 양극재를 9톤으로 가압한 후 측정한 면적 누적 누적 입도 분포 그래프에서 상기 P0 피크의 입경에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
본 발명의 일 실시예에 따르면, 상기 양극재는 상기 수학식 1로 계산되는 입도 변화량이 6.0 이하, 5.9 이하, 5.8 이하, 5.7 이하, 5.6 이하, 5.5 이하, 5.4 이하, 5.3 이하, 5.2 이하, 5.1 이하, 5.0 이하, 4.9 이하, 4.8 이하, 4.7 이하, 또는 4.6 이하일 수 있고, 또한, 0 이상, 0.5 이상, 1.0 이상, 1.5 이상, 2.0 이상, 2.5 이상, 3.0 이상, 3.5 이상, 또는 4.0 이상일 수 있으며, 이 범위 내에서 양극 제조 시 압연에 의한 크랙 발생 및 입자 깨짐을 완화할 수 있다.
양극재 제조방법
본 발명은 상기 양극재를 제조하기 위한 양극재 제조방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 양극재 제조방법은 하기 화학식 3으로 표시되는 양극 활물질 전구체 및 리튬 원료 물질을 혼합한 후 1차 소성하여 가소성품을 형성하는 단계(S10); 상기 가소성품을 850 ℃ 초과 890 ℃ 이하의 온도로 2차 소성하여 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 포함하는 제1 양극 활물질을 형성하는 단계(S20); 및 상기 제1 양극 활물질과, 제1 양극 활물질과는 평균입경(D50)이 상이한 제2 양극 활물질을 혼합하는 단계(S30)를 포함하는 것일 수 있다.
[화학식 1]
LiaNixCoyM1 zM2 wO2
상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상일 수 있고, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1일 수 있다. 여기서, 상기 화학식 1은 앞서 기재한 것과 동일한 것일 수 있다.
[화학식 3]
[NixCoyM1 zM2 w](OH)2
상기 화학식 3에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상일 수 있고, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 0.7≤x<1, 0<y≤0.2, 0≤z≤0.2, 0≤w≤0.1일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 3에서, M1은 Mn, 또는 Mn과 Al을 동시에 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 3에서, M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 3에서, 상기 x는 양극 활물질 전구체 내 니켈의 몰비를 나타내는 것으로, 0.7≤x<1, 0.80≤x≤0.99, 0.80≤x≤0.95, 0.80≤x≤0.90, 또는 0.80≤x≤0.85일 수 있고, 이 범위 내에서 용량 특성을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 3에서, 상기 y는 양극 활물질 전구체 내 코발트의 몰비를 나타내는 것으로, 0<y≤0.2, 0<y≤0.15 또는 0.01≤y≤0.10일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 3에서, 상기 z는 양극 활물질 전구체 내 M1의 몰비를 나타내는 것으로, 0<z≤0.2, 0<z≤0.15 또는 0.01≤z≤0.15일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 3에서, 상기 w는 양극 활물질 전구체 내 M2의 몰비를 나타내는 것으로, 0≤w≤0.1, 또는 0≤w≤0.05일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 3으로 표시되는 양극 활물질 전구체는 하기 화학식 3-1로 표시되는 것일 수 있다.
[화학식 3-1]
[NixCoyMnz](OH)2
상기 화학식 3-1에서, 0.7≤x<1, 0<y≤0.2, 0≤z≤0.2일 수 있고, 구체적인 예로, 앞서 화학식 3에서 기재한 바와 같을 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬 원료 물질은 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 구체적인 예로, Li2CO3, LiNO3, LiNO2, LiOH, LiOH·H2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, Li3C6H5O7 또는 이들의 혼합물이 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬 원료 물질과 양극 활물질 전구체는 Li:전구체 내의 총 전이금속의 몰비가 1:1 내지 1.2:1, 또는 1:1 내지 1.1:1이 되도록 혼합될 수 있고, 이 범위 내에서 합비가 상기 범위를 만족할 때, 양극 활물질의 결정 구조가 잘 발달되어 용량 특성 및 구조 안정성이 우수한 양극 활물질을 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 1차 소성 시, M1 함유 원료(M1은 Mn 및 Al으로부터 선택되는 1종 이상), M2 함유 원료(M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이다.) 또는 이들의 혼합물을 추가로 혼합할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계의 2차 소성 시, M1 함유 원료(M1은 Mn 및 Al으로부터 선택되는 1종 이상), M2 함유 원료(M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이다.) 또는 이들의 혼합물을 추가로 혼합할 수 있다.
