WO2022139516A1 - 양극 활물질, 그 제조 방법, 이를 포함하는 양극재, 양극 및 리튬 이차 전지 - Google Patents

양극 활물질, 그 제조 방법, 이를 포함하는 양극재, 양극 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2022139516A1
WO2022139516A1 PCT/KR2021/019756 KR2021019756W WO2022139516A1 WO 2022139516 A1 WO2022139516 A1 WO 2022139516A1 KR 2021019756 W KR2021019756 W KR 2021019756W WO 2022139516 A1 WO2022139516 A1 WO 2022139516A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
formula
positive
electrode active
Prior art date
Application number
PCT/KR2021/019756
Other languages
English (en)
French (fr)
Inventor
엄준호
안동준
임채진
박나리
이준원
곽노우
김지혜
정병훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP21911581.3A priority Critical patent/EP4199152A4/en
Priority to JP2023519755A priority patent/JP2023544572A/ja
Priority to US18/025,954 priority patent/US20230369578A1/en
Priority to CN202180062177.2A priority patent/CN116195094A/zh
Publication of WO2022139516A1 publication Critical patent/WO2022139516A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material and a method for manufacturing the same, and more particularly, to a positive active material and a method for manufacturing the same, which have been developed to reduce gas generation while minimizing capacity degradation by controlling a grain size.
  • lithium secondary battery has been in the spotlight as a driving power source for a portable device because it is lightweight and has a high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries are being actively conducted.
  • an organic electrolyte or polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalations and deintercalations of lithium ions, and lithium ions are intercalated/deintercalated from the positive electrode and the negative electrode. Electric energy is produced by a reduction reaction with
  • lithium cobalt oxide (LiCoO 2 ) lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO4), etc. were used.
  • lithium cobalt oxide (LiCoO 2 ) has advantages of high operating voltage and excellent capacity characteristics, and is widely used, and is applied as a positive electrode active material for high voltage.
  • there is a limit to mass use as a power source in fields such as electric vehicles due to an increase in the price of cobalt (Co) and unstable supply, and the need to develop a cathode active material that can replace it has emerged.
  • a nickel-cobalt-manganese-based lithium composite transition metal oxide (hereinafter simply referred to as 'NCM-based lithium composite transition metal oxide') in which a part of cobalt (Co) is substituted with nickel (Ni) and manganese (Mn) has been developed.
  • the conventionally developed NCM-based lithium composite transition metal oxide is generally in the form of secondary particles in which primary particles are aggregated, and has a large specific surface area, low particle strength, and high content of lithium by-products. There were many, and there was a problem that stability was inferior.
  • Patent Document 1 discloses a technique for reducing the specific surface area of the positive electrode active material, improving particle strength, and reducing the lithium by-product content by adding two or more dopants during the production of the positive electrode active material and increasing the sintering temperature to increase the crystal size has been
  • the crystal size is formed as large as in Patent Document 1
  • the specific surface area of the positive electrode active material is reduced, and thus the contact area with the electrolyte is reduced to obtain the effect of reducing the amount of gas generated, but there is a problem in that the capacity characteristics are deteriorated .
  • An object of the present invention is to solve the above problems, and to provide a cathode active material capable of reducing gas generation while minimizing deterioration in capacity characteristics and a method for manufacturing the same.
  • the present invention includes a lithium composite transition metal oxide represented by the following formula (1), satisfies the following formula (1), and the secondary particle has an average particle diameter D 50 of 1 ⁇ m to 8 ⁇ m. It provides an active material.
  • M 1 is at least one selected from Mn and Al
  • M 2 is Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P and S. At least one selected from the group consisting of, 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1. 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1.
  • Formula (1) 4 ⁇ number of primary particles/2 average particle diameter of secondary particles D 50 ⁇ 21
  • the number of primary particles is the number of primary particles measured in a cross-sectional SEM image of the positive active material
  • the average particle diameter D 50 of the secondary particles is the positive active material measured through a laser diffraction particle size measuring device is the particle size at which the maximum peak of the area cumulative particle size distribution appears.
  • the present invention comprises the steps of mixing a cathode active material precursor represented by the following Chemical Formula 2 and a lithium raw material and then performing primary firing to form a plastic product; and secondary sintering the plastic product at a temperature of 800°C to 880°C to form a lithium composite transition metal oxide represented by the following formula (1).
  • M 1 is at least one selected from Mn and Al
  • M 2 is Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P and S. At least one selected from the group consisting of, 0.9 ⁇ a ⁇ 1.1, 0.7 ⁇ x ⁇ 1. 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1.
  • M 1 is at least one selected from Mn and Al
  • M 2 is Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P and S. At least one selected from the group consisting of, 0.7 ⁇ x ⁇ 1. 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1.
  • the present invention provides a bimodal positive electrode material including a first positive electrode active material and a second positive electrode active material having an average particle diameter D 50 different from that of the first positive electrode active material.
  • the first positive electrode active material may be the positive electrode active material of the present invention described above
  • the second positive electrode active material may include a lithium composite transition metal oxide represented by the following formula (3).
  • M 3 is at least one selected from Mn and Al
  • M 4 is Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P and S. At least one selected from the group consisting of, 0.9 ⁇ a' ⁇ 1.1, 0.8 ⁇ x' ⁇ 1. 0 ⁇ y' ⁇ 0.2, 0 ⁇ z' ⁇ 0.2, 0 ⁇ w' ⁇ 0.1.
  • the present invention provides a positive electrode including the positive electrode material of the present invention and a lithium secondary battery including the positive electrode.
  • the positive electrode active material according to the present invention includes a high-nickel lithium composite transition metal oxide having a Ni content of 70 atm% or more in the transition metal, and the aggregation number of primary particles per 1 ⁇ m in the cross section of the positive electrode active material is 4 to 21 .
  • the positive active material of the present invention can significantly reduce gas generation while exhibiting excellent capacity characteristics.
  • the positive electrode active material according to the present invention may be usefully used in a bimodal positive electrode material including two types of positive electrode active materials having different average particle diameters.
  • the positive electrode active material according to the present invention is applied to a bimodal positive electrode material, it is possible to significantly reduce particle breakage during rolling compared to the conventionally used secondary particle type positive electrode active material while maintaining high capacity characteristics, Accordingly, it is possible to effectively suppress the transition metal elution or gas generation due to side reactions with the electrolyte.
  • Example 1 is a cross-sectional SEM image of the positive active material particles prepared in Example 1.
  • Example 4 is a graph showing the particle size distribution of the positive active material powder prepared in Example 1 before and after 9-ton press.
  • FIG. 6 is a graph showing the particle size distribution of the positive electrode active material powder prepared in Comparative Example 2 before and after 9-ton press.
  • the 'primary particle' refers to the smallest particle unit that is distinguished into one lump when the cross section of the positive electrode active material is observed through a scanning electron microscope (SEM), and may consist of one crystal grain, or a plurality of It may be made of crystal grains.
  • SEM scanning electron microscope
  • the average particle diameter of the primary particles may be measured by measuring each particle size distinguished in a cross-sectional SEM image of the positive electrode active material particles and obtaining an arithmetic mean value thereof.
  • 'secondary particles' means a secondary structure formed by aggregation of a plurality of primary particles.
  • the average particle diameter of the secondary particles may be measured using a particle size analyzer, and in the present invention, Microtrac's s3500 was used as the particle size analyzer.
  • the 'particle diameter Dn' of the positive active material means the particle diameter at the n% point of the area cumulative distribution according to the particle diameter. That is, D 50 is the particle size at 50% of the cumulative area distribution according to the particle size, D 90 is the particle size at 90% of the cumulative area distribution according to the particle size, and D 10 is 10% of the cumulative area distribution according to the particle size. It is the particle diameter at the point.
  • the Dn may be measured using a laser diffraction method.
  • the powder to be measured is dispersed in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (eg Microtrac S3500) to measure the diffraction pattern difference according to the particle size when the particles pass through the laser beam to measure the particle size distribution to calculate D 10 , D 50 , and D 90 can be measured by calculating the particle diameter at the point used as 10%, 50%, and 90% of the area cumulative distribution according to the particle diameter in a measuring apparatus.
  • a laser diffraction particle size measuring device eg Microtrac S3500
  • the positive electrode active material according to the present invention includes a high-nickel lithium composite transition metal oxide having a Ni content of 70 atm% or more in the transition metal, and the aggregation number of primary particles per 1 ⁇ m in the cross section of the positive electrode active material is 4 to 21 .
  • positive electrode active materials in the form of single particles having less than 10 agglomerated primary particles have been developed.
  • a single-particle type cathode active material it is effective in reducing the amount of gas generated, but it is difficult to apply to a high-capacity battery due to poor capacity characteristics.
  • the inventors of the present invention control the aggregation number of primary particles per 1 ⁇ m of the positive active material particle to be 4 to 21, so that the nickel content is 70atm% or more of the high-nickel positive active material. It was found that both capacity characteristics and gas generation characteristics can be excellently implemented, and the present invention was completed.
  • the cathode active material of the present invention includes a lithium composite transition metal oxide represented by the following formula (1), and satisfies the following formula (1).
  • M 1 is at least one selected from Mn and Al, and preferably Mn and Al.
  • M 2 may be at least one selected from the group consisting of Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P and S, and structural stability of lithium composite transition metal oxide In terms of improvement, it is particularly preferred to include Zr.
  • the a represents the molar ratio of lithium in the lithium composite transition metal oxide, and may be 0.9 ⁇ a ⁇ 1.1, preferably 0.95 ⁇ a ⁇ 1.08, more preferably 1 ⁇ a ⁇ 1.08,
  • x represents the molar ratio of nickel in the transition metal in the lithium composite transition metal oxide, 0.7 ⁇ x ⁇ 1. 0.80 ⁇ x ⁇ 0.99, 0.80 ⁇ x ⁇ 0.95, 0.85 ⁇ x ⁇ 1, or 0.80 ⁇ x ⁇ 0.85.
  • nickel content satisfies the above range, excellent capacity characteristics can be realized.
  • the y represents the molar ratio of cobalt among the transition metals in the lithium composite transition metal oxide, and may be 0 ⁇ y ⁇ 0.2, 0 ⁇ y ⁇ 0.15, or 0.01 ⁇ y ⁇ 0.10.
  • the z represents the molar ratio of M 1 in the transition metal in the lithium composite transition metal oxide, and may be 0 ⁇ z ⁇ 0.2, 0 ⁇ z ⁇ 0.15, or 0.01 ⁇ z ⁇ 0.10.
  • the w represents the molar ratio of M 2 in the transition metal in the lithium composite transition metal oxide, and may be 0 ⁇ w ⁇ 0.1, or 0 ⁇ w ⁇ 0.05.
  • the lithium composite transition metal oxide may be represented by the following Chemical Formula 1-1.
  • M 2 , a, x, y, and w have the same definitions as in Formula 1.
  • z1 represents the molar ratio of Mn in the transition metal in the lithium composite transition metal oxide, and may be 0 ⁇ z1 ⁇ 0.15, or 0.01 ⁇ z1 ⁇ 0.10.
  • the z2 represents the molar ratio of Al among the transition metals in the lithium composite transition metal oxide, and may be 0 ⁇ z2 ⁇ 0.05.
  • the positive active material according to the present invention Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr on the surface of the lithium composite transition metal oxide , Nb.
  • a coating layer including at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S may be further included. In terms of improvement of lifespan characteristics and suppression of increase in resistance, it is particularly preferable that the coating layer contains element B.