본 발명의 일 실시예에 따르면, 상기 M1 함유 원료는 M1 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있고, 구체적인 예로, Mn2O3, MnO2, Mn3O4, MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 염화망간, 수산화망간, Al2O3, Al(OH)3, Al(NO3)3·9H2O, Al2(SO4)3 등일 수 있다.
본 발명의 일 실시예에 따르면, 상기 M2 함유 원료는 M2 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있다.
본 발명에서 상기 M1 원소 및 M2 원소는 필요에 따라, 양극 활물질 전구체를 제조하기 위한 공침 반응 단계에서 투입되거나, 리튬 원료 물질과의 혼합 시에 투입되거나, 2차 소성 전에 1차 소성된 가소성품과 혼합하여 투입될 수 있다. 또한, M1 원소 및 M2 원소로 2종 이상의 원소를 사용하는 경우, 각각의 M1 원소 및 M2 원소의 투입 시점은 동일하거나 상이할 수 있다. 구체적인 예로, M1 원소로 Mn 및 Al을 포함하는 경우, Mn은 전구체 공침 단계에 투입하고, Al은 리튬 원료 물질과의 혼합 단계, 또는 2차 소성 전에 1차 소성된 가소성품과 혼합하여 투입될 수 있다.
본 발명의 일 실시예에 따르면, M1 원소 및 M2 원소의 투입 시점은 제조하고자 하는 양극 활물질의 최종 조성을 고려하여 적절하게 조절될 수 있다. 구체적인 예로, Ni 함유량이 80 atm% 또는 80 몰%를 초과하는 양극 활물질을 제조하는 경우라면, Al 원소를 공침 반응 시보다는 리튬 원료 물질과의 혼합 단계, 또는 2차 소성 전에 1차 소성된 가소성품과 혼합하는 단계에서 투입할 수 있고, 이 경우 공침 단계에서 Al에 의한 결정 구조 성장의 악영향을 방지할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계는 양극 활물질 전구체와 리튬 원료 물질을 혼합하고, 필요에 따라 M1 함유 원료 및/또는 M2 함유 원료를 혼합한 다음 1차 소성하여 가소성품을 제조하기 위한 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 1차 소성은 양극 활물질 전구체와 리튬 원료 물질을 가소성하여 소성 시에 발생되는 CO2 또는 수분과 같은 부산물을 미리 제거함으로써, 상기 부산물들이 양극 활물질의 결정 구조 형성에 악영향을 끼치는 것을 방지하고, 우수한 품질의 양극 활물질을 제조할 수 있도록 하기 위해 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 1차 소성은 이어서 기재하는 2차 소성 보다 낮은 온도에서 수행될 수 있고, 구체적인 예로 600 ℃ 이상, 610 ℃ 이상, 620 ℃ 이상, 630 ℃ 이상 또는 640 ℃ 이상의 온도로 수행될 수 있으며, 또한, 800 ℃ 미만, 790 ℃ 이하, 780 ℃ 이하, 770 ℃ 이하, 760 ℃ 이하, 750 ℃ 이하, 740 ℃ 이하, 730 ℃ 이하, 720 ℃ 이하, 710 ℃ 이하, 또는 700 ℃ 이하의 온도로 수행될 수 있고, 이 범위 내에서 부산물을 효과적으로 제거함과 동시에, 부산물이 존재하는 1차 소성 단계에서 결정 구조 변환을 방지하여 결정 구조를 목적에 따라 발달시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계는 상기 가소성품을 2차 소성하여 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 포함하는 제1 양극 활물질을 형성하기 위한 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계의 2차 소성은 850 ℃ 초과, 851 ℃ 이상, 852 ℃ 이상, 853 ℃ 이상, 854℃ 이상, 855 ℃ 이상, 860 ℃ 이상, 865 ℃ 이상, 870 ℃ 이상, 875 ℃ 이상, 또는 880 ℃ 이상의 온도로 수행될 수 있고, 또한, 890 ℃ 이하, 885 ℃ 이하, 또는 880 ℃ 이하의 온도로 수행될 수 있으며, 이 범위 내에서 2차 소성으로부터 형성된 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화무를 포함하는 제1 양극 활물질이 레이저 회절 입도 측정 장치를 통해 측정한 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 6 개 이상 30 개 이하인 것으로 조절될 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극재 제조방법은 상기 (S20) 단계의 2차 소성 후, 상기 (S30) 단계를 수행하기 전에, 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 수세하는 단계(S21)를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S21) 단계는 리튬 복합 전이금속 산화물 표면에 잔류하는 리튬 부산물을 제거하기 위한 것으로, 당해 기술 분야에 알려져 있는 양극 활물질의 수세 방법을 통해 수행될 수 있다. 