  • the coating layer is formed on the surface of the lithium composite transition metal oxide as described above, the contact between the lithium composite transition metal oxide and the electrolyte is blocked, thereby effectively suppressing gas generation and transition metal elution due to side reactions with the electrolyte, and lithium composite transition
  • stabilizing the surface structure of the metal oxide it is possible to suppress structural deterioration of the positive electrode active material during charging and discharging.
  • the positive electrode active material according to the present invention satisfies the following formula (1).
  • Equation (1) 4 ⁇ number of primary particles / average particle diameter of secondary particles D 50 ⁇ 21
  • the number of primary particles is the number of primary particles measured in a cross-sectional SEM image of the positive electrode active material
  • the average particle diameter D 50 of the secondary particles is the number of secondary particles measured through a laser diffraction particle size measuring device. It means the particle size value at the point where the maximum peak of the area cumulative particle size distribution appears.
  • the number of primary particles/average particle diameter of the secondary particles may be preferably 4 to 21, preferably 5 to 20, and more preferably 6 to 15.
  • a positive electrode active material having excellent capacity characteristics and gas generation characteristics may be obtained.
  • the number of primary particles / the average particle diameter of the secondary particles is less than 4, the lithium ion mobility in the positive electrode active material becomes longer and the lithium ion mobility decreases, so that the capacity is lowered, and when it exceeds 21, the gas generation amount is reduced No effect can be obtained.
  • the number of primary particles measured in the cross-sectional SEM image may be 20 to 100, preferably 30 to 100, and more preferably 40 to 95.
  • the number of primary particles in the cross section of the positive active material particles is less than 20, the capacity characteristics are deteriorated, and when it exceeds 100, the effect of reducing the amount of gas generation cannot be obtained.
  • the average particle diameter D 50 of the secondary particles may be 1 ⁇ m to 8 ⁇ m, preferably 2 ⁇ m to 7 ⁇ m.
  • the average particle diameter D 50 of the secondary particles is less than 1 ⁇ m, the degree of breakage of the secondary particles is lowered, but there is a problem in that the life performance is deteriorated due to an increase in the number of secondary particles and an increase in the exposed primary particles, and more than 8 ⁇ m
  • the cracking of the secondary particles increases, so that the long-term performance is deteriorated, and there is a problem in that the density of the electrode is lowered when rolled at the same pressure.
  • the average particle diameter D 50 of the positive electrode active material satisfies the above range, a positive electrode having a high rolling density when applying a bimodal positive electrode material and a low degree of cracking in an electrode rolling process can be manufactured.
  • the positive active material according to the present invention may have a particle size change rate of -5 to 4.5, preferably 0 to 4, more preferably 0 to 3.5, expressed by the following formula (2).
  • Equation (2) P 0 is the intensity of the maximum peak appearing in the area cumulative particle size distribution graph of the positive active material, and P 1 is the area cumulative particle size distribution measured after pressurizing the positive active material to 9 tons In the graph, the P 0 peak is the intensity of the peak appearing in the region corresponding to the particle size.
  • the positive active material according to the present invention may have a particle size change of 0 to 12, preferably 0 to 10, more preferably 2 to 10, expressed by the following formula (3).
  • Equation (3) P 0 is the intensity of the maximum peak appearing in the area cumulative particle size distribution graph of the positive active material, and P 1 is the area cumulative particle size distribution measured after pressurizing the positive active material to 9 tons.
  • the P 0 peak is the intensity of the peak appearing in the region corresponding to the particle size.
  • the method for manufacturing a positive electrode active material comprises the steps of (1) mixing a positive electrode active material precursor and a lithium raw material and then performing primary firing to form a plastic product, and (2) heating the plastic product at a temperature of 800°C to 880°C and forming a lithium composite transition metal oxide by secondary firing.
  • a cathode active material and a lithium raw material are mixed, and then a plastic product is formed by primary firing.
  • the cathode active material precursor may be a hydroxide compound represented by the following formula (2).
  • M 1 may be at least one selected from Mn and Al, and preferably Mn.
  • M 2 may be at least one selected from the group consisting of Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P, and S.
  • x represents the molar ratio of nickel in the cathode active material precursor, 0.7 ⁇ x ⁇ 1. 0.80 ⁇ x ⁇ 0.99, 0.80 ⁇ x ⁇ 0.95, 0.85 ⁇ x ⁇ 1, or 0.80 ⁇ x ⁇ 0.85.
  • nickel content satisfies the above range, excellent capacity characteristics can be realized.
  • the y represents the molar ratio of cobalt in the cathode active material precursor, and may be 0 ⁇ y ⁇ 0.2, 0 ⁇ y ⁇ 0.15, or 0.01 ⁇ y ⁇ 0.10.
  • the z represents the molar ratio of M 1 in the cathode active material precursor, and may be 0 ⁇ z ⁇ 0.2, 0 ⁇ z ⁇ 0.15, or 0.01 ⁇ z ⁇ 0.10.
  • the w represents the molar ratio of M 2 in the cathode active material precursor, and may be 0 ⁇ w ⁇ 0.1, or 0 ⁇ w ⁇ 0.05.
  • the cathode active material precursor may be nickel-cobalt-manganese hydroxide represented by the following Chemical Formula 2-1.
  • x represents a molar ratio of nickel in the positive electrode active material precursor, 0.7 ⁇ x ⁇ 1. 0.80 ⁇ x ⁇ 0.99, 0.80 ⁇ x ⁇ 0.95, 0.85 ⁇ x ⁇ 1, or 0.80 ⁇ x ⁇ 0.85.
  • nickel content satisfies the above range, excellent capacity characteristics can be realized.
  • the y represents the molar ratio of cobalt in the cathode active material precursor, and may be 0 ⁇ y ⁇ 0.2, 0 ⁇ y ⁇ 0.15, or 0.01 ⁇ y ⁇ 0.10.
  • the z1 represents the molar ratio of manganese in the cathode active material precursor, and may be 0 ⁇ z1 ⁇ 0.15, or 0.01 ⁇ z1 ⁇ 0.10.
  • lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxyhydroxide may be used, for example, Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH ⁇ H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , CH 3 COOLi, Li 3 C 6 H 5 O 7 or mixtures thereof this can be used
  • the lithium raw material and the cathode active material precursor may be mixed so that a molar ratio of Li:total transition metal in the precursor is 1:1 to 1.2:1, preferably 1:1 to 1.1:1.
  • a molar ratio of Li:total transition metal in the precursor is 1:1 to 1.2:1, preferably 1:1 to 1.1:1.
  • At least one of the M 1 containing raw material and the M 2 containing raw material may be additionally mixed as needed.
  • the M 1 containing raw material may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing M 1 element, for example, Mn 2 O 3 , MnO 2 , Mn 3 O 4 , MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, manganese chloride, manganese hydroxide, Al 2 O 3 , Al(OH) 3 , Al(NO 3 ) 3 9H 2 O, Al 2 (SO 4 ) 3 and the like, but is not limited thereto.
  • the M 2 containing raw material may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing M 2 element.
  • the M 1 element and the M 2 element may be added in the co-precipitation reaction step for preparing the cathode active material precursor or may be added during mixing with the lithium raw material.
  • the input timing of each M 1 element and the M 2 element may be the same or different.
  • M 1 includes Mn and Al as elements
  • Mn may be added to the precursor co-precipitation step
  • Al may be added to the mixing step with the lithium raw material.
  • the input timing of the M 1 element and the M 2 element may be appropriately adjusted in consideration of the final composition of the positive electrode active material to be manufactured. For example, in the case of manufacturing a cathode active material having a Ni content exceeding 80 atm%, it is more preferable to add the Al element in the mixing step with the lithium raw material rather than in the coprecipitation reaction. This is because, when Al is added in the co-precipitation step, Al may adversely affect the crystal structure growth.
  • the cathode active material precursor and the lithium raw material are mixed, and optionally, at least one of the M 1 containing raw material and the M 2 containing raw material is further mixed, and then primary firing is performed to prepare a plastic product.
  • the primary sintering removes in advance by-products such as CO 2 or moisture generated during sintering by sintering the cathode active material precursor and the lithium raw material, thereby preventing the by-products from adversely affecting the formation of the crystal structure of the cathode active material, and This is in order to be able to manufacture a quality positive electrode active material.
  • the first calcination is performed at a temperature lower than the secondary calcination to be described later, specifically, at a temperature lower than the secondary calcination temperature by 20 °C to 250 °C, preferably at a temperature 40 °C to 250 °C lower than the secondary calcination temperature. It is preferable to be Specifically, the primary firing may be performed at a temperature of 600°C or higher and less than 800°C, preferably 600°C to 780°C, and more preferably 600°C or higher and 760°C. If the primary sintering temperature is too high, crystal structure transformation occurs in the primary sintering step in which by-products are present, so that the crystal structure is not well developed.
  • the plastic product When a plastic product is formed through the primary firing, the plastic product is secondary fired to form a lithium composite transition metal oxide represented by Chemical Formula 1 above.
  • the secondary firing is performed at a temperature of 800°C to 880°C, preferably at a temperature of 800°C to 860°C.
  • the secondary sintering temperature satisfies the above range, it is possible to manufacture a positive electrode active material satisfying the range of Formula (1) and having a nickel content of 70 atm% or more.
  • the secondary sintering temperature is less than 800° C.
  • the ratio of the number of primary particles to the average particle diameter of secondary particles is 21
  • the ratio of the number of primary particles to the average particle diameter of secondary particles is less than 4 This is manufactured.
  • the method may further include washing the lithium composite transition metal oxide represented by Chemical Formula 1 with water.
  • the washing step is to remove the lithium by-product remaining on the surface of the lithium composite transition metal oxide, and may be performed through a washing method of the positive electrode active material known in the art.
  • the lithium composite transition metal oxide and the washing solution are mixed, stirred, filtered to remove the washing solution, and then dried.
  • the drying may be performed at a temperature of, for example, 50°C to 150°C.
  • the step of forming a coating layer on the surface of the lithium composite transition metal oxide may be additionally performed.
  • the forming of the coating layer may be performed by mixing the lithium composite transition metal oxide and the coating raw material and then heat-treating the mixture.
  • the coating raw material is Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. It may include one or more elements selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S, and specifically, acetate, nitrate, sulfate, halide, sulfide, hydroxide, and oxide containing the above elements. Or it may be an oxyhydroxide or the like.
  • the heat treatment at the time of forming the coating layer may be performed at a temperature of 200°C to 500°C, preferably 240°C to 400°C.
  • the positive electrode material according to the present invention includes, as the first positive electrode active material, the above-described positive electrode active material of the present invention (that is, a positive electrode active material containing a lithium composite transition metal oxide represented by Formula 1 and satisfying Formula (1)),
  • the second positive electrode active material is a bimodal positive electrode material including a positive electrode active material having an average particle diameter D 50 different from that of the first positive electrode active material. Since the first positive electrode active material is the same as described above, the second positive electrode active material will be described below.
  • the second positive electrode active material includes a lithium composite transition metal oxide having a nickel content of 80 atm% or more in the transition metal, and specifically includes a lithium composite transition metal oxide represented by the following formula (3).
  • M 3 is at least one selected from Mn and Al, and preferably Mn and Al.
  • M 4 is at least one selected from the group consisting of Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P and S, and structural stability of lithium composite transition metal oxide In terms of improvement, it is particularly preferred to include Zr.
  • the a' represents the molar ratio of lithium in the lithium composite transition metal oxide, and may be 0.9 ⁇ a ⁇ 1.1, preferably 0.95 ⁇ a ⁇ 1.08, more preferably 1 ⁇ a ⁇ 1.08,
  • the x' represents the molar ratio of nickel among the transition metals in the lithium composite transition metal oxide, and may be 0.8 ⁇ x' ⁇ 1, 0.83 ⁇ x' ⁇ 1, 0.85 ⁇ x' ⁇ 1, or 0.85 ⁇ x' ⁇ 0.95. .
  • the y' represents the molar ratio of cobalt among the transition metals in the lithium composite transition metal oxide, and may be 0 ⁇ y' ⁇ 0.2, 0 ⁇ y' ⁇ 0.15, 0 ⁇ y' ⁇ 0.1 or 0.01 ⁇ y' ⁇ 0.10. .
  • the z' represents the molar ratio of M 3 in the transition metal in the lithium composite transition metal oxide, and may be 0 ⁇ z' ⁇ 0.2, 0 ⁇ z' ⁇ 0.15, 0 ⁇ z' ⁇ 0.1 or 0.01 ⁇ z' ⁇ 0.10. have.
  • the w' represents the molar ratio of M 4 in the transition metal in the lithium composite transition metal oxide, and may be 0 ⁇ w' ⁇ 0.1, 0 ⁇ w' ⁇ 0.1, or 0 ⁇ w' ⁇ 0.05.
  • the average particle diameter D 50 of the secondary particles of the first positive electrode active material may be 1 ⁇ m to 8 ⁇ m, preferably 2 ⁇ m to 8 ⁇ m, more preferably 3 ⁇ m to 8 ⁇ m, ,
  • the second positive electrode active material may have an average particle diameter D 50 of the secondary particles greater than 8 ⁇ m and less than or equal to 30 ⁇ m, preferably, 8.5 ⁇ m to 25 ⁇ m, and more preferably 9 ⁇ m to 20 ⁇ m.
  • the packing density is high as the first positive electrode active material particles are filled between the second positive electrode active material particles.
  • a positive electrode can be manufactured, and capacity characteristics can be further improved by using the second positive electrode active material having a nickel content of 80 atm% or more in a large particle size.
  • the first positive electrode active material and the second positive electrode active material may be included in a weight ratio of 1:99 to 50:50, preferably 10:90 to 40:60, more preferably 20:80 to 30:70. . When the above mixing ratio is satisfied, capacity characteristics and lifespan characteristics are more excellent.
  • a positive electrode active material layer is manufactured using a bimodal positive electrode material including two types of positive electrode active materials having different average particle diameters D 50 , a small positive electrode active material having a small average particle diameter is filled between particles of a large positive electrode active material having a large average particle diameter
  • an electrode with high energy density can be manufactured.
  • particle cracking occurred in the small particle diameter positive electrode active material particles during the positive electrode rolling process thereby increasing the contact area with the electrolyte, thereby increasing the amount of gas generated and lowering the lifespan characteristics.
  • the positive electrode active material according to the present invention when used as a positive electrode active material of a small particle diameter of a bimodal positive electrode material, it is possible to reduce the amount of gas generated without reducing the capacity, and also minimize side effects such as cracking of the large particle diameter positive electrode active material during the rolling process can do.
  • the present invention provides a positive electrode for a lithium secondary battery comprising the above-described positive electrode material of the present invention.
  • the positive electrode includes a positive electrode current collector, and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector and including the positive electrode material according to the present invention. Since the cathode material is the same as described above, other components other than the cathode material will be described below.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive electrode active material layer may include a conductive material and a binder together with the positive electrode material according to the present invention described above.
  • the positive electrode material may be included in an amount of 80 to 99% by weight, more specifically, 85 to 98% by weight based on the total weight of the positive electrode active material layer. When included in the above content range, excellent capacity characteristics may be exhibited.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it has electronic conductivity without causing chemical change.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers, such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the binder serves to improve adhesion between the positive active material particles and the adhesion between the positive active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode material according to the present invention.
  • the positive electrode material and, optionally, a composition for forming a positive electrode active material layer prepared by dissolving or dispersing a binder and a conductive material in a solvent may be coated on a positive electrode current collector, and then dried and rolled.
  • the types and contents of the positive electrode material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water, and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity when applied for the production of the positive electrode thereafter. do.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support and then laminating a film obtained by peeling it from the support on the positive electrode current collector.
  • the present invention can manufacture an electrochemical device including the positive electrode.
  • the electrochemical device may specifically be a battery, a capacitor, or the like, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode positioned to face the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode. Since the positive electrode is the same as described above, a detailed description thereof will be omitted, and only the remaining components will be described in detail below.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide;
  • a composite including the above-mentioned metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite, may be mentioned, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, scale-like, spherical or fibrous shape, and Kish graphite graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the negative active material layer.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1 wt% to 10 wt% based on the total weight of the anode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro and roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM
  • the conductive material is a component for further improving the conductivity of the anode active material, and may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the anode active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • carbon fluoride such as aluminum and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the anode active material layer is prepared by applying and drying a composition for forming an anode active material layer prepared by dissolving or dispersing an anode active material, and optionally a binder and a conductive material in a solvent, on the anode current collector and drying, or the anode active material layer It can be prepared by casting the composition for forming an active material layer on a separate support, and then laminating a film obtained by peeling it off the support on an anode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to respect and an excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer and ethylene/methacrylate copolymer, or these
  • a laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator including a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries, and are limited to these. it is not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon-based solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a linear, branched, or cyclic hydrocarbon group having 2
  • a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate eg, ethylene carbonate or propylene carbonate, etc.
  • a low-viscosity linear carbonate-based compound for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2.
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and lifespan characteristics, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle and HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium-to-large devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a prismatic shape, a pouch type, or a coin type using a can.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source for a small device, but can also be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • ZrO 2 and Al(OH) 3 were further mixed, and then calcined at 640° C. for 5 hours to prepare a plastic product.
  • ZrO 2 was mixed so that Zr was 3500 ppm based on the total weight of the plastic product, and Al(OH) 3 was mixed in an amount such that Al was 2 mol% with respect to the total number of moles of Ni, Co, Mn and Al.
  • the calcined product was secondarily calcined at 830° C. to prepare lithium composite transition metal oxide LiNi 0.81 Co 0.05 Mn 0.12 Al 0.02 O 2 containing Zr.
  • the lithium composite transition metal oxide prepared as described above 200 g and 240 g of water were mixed, washed with water by stirring for 5 minutes, and then separated and filtered so that the water content in the washing product was 5 to 10% with a filter press, followed by drying at 130°C. Then, the washed and dried lithium composite transition metal oxide and H 3 BO 3 were mixed in a weight ratio of 100:0.57 and heat-treated at 300° C. for 4 hours to prepare a positive electrode active material coated with a solid B solution.
  • a positive active material was prepared in the same manner as in Example 1, except that the secondary firing was performed at 800°C.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the secondary firing was performed at 850°C.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the secondary firing was performed at 780°C.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the secondary firing was performed at 900°C.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that a positive electrode active material precursor having an average particle diameter (D 50 ) of secondary particles of 8.5 ⁇ m was used.
  • FIG. 1 shows a cross-sectional SEM image of a sample taken from the cathode active material powder of Example 1
  • FIG. 2 is a cross-sectional SEM image of a sample taken from the cathode active material powder of Comparative Example 1
  • FIG. 3 is a comparative example 2
  • a laser diffraction particle size measuring device (Microtrac’s) S-3500) was used to measure the area cumulative particle size distribution of the secondary particles of the cathode active material.
  • the positive electrode active material powder is collected and pressed at a pressure of 9 tons, and the pressed positive electrode active material powder is dispersed in water to which sodium hexametaphosphate ((NaPO 3 ) 6 ) is added in a small amount. Then, the area cumulative particle size distribution of the secondary particles of the positive electrode active material after the 9-ton press was measured using a laser diffraction particle size measuring device (S-3500 manufactured by Microtrac).
  • P 0 is the intensity of the maximum peak appearing in the area particle size distribution graph of the positive active material
  • P 1 is measured after pressurizing the positive active material to 9 tons. It is the intensity of a peak appearing in a region corresponding to the particle size of the P 0 peak in the area particle size distribution graph.
  • FIG. 4 is a graph showing the area cumulative particle size distribution before and after pressing of the positive active material powder of Example 1
  • FIG. 5 is a graph showing the area cumulative particle size distribution of the positive active material powder of Comparative Example 1 before and after pressing.
  • 6 is a graph showing the area cumulative particle size distribution before and after pressing of the cathode active material powder of Comparative Example 2 is shown.
  • a positive electrode material was prepared by mixing.
  • the positive electrode material, the conductive material (Denka Black), and the binder (PVDF) were mixed in a N-methyl-2-pyrrolidone (NMP) solvent in a weight ratio of 97.5:1.15:1.35 to prepare a positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was applied on an aluminum current collector, dried and then rolled to prepare a positive electrode.
  • a lithium metal electrode was used as the negative electrode.
  • An electrode assembly was prepared by interposing a separator between the positive electrode and the negative electrode, and then placed inside a battery case, and then an electrolyte was injected to prepare a lithium secondary battery.
  • an electrolyte an electrolyte in which 1M LiPF 6 was dissolved in an organic solvent in which ethylene carbonate: ethylmethyl carbonate: diethyl carbonate was mixed in a volume ratio of 3:3:4 was used.
  • CC/CV mode charging was performed at 25° C. to 4.25 V with a constant current of 0.1 C (CV 0.05 C), and then CC mode discharging was performed until 3 V, and the initial discharge capacity (unit: mAh/g) and capacity efficiency (unit: %) were measured.
  • the measurement results are shown in Table 3.
  • a positive electrode material was prepared by mixing.
  • the positive electrode material, the conductive material (Denka Black), and the binder (PVDF) were mixed in a N-methyl-2-pyrrolidone (NMP) solvent in a weight ratio of 97.5:1.15:1.35 to prepare a positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was applied on an aluminum current collector, dried and then rolled to prepare a positive electrode.
  • the negative electrode active material natural graphite
  • the conductive material carbon black
  • the binder SBR+CMC
  • An electrode assembly was prepared by interposing a separator between the positive electrode and the negative electrode, and then placed inside the battery case, and then electrolyte was injected to prepare three mono cells each having an electrode size of 3 cm ⁇ 4 cm.
  • an electrolyte an electrolyte in which 1M LiPF 6 was dissolved in an organic solvent in which ethylene carbonate: ethylmethyl carbonate: diethyl carbonate was mixed in a volume ratio of 3:3:4 was used.
  • the positive electrode was separated.
  • the separated anodes were placed in a cell pouch, and an electrolyte was additionally injected and sealed to prepare a sample.
  • Cell volume change rate (unit: %) and gas generation (unit: ⁇ l) were measured while the sample was stored at 60° C. for 4 weeks. The measurement results are shown in Tables 4 and 5.