구체적인 예로, 상기 (S21) 단계는, 리튬 복합 전이금속 산화물과 수세 용액을 혼합한 후 교반한 후, 필터링하여 수세 용액을 제거한 다음, 건조시키는 방법으로 수행될 수 있다. 이 때, 상기 건조는, 50 ℃ 이상 150 ℃ 이하의 온도로 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극재 제조방법은, 필요에 따라 상기 (S20) 단계의 2차 소성 후, 상기 (S30) 단계를 수행하기 전에, 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물의 표면에 코팅층을 형성하는 단계(S22)를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S22) 단계는 상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물과 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅 원료 물질을 혼합한 후 열처리하여 실시될 수 있고, 상기 코팅 원료 물질은 상기 원소들을 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S22) 단계의 열처리는 200 ℃ 이상 700 ℃ 이하, 200 ℃ 이상 500 ℃ 이하 또는 240 ℃ 이상 400 ℃ 이하의 온도로 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극재 제조방법은, 따라 상기 (S20) 단계의 2차 소성 후, 상기 (S30) 단계를 수행하기 전에, 상기 (S21) 단계 또는 상기 (S22) 단계 중 어느 하나의 단계를 실시하거나, 또는 상기 (S21) 단계 및 상기 (S22) 단계를 모두 실시할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S30) 단계는 상기 제1 양극 활물질과, 제1 양극 활물질과는 평균입경(D50)이 상이한 제2 양극 활물질을 혼합하여 최종적으로 양극재를 수득하기 위한 단계로서, 상기 제2 양극 활물질은 앞서 기재한 것과 동일한 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S30) 단계에서 제1 양극 활물질 및 제2 양극 활물질은 본 발명의 목적에 따라 앞서 기재한 중량비로 혼합될 수 있다.
양극
본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
본 발명의 일 실시예에 따르면, 상기 양극은 양극 집전체, 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하는 것일 수 있고, 상기 양극 활물질층은 상기 양극재를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극 집전체는 전도성이 높은 금속을 포함할 수 있으며, 양극 활물질층이 용이하게 접착하되, 전지의 전압 범위에서 반응성이 없는 것이라면 특별히 제한되는 것은 아니다. 상기 양극 집전체는 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극 활물질층은 상기 양극재와 함께, 필요에 따라 선택적으로 도전재, 및 바인더를 포함할 수 있다. 이때 상기 양극재는 양극 활물질층 총 중량에 대하여 80 중량% 내지 99 중량%, 보다 구체적으로는 85 중량% 내지 98.5중량%의 햠량으로 포함될 수 있으며, 이 범위 내에서 우수한 용량 특성을 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 탄소나노튜브 등의 도전성 튜브; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1 중량% 내지 15 중량%로 포함될 수 있다.
본 발명의 일 실시예에 따르면, 상기 바인더는 양극재 입자들 간의 부착 및 양극재와 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플루오라이드(PVDF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올(polyvinylalcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethymethaxrylate), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리아크릴산(poly acrylic acid), 및 이들의 수소를 Li, Na, 또는 Ca로 치환된 고분자, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1 중량% 내지 15 중량%로 포함될 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극은 상기한 양극재를 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기 양극은, 상기한 양극재 및 필요에 따라 선택적으로 바인더, 도전재, 및 분산제를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조하거나, 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 디메틸포름아미드(dimethylformamide, DMF), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극재, 도전재, 바인더, 및 분산제를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
리튬이차전지
본 발명은 상기 양극을 포함하는 리튬이차전지를 제공한다.
본 발명의 일 실시예에 따르면, 상기 리튬이차전지는 상기 양극; 음극; 상기 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 것일 수 있다. 또한, 상기 리튬이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또한, 탄소재료는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시 흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정 피치계 탄소섬유 (mesophase pitch based carbonfiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 상기 음극 활물질은 음극 활물질층의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층의 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층의 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
본 발명의 일 실시예에 따르면, 상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또한 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 전해질로는 리튬 이차 전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. 구체적인 예로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylenecarbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
본 발명의 일 실시예에 따르면, 상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 M 내지 2.0 M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
본 발명의 일 실시예에 따르면, 상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 중량% 내지 5 중량%로 포함될 수 있다.
본 발명에 따른 양극 활물질을 포함하는 리튬이차전지는 우수한 용량 특성, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 하이브리드 전기자동차(hybrid electric vehicle, HEV), 전기자동차(electric vehicle, EV) 등의 전기 자동차 분야 등에 유용하다.
본 발명의 리튬이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이에 따라, 본 발명의 일 실시예에 따르면, 상기 리튬이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
본 발명의 일 실시예에 따르면, 상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
실시예 1
<제1 양극 활물질의 제조>
리튬 원료물질 LiOH·H20와, 양극 활물질 전구체 Ni0.83Co0.05Mn0.12(OH)2(D50 = 4.6 ㎛)를 Li:전구체 내 전이금속(Ni+Co+Mn)의 몰비가 1.06:1이 되도록 혼합하고, ZrO2를 추가로 혼합한 후, 640 ℃에서 5 시간 동안 소성하여 가소성품을 제조하였다. 이 때, ZrO2는 가소성품 전체 중량을 기준으로 Zr이 1,000 ppm이 되도록 혼합하였다. 이 후, 상기 가소성품을 880 ℃에서 6 시간 동안 2차 소성하여 Zr을 포함하는 리튬 복합 전이금속 산화물 LiNi0.83Co0.05Mn0.12O2를 제조하였다.
상기 제조된 리튬 복합 전이금속 산화물 100 g과 물 120 g을 혼합하고, 5분 동안 교반하여 수세하고, 필터 프레스로 수세품 중 수분 함량이 5 % 내지 10 %가 되도록 분리 필터 처리한 후 130 ℃에서 건조하였다. 이어서, 수세 및 건조된 리튬 복합 전이금속 산화물과 H3BO3를 100:0.286의 중량비로 혼합하고, 300 ℃에서 4 시간 동안 열처리하여, B 고용체가 코팅된 양극 활물질을 제조하였다.
<양극재의 제조>
상기 제조된 양극 활물질과, 평균입경(D50)이 10 ㎛인 LiNi0.86Co0.05Mn0.07Al0.02O2인 양극 활물질을 2:8의 중량비로 혼합하여 양극재를 제조하였다.
실시예 2
<제1 양극 활물질의 제조>
리튬 원료물질 LiOH·H20와, 양극 활물질 전구체 Ni0.83Co0.05Mn0.12(OH)2(D50 = 4.6 ㎛)를 Li:전구체 내 전이금속(Ni+Co+Mn)의 몰비가 1.06:1이 되도록 혼합하고, ZrO2를 추가로 혼합한 후, 640 ℃에서 5 시간 동안 소성하여 가소성품을 제조하였다. 이 때, ZrO2는 가소성품 전체 중량을 기준으로 Zr이 1,000 ppm이 되도록 혼합하였다. 이 후, 상기 가소성품에 Al(OH)3를 가소성품 중량을 기준으로 Al이 600 ppm이 되도록 추가로 혼합한 후, 880 ℃에서 6 시간 동안 2차 소성하여 Zr 및 Al을 포함하는 리튬 복합 전이금속 산화물 LiNi0.83Co0.05Mn0.12O2를 제조하였다.