Abstract

본 발명은 본 명세서에 기재된 화학식 1로 표시되는 리튬 복합전이금속 산화물을 포함하고, 본 명세서에 기재된 식 (1)을 만족하며, 2차 입자의 평균 입경 D50이 1㎛ 내지 8㎛인 양극 활물질과, 그 제조 방법 및 이를 포함하는 양극재에 관한 것이다.

Description

양극 활물질, 그 제조 방법, 이를 포함하는 양극재, 양극 및 리튬 이차 전지
관련 출원과의 상호 인용
본 출원은 2020년 12월 23일자 한국특허출원 제10-2020-0181726호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원이 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 양극 활물질 및 그 제조 방법에 관한 것으로, 보다 상세하게는 그레인 크기(grain size)를 제어하여 용량 저하를 최소화하면서 가스 발생량을 줄일 수 있도록 개발된 양극 활물질 및 그 제조 방법에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자 기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalations)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 이 중에서도 리튬 코발트 산화물(LiCoO2)은 작동 전압이 높고 용량 특성이 우수한 장점이 있어, 널리 사용되고 있으며, 고전압용 양극 활물질로 적용되고 있다. 그러나, 코발트(Co)의 가격 상승 및 공급 불안정 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에 한계가 있어, 이를 대체할 수 있는 양극 활물질 개발의 필요성이 대두되었다.
이에 따라, 코발트(Co)의 일부를 니켈(Ni)과 망간(Mn)으로 치환한 니켈코발트망간계 리튬 복합 전이금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다. 그러나, 종래 개발된 NCM계 리튬 복합 전이금속 산화물은 일반적으로 1차 입자가 응집된 2차 입자 형태로서, 비표면적이 크고, 입자 강도가 낮으며, 리튬 부산물의 함량이 높기 때문에 셀 구동시 가스 발생량이 많고, 안정성이 떨어지는 문제가 있었다.
특히, 고용량 확보를 위해 니켈(Ni)의 함량을 증가시킨 고함량 니켈(High-Ni)의 NCM계 리튬 복합 전이금속 산화물의 경우, 구조적 및 화학적 안정성이 더욱 저하되고, 열 안정성 확보가 더욱 어렵다. 이에 고함량 니켈계 리튬 복합 전이금속 산화물의 리튬 부산물 함량을 감소시키고, 안정성을 개선하기 위한 다양한 연구들이 시도되고 있다.
특허문헌 1에는 양극 활물질 제조 시에 2종 이상의 도펀트를 첨가하고, 소성 온도를 높여 결정 사이즈를 증가시킴으로써, 양극 활물질의 비표면적을 감소시키고, 입자 강도를 개선하고 리튬 부산물 함량을 감소시키는 기술이 개시되어 있다. 특허문헌 1과 같이 결정 사이즈를 크게 형성할 경우, 양극 활물질의 비표면적이 감소하고, 그로 인해 전해액과의 접촉 면적이 줄어 가스 발생량을 감소시키는 효과를 얻을 수 있으나, 용량 특성이 떨어진다는 문제점이 있다.
따라서, 용량 특성이 우수하면서 가스 발생량도 적은 양극 활물질의 개발이 요구되고 있다.
(특허문헌 1)
한국공개특허 제10-2020-0047116호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 용량 특성 저하를 최소화하면서 가스 발생량을 저감할 수 있는 양극 활물질 및 그 제조 방법을 제공하고자 한다.
일 구현예에 따르면, 본 발명은, 하기 화학식 1로 표시되는 리튬 복합전이금속 산화물을 포함하고, 하기 식 (1)을 만족하며, 2차 입자의 평균 입경 D50이 1㎛ 내지 8㎛인 양극 활물질을 제공한다.
[화학식 1]
LiaNixCoyM1 zM2 wO2
상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.9≤a≤1.1, 0.7≤x<1. 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이다.
식 (1): 4 ≤1차 입자 개수/2차 입자의 평균 입경 D50≤ 21
상기 식 (1)에서, 상기 1차 입자 개수는 양극 활물질의 단면 SEM 이미지에서 측정되는 1차 입자의 개수이며, 상기 2차 입자의 평균 입경 D50은 레이저 회절 입도 측정 장치를 통해 측정한 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 입경이다.
다른 구현예에 따르면, 본 발명은, 하기 화학식 2로 표시되는 양극 활물질 전구체 및 리튬 원료 물질을 혼합한 후 1차 소성하여 가소성품을 형성하는 단계; 및 상기 가소성품을 800℃ 내지 880℃의 온도로 2차 소성하여 하기 화학식 1로 표시되는 리튬 복합전이금속 산화물을 형성하는 단계를 포함하는 양극 활물질의 제조 방법을 제공한다.
[화학식 1]
LiaNixCoyM1 zM2 wO2
상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.9≤a≤1.1, 0.7≤x<1. 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이다.
[화학식 2]
[NixCoyM1 zM2 w](OH)2
상기 화학식 2에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.7≤x<1. 0<y≤0.2, 0≤z≤0.2, 0≤w≤0.1이다.
또 다른 구현예에 따르면, 본 발명은 제1양극 활물질 및 상기 제1양극 활물질과 상이한 평균 입경 D50을 갖는 제2양극 활물질을 포함하는 바이모달 양극재를 제공한다. 이때, 상기 제1양극 활물질은 상술한 본 발명의 양극 활물질이며, 상기 제2양극 활물질은 하기 화학식 3으로 표시되는 리튬 복합전이금속 산화물을 포함하는 것일 수 있다.
[화학식 3]
Lia'Nix'Coy'M3 z'M4 w'O2
상기 화학식 3에서, M3은 Mn 및 Al으로부터 선택되는 1종 이상이고, M4는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.9≤a'≤1.1, 0.8≤x'<1. 0<y'<0.2, 0<z'<0.2, 0≤w'<0.1이다.
또 다른 구현예에 따르면, 본 발명은 상기 본 발명의 양극재를 포함하는 양극 및 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 양극 활물질은 전이금속 중 Ni 함유량이 70atm% 이상인 고-니켈 리튬 복합전이금속 산화물을 포함하고, 양극 활물질 단면에서 1㎛ 당 1차 입자의 응집 개수가 4 ~ 21인 것을 특징으로 한다. 상기와 같은 본 발명의 양극 활물질은 우수한 용량 특성을 나타내면서도 가스 발생량을 현저하게 감소시킬 수 있다.
또한, 본 발명에 따른 양극 활물질은, 평균 입경이 상이한 2종의 양극 활물질을 포함하는 바이모달 양극재에 유용하게 사용될 수 있다. 본 발명에 따른 양극 활물질을 바이모달 양극재에 적용할 경우, 높은 용량 특성을 유지하면서 종래에 일반적으로 사용되던 2차 입자 형태의 양극 활물질에 비해 압연 시 입자 깨짐을 현저하게 감소시킬 수 있으며, 이에 따라 전해액과의 부반응으로 인한 전이금속 용출이나 가스 발생을 효과적으로 억제할 수 있다.
도 1은 실시예 1에 의해 제조된 양극 활물질 입자의 단면 SEM 이미지이다.
도 2는 비교예 1에 의해 제조된 양극 활물질 입자의 단면 SEM 이미지이다.
도 3은 비교예 2에 의해 제조된 양극 활물질 입자의 단면 SEM 이미지이다.
도 4는 실시예 1에 의해 제조된 양극 활물질 분말의 9톤 프레스 전, 후의 입도 분포를 보여주는 그래프이다.
도 5는 비교예 1에 의해 제조된 양극 활물질 분말의 9톤 프레스 전, 후의 입도 분포를 보여주는 그래프이다.
도 6은 비교예 2에 의해 제조된 양극 활물질 분말의 9톤 프레스 전, 후의 입도 분포를 보여주는 그래프이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 있어서, '1차 입자'는 주사전자현미경(SEM)을 통해 양극 활물질의 단면을 관찰하였을 때 1개의 덩어리로 구별되는 최소 입자 단위를 의미하는 것으로, 하나의 결정립으로 이루어질 수도 있고, 복수개의 결정립으로 이루어질 수도 있다. 본 발명에서, 상기 1차 입자의 평균 입경은, 양극 활물질 입자의 단면 SEM 이미지에서 구별되는 각각의 입자 크기를 측정하고, 그 산술 평균값을 구하는 방법으로 측정될 수 있다.
본 발명에 있어서, '2차 입자'는 복수 개의 1차 입자가 응집되어 형성되는 2차 구조체를 의미한다. 상기 2차 입자의 평균 입경은, 입도 분석기를 이용하여 측정될 수 있으며, 본 발명에서는 입도 분석기로 Microtrac社의 s3500을 사용하였다.
본 발명에서 양극 활물질의 '입경 Dn'은, 입경에 따른 면적 누적 분포의 n% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 면적 누적 분포의 50% 지점에서의 입경이며, D90은 입경에 따른 면적 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 면적 누적 분포의 10% 지점에서의 입경이다. 상기 Dn은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저 빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 면적 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
이하, 본 발명을 구체적으로 설명한다.
양극 활물질
본 발명에 따른 양극 활물질은 전이금속 중 Ni 함유량이 70atm% 이상인 고-니켈 리튬 복합전이금속 산화물을 포함하고, 양극 활물질 단면에서 1㎛ 당 1차 입자의 응집 개수가 4 ~ 21인 것을 특징으로 한다.
현재까지 개발된 양극 활물질들은 수 백개의 1차 입자들이 응집된 2차 입자 형태로, 1㎛ 당 1차 입자의 응집 개수가 30 ~ 40개 수준이다. 이러한 종래의 2차 입자 형태의 양극 활물질들은 니켈 함유량이 낮은 경우에는 비교적 안정적으로 작동하지만, 니켈 함유량이 70atm% 이상으로 증가하면 구조 안정성이 급격히 저하되고 가스 발생량이 급증하여, 수명 특성이 급속하게 퇴화되고, 발화, 폭발 등의 안정성 문제를 발생시킬 수 있다.
이를 개선하기 위해, 1차 입자의 응집 개수가 10개 미만인 단입자 형태의 양극 활물질들이 개발되었다. 이러한 단입자 형태의 양극 활물질의 경우 가스 발생량 감소에는 효과가 있으나 용량 특성이 떨어져 고용량 전지에 적용하기 어려웠다.
본 발명자들은 이와 같은 문제점을 해결하기 위해 연구를 거듭한 결과, 양극 활물질 입자 단면 1㎛ 당 1차 입자의 응집 개수가 4 ~ 21이 되도록 제어함으로써, 니켈 함유량이 70atm% 이상인 고-니켈 양극 활물질의 용량 특성과 가스 발생 특성을 모두 우수하게 구현할 수 있음을 알아내고 본 발명을 완성하였다.