상기 제조된 리튬 복합 전이금속 산화물 100 g과 물 120 g을 혼합하고, 5분 동안 교반하여 수세하고, 필터 프레스로 수세품 중 수분 함량이 5 % 내지 10 %가 되도록 분리 필터 처리한 후 130 ℃에서 건조하였다. 이어서, 수세 및 건조된 리튬 복합 전이금속 산화물과 H3BO3를 100:0.286의 중량비로 혼합하고, 300 ℃에서 4 시간 동안 열처리하여, B 고용체가 코팅된 양극 활물질을 제조하였다.
<양극재의 제조>
상기 제조된 양극 활물질과, 평균입경(D50)이 10 ㎛인 LiNi0.86Co0.05Mn0.07Al0.02O2인 양극 활물질을 2:8의 중량비로 혼합하여 양극재를 제조하였다.
비교예 1
상기 실시예 1에서, 2차 소성을 800 ℃에서 실시한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극재를 제조하였다.
비교예 2
상기 실시예 1에서, 2차 소성을 840 ℃에서 실시한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극재를 제조하였다.
비교예 3
상기 실시예 1에서, 2차 소성을 900 ℃에서 실시한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극재를 제조하였다.
실험예
실험예 1: 제1 양극 활물질의 평균입경 측정 및 단면 SEM 이미지 촬영
실시예 1, 2 및 비교예 1 내지 3에서 제조된 제1 양극 활물질 분말 0.5 g을 헥사메타인산나트륨((NaPO3)6)이 소량 첨가된 물 중에 분산시킨 후, 레이저 회절 입도 측정 장치(Microtrac社의 S-3500)을 이용하여 제1 양극 활물질 입자의 평균입경(D50)을 측정하였고, 그 결과를 표 1에 나타내었다. 이 때, 제1 양극 활물질 입자의 평균입경(D50)은 2차 입자의 평균입경을 의미한다.
또한, 실시예 1, 2 및 비교예 1 내지 3에서 제조된 제1 양극 활물질 분말에서 양극 활물질 입자 10 g을 채취하여 이온 밀링 시스템(Hitachi社, IM4000)을 이용하여 단면을 절단한 후, 주사전자현미경으로 상기 측정된 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지를 얻었다. 얻어진 단면 SEM 이미지를 분석하여 각각의 양극 활물질 단면에서의 1차 입자의 개수를 측정하고, 그 평균값을 계산하였고, 그 결과를 표 1에 나타내었다.
실시예 1의 양극 활물질 분말에서 채취된 샘플의 단면 SEM 이미지는 도 1에 도시하였고, 비교예 1의 양극 활물질 분말에서 채취된 샘플의 단면 SEM 이미지는 도 2에 도시하였으며, 비교예 2의 양극 활물질 분말에서 채취된 샘플의 단면 SEM 이미지는 도 3에 도시하였고, 비교예 3의 양극 활물질 분말에서 채취된 샘플의 단면 SEM 이미지는 도 4에 도시하였다.
구분 실시예 비교예
1 2 1 2 3
평균입경(D50, ㎛) 4.28 4.30 4.66 4.93 4.87
단면 SEM 이미지 1차 입자 개수 11 17 136 75 3
1차 입자 개수/평균입경(D50) 2.57 3.95 29.18 15.21 0.61
상기 표 1 및 도 1 내지 4에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 2에서 제조된 제1 양극 활물질은 2차 입자의 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 1차 입자의 개수가 본 발명에서 한정하는 범위로 나타난 반면, 비교예 1 및 2의 경우, 상한 범위인 30 개를 초과하였고, 비교예 3의 경우, 하한 범위인 6 개에 미치지 못하는 것을 확인할 수 있었다.
실험예 2: 양극재의 입도 변화량 측정
실시예 1, 2 및 비교예 1 내지 3에서 제조된 양극재 분말 0.5 g을 헥사메타인산나트륨((NaPO3)6)이 소량 첨가된 물 중에 분산시킨 후, 레이저 회절 입도 측정 장치(Microtrac社의 S-3500)을 이용하여 양극재의 면적 누적 입도 분포를 측정하였다.
이 후, 상기 양극재 분말 2 g을 채취하여 9톤(ton) 압력으로 프레스(Press)한 후, 상기 프레스된 양극재 분말을 헥사메타인산나트륨((NaPO3)6)이 소량 첨가된 물 중에 분산시킨 후, 레이저 회절 입도 측정 장치(Microtrac社의 S-3500)을 이용하여 9톤 프레스 후의 양극재의 면적 누적 입도 분포를 측정하였다.
상기 프레스 전후의 입도 분포 측정 결과를 이용하여, 하기 수학식 1에 따라 입도 변화량을 계산하였고, 그 결과를 표 2에 나타내었다.
[수학식 1]
입도 변화량 = P0 - P1
상기 수학식 1에서, P0는 상기 양극재의 면적 누적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며, P1은 상기 양극재를 9톤으로 가압한 후 측정한 면적 누적 누적 입도 분포 그래프에서 상기 P0 피크의 입경에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