구체적으로는, 본 발명의 양극 활물질은, 하기 화학식 1로 표시되는 리튬 복합전이금속 산화물을 포함하며, 하기 식 (1)을 만족한다.
[화학식 1]
LiaNixCoyM1 zM2 wO2
상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이며, 바람직하게는 Mn 및 Al일 수 있다.
M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 리튬 복합전이금속 산화물의 구조 안정성 개선 측면에서, Zr를 포함하는 것이 특히 바람직하다.
상기 a는 리튬 복합전이금속 산화물 내 리튬의 몰비를 나타내는 것으로, 0.9≤a≤1.1, 바람직하게는 0.95≤a≤1.08, 더 바람직하게는 1≤a≤1.08일 수 있다,
상기 x는 리튬 복합전이금속 산화물 내 전이금속 중 니켈의 몰비를 나타내는 것으로, 0.7≤x<1. 0.80≤x≤0.99, 0.80≤x≤0.95, 0.85≤x<1, 또는 0.80≤x≤0.85일 수 있다. 니켈 함유량이 상기 범위를 만족할 경우, 우수한 용량 특성을 구현할 수 있다.
상기 y는 리튬 복합전이금속 산화물 내 전이금속 중 코발트의 몰비를 나타내는 것으로, 0<y≤0.2, 0<y≤0.15, 또는 0.01≤y≤0.10일 수 있다.
상기 z는 리튬 복합전이금속 산화물 내 전이금속 중 M1의 몰비를 나타내는 것으로, 0<z<0.2, 0<z≤0.15, 또는 0.01≤z≤0.10일 수 있다.
상기 w는 리튬 복합전이금속 산화물 내 전이금속 중 M2의 몰비를 나타내는 것으로, 0≤w≤0.1, 또는 0≤w≤0.05일 수 있다.
바람직하게는, 상기 리튬 복합전이금속 산화물은 하기 화학식 1-1로 표시되는 것일 수 있다.
[화학식 1-1]
LiaNixCoyMnz1AlZ2M2 wO2
상기 화학식 1-1에서, M2, a, x, y 및 w의 정의는 화학식 1과 동일하다.
한편, 상기 z1은 리튬 복합전이금속 산화물 내 전이금속 중 Mn의 몰비를 나타내는 것으로, 0<z1≤0.15, 또는 0.01≤z1≤0.10일 수 있다.
상기 z2는 리튬 복합전이금속 산화물 내 전이금속 중 Al의 몰비를 나타내는 것으로, 0<z2≤0.05일 수 있다.
상기 화학식 1-1과 같이 Mn 및 Al을 함께 포함하는 리튬 복합전이금속 산화물을 사용하는 경우에 용량이 높으면서도 상대적으로 구조 안정성이 우수한 양극 활물질을 얻을 수 있다.
한편, 본 발명에 따른 양극 활물질은, 상기 리튬 복합전이금속 산화물의 표면에 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 더 포함할 수 있다. 수명 특성 개선 및 저항 증가 억제 측면에서, 상기 코팅층은 B 원소를 포함하는 것이 특히 바람직하다.
상기와 같은 리튬 복합전이금속 산화물 표면에 코팅층이 형성될 경우, 리튬 복합전이금속 산화물과 전해액의 접촉이 차단되어 전해액과의 부반응에 의한 가스 발생 및 전이금속 용출을 효과적으로 억제할 수 있으며, 리튬 복합전이금속 산화물 표면 구조를 안정화하여 충방전 시에 양극 활물질의 구조 퇴화를 억제할 수 있다.
한편, 본 발명에 따른 양극 활물질은 하기 식 (1)을 만족한다.
식 (1): 4 ≤ 1차 입자 개수/2차 입자의 평균 입경 D50≤ 21
상기 식 (1)에서, 상기 1차 입자 개수는 양극 활물질의 단면 SEM 이미지에서 측정되는 1차 입자의 개수이며, 상기 2차 입자 평균 입경 D50은 레이저 회절 입도 측정 장치를 통해 측정한 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 지점의 입경 값을 의미한다.
상기 1차 입자 개수/2차 입자의 평균 입경은, 바람직하게는 4 내지 21, 바람직하게는 5 내지 20, 더 바람직하게는 6 내지 15일 수 있다.
상기 1차 입자 개수/2차 입자의 평균 입경 값이 본 발명의 범위를 만족할 때, 용량 특성 및 가스 발생 특성이 모두 우수한 양극 활물질을 얻을 수 있다. 상기 1차 입자 개수/2차 입자의 평균 입경 값이 4 미만인 경우에는 양극 활물질 내에서 리튬 이온의 이동 거리가 길어져 리튬 이온 이동성이 떨어지기 때문에 용량이 저하되고, 21를 초과하는 경우에는 가스 발생량 감소 효과를 얻을 수 없다.
한편, 본 발명에 따른 양극 활물질은, 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 20 ~ 100개, 바람직하게는 30 ~ 100개, 더 바람직하게는 40 ~ 95개일 수 있다. 양극 활물질 입자 단면에서의 1차 입자의 개수가 2O개 미만인 경우에는 용량 특성이 저하되며, 100개를 초과하는 경우에는 가스 발생량 감소 효과를 얻을 수 없다.
한편, 본 발명에 따른 양극 활물질은 2차 입자의 평균 입경 D50이 1㎛ 내지 8㎛, 바람직하게는 2㎛ 내지 7㎛ 일 수 있다. 2차 입자의 평균 입경 D50이 1㎛ 미만인 경우, 2차 입자의 깨짐 정도는 낮아지지만 2차 입자 개수의 증가와 노출되는 1차 입자의 증가로 수명 성능이 열화되는 문제가 있으며, 8㎛ 초과인 경우, 2차 입자의 깨짐이 증가하여 장기 수명 성능이 열화되고, 동일 압력으로 압연하였을 때 전극의 밀도가 낮아지는 문제가 있다. 양극 활물질의 평균 입경 D50이 상기 범위를 만족할 때, 바이모달 양극재 적용 시에 압연 밀도가 높고 전극 압연 공정에서 깨짐 정도가 낮은 양극을 제조할 수 있다.
또한, 본 발명에 따른 양극 활물질은 하기 식 (2)로 표시되는 입도 변화율이 -5 내지 4.5, 바람직하게는 0 내지 4, 더 바람직하게는 0 내지 3.5일 수 있다.
식 (2): 입도 변화율 = (P0 - P1)/P1
상기 식 (2)에서, P0는 상기 양극 활물질의 면적 누적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며, 상기 P1은 상기 양극 활물질을 9톤으로 가압한 후 측정한 면적 누적 입도 분포 그래프에서 상기 P0 피크가 나타나는 입자 크기에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
또한, 본 발명에 따른 양극 활물질은 하기 식 (3)으로 표시되는 입도 변화량이 0 내지 12, 바람직하게는 0 내지 10, 더 바람직하게는 2 내지 10일 수 있다.
식 (3): 입도 변화량 = P0 - P1
상기 식 (3)에서, P0는 상기 양극 활물질의 면적 누적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며, 상기 P1은 상기 양극 활물질을 9톤으로 가압한 후 측정한 면적 누적 입도 분포 그래프에서 상기 P0 피크가 나타나는 입자 크기에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
상기 식(2)로 표시되는 입도 변화율 및 식 (3)으로 표시되는 입도 변화량이 상기 범위를 만족할 때, 양극 제조 시 압연에 의한 입자 깨짐이 억제되어 가스 발생량 감소 효과를 더욱 개선할 수 있다.
양극 활물질의 제조 방법
다음으로, 본 발명에 따른 양극 활물질의 제조 방법에 대해 설명한다.
본 발명에 따른 양극 활물질 제조 방법은, (1) 양극 활물질 전구체 및 리튬 원료 물질을 혼합한 후 1차 소성하여 가소성품을 형성하는 단계, 및 (2) 상기 가소성품을 800℃ 내지 880℃의 온도로 2차 소성하여 리튬 복합전이금속 산화물을 형성하는 단계를 포함한다.
먼저, 양극 활물질과 리튬 원료 물질을 혼합한 후, 1차 소성하여 가소성품을 형성한다.
이때, 상기 양극 활물질 전구체는, 하기 화학식 2로 표시되는 수산화물 화합물일 수 있다.
[화학식 2]
[NixCoyM1 zM2 w](OH)2
상기 화학식 2에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 Mn일 수 있다.
M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 x는 양극 활물질 전구체 중 니켈의 몰비를 나타내는 것으로, 0.7≤x<1. 0.80≤x≤0.99, 0.80≤x≤0.95, 0.85≤x<1, 또는 0.80≤x≤0.85일 수 있다. 니켈 함유량이 상기 범위를 만족할 경우, 우수한 용량 특성을 구현할 수 있다.
상기 y는 양극 활물질 전구체 중 코발트의 몰비를 나타내는 것으로, 0<y≤0.2, 0<y<0.15, 또는 0.01≤y≤0.10일 수 있다.
상기 z는 양극 활물질 전구체 중 M1의 몰비를 나타내는 것으로, 0≤z<0.2, 0≤z<0.15, 또는 0.01≤z<0.10일 수 있다.
상기 w는 양극 활물질 전구체 중 M2의 몰비를 나타내는 것으로, 0≤w≤0.1, 또는 0≤w≤0.05일 수 있다.
바람직하게는, 상기 양극 활물질 전구체는 하기 화학식 2-1로 표시되는 니켈-코발트-망간 수산화물일 수 있다.
[화학식 2-1]
[NixCoyMnz1](OH)2
상기 화학식 2-1에서, 상기 x는 양극 활물질 전구체 중 니켈의 몰비를 나타내는 것으로, 0.7≤x<1. 0.80≤x≤0.99, 0.80≤x≤0.95, 0.85≤x<1, 또는 0.80≤x≤0.85일 수 있다. 니켈 함유량이 상기 범위를 만족할 경우, 우수한 용량 특성을 구현할 수 있다.
상기 y는 양극 활물질 전구체 중 코발트의 몰비를 나타내는 것으로, 0<y≤0.2, 0<y<0.15, 또는 0.01≤y≤0.10일 수 있다.
상기 z1은 양극 활물질 전구체 중 망간의 몰비를 나타내는 것으로, 0<z1<0.15, 또는 0.01≤z1<0.10일 수 있다.
한편, 상기 리튬 원료 물질로는, 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 예를 들면, Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, Li3C6H5O7 또는 이들의 혼합물이 사용될 수 있다.
한편, 상기 리튬 원료 물질과 양극 활물질 전구체는 Li : 전구체 내의 총 전이금속의 몰비가 1 : 1 내지 1.2 : 1, 바람직하게는 1 : 1 내지 1.1 : 1이 되도록 혼합될 수 있다. 리튬 원료 물질과 양극 활물질 전구체 내의 전이금속의 혼합비가 상기 범위를 만족할 때, 양극 활물질의 결정 구조가 잘 발달되어 용량 특성 및 구조 안정성이 우수한 양극 활물질을 제조할 수 있다.
한편, 상기 양극 활물질 전구체와 리튬 원료 물질 혼합 시에 필요에 따라, M1 함유 원료 및 M2 함유 원료 중 적어도 하나를 추가로 혼합할 수 있다.
상기 M1 함유 원료는 M1 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 예를 들면, Mn2O3, MnO2, Mn3O4, MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 염화망간, 수산화망간, Al2O3, Al(OH)3, Al(NO3)3·9H2O, Al2(SO4)3 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 M2 함유 원료는 M2 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있다.
본 발명에서 상기 M1 원소 및 M2 원소는 양극 활물질 전구체를 제조하기 위한 공침 반응 단계에서 투입되거나, 또는 리튬 원료 물질과의 혼합 시에 투입되어도 무방하다. 또한, M1 원소 및 M2 원소로 2종 이상의 원소를 사용하는 경우, 각각의 M1 원소 및 M2 원소의 투입 시점은 동일하거나 상이할 수 있다. 예를 들면, M1 원소로 Mn 및 Al을 포함하는 경우, Mn은 전구체 공침 단계에 투입하고, Al은 리튬 원료 물질과의 혼합 단계에 투입할 수 있다.
M1 원소 및 M2 원소의 투입 시점은 제조하고자 하는 양극 활물질의 최종 조성을 고려하여 적절하게 조절될 수 있다. 예를 들면, Ni 함유량이 80atm%를 초과하는 양극 활물질을 제조하는 경우라면, Al 원소를 공침 반응 시보다는 리튬 원료 물질과의 혼합 단계에서 투입하는 것이 보다 바람직하다. 공침 단계에서 Al을 투입할 경우 Al에 의해 결정 구조 성장에 악 영향을 미칠 수 있기 때문이다.
양극 활물질 전구체와 리튬 원료 물질을 혼합하고, 선택적으로, M1 함유 원료 및 M2 함유 원료 중 적어도 하나를 추가로 혼합한 다음, 1차 소성을 수행하여 가소성품을 제조한다.
상기 1차 소성은 양극 활물질 전구체와 리튬 원료 물질을 가소성하여 소성 시에 발생되는 CO2나 수분과 같은 부산물을 미리 제거함으로써, 상기 부산물들이 양극 활물질의 결정 구조 형성에 악영향을 끼치는 것을 방지하고, 우수한 품질의 양극 활물질을 제조할 수 있도록 하기 위한 것이다.
상기 1차 소성은 후술할 2차 소성보다 낮은 온도에서 수행되며, 구체적으로는 2차 소성 온도보다 20℃ 내지 250℃ 낮은 온도, 바람직하게는 2차 소성 온도보다 40℃ 내지 250℃ 낮은 온도에서 수행되는 것이 바람직하다. 구체적으로는, 상기 1차 소성은 600℃ 이상 800℃ 미만, 바람직하게는 600℃ 내지 780℃, 더 바람직하게는 600℃ 이상 760℃의 온도로 수행될 수 있다. 1차 소성 온도가 너무 높으면, 부산물이 존재하는 1차 소성 단계에서 결정 구조 변환이 이루어져 결정 구조가 잘 발달되지 않으며, 1차 소성 온도가 너무 낮으면 부산물 제거 효율이 떨어질 수 있다.
상기 1차 소성을 통해 가소성품이 형성되면, 상기 가소성품을 2차 소성하여 상기 화학식 1로 표시되는 리튬 복합전이금속 산화물을 형성한다.
이때, 상기 2차 소성은 800℃ 내지 880℃의 온도, 바람직하게는 800℃ 내지 860℃의 온도에서 수행한다. 2차 소성 온도가 상기 범위를 만족할 때, 상기 식 (1)의 범위를 만족하고, 니켈 함유량이 70atm% 이상인 양극 활물질을 제조할 수 있다. 니켈 함유량이 70atm% 이상인 양극 활물질 제조 시에 2차 소성 온도가 800℃ 미만이면, 2차 입자 평균 입경에 대한 1차 입자 개수의 비(1차 입자 개수/2차 입자의 평균 입경)가 21을 초과하는 양극 활물질이 제조되며, 2차 소성 온도가 800℃를 초과하면, 2차 입자 평균 입경에 대한 1차 입자 개수의 비(1차 입자 개수/2차 입자의 평균 입경)가 4 미만인 양극 활물질이 제조된다.
한편, 상기 2차 소성 후에, 필요에 따라, 상기 화학식 1로 표시되는 리튬 복합전이금속 산화물을 수세하는 단계를 더 포함할 수 있다.
상기 수세 단계는 리튬 복합전이금속 산화물 표면에 잔류하는 리튬 부산물을 제거하기 위한 것으로, 당해 기술 분야에 알려져 있는 양극 활물질의 수세 방법을 통해 수행될 수 있다. 예를 들면, 상기 수세 단계는, 리튬 복합전이금속 산화물과 수세 용액을 혼합한 후 교반한 후, 필터링하여 수세 용액을 제거한 다음, 건조시키는 방법으로 수행될 수 있다. 이때, 상기 건조는, 예를 들면, 50℃ 내지 150℃의 온도로 수행될 수 있다.
또한, 상기 2차 소성 후에, 필요에 따라, 상기 리튬 복합전이금속 산화물 표면에 코팅층을 형성하는 단계를 추가로 수행할 수 있다.
상기 코팅층을 형성하는 단계는, 리튬 복합전이금속 산화물과 코팅 원료 물질을 혼합한 후 열처리하는 방법으로 수행될 수 있다.
이때, 상기 코팅 원료 물질은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 것일 수 있으며, 구체적으로는 상기 원소들을 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있다.
한편, 상기 코팅층 형성 시의 열처리는 200℃ 내지 500℃, 바람직하게는 240℃ 내지 400℃의 온도로 수행될 수 있다.
양극재
다음으로, 본 발명에 따른 양극재에 대해 설명한다.
본 발명에 따른 양극재는, 제1양극 활물질로 상술한 본 발명의 양극 활물질(즉, 화학식 1로 표시되는 리튬 복합전이금속 산화물을 포함하고, 식 (1)을 만족하는 양극 활물질)을 포함하고, 제2양극 활물질로, 상기 제1양극 활물질과 상이한 평균 입경 D50을 갖는 양극 활물질을 포함하는 바이모달 양극재이다. 제1양극 활물질은 상술한 바와 동일하므로, 이하에서는 제2양극 활물질에 대해 설명한다.
상기 제2양극 활물질은, 전이금속 중 니켈 함유량이 80atm% 이상인 리튬 복합전이금속 산화물을 포함하며, 구체적으로는 하기 화학식 3으로 표시되는 리튬 복합전이금속 산화물을 포함한다.
[화학식 3]
Lia'Nix'Coy'M3 z'M4 w'O2
상기 화학식 3에서, 상기 M3은 Mn 및 Al으로부터 선택되는 1종 이상이며, 바람직하게는 Mn 및 Al일 수 있다.
상기 M4는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 리튬 복합전이금속 산화물의 구조 안정성 개선 측면에서, Zr를 포함하는 것이 특히 바람직하다.
상기 a'는 리튬 복합전이금속 산화물 내 리튬의 몰비를 나타내는 것으로, 0.9≤a≤1.1, 바람직하게는 0.95≤a≤1.08, 더 바람직하게는 1≤a≤1.08일 수 있다,
상기 x'는 리튬 복합전이금속 산화물 내 전이금속 중 니켈의 몰비를 나타내는 것으로, 0.8≤x'<1, 0.83≤x'<1, 0.85≤x'<1 또는 0.85≤x'≤0.95일 수 있다.
상기 y'는 리튬 복합전이금속 산화물 내 전이금속 중 코발트의 몰비를 나타내는 것으로, 0<y'≤0.2, 0<y'<0.15, 0<y'≤0.1 또는 0.01≤y'≤0.10 일 수 있다.
상기 z'는 리튬 복합전이금속 산화물 내 전이금속 중 M3의 몰비를 나타내는 것으로, 0<z'<0.2, 0<z'<0.15, 0<z'≤0.1 또는 0.01≤z'≤0.10일 수 있다.
상기 w'는 리튬 복합전이금속 산화물 내 전이금속 중 M4의 몰비를 나타내는 것으로, 0≤w'≤0.1, 0≤w'<0.1 또는 0≤w'≤0.05일 수 있다.
한편, 본 발명에 있어서, 상기 제1양극 활물질은 2차 입자의 평균 입경 D50이 1㎛ 내지 8㎛이고, 바람직하게는 2㎛ 내지 8㎛, 더 바람직하게는 3㎛ 내지 8㎛ 일 수 있으며, 상기 제2양극 활물질은 2차 입자의 평균 입경 D50이 8㎛ 초과 30㎛ 이하, 바람직하게는, 8.5㎛ 내지 25㎛, 더 바람직하게는 9㎛ 내지 20㎛일 수 있다.
제1양극 활물질 및 제2양극 활물질의 2차 입자의 평균 입경 D50이 상기 범위를 만족할 경우, 제2양극 활물질 입자들 사이에 제1양극 활물질 입자들이 채워짐에 따라 충진 밀도(packing density)가 높은 양극을 제조할 수 있으며, 니켈 함량이 80atm% 이상인 제2양극 활물질을 대입경으로 사용함으로써 용량 특성을 더욱 개선할 수 있다.
한편, 상기 제1양극 활물질과 제2양극 활물질은 1 : 99 내지 50 : 50, 바람직하게는 10 : 90 내지 40 : 60, 더 바람직하게는 20 : 80 내지 30 : 70의 중량비율로 포함될 수 있다. 상기 혼합 비율을 만족할 때, 용량 특성 및 수명 특성이 더욱 우수하게 나타난다.
평균 입경 D50이 상이한 2종의 양극 활물질을 포함하는 바이모달 양극재를 사용하여 양극 활물질층 제조하면, 작은 평균 입경을 갖는 소입경 양극 활물질이 큰 평균 입경을 갖는 대입경 양극 활물질 입자 사이에 충진되어 에너지 밀도가 높은 전극을 제조할 수 있다. 그러나, 종래의 바이모달 양극재의 경우, 양극 압연 과정에서 소입경 양극 활물질 입자에 입자 깨짐이 발생하여 전해액과의 접촉 면적이 넓어지고, 이로 인해 가스 발생량 증가하고 수명 특성이 저하된다는 문제점이 있었다.
이를 개선하기 위해, 소성 온도를 높여 제조된 단입자 형태의 양극 활물질을 소입경 양극 활물질로 사용하는 방안이 고려될 수 있으나, 단입자 형태의 양극 활물질의 경우 용량 특성이 나빠 고용량 구현에 한계가 있을 뿐 아니라, 소입경 양극 활물질의 입자 강도가 너무 높아져 압연 과정에서 대입경 양극 활물질에 크랙을 발생시킬 수 있다는 문제점이 있다.
이에 비해, 본 발명에 따른 양극 활물질을 바이모달 양극재의 소입경 양극 활물질로 사용할 경우, 용량 저하 없이 가스 발생량을 감소시킬 수 있을 뿐 아니라, 압연 과정에서 대입경 양극 활물질의 크랙 발생 등의 부작용을 최소화할 수 있다.
양극
본 발명은 상술한 본 발명의 양극재를 포함하는 리튬 이차전지용 양극을 제공한다.
구체적으로, 상기 양극은 양극 집전체, 및 상기 양극 집전체의 적어도 일면에 위치하며, 본 발명에 따른 양극재를 포함하는 양극 활물질층을 포함한다. 양극재는 상술한 바와 동일하므로, 이하에서는 양극재를 제외한 다른 구성 요소들에 대해 설명한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상술한 본 발명에 따른 양극재와 함께, 도전재 및 바인더를 포함할 수 있다.
상기 양극재는 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98중량%의 햠량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 본 발명에 따른 양극재를 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극재 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극재, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극재, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포 시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차전지
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하다. 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체와 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극 활물질은 음극 활물질층의 총 중량에 대하여 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 총 중량에 대하여 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 총 중량에 대하여 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