실시예 1 및 비교예 1의 양극재 분말의 프레스 전, 후의 면적 누적 입도 분포를 보여주는 그래프를 도 5에 도시하였다.
구분 실시예 비교예
1 2 1 2 3
P0(%) 14.1 14.0 14.0 14.1 14.1
P1(%) 9.5 9.4 7.8 8.0 9.4
입도 변화량(P0-P1) 4.6 4.6 6.2 6.1 4.7
상기 표 2 및 도 5에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 2에서 제조된 제1 양극 활물질을 포함하는 양극재는 입도 변화량이 작게 나타난 것을 확인할 수 있었다. 반면, 비교예 1 및 2에서 제조된 제1 양극 활물질을 포함하는 양극재는 입도 변화량이 크게 나타난 것을 확인할 수 있었다.
실험예 3: 고온 수명 평가
실시예 1, 2 및 비교예 1 내지 3에서 제조된 양극재와, 도전재로 덴카 블랙 및 바인더로 PVDF를 97.5:1.15:1.35의 중량비로 N-메틸-2-피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체 상에 도포하고, 건조한 후 압연하여 양극을 제조하였다.
다음으로, 음극 활물질로 천연 흑연 및 인조 흑연, 도전재로 카본 블랙 및 바인더로 SBR 및 CMC를 95:1.5:3.5의 중량비로 물에 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 집전체 상에 도포하고, 건조한 후 압연하여 음극을 제조하였다.
상기 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조한 다음, 전지 케이스 내부에 위치시킨 후, 전해액을 주입하여 모노셀을 제조하였다. 이 때, 전해액으로는, 에틸렌 카보네이트: 에틸메틸카보네이트: 디에틸카보네이트를 3:3:4의 부피비로 혼합한 유기 용매에 0.7M의 LiPF6 및 0.3M의 LiFSI를 용해시킨 전해액을 사용하였고, 전극 당 100 ㎕가 되도록 주입하였다. 제조된 모노셀에 대하여 포메이션을 진행하고, 초기 가스를 제거하여 고온 수명 평가를 위한 모노셀을 준비하였다.
상기 준비된 모노셀을 25 ℃에서 0.33C 정전류로 충전 및 0.33C 정전류로 방전하여 초기 용량 및 저항을 측정하였다. 이 후, 45 ℃ 챔버 내에서 0.33C 정전류로 충전 및 0.33C 정전류로 방전을 1사이클로하여 연속적으로 충방전을 실시하였고, 100 사이클 마다 25 ℃ 챔버에서 0.33C 정전류로 충전 및 0.33C 정전류로 방전하여 초기 용량 및 저항 대비 용량 유지율 및 저항 증가율을 측정하여 하기 표 3에 나타내었다.
실시예 1, 2 및 비교예 1 내지 3의 양극재를 포함하는 모노셀에 대한 용량 유지율 및 저항 증가율을 보여주는 그래프를 도 6에 도시하였다.
구분 100 사이클 200 사이클 300 사이클
용량 유지율
(%)
저항 증가율
(%)
용량 유지율
(%)
저항 증가율
(%)
용량 유지율
(%)
저항 증가율
(%)
실시예 1 94.13 27.19 91.77 37.21 88.87 47.18
실시예 2 94.36 35.68 91.97 49.45 88.67 61.57
비교예 1 93.63 44.36 89.60 64.90 84.57 80.12
비교예 2 93.60 45.33 88.55 61.41 83.10 76.28
비교예 3 93.54 47.18 90.71 56.96 80.12 86.35
상기 표 3 및 도 6에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 2에서 제조된 양극재를 포함하는 모노셀은 사이클 횟수 증가에 따른 용량 유지율의 감소가 적고, 저항 증가율이 완화된 것을 확인할 수 있었다. 이는 2차 입자의 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 1차 입자의 개수가 본 발명에서 한정하는 범위로 조절함으로써, 양극재는 입도 변화량이 작게 나타나고, 이에 따라 크랙 발생 및 입자 깨짐을 완화함으로써, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮춘 것으로부터 기인한 것이다.
반면, 2차 입자의 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 1차 입자의 개수가 본 발명에서 한정하는 범위의 상한 범위인 30 개를 초과한 비교예 1 및 2에서 제조된 제1 양극 활물질을 포함하는 양극재를 포함하는 모노셀과, 2차 입자의 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 1차 입자의 개수가 본 발명에서 한정하는 범위의 하한 범위인 6 개에 미치지 못한 비교예 3에서 제조된 제1 양극 활물질을 포함하는 양극재를 포함하는 모노셀은 사이클 횟수 증가에 따른 용량 유지율의 감소가 실시예 보다 증가하였고, 저항 증가율도 급격히 증가한 것을 확인할 수 있었다. 비교예 1 및 2의 경우, 제1 양극 활물질 입자에 입자 깨짐이 발생하여 전해액과의 접촉 면적이 넓어지고, 비교예 3의 경우, 용량 특성 자체가 열악하며, 오히려 제2 양극 활물질에 크랙을 유발함으로써 수명 특성이 저하된 것으로 예상된다.
이와 같은 결과로부터, 본 발명의 양극재는 고함량 니켈(High-Ni)의 리튬 복합 전이금속 산화물을 포함하여 고용량 확보가 가능하면서도, 크랙 발생 및 입자 깨짐을 완화함으로써, 압연 후 노출되는 표면적을 감소시켜, 전해액과의 부반응을 낮추어 장기 수명을 개선할 수 있음을 확인할 수 있었다.