예를 들면, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
리튬 원료물질 LiOH·H2O와, 양극 활물질 전구체 Ni0.83Co0.05Mn0.12(OH)2(D50=4.6㎛)를 Li : 전구체 내 전이금속(Ni+Co+Mn)의 몰비가 1.06 : 1이 되도록 혼합하고, ZrO2 및 Al(OH)3 을 추가로 혼합한 후, 640℃에서 5시간 동안 소성하여 가소성품을 제조하였다. 이때, ZrO2는 가소성품 전체 중량을 기준으로 Zr이 3500ppm이 되도록 혼합하였으며, Al(OH)3는 Ni, Co, Mn 및 Al의 총 몰수에 대하여 Al이 2mol%가 되도록 하는 양으로 혼합하였다. 그런 다음, 상기 가소성품을 830℃에서 2차 소성하여 Zr을 포함하는 리튬 복합전이금속 산화물 LiNi0.81Co0.05Mn0.12Al0.02O2 를 제조하였다.
상기와 같이 제조된 리튬 복합전이금속 산화물 200g과 물 240g을 혼합하고, 5분 동안 교반하여 수세하고, 이후 필터 프레스로 수세품 중 수분 함량에 5 ~ 10%가 되도록 분리 필터 처리한 후 130℃로 건조하였다. 그런 다음, 수세 및 건조된 리튬 복합전이금속 산화물과 H3BO3를 100 : 0.57의 중량비로 혼합하고, 300℃에서 4시간동안 열처리하여, B 고용체가 코팅된 양극 활물질을 제조하였다.
실시예 2
2차 소성을 800℃에서 수행한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실시예 3
2차 소성을 850℃에서 수행한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 1
2차 소성을 780℃에서 수행한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 2
2차 소성을 900℃에서 수행한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 3
2차 입자의 평균 입경(D50)이 8.5㎛인 양극 활물질 전구체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실험예 1
실시예 1 ~ 3 및 비교예 1 ~ 3에서 제조된 양극 활물질 분말 0.5g을 헥사메타인산나트륨((NaPO3)6)이 소량 첨가된 물 중에 분산시킨 후, 레이저 회절 입도 측정 장치(Microtrac社의 S-3500)을 이용하여 양극 활물질 2차 입자의 평균입도 D50을 측정하였다. 측정 결과는 표 1에 나타내었다.
또한, 실시예 1 ~ 3 및 비교예 1 ~ 3에서 제조된 양극 활물질 분말에서 양극 활물질 입자 10g을 채취하여 이온 밀링 시스템(Hitachi社, IM4000)을 이용하여 단면을 절단한 후 주사전자현미경으로 단면 SEM 이미지를 얻었다. 얻어진 단면 SEM 이미지를 분석하여 각각의 양극 활물질 단면에서의 1차 입자 개수를 측정하고, 그 평균값을 계산하였다. 측정 결과는 표 1에 나타내었다.
또한, 도 1에는 실시예 1의 양극 활물질 분말에서 채취된 샘플의 단면 SEM 이미지가 도시되어 있으며, 도 2에는 비교예 1의 양극 활물질 분말에서 채취된 샘플의 단면 SEM 이미지, 도 3에는 비교예 2의 양극 활물질 분말에서 채취된 샘플의 단면 SEM 이미지가 도시되어 있다.
D50(㎛) 단면에서의 1차 입자 개수 1차 입자 개수/D50
실시예 1 4.93 75 15.21
실시예 2 4.85 95 19.58
실시예 3 5.35 41 7.66
비교예 1 4.66 136 29.18
비교예 2 4.87 3 0.61
비교예 3 8.23 128 15.55
실험예 2 - 입도 변화율 및 입도 변화량 측정
실시예 1 ~ 3 및 비교예 1 ~ 3에서 제조된 양극 활물질 분말 0.5g을 헥사메타인산나트륨((NaPO3)6)이 소량 첨가된 물 중에 분산시킨 후, 레이저 회절 입도 측정 장치(Microtrac社의 S-3500)을 이용하여 양극 활물질 2차 입자의 면적 누적 입도 분포를 측정하였다.
그런 다음, 상기 양극 활물질 분말 2g을 채취하여 9톤(ton) 압력으로 프레스(Press)한 후, 상기 프레스된 양극 활물질 분말을 헥사메타인산나트륨((NaPO3)6)이 소량 첨가된 물 중에 분산시킨 후, 레이저 회절 입도 측정 장치(Microtrac社의 S-3500)을 이용하여 9톤 프레스 후의 양극 활물질 2차 입자의 면적 누적 입도 분포를 측정하였다.
상기 프레스 전후의 입도 분포 측정 결과를 이용하여, 하기 식 (2)로 표시되는 입도 변화율 및 식 (3)으로 표시되는 입도 변화량을 계산하였다.
식 (2): 입도 변화율 = (P0 - P1)/P1
식 (3): 입도 변화량 = P0 - P1
상기 식 (2) 및 식 (3)에서, P0는 상기 양극 활물질의 면적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며, 상기 P1은 상기 양극 활물질을 9톤으로 가압한 후 측정한 면적 입도 분포 그래프에서 상기 P0 피크의 입경에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
측정 결과는 하기 표 2 및 도 4 ~ 6에 나타내었다.
도 4에는 실시에 1의 양극 활물질 분말의 프레스 전, 후의 면적 누적 입도 분포를 보여주는 그래프가 도시되어 있으며, 도 5에는 비교예 1의 양극 활물질 분말의 프레스 전, 후의 면적 누적 입도 분포를 보여주는 그래프가 도시되어 있고, 도 6에는 비교예 2의 양극 활물질 분말의 프레스 전, 후의 면적 누적 입도 분포를 보여주는 그래프가 도시되어 있다.
P0(%) P1(%) 입도 변화량(P0-P1) 입도 변화율 (P0-P1)/P1
실시예 1 9.79 3.02 6.77 2.24
실시예 2 13.52 2.99 10.53 3.52
실시예 3 9.42 3.75 5.67 1.51
비교예 1 15.37 2.72 12.65 4.65
비교예 2 8.91 11.12 -2.21 -13.33
비교예 3 15.32 2.91 12.41 4.26
실험예 3 - 용량 특성 평가
실시예 1 ~ 3 및 비교예 1 ~ 3에서 제조된 양극 활물질과 평균 입경 D50이 10㎛인 Zr 3500ppm을 포함하는 LiNi0.86Co0.05Mn0.07Al0.02O2인 양극 활물질을 2 : 8의 중량비로 혼합하여 양극재를 제조하였다.
상기 양극재와 도전재(덴카 블랙) 및 바인더(PVDF)를 97.5 : 1.15 : 1.35의 중량비로 N-메틸-2-피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체 상에 도포하고, 건조한 후 압연하여 양극을 제조하였다.
음극으로는 리튬 메탈 전극을 사용하였다.
상기 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조한 다음, 전지 케이스 내부에 위치시킨 후, 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때, 전해액으로는, 에틸렌 카보네이트: 에틸메틸카보네이트: 디에틸카보네이트를 3:3:4의 부피비로 혼합한 유기 용매에 1M의 LiPF6를 용해시킨 전해액을 사용하였다.
상기에 따라 제조된 리튬 이차 전지 각각에 대하여 25℃에서 0.1C 정전류로 4.25V까지 CC/CV 모드 충전을 실시한 후(CV 0.05C), 3V가 될 때까지 CC 모드 방전을 실시하여, 초기 방전 용량(단위: mAh/g), 용량 효율(단위: %)을 측정하였다. 측정 결과는 표 3에 나타내었다.
방전용량 (mAh/g) 용량 효율 (%)
실시예 1 212.5 92.5
실시예 2 212.5 92.6
실시예 3 212.0 92.4
비교예 1 212.9 92.8
비교예 2 204.0 90.8
비교예 3 208.3 91.5
실험예 4 - 가스 발생량 평가
실시예 1 ~ 3 및 비교예 1 ~ 3에서 제조된 양극 활물질과 평균 입경 D50이 10㎛인 Zr 3500ppm을 포함하는 LiNi0.86Co0.05Mn0.07Al0.02O2인 양극 활물질을 2 : 8의 중량비로 혼합하여 양극재를 제조하였다.
상기 양극재와 도전재(덴카 블랙) 및 바인더(PVDF)를 97.5 : 1.15 : 1.35의 중량비로 N-메틸-2-피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체 상에 도포하고, 건조한 후 압연하여 양극을 제조하였다.
다음으로, 음극 활물질(천연 흑연), 도전재(카본 블랙) 및 바인더(SBR+CMC)를 95 : 1.5 : 3.5의 중량비로 물에 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 집전체 상에 도포하고, 건조한 후 압연하여 음극을 제조하였다.
상기 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조한 다음, 전지 케이스 내부에 위치시킨 후, 전해액을 주입하여 전극 크기 3cm×4cm인 모노 셀을 3개씩 제조하였다. 이때, 전해액으로는, 에틸렌 카보네이트: 에틸메틸카보네이트: 디에틸카보네이트를 3:3:4의 부피비로 혼합한 유기 용매에 1M의 LiPF6를 용해시킨 전해액을 사용하였다.
상기 3개의 모노셀들을 45℃에서 0.33C 정전류로 4.25V까지 0.05C cut-off로 충전한 후, 양극을 분리하였다. 분리된 양극들을 셀 파우치에 넣고, 전해액을 추가 주액한 후 실링하여 샘플을 준비하였다. 상기 샘플을 60℃에서 4주간 보관하면서 셀 부피 변화율(단위: %) 및 가스 발생량(단위: ㎕)을 측정하였다. 측정 결과는 표 4 및 표 5에 나타내었다.
셀 부피 변화율(%) 0week 1week 2week 3week 4week
실시예 1 0 6.81 9.33 11.73 13.08
실시예 2 0 7.12 10.58 12.93 15.01
실시예 3 0 6.97 8.99 11.42 12.15
비교예 1 0 12.32 16.02 19.67 22.60
비교예 2 0 5.51 8.28 10.12 11.05
비교예 3 0 10.22 15.27 18.95 23.54
가스 발생량(㎕) H2 CO CO2 CH4 C2H4
실시예 1 1 7 48 2 2
실시예 2 2 7 53 2 2
실시예 3 2 6 46 1 1
비교예 1 2 9 66 2 2
비교예 2 1 5 40 2 1
비교예 3 2 8 70 1 2
상기 표 3 ~ 표 5에 나타난 바와 같이, 본 발명의 양극 활물질을 적용한 실시예 1 ~ 3의 경우, 용량 특성 및 가스 발생 저감 효과가 모두 우수하게 나타났다. 이에 비하여, 비교예 1은 용량 특성은 우수하나 가스 발생량이 높았으며, 비교예 2는 용량 특성이 현저히 낮았고, 비교예 3은 용량 특성이 낮고 가스 발생량이 높은 문제가 있다.