Claims (17)

  1. 평균입경(D50)이 서로 상이한 제1 양극 활물질 및 제2 양극 활물질을 포함하는 바이모달 입도 분포를 갖는 양극재이고,
    상기 제1 양극 활물질은 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 포함하며,
    상기 제1 양극 활물질은 레이저 회절 입도 측정 장치를 통해 측정한 제1 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 평균입경(D50)을 갖는 2차 입자의 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 6 개 이상 30 개 이하인 것인 양극재:
    [화학식 1]
    LiaNixCoyM1 zM2 wO2
    상기 화학식 1에서,
    M1은 Mn 및 Al으로부터 선택되는 1종 이상이고,
    M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이며,
    0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이다.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물은 하기 화학식 1-1로 표시되는 것인 양극재:
    [화학식 1-1]
    LiaNixCoyMnzM2 wO2
    상기 화학식 1-1에서,
    M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이고,
    0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이다.
  3. 제1항에 있어서,
    상기 제1 양극 활물질은 리튬 복합 전이금속 산화물의 표면에 형성되며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함하는 것인 양극재.
  4. 제1항에 있어서,
    상기 제2 양극 활물질은 하기 화학식 2로 표시되는 리튬 복합 전이금속 산화물을 포함하는 것인 양극재:
    [화학식 2]
    Lia'Nix'Coy'M3 z'M4 w'O2
    상기 화학식 2에서,
    M3은 Mn 및 Al으로부터 선택되는 1종 이상이며,
    M4는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이고,
    0.9≤a'≤1.1, 0.8≤x'<1, 0<y'<0.2, 0<z'<0.2, 0≤w'≤0.1이다.
  5. 제1항에 있어서,
    상기 제1 양극 활물질의 평균입경(D50)은 제2 양극 활물질의 평균입경(D50) 보다 작은 것인 양극재.
  6. 제1항에 있어서,
    상기 제1 양극 활물질은 평균입경(D50)이 2 ㎛ 이상 7 ㎛ 이하인 것인 양극재.
  7. 제1항에 있어서,
    상기 제2 양극 활물질은 평균입경(D50)이 7 ㎛ 초과 20 ㎛ 이하인 것인 양극재.
  8. 제1항에 있어서,
    상기 양극재는 하기 수학식 1로 계산되는 입도 변화량이 6.0 이하인 양극재:
    [수학식 1]
    입도 변화량 = P0 - P1
    상기 수학식 1에서,
    P0는 상기 양극재의 면적 누적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며,
    P1은 상기 양극재를 9톤으로 가압한 후 측정한 면적 누적 누적 입도 분포 그래프에서 상기 P0 피크의 입경에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
  9. 하기 화학식 3으로 표시되는 양극 활물질 전구체 및 리튬 원료 물질을 혼합한 후 1차 소성하여 가소성품을 형성하는 단계(S10);
    상기 가소성품을 850 ℃ 초과 890 ℃ 이하의 온도로 2차 소성하여 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 포함하는 제1 양극 활물질을 형성하는 단계(S20); 및
    상기 제1 양극 활물질과, 제1 양극 활물질과는 평균입경(D50)이 상이한 제2 양극 활물질을 혼합하는 단계(S30)를 포함하는 양극재 제조방법:
    [화학식 1]
    LiaNixCoyM1 zM2 wO2
    상기 화학식 1에서,
    M1은 Mn 및 Al으로부터 선택되는 1종 이상이고,
    M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이며,
    0.9≤a≤1.1, 0.7≤x<1, 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이고,
    [화학식 3]
    [NixCoyM1 zM2 w](OH)2
    상기 화학식 3에서,
    M1은 Mn 및 Al으로부터 선택되는 1종 이상이고,
    M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이며,
    0.7≤x<1, 0<y≤0.2, 0≤z≤0.2, 0≤w≤0.1이다.
  10. 제9항에 있어서,
    상기 화학식 3으로 표시되는 양극 활물질 전구체는 하기 화학식 3-1로 표시되는 것인 양극재 제조방법:
    [화학식 3-1]
    [NixCoyMnz](OH)2
    상기 화학식 3-1에서, 0.7≤x<1, 0<y≤0.2, 0≤z≤0.2이다.
  11. 제9항에 있어서,
    상기 (S10) 단계의 1차 소성 시, M1 함유 원료(M1은 Mn 및 Al으로부터 선택되는 1종 이상), M2 함유 원료(M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이다.) 또는 이들의 혼합물을 추가로 혼합하는 것인 양극재 제조방법.
  12. 제9항에 있어서,
    상기 (S20) 단계의 2차 소성 시, M1 함유 원료(M1은 Mn 및 Al으로부터 선택되는 1종 이상), M2 함유 원료(M2는 Zr, B, W, Mo, Mg, Ce, Hf, Ta, Nb, La, Ti, Sr, Ba, F, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상이다.) 또는 이들의 혼합물을 추가로 혼합하는 것인 양극재 제조방법.
  13. 제9항에 있어서,
    상기 (S10) 단계의 1차 소성은 600 ℃ 이상 800 ℃ 미만의 온도로 수행되는 것인 양극재 제조방법.
  14. 제9항에 있어서,
    상기 (S20) 단계의 2차 소성 후, 상기 (S30) 단계를 수행하기 전에,
    상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물을 수세하는 단계(S21); 및
    상기 화학식 1로 표시되는 리튬 복합 전이금속 산화물과 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, Ta 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅 원료 물질을 혼합한 후 열처리하여 코팅층을 형성하는 단계(S22) 중 적어도 하나의 단계를 추가로 실시하는 것인 양극재 제조방법.
  15. 제14항에 있어서,
    상기 (S22) 단계에서 열처리는 200 ℃ 이상 700 ℃ 이하의 온도로 수행되는 것인 양극재 제조방법.
  16. 제1항 내지 제8항 중 어느 한 항에 따른 양극재를 포함하는 양극.
  17. 제16항에 따른 양극; 음극; 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 리튬이차전지.
PCT/KR2022/012295 2021-08-25 2022-08-17 양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지 WO2023027413A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22861623.1A EP4300628A1 (en) 2021-08-25 2022-08-17 Positive electrode material, method for preparing same, and lithium secondary battery comprising same
JP2023560902A JP2024512779A (ja) 2021-08-25 2022-08-17 正極材、その製造方法およびこれを含むリチウム二次電池
CN202280027789.2A CN117121226A (zh) 2021-08-25 2022-08-17 正极材料、其制备方法和包含该正极材料的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210112328A KR20230030694A (ko) 2021-08-25 2021-08-25 양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지
KR10-2021-0112328 2021-08-25

Publications (1)

Publication Number Publication Date
WO2023027413A1 true WO2023027413A1 (ko) 2023-03-02

Family

ID=85323266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012295 WO2023027413A1 (ko) 2021-08-25 2022-08-17 양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지

Country Status (5)

Country Link
EP (1) EP4300628A1 (ko)
JP (1) JP2024512779A (ko)
KR (1) KR20230030694A (ko)
CN (1) CN117121226A (ko)
WO (1) WO2023027413A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140018685A (ko) 2012-08-03 2014-02-13 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20180010123A (ko) * 2016-07-20 2018-01-30 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR20200001893A (ko) * 2018-06-28 2020-01-07 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200047116A (ko) * 2018-10-26 2020-05-07 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200064799A (ko) * 2018-11-29 2020-06-08 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 이용하여 제조된 양극 활물질을 포함하는 리튬 이차 전지
KR20200070650A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
KR20210112328A (ko) 2019-01-15 2021-09-14 누비즈 플라스틱 (난통) 씨오., 엘티디 펌프 어셈블리 및 내용물 배출 기능을 구비하는 용기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140018685A (ko) 2012-08-03 2014-02-13 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20180010123A (ko) * 2016-07-20 2018-01-30 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR20200001893A (ko) * 2018-06-28 2020-01-07 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200047116A (ko) * 2018-10-26 2020-05-07 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200064799A (ko) * 2018-11-29 2020-06-08 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 이용하여 제조된 양극 활물질을 포함하는 리튬 이차 전지
KR20200070650A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
KR20210112328A (ko) 2019-01-15 2021-09-14 누비즈 플라스틱 (난통) 씨오., 엘티디 펌프 어셈블리 및 내용물 배출 기능을 구비하는 용기

Also Published As

Publication number Publication date
JP2024512779A (ja) 2024-03-19
CN117121226A (zh) 2023-11-24
KR20230030694A (ko) 2023-03-07
EP4300628A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2020180160A1 (ko) 리튬 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022103105A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022119313A1 (ko) 양극 활물질 전구체, 이의 제조방법 및 양극 활물질
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2022119156A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021251786A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022098136A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2021256794A1 (ko) 양극 활물질의 제조방법
WO2022060104A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지
WO2023027413A1 (ko) 양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지
WO2022139516A1 (ko) 양극 활물질, 그 제조 방법, 이를 포함하는 양극재, 양극 및 리튬 이차 전지
WO2022235047A1 (ko) 리튬 이차전지용 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2023027504A1 (ko) 양극 활물질 및 양극 활물질의 제조 방법
WO2023121365A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2024049200A1 (ko) 양극 활물질 전구체, 이의 제조 방법, 이를 이용한 양극 활물질의 제조 방법 및 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861623

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022861623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023560902

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18285582

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022861623

Country of ref document: EP

Effective date: 20230928

NENP Non-entry into the national phase

Ref country code: DE