Claims (18)

  1. 하기 화학식 1로 표시되는 리튬 복합전이금속 산화물을 포함하고,
    하기 식 (1)을 만족하며,
    2차 입자의 평균 입경 D50이 1㎛ 내지 8㎛인 양극 활물질:
    [화학식 1]
    LiaNixCoyM1 zM2 wO2
    상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며,
    0.9≤a≤1.1, 0.7≤x<1. 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이고,
    식 (1): 4 ≤1차 입자 개수/2차 입자의 평균 입경 D50 ≤ 21
    상기 식 (1)에서, 상기 1차 입자 개수는 양극 활물질의 단면 SEM 이미지에서 측정되는 1차 입자의 개수이며, 상기 2차 입자의 평균 입경 D50은 레이저 회절 입도 측정 장치를 통해 측정한 양극 활물질의 면적 누적 입도 분포의 최대 피크가 나타나는 입경이다.
  2. 제1항에 있어서,
    상기 리튬 복합전이금속 산화물은 하기 화학식 1-1로 표시되는 것인 양극 활물질:
    [화학식 1-1]
    LiaNixCoyMnz1AlZ2M2 wO2
    상기 화학식 1-1에서, M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며,
    0.9≤a≤1.1, 0.7≤x<1. 0<y≤0.2, 0<z1≤0.15, 0<z2≤0.05, 0≤w≤0.1이다.
  3. 제1항에 있어서,
    상기 양극 활물질의 단면 SEM 이미지에서 측정되는 1차 입자의 개수가 20 ~ 100개인 양극 활물질.
  4. 제1항에 있어서,
    상기 양극 활물질은 하기 식 (2)로 표시되는 입도 변화율이 -5 내지 4.5인 양극 활물질:
    식 (2): 입도 변화율 = (P0 - P1)/P1
    상기 식 (2)에서, P0는 상기 양극 활물질의 면적 누적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며, 상기 P1은 상기 양극 활물질을 9톤으로 가압한 후 측정한 면적 누적 입도 분포 그래프에서 상기 P0 피크의 입경에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
  5. 제1항에 있어서,
    상기 양극 활물질은 하기 식 (3)으로 표시되는 입도 변화량이 0 내지 12인 양극 활물질:
    식 (3): 입도 변화량 = P0 - P1
    상기 식 (3)에서, P0는 상기 양극 활물질의 면적 누적 입도 분포 그래프에서 나타나는 최대 피크의 강도(intensity)이며, 상기 P1은 상기 양극 활물질을 9톤으로 가압한 후 측정한 면적 누적 입도 분포 그래프에서 상기 P0 피크의 입경에 대응되는 영역에 나타나는 피크의 강도(intensity)이다.
  6. 제1항에 있어서,
    상기 리튬 복합전이금속 산화물의 표면에 형성되며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 더 포함하는 양극 활물질.
  7. 하기 화학식 2로 표시되는 양극 활물질 전구체 및 리튬 원료 물질을 혼합한 후 1차 소성하여 가소성품을 형성하는 단계; 및
    상기 가소성품을 800℃ 내지 880℃의 온도로 2차 소성하여 하기 화학식 1로 표시되는 리튬 복합전이금속 산화물을 형성하는 단계;를 포함하는 청구항 1의 양극 활물질의 제조 방법:
    [화학식 1]
    LiaNixCoyM1 zM2 wO2
    상기 화학식 1에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며,
    0.9≤a≤1.1, 0.7≤x<1. 0<y≤0.2, 0<z≤0.2, 0≤w≤0.1이고,
    [화학식 2]
    [NixCoyM1 zM2 w](OH)2
    상기 화학식 2에서, M1은 Mn 및 Al으로부터 선택되는 1종 이상이고, M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.7≤x<1. 0<y≤0.2, 0≤z≤0.2, 0≤w≤0.1이다.
  8. 제7항에 있어서,
    상기 양극 활물질 전구체는 하기 화학식 2-1로 표시되는 것인 양극 활물질의 제조 방법:
    [화학식 2-1]
    [NixCoyMnz1](OH)2
    상기 화학식 2-1에서, 0.7≤x<1. 0<y≤0.2, 0<z1≤0.15이다.
  9. 제7항에 있어서,
    상기 1차 소성 시에 M1 함유 원료(여기서, M1은 Mn 및 Al 중 적어도 하나 이상임) 및 M2 함유 원료(여기서, M2는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상임) 중 적어도 하나 이상을 추가로 혼합하는 것인 양극 활물질의 제조 방법.
  10. 제7항에 있어서,
    상기 1차 소성은 상기 2차 소성 온도보다 20℃ 내지 250℃ 낮은 온도에서 수행되는 것인 양극 활물질의 제조 방법.
  11. 제10항에 있어서,
    상기 1차 소성은 600℃ 이상 800℃ 미만의 온도로 수행되는 것인 양극 활물질의 제조 방법.
  12. 제7항에 있어서,
    상기 2차 소성 후에, 상기 화학식 1로 표시되는 리튬 복합전이금속 산화물을 수세하는 단계 및 상기 화학식 1로 표시되는 리튬 복합전이금속 산화물과 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅 원료 물질을 혼합한 후 열처리하여 코팅층을 형성하는 단계 중 적어도 하나의 단계를 추가로 포함하는 양극 활물질의 제조 방법.
  13. 제12항에 있어서,
    상기 코팅층 형성 단계에서 열처리는 200℃ 내지 500℃로 수행되는 것인 양극 활물질의 제조 방법.
  14. 제1양극 활물질 및 상기 제1양극 활물질과 상이한 평균 입경 D50을 갖는 제2양극 활물질을 포함하는 바이모달 양극재이고,
    상기 제1양극 활물질은 청구항 1에 따른 양극 활물질이며,
    상기 제2양극 활물질은 하기 화학식 3으로 표시되는 리튬 복합전이금속 산화물을 포함하는 것인 양극재:
    [화학식 3]
    Lia'Nix'Coy'M3 z'M4 w'O2
    상기 화학식 3에서, M3은 Mn 및 Al으로부터 선택되는 1종 이상이고, M4는 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이며,
    0.9≤a'≤1.1, 0.8≤x'<1. 0<y'<0.2, 0<z'<0.2, 0≤w'≤0.1이다.
  15. 제14항에 있어서,
    상기 제1양극 활물질은 2차 입자의 평균 입경 D50이 1㎛ 내지 8㎛이고,
    상기 제2양극 활물질은 2차 입자의 평균 입경 D50이 8㎛ 초과 20㎛ 이하인 양극재.
  16. 제14항에 있어서,
    상기 화학식 3에서, 0.85≤x'<1. 0<y'≤0.1, 0<z'≤0.1, 0≤w'≤0.1인 양극재.
  17. 청구항 14에 따른 양극재를 포함하는 양극.
  18. 청구항 17에 따른 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하는 리튬 이차전지.
PCT/KR2021/019756 2020-12-23 2021-12-23 양극 활물질, 그 제조 방법, 이를 포함하는 양극재, 양극 및 리튬 이차 전지 WO2022139516A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21911581.3A EP4199152A4 (en) 2020-12-23 2021-12-23 POSITIVE ELECTRODE ACTIVE MATERIAL, METHOD OF PRODUCING THE SAME, POSITIVE ELECTRODE MATERIAL THEREOF, POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY
JP2023519755A JP2023544572A (ja) 2020-12-23 2021-12-23 正極活物質、その製造方法、これを含む正極材、正極およびリチウム二次電池
US18/025,954 US20230369578A1 (en) 2020-12-23 2021-12-23 Positive Electrode Active Material, Method of Preparing the Same, and Positive Electrode Material, Positive Electrode, and Lithium Secondary Battery Which Include the Same
CN202180062177.2A CN116195094A (zh) 2020-12-23 2021-12-23 正极活性材料、其制备方法以及包含其的正极材料、正极和锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200181726 2020-12-23
KR10-2020-0181726 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022139516A1 true WO2022139516A1 (ko) 2022-06-30

Family

ID=82159742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019756 WO2022139516A1 (ko) 2020-12-23 2021-12-23 양극 활물질, 그 제조 방법, 이를 포함하는 양극재, 양극 및 리튬 이차 전지

Country Status (6)

Country Link
US (1) US20230369578A1 (ko)
EP (1) EP4199152A4 (ko)
JP (1) JP2023544572A (ko)
KR (1) KR20220091419A (ko)
CN (1) CN116195094A (ko)
WO (1) WO2022139516A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180010123A (ko) * 2016-07-20 2018-01-30 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR20200001893A (ko) * 2018-06-28 2020-01-07 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200047116A (ko) 2018-10-26 2020-05-07 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200064799A (ko) * 2018-11-29 2020-06-08 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 이용하여 제조된 양극 활물질을 포함하는 리튬 이차 전지
KR20200070650A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026997B2 (ja) * 2011-04-07 2016-11-16 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
JP5204913B1 (ja) * 2012-04-27 2013-06-05 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物
EP3759755A4 (en) * 2018-03-02 2022-01-26 Umicore POSITIVE ELECTRODE MATERIAL FOR RECHARGEABLE LITHIUM-ION BATTERIES
US20220045324A1 (en) * 2018-12-27 2022-02-10 Contemporary Amperex Technology Co., Limited Pressure-resistant positive active material and electrochemical energy storage apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180010123A (ko) * 2016-07-20 2018-01-30 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR20200001893A (ko) * 2018-06-28 2020-01-07 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200047116A (ko) 2018-10-26 2020-05-07 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200064799A (ko) * 2018-11-29 2020-06-08 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 이용하여 제조된 양극 활물질을 포함하는 리튬 이차 전지
KR20200070650A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199152A4

Also Published As

Publication number Publication date
JP2023544572A (ja) 2023-10-24
CN116195094A (zh) 2023-05-30
US20230369578A1 (en) 2023-11-16
EP4199152A1 (en) 2023-06-21
KR20220091419A (ko) 2022-06-30
EP4199152A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2019216694A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2017095134A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2019088805A2 (ko) 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2022103105A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022031116A1 (ko) 양극 활물질 전구체 및 그 제조 방법
WO2021141463A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2020180160A1 (ko) 리튬 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2017095152A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022119313A1 (ko) 양극 활물질 전구체, 이의 제조방법 및 양극 활물질
WO2022098136A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2021256794A1 (ko) 양극 활물질의 제조방법
WO2022139516A1 (ko) 양극 활물질, 그 제조 방법, 이를 포함하는 양극재, 양극 및 리튬 이차 전지
WO2021080384A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2023027413A1 (ko) 양극재, 이의 제조방법 및 이를 포함하는 리튬이차전지
WO2024049200A1 (ko) 양극 활물질 전구체, 이의 제조 방법, 이를 이용한 양극 활물질의 제조 방법 및 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021911581

Country of ref document: EP

Effective date: 20230317

ENP Entry into the national phase

Ref document number: 2023519755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE