WO2023027149A1 - 超電導線材および超電導コイル - Google Patents

超電導線材および超電導コイル Download PDF

Info

Publication number
WO2023027149A1
WO2023027149A1 PCT/JP2022/032059 JP2022032059W WO2023027149A1 WO 2023027149 A1 WO2023027149 A1 WO 2023027149A1 JP 2022032059 W JP2022032059 W JP 2022032059W WO 2023027149 A1 WO2023027149 A1 WO 2023027149A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superconducting
stabilizing
oxide superconducting
thickness
Prior art date
Application number
PCT/JP2022/032059
Other languages
English (en)
French (fr)
Inventor
真司 藤田
翔吾 武藤
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN202280051789.6A priority Critical patent/CN117693796A/zh
Priority to GB2402841.7A priority patent/GB2624590A/en
Priority to JP2023543981A priority patent/JPWO2023027149A1/ja
Publication of WO2023027149A1 publication Critical patent/WO2023027149A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting wire and a superconducting coil.
  • the superconducting wire described in Patent Document 1 includes a laminate in which a substrate, an intermediate layer, an oxide superconducting layer, and a protective layer are laminated, a stabilizing layer covering the laminate, and a metal formed on one surface of the stabilizing layer a tape;
  • the metal tape is formed on the side of the laminate on which the oxide superconducting layer is formed, of the two sides of the stabilization layer.
  • the substrate is made of Hastelloy (registered trademark), for example.
  • the stabilization layer and metal tape are made of copper, for example.
  • the shrinkage of the superconducting wire due to temperature changes may damage the oxide superconducting layer and reduce the superconducting properties.
  • the superconducting wire when the superconducting wire is cooled to a temperature below the critical temperature (approximately 90 K or below in the case of a Y-based superconducting wire), the superconducting wire shrinks and deforms, and the substrate (Hastelloy (registered trademark)), the stabilizing layer and the metal Shear stress is applied to the oxide superconducting layer due to the difference in thermal expansion coefficient from the tape (both copper). This may damage the oxide superconducting layer and degrade the properties of the superconducting wire.
  • the critical temperature approximately 90 K or below in the case of a Y-based superconducting wire
  • the stabilizing layer and the metal Shear stress is applied to the oxide superconducting layer due to the difference in thermal expansion coefficient from the tape (both copper). This may damage the oxide superconducting layer and degrade the properties of the superconduct
  • An object of one aspect of the present invention is to provide a superconducting wire and a superconducting coil whose superconducting properties are less likely to deteriorate due to temperature changes.
  • a superconducting wire includes a superconducting laminate having a metal substrate and an oxide superconducting layer, a stabilizing portion formed to cover the superconducting laminate and having a thermal expansion coefficient larger than that of the metal substrate,
  • the superconducting laminate has a first main surface on which the oxide superconducting layer is provided and a second main surface on which the metal substrate is provided, and
  • the stabilizing portion has a first portion facing the first main surface and a second portion facing the second main surface, and the thickness of the second portion is equal to the thickness of the second main surface. Greater than the thickness of one part.
  • the second portion of the stabilizing portion is thicker than the first portion, shear stress is less likely to act on the oxide superconducting layer even if the stabilizing portion shrinks due to temperature changes. Therefore, damage to the oxide superconducting layer can be suppressed. Therefore, deterioration of the superconducting properties of the superconducting wire can be suppressed.
  • the difference between the thickness of the first portion and the thickness of the second portion may be greater than the thickness of the metal substrate.
  • the stabilizing portion includes a first stabilizing layer surrounding the superconducting laminate and a second stabilizing layer formed of a metal tape and joined to a portion of the first stabilizing layer facing the second main surface. and a stabilization layer.
  • a non-oriented region extending in the longitudinal direction of the oxide superconducting layer may be formed in the oxide superconducting layer.
  • a superconducting coil according to another aspect of the present invention includes the superconducting wire, and the superconducting wire is wound so that the first portion is located radially inside the second portion.
  • FIG. 1 is a cross-sectional view of an oxide superconducting wire according to a first embodiment
  • FIG. 1 is a schematic diagram of a superconducting coil of a first embodiment
  • FIG. 4 is a cross-sectional view of an oxide superconducting wire according to a second embodiment
  • FIG. 4 is a cross-sectional view of an oxide superconducting wire according to a modification of the first embodiment
  • FIG. 1 is a cross-sectional view of an oxide superconducting wire 10 of the first embodiment.
  • FIG. 1 is a cross-sectional view orthogonal to the longitudinal direction of oxide superconducting wire 10 .
  • the oxide superconducting wire 10 includes a superconducting laminate 5 and a stabilizing portion 6 .
  • the oxide superconducting wire 10 is a specific example of "superconducting wire”.
  • the superconducting laminate 5 includes a metal substrate 1 , an intermediate layer 2 , an oxide superconducting layer 3 and a protective layer 4 .
  • a superconducting laminate 5 has a structure in which an oxide superconducting layer 3 and a protective layer 4 are formed on a metal substrate 1 with an intermediate layer 2 interposed therebetween. That is, superconducting laminate 5 has a configuration in which intermediate layer 2 , oxide superconducting layer 3 , and protective layer 4 are laminated in this order on one surface of tape-shaped metal substrate 1 .
  • the oxide superconducting wire 10 is formed in a tape shape.
  • the thickness direction of oxide superconducting wire 10 is referred to as thickness direction Y.
  • the thickness direction Y is the direction in which the metal substrate 1, the intermediate layer 2, the oxide superconducting layer 3, and the protective layer 4 are laminated.
  • the width direction of oxide superconducting wire 10 is referred to as width direction X.
  • a width direction X is a direction orthogonal to the longitudinal direction and the thickness direction of oxide superconducting wire 10 .
  • the metal substrate 1 is made of metal.
  • the metal forming the metal substrate 1 include a nickel alloy such as Hastelloy (registered trademark); stainless steel; and an oriented Ni—W alloy in which a texture is introduced into a nickel alloy.
  • the thickness of the metal substrate 1 may be appropriately adjusted depending on the purpose, and is in the range of 10 to 500 ⁇ m, for example.
  • One surface of the metal substrate 1 (the surface on which the intermediate layer 2 is formed) is called a first surface 1a, and the surface opposite to the first surface 1a is called a second surface 1b.
  • the intermediate layer 2 is provided between the metal substrate 1 and the oxide superconducting layer 3 .
  • the intermediate layer 2 is formed on the first surface 1 a of the metal substrate 1 .
  • the intermediate layer 2 may have a multi-layer structure, and may have, for example, a diffusion prevention layer, a bed layer, an orientation layer, a cap layer, etc. in order from the metal substrate 1 side to the oxide superconducting layer 3 side. These layers are not necessarily provided one by one, and some layers may be omitted, or two or more layers of the same kind may be repeatedly laminated. Note that intermediate layer 2 is not an essential component in oxide superconducting wire 10, and intermediate layer 2 may not be formed when metal substrate 1 itself has orientation.
  • the anti-diffusion layer has a function of preventing some of the components of the metal substrate 1 from diffusing and entering the oxide superconducting layer 3 as impurities.
  • the diffusion prevention layer is composed of, for example, Si3N4 , Al2O3 , GZO ( Gd2Zr2O7 ), or the like .
  • the thickness of the anti-diffusion layer is, for example, 10-400 nm.
  • a bed layer may be formed on the diffusion barrier layer.
  • the bed layer is provided to reduce the reaction at the interface between metal substrate 1 and oxide superconducting layer 3 and to improve the orientation of layers formed on the bed layer.
  • Examples of the bed layer material include Y2O3 , Er2O3 , CeO2 , Dy2O3 , Eu2O3 , Ho2O3 , La2O3 , and the like.
  • the thickness of the bed layer is, for example, 10-100 nm.
  • the alignment layer is formed of a material that is biaxially oriented to control the crystallographic orientation of the cap layer formed over the alignment layer.
  • Materials for the alignment layer include, for example, Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Metal oxides such as Zr 2 O 3 , Ho 2 O 3 and Nd 2 O 3 can be exemplified.
  • the orientation layer is preferably formed by an IBAD (Ion-Beam-Assisted Deposition) method.
  • the cap layer is formed on the surface of the orientation layer and is made of a material that allows crystal grains to self-orient in the in-plane direction.
  • Materials for the cap layer include, for example, CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , ZrO 2 , YSZ, Ho 2 O 3 , Nd 2 O 3 and LaMnO 3 .
  • the thickness of the cap layer may range from 50 to 5000 nm.
  • the oxide superconducting layer 3 is composed of an oxide superconductor.
  • the oxide superconductor is not particularly limited, but for example, an RE-Ba-Cu-O-based oxide superconductor (REBCO-based oxide superconductor) represented by the general formula REBa 2 Cu 3 O X (RE123) can be mentioned. be done.
  • the rare earth element RE includes one or more of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Among them, one of Y, Gd, Eu and Sm or a combination of two or more of these elements is preferable.
  • X is 7-x (oxygen deficiency x: approximately 0 to 1).
  • the thickness of the oxide superconducting layer 3 is, for example, within the range of 0.5-5 ⁇ m.
  • the thickness of oxide superconducting layer 3 is preferably uniform in the longitudinal direction.
  • Oxide superconducting layer 3 is formed on main surface 2a of intermediate layer 2 (the surface opposite to metal substrate 1).
  • the protective layer 4 has functions such as bypassing an overcurrent that occurs at the time of an accident and suppressing chemical reactions that occur between the oxide superconducting layer 3 and a layer provided on the protective layer 4 .
  • Examples of materials for the protective layer 4 include silver (Ag), copper (Cu), gold (Au), alloys of gold and silver, other silver alloys, copper alloys, and gold alloys.
  • Protective layer 4 covers at least main surface 3a of oxide superconducting layer 3 (the surface opposite to intermediate layer 2 side). Although the thickness of the protective layer 4 is not particularly limited, it is in the range of 1 to 30 ⁇ m, for example.
  • the superconducting laminate 5 has a first main surface 5a, side surfaces 5b and 5b, and a second main surface 5c.
  • the first major surface 5 a is the major surface 4 a of the protective layer 4 .
  • the first main surface 5a is the surface of the superconducting laminate 5 on which the oxide superconducting layer 3 is provided.
  • Sides 5 b are the side of metal substrate 1 , the side of intermediate layer 2 , the side of oxide superconducting layer 3 , and the side of protective layer 4 .
  • the second principal surface 5c is a surface opposite to the first principal surface 5a.
  • the second main surface 5 c is the second surface 1 b of the metal substrate 1 .
  • the second main surface 5c is the surface of the superconducting laminate 5 on which the metal substrate 1 is provided.
  • the stabilizing portion 6 includes a first stabilizing layer 7 and a second stabilizing layer 8 .
  • the stabilizing portion 6 functions as a bypass portion for commutating overcurrent generated when the oxide superconducting layer 3 transitions to the normal conducting state.
  • the coefficient of thermal expansion of stabilizing portion 6 is greater than that of metal substrate 1 .
  • the thermal expansion coefficient of Hastelloy (registered trademark) as the constituent material of the metal substrate 1 is 10.9 ⁇ 10 ⁇ 6 /° C.
  • the thermal expansion coefficient of copper as the constituent material of the stabilizing portion 6 is 16.7. ⁇ 10 -6 /°C.
  • the first stabilizing layer 7 covers the first main surface 5a, the side surfaces 5b, 5b and the second main surface 5c of the superconducting laminate 5. As shown in FIG. The first stabilizing layer 7 is integrally formed surrounding the superconducting laminate 5 . The first stabilizing layer 7 is formed from the first major surface 5a to the second major surface 5c. Examples of the constituent material of the first stabilizing layer 7 include metals such as copper, copper alloys (eg, Cu--Zn alloys, Cu--Ni alloys, etc.), aluminum, aluminum alloys, and silver. The thickness of the first stabilizing layer 7 is, for example, within the range of 10-500 ⁇ m. The first stabilizing layer 7 can be formed, for example, by plating (eg, electrolytic plating).
  • the first stabilizing layer 7 has an upper portion 7A and a lower portion 7B.
  • the upper portion 7A is the portion of the first stabilizing layer 7 facing the first major surface 5a.
  • the upper portion 7A is the first portion 6A of the stabilizing portion 6 (the portion of the stabilizing portion 6 facing the first main surface 5a).
  • the thickness of the upper portion 7A (first portion 6A) is referred to as T1.
  • the lower portion 7B is the portion of the first stabilizing layer 7 facing the second main surface 5c.
  • Superconducting laminate 5 and first stabilizing layer 7 constitute superconducting wire main body 11 .
  • the second stabilizing layer 8 is composed of a metal tape.
  • Metals constituting the metal tape include metals such as copper, copper alloys (eg, Cu--Zn alloys, Cu--Ni alloys, etc.), aluminum, aluminum alloys, and silver.
  • the second stabilizing layer 8 is preferably a copper tape.
  • thermal expansion coefficients of the metals used as constituent materials of the first stabilizing layer 7 and the second stabilizing layer 8 are shown below.
  • the thermal expansion coefficient of Cu—Zn alloy is 19.1 ⁇ 10 ⁇ 6 /° C.
  • the thermal expansion coefficient of Cu—Ni alloy is 13.8 ⁇ 10 ⁇ 6 /° C.
  • the thermal expansion coefficient of aluminum is 23.8 ⁇ 10 ⁇ 6 /° C.
  • the thermal expansion coefficient of Al- 6061 which is an example of an aluminum alloy, is 22.5 ⁇ 10 ⁇ 6 /° C.
  • the thermal expansion coefficient of silver is 18.5 ⁇ 10 ⁇ 6 /° C. °C.
  • the second stabilizing layer 8 is bonded to the lower surface of the first stabilizing layer 7 (outer surface of the lower portion 7B) with a bonding material 9 .
  • materials forming the bonding material 9 include metals such as solder, Sn, Sn alloys, In (indium), and In alloys.
  • solder include alloys such as Sn--Pb, Pb--Sn--Sb, Sn--Pb--Bi, Bi--Sn, Sn--Cu, Sn--Pb--Cu and Sn--Ag. .
  • a portion of the stabilizing portion 6 facing the second main surface 5c is called a second portion 6B.
  • the second portion 6B comprises a lower portion 7B of the first stabilizing layer 7, a bonding material 9 and a second stabilizing layer 8.
  • the thickness of the second portion 6B is called T2.
  • the thickness T2 is the sum of the thickness of the lower portion 7B, the thickness of the bonding material 9, and the thickness of the second stabilizing layer 8.
  • the thickness T2 of the second portion 6B is greater than the thickness T1 of the first portion 6A (upper portion 7A). Since the thickness T2 is larger than the thickness T1, the shear stress caused by shrinkage of the stabilizing portion 6 due to temperature change is less likely to act on the oxide superconducting layer 3 . For example, the stabilizing portion 6 shrinks and deforms during cooling, but since the first portion 6A is thinner than the second portion 6B, shear stress is less likely to act on the oxide superconducting layer 3 .
  • the difference (T2-T1) between the thickness T2 of the second portion 6B and the thickness T1 of the upper portion 7A (first portion 6A) is preferably larger than the thickness T3 of the metal substrate 1. Since this difference (T2 ⁇ T1) is larger than the thickness T3, the shear stress caused by shrinkage of the stabilizing portion 6 due to temperature change is less likely to act on the oxide superconducting layer 3 .
  • FIG. 2 is a schematic diagram of the superconducting coil 20.
  • superconducting coil 20 is formed of oxide superconducting wire 10 .
  • Superconducting coil 20 is a multi-layer wound coil in which oxide superconducting wire 10 is laminated in the thickness direction and wound multiple times.
  • the oxide superconducting wire 10 is wound around a winding axis C.
  • the superconducting coil 20 is formed in an annular shape and is also called a pancake coil.
  • a direction around the winding axis C as viewed from the winding axis C is called a circumferential direction of the superconducting coil 20 .
  • a direction orthogonal to the winding axis C is called a radial direction of the superconducting coil 20 .
  • the direction toward the winding axis C is called the radial inner side
  • the direction away from the winding axis C is called the radial outer side.
  • the oxide superconducting wire 10 is preferably wound around the winding axis C so that the metal substrate 1 faces radially outward and the oxide superconducting layer 3 faces radially inward. That is, oxide superconducting wire 10 is preferably wound around winding axis C such that oxide superconducting layer 3 is located radially inward of metal substrate 1 .
  • the oxide superconducting layer 3 is pulled from the metal substrate by the Lorentz force acting in the radial direction of the superconducting coil 20 . pressed to 1. Therefore, it is possible to suppress the deterioration of the superconducting properties due to the oxide superconducting layer 3 being peeled off from the metal substrate 1 .
  • the superconducting coil 20 may have a structure in which an insulating tape is wound around the oxide superconducting wire 10 .
  • Superconducting coil 20 may be impregnated with resin such as epoxy resin.
  • thickness T2 of second portion 6B of stabilizing portion 6 is greater than thickness T1 of first portion 6A (upper portion 7A).
  • stabilizing portion 6 contracts. Since the thickness T2 is larger than the thickness T1, that is, the thickness T1 is smaller than the thickness T2, the shear force caused by the contraction of the first portion 6A is smaller than the shear force caused by the contraction of the second portion 6B. Since oxide superconducting layer 3 is formed closer to first portion 6A than second portion 6B, shear stress caused by shrinkage of stabilizing portion 6 is less likely to act on oxide superconducting layer 3 . Therefore, damage to oxide superconducting layer 3 can be suppressed. Therefore, deterioration of superconducting properties of oxide superconducting wire 10 can be suppressed.
  • the second stabilizing layer 8 is formed on the outer surface of the upper portion 7A (first stabilizing layer 7 Assume an oxide superconducting wire bonded to the top surface of the In this oxide superconducting wire, the first portion of the stabilizing portion is thicker than the second portion. In this oxide superconducting wire, shear stress is likely to act on oxide superconducting layer 3 due to contraction of second stabilizing layer 8 due to temperature change. The shear stress tends to increase as the thickness of the second stabilizing layer 8 increases.
  • FIG. 3 is a cross-sectional view of an oxide superconducting wire 110 of the second embodiment.
  • the same reference numerals are attached to the common configuration with the first embodiment, and the description thereof is omitted.
  • the oxide superconducting wire 110 includes a superconducting laminate 5 and a stabilizing portion 106 .
  • Oxide superconducting wire 110 is a specific example of a “superconducting wire”.
  • Stabilizing portion 106 is a layer integrally formed to cover superconducting laminate 5 .
  • Stabilizing portion 106 covers first main surface 5 a , side surfaces 5 b and 5 b and second main surface 5 c of superconducting laminate 5 .
  • Stabilizing portion 106 is formed to surround superconducting laminate 5 .
  • Stabilizing portion 106 is formed from first main surface 5a to second main surface 5c.
  • the coefficient of thermal expansion of stabilizing portion 106 is greater than that of metal substrate 1 .
  • the constituent material of the stabilizing portion 106 include metals such as copper, copper alloys (eg, Cu--Zn alloys, Cu--Ni alloys, etc.), aluminum, aluminum alloys, and silver.
  • the stabilizing portion 106 can be formed, for example, by plating (for example, electrolytic plating).
  • a portion of the stabilizing portion 106 facing the first main surface 5a is called a first portion 106A.
  • the thickness of the first portion 106A is called T11.
  • a portion of the stabilizing portion 106 facing the second main surface 5c is referred to as a second portion 106B.
  • the thickness of the second portion 106B is called T12.
  • the thickness T12 of the second portion 106B is greater than the thickness T11 of the first portion 106A.
  • Thickness T ⁇ b>12 is greater than thickness T ⁇ b>11 , so that shear stress caused by shrinkage of stabilizing portion 106 due to temperature change is less likely to act on oxide superconducting layer 3 .
  • stabilizing portion 106 shrinks and deforms during cooling, but since first portion 106A is thinner than second portion 106B, shear stress is less likely to act on oxide superconducting layer 3 .
  • the difference (T12-T11) between the thickness T12 of the second portion 106B and the thickness T11 of the first portion 106A is preferably larger than the thickness T3 of the metal substrate 1. Since this difference (T12 ⁇ T11) is larger than the thickness T3, the shear stress caused by shrinkage of the stabilizing portion 106 due to temperature change is less likely to act on the oxide superconducting layer 3 .
  • thickness T12 of second portion 106B of stabilizing portion 106 is greater than thickness T11 of first portion 106A.
  • Stabilizing portion 106 shrinks when oxide superconducting wire 110 is exposed to temperature changes. Since the thickness T12 is greater than the thickness T11, that is, the thickness T11 is less than the thickness T12, the shear force caused by the contraction of the first portion 106A is smaller than the shear force caused by the contraction of the second portion 106B. Since oxide superconducting layer 3 is formed closer to first portion 106A than second portion 106B, shear stress caused by shrinkage of stabilizing portion 106 is less likely to act on oxide superconducting layer 3 . Therefore, damage to oxide superconducting layer 3 can be suppressed. Therefore, deterioration of superconducting properties of oxide superconducting wire 110 can be suppressed.
  • the present invention has been described above based on the preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present invention.
  • the oxide superconducting wire 10 shown in FIG. It may be joined directly to the first stabilizing layer 7 without any bonding.
  • the second stabilizing layer 8 is bonded to the first stabilizing layer 7 by, for example, ultrasonic bonding, diffusion bonding, or the like.
  • the structure of the superconducting laminate is not limited to the structure shown in FIG.
  • the superconducting laminate may not have a protective layer.
  • the superconducting laminate may contain layers other than the metal substrate, the intermediate layer, the oxide superconducting layer, and the protective layer.
  • FIG. 4 is a cross-sectional view of an oxide superconducting wire 10 of a modification of the first embodiment.
  • a non-oriented region (non-superconducting region) 32 is formed in the oxide superconducting layer 3 . That is, the oxide superconducting layer 3 has an oriented region (superconducting region) 31 and a non-oriented region 32 .
  • the non-oriented region 32 may be formed by forming a groove in the metal substrate 1 or the intermediate layer 2 and providing the oxide superconducting layer 3 on the groove.
  • Non-oriented regions 32 extend in the longitudinal direction of oxide superconducting layer 3 .
  • a plurality of non-orientation regions 32 are arranged side by side in the width direction X.
  • the non-oriented regions 32 do not have superconducting properties due to the disturbed orientation. Therefore, during use, it is difficult for current to flow through the non-oriented regions 32, and the oxide superconducting layer 3 is substantially divided in the width direction.
  • the oxide superconducting layer 3 is thinned (multifilamentized). Therefore, the shielding current and magnetization loss of oxide superconducting wire 10 can be reduced, and deterioration of the properties of superconducting coil 20 can be suppressed.
  • the stabilizing portion 6 (first portion 6A) is interposed, Coupling current may flow.
  • the coupling current may degrade the properties of superconducting coil 20 .
  • the first portion 6A of the stabilization portion 6 is thinner than the second portion 6B, the coupling current between the alignment regions 31 is reduced compared to when the first portion 6A is thicker than the second portion 6B. It becomes difficult to flow. Therefore, deterioration of the characteristics of the superconducting coil 20 due to the coupling current can be suppressed.
  • the non-oriented regions 32 may be formed in the oxide superconducting layer 3 in the same manner as described above. That is, in oxide superconducting wire 110 , oxide superconducting layer 3 may have oriented regions 31 and non-oriented regions 32 . In this case also, the oxide superconducting layer 3 is thinned (multifilamentized) by the non-oriented regions 32, so that the shielding current and magnetization loss of the oxide superconducting wire 10 can be reduced, and the characteristics of the superconducting coil 20 can be improved. Decrease can be suppressed.
  • the coupling current between the alignment regions 31 is reduced compared to the case where the first portion 106A is thicker than the second portion 106B. It becomes difficult to flow. Therefore, deterioration of the characteristics of the superconducting coil 20 due to the coupling current can be suppressed.
  • Examples 1-3 A sample of the oxide superconducting wire 10 shown in FIG. 1 was produced as follows. An intermediate layer 2 was formed on one surface of a tape-shaped metal substrate 1 made of Hastelloy (registered trademark). The intermediate layer 2 has a structure in which an anti-diffusion layer, a bed layer, an orientation layer and a cap layer are laminated in this order. An oxide superconducting layer 3 made of GdBCO was formed on the intermediate layer 2 . A protective layer 4 made of Ag was formed on the oxide superconducting layer 3 . Thus, a superconducting laminate 5 was obtained.
  • a first stabilizing layer 7 made of copper was formed on the outer surface of the superconducting laminate 5 by electroplating to obtain a superconducting wire main body 11 having a width of 4 mm.
  • the second stabilizing layer 8, which is a copper tape, was joined to the lower surface of the first stabilizing layer 7 (the outer surface of the lower portion 7B) using solder as the joining material 9. As shown in FIG. Thus, a stabilizing portion 6 was formed.
  • a sample of oxide superconducting wire 10 was placed in liquid nitrogen, and the critical current (Ic) was measured.
  • a sample of the superconducting wire (that is, the superconducting laminate 5) before forming the stabilizing portion 6 was prepared, and the sample was placed in liquid nitrogen to measure the critical current (Ic0).
  • the ratio (Ic/Ic0) of the critical current (Ic) of the oxide superconducting wire 10 and the critical current (Ic0) of the superconducting laminate 5 was 0.95 or more, it was determined that the superconducting properties did not deteriorate. .
  • Ic/Ic0 was less than 0.95, it was determined that the superconducting properties were degraded.
  • a case where the superconducting properties are not degraded is judged as "Pass”.
  • a case where the superconducting property is degraded is defined as "failed”. Table 1 shows the results.
  • Example 4 A sample of the oxide superconducting wire 110 shown in FIG. 3 was produced as follows. Stabilizing portion 106 made of copper was formed by electroplating on the outer surface of superconducting laminate 5 produced in the same manner as in Examples 1 to 3, and oxide superconducting wire 110 was obtained.
  • Example 2 A sample of the oxide superconducting wire was produced according to Example 1, except that the second stabilizing layer 8 was bonded to the outer surface of the upper portion 7A of the first stabilizing layer 7 (upper surface of the first stabilizing layer 7). .
  • the presence or absence of deterioration in superconducting properties was determined in the same manner as in Examples 1-3. Table 1 shows the results.
  • Example 3 A sample of the oxide superconducting wire was produced according to Example 4, except that the first portion of the stabilizing portion was thicker than the second portion. For this sample, the presence or absence of deterioration in superconducting properties was determined in the same manner as in Examples 1-3. Table 1 shows the results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

超電導線材は、金属基板と酸化物超電導層とを有する超電導積層体と、前記超電導積層体を覆って形成され、前記金属基板より熱膨張係数が大きい安定化部と、を備え、前記超電導積層体は、前記酸化物超電導層が設けられる側の面である第1主面と、前記金属基板が設けられる側の面である第2主面と、を有し、前記安定化部は、前記第1主面に面している第1部分と、前記第2主面に面している第2部分と、を有し、前記第2部分の厚さは、前記第1部分の厚さより大きい。

Description

超電導線材および超電導コイル
 本発明は、超電導線材および超電導コイルに関する。
 本願は、2021年8月26日に、日本に出願された特願2021-137967号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1に記載の超電導線材は、基板と中間層と酸化物超電導層と保護層とが積層された積層物と、積層物を覆う安定化層と、安定化層の一面に形成された金属テープと、を備える。金属テープは、安定化層の2つの面のうち、積層物の、酸化物超電導層が形成された側の面に形成される。基板は、例えば、ハステロイ(登録商標)で形成される。安定化層および金属テープは、例えば、銅で形成される。
日本国特開2011-40176号公報
 温度変化によって超電導線材が収縮することで、酸化物超電導層が損傷し、超電導特性が低下する可能性がある。例えば、超電導線材が臨界温度以下(Y系超電導線材の場合、約90K以下)の温度に冷却されると、超電導線材は収縮変形し、基板(ハステロイ(登録商標))と、安定化層および金属テープ(いずれも銅)との熱膨張係数の差に起因したせん断応力が酸化物超電導層に加わる。これにより、酸化物超電導層が損傷し、超電導線材の特性が低下する可能性がある。
 本発明の一態様は、温度変化による超電導特性の低下が生じにくい超電導線材および超電導コイルを提供することを課題とする。
 本発明の一態様に係る超電導線材は、金属基板と酸化物超電導層とを有する超電導積層体と、前記超電導積層体を覆って形成され、前記金属基板より熱膨張係数が大きい安定化部と、を備え、前記超電導積層体は、前記酸化物超電導層が設けられる側の面である第1主面と、前記金属基板が設けられる側の面である第2主面と、を有し、前記安定化部は、前記第1主面に面している第1部分と、前記第2主面に面している第2部分と、を有し、前記第2部分の厚さは、前記第1部分の厚さより大きい。
 本発明の上記態様によれば、安定化部の第2部分は第1部分より厚いため、温度変化により安定化部が収縮した場合でも、酸化物超電導層にせん断応力が作用しにくくなる。そのため、酸化物超電導層が損傷するのを抑制することができる。よって、超電導線材の超電導特性の低下を抑えることができる。
 前記第1部分の厚さと前記第2部分の厚さとの差は、前記金属基板の厚さより大きくてもよい。
 前記安定化部は、前記超電導積層体を囲む第1安定化層と、金属テープで形成され、前記第1安定化層の、前記第2主面に面している部分に接合される第2安定化層と、を備えていてもよい。
 前記酸化物超電導層に、前記酸化物超電導層の長手方向に延びる非配向領域が形成されていてもよい。
 本発明の他の態様に係る超電導コイルは、前記超電導線材を備え、前記超電導線材は、前記第1部分が前記第2部分よりも径方向内側に位置するように、巻回されている。
 本発明の一態様によれば、温度変化による超電導特性の低下が生じにくい超電導線材および超電導コイルを提供することができる。
第1実施形態の酸化物超電導線材の断面図である。 第1実施形態の超電導コイルの概略図である。 第2実施形態の酸化物超電導線材の断面図である。 第1実施形態の変形例の酸化物超電導線材の断面図である。
 以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
[酸化物超電導線材](第1実施形態)
 図1は、第1実施形態の酸化物超電導線材10の断面図である。図1は、酸化物超電導線材10の長手方向に直交する断面の図である。
 図1に示すように、酸化物超電導線材10は、超電導積層体5と、安定化部6とを備えている。酸化物超電導線材10は、「超電導線材」の具体例である。
 超電導積層体5は、金属基板1と、中間層2と、酸化物超電導層3と、保護層4とを備える。超電導積層体5は、金属基板1上に中間層2を介して酸化物超電導層3および保護層4が形成された構造を有する。すなわち、超電導積層体5は、テープ状の金属基板1の一方の面に、中間層2、酸化物超電導層3、および保護層4がこの順に積層された構成を有する。
 酸化物超電導線材10は、テープ状に形成されている。以下の説明において、酸化物超電導線材10の厚さ方向を、厚さ方向Yという。厚さ方向Yは、金属基板1、中間層2、酸化物超電導層3、保護層4が積層される方向である。厚さ方向Yに沿って、金属基板1から酸化物超電導層3に向かう向きを、上方といい、その反対の向きを、下方という。酸化物超電導線材10の幅方向を、幅方向Xという。幅方向Xは、酸化物超電導線材10の長手方向および厚さ方向に直交する方向である。
 金属基板1は、金属で形成されている。金属基板1を構成する金属の具体例として、ハステロイ(登録商標)などのニッケル合金;ステンレス鋼;ニッケル合金に集合組織を導入した配向Ni-W合金などが挙げられる。金属基板1の厚さは、目的に応じて適宜調整すればよく、例えば10~500μmの範囲である。金属基板1の一方の面(中間層2が形成される面)を第1面1aといい、第1面1aと反対側の面を第2面1bという。
 中間層2は、金属基板1と酸化物超電導層3との間に設けられる。中間層2は、金属基板1の第1面1aに形成される。中間層2は、多層構成でもよく、例えば金属基板1側から酸化物超電導層3側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。なお、中間層2は、酸化物超電導線材10において必須な構成ではなく、金属基板1自体が配向性を備えている場合は中間層2が形成されていなくてもよい。
 拡散防止層は、金属基板1の成分の一部が拡散し、不純物として酸化物超電導層3側に混入することを抑制する機能を有する。拡散防止層は、例えば、Si、Al、GZO(GdZr)等から構成される。拡散防止層の厚さは、例えば10~400nmである。
 拡散防止層の上には、ベッド層を形成してもよい。ベッド層は、金属基板1と酸化物超電導層3との界面における反応を低減し、ベッド層の上に形成される層の配向性を向上させるために設けられる。ベッド層の材質としては、例えばY、Er、CeO、Dy、Eu、Ho、La等が挙げられる。ベッド層の厚さは、例えば10~100nmである。
 配向層は、配向層の上に形成されるキャップ層の結晶配向性を制御するために2軸配向する物質から形成される。配向層の材質としては、例えば、GdZr、MgO、ZrO-Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。配向層はIBAD(Ion-Beam-Assisted Deposition)法で形成することが好ましい。
 キャップ層は、配向層の表面に成膜されて、結晶粒が面内方向に自己配向し得る材料からなる。キャップ層の材質としては、例えば、CeO、Y、Al、Gd、ZrO、YSZ、Ho、Nd、LaMnO等が挙げられる。キャップ層の厚さは、50~5000nmの範囲が挙げられる。
 酸化物超電導層3は、酸化物超電導体から構成される。酸化物超電導体としては、特に限定されないが、例えば一般式REBaCu(RE123)で表されるRE-Ba-Cu-O系酸化物超電導体(REBCO系酸化物超電導体)が挙げられる。希土類元素REとしては、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。中でも、Y、Gd、Eu、Smのうちの1種か、又はこれら元素の2種以上の組み合わせが好ましい。RE123の一般式において、Xは、7-x(酸素欠損量x:約0~1程度)である。酸化物超電導層3の厚さは、例えば0.5~5μmの範囲内である。酸化物超電導層3の厚さは、長手方向に均一であることが好ましい。酸化物超電導層3は、中間層2の主面2a(金属基板1側とは反対側の面)に形成されている。
 保護層4は、事故時に発生する過電流をバイパスしたり、酸化物超電導層3と保護層4の上に設けられる層との間で起こる化学反応を抑制したりする等の機能を有する。保護層4の材質としては、例えば銀(Ag)、銅(Cu)、金(Au)、金と銀との合金、その他の銀合金、銅合金、金合金などが挙げられる。保護層4は、少なくとも酸化物超電導層3の主面3a(中間層2側とは反対側の面)を覆っている。保護層4の厚さは、特に限定されないが、例えば1~30μmの範囲内である。
 超電導積層体5は、第1主面5aと、側面5b,5bと、第2主面5cと、を有する。第1主面5aは、保護層4の主面4aである。第1主面5aは、超電導積層体5の、酸化物超電導層3が設けられる側の面である。側面5bは、金属基板1の側面、中間層2の側面、酸化物超電導層3の側面、および保護層4の側面である。第2主面5cは、第1主面5aとは反対側の面である。第2主面5cは、金属基板1の第2面1bである。第2主面5cは、超電導積層体5の、金属基板1が設けられる側の面である。
 安定化部6は、第1安定化層7と、第2安定化層8とを備える。安定化部6は、酸化物超電導層3が常電導状態に転移した時に発生する過電流を転流させるバイパス部としての機能を有する。
 安定化部6の熱膨張係数は、金属基板1の熱膨張係数よりも大きい。例えば、金属基板1の構成材料としてのハステロイ(登録商標)の熱膨張係数は10.9×10-6/℃であり、安定化部6の構成材料としての銅の熱膨張係数は16.7×10-6/℃である。
 第1安定化層7は、超電導積層体5の第1主面5a、側面5b,5bおよび第2主面5cを覆う。第1安定化層7は、超電導積層体5を囲んで一体的に形成されている。第1安定化層7は、第1主面5aから第2主面5cにわたって形成されている。
 第1安定化層7の構成材料としては、銅、銅合金(例えばCu-Zn合金、Cu-Ni合金等)、アルミニウム、アルミニウム合金、銀等の金属が挙げられる。第1安定化層7の厚さは、例えば10~500μmの範囲内である。第1安定化層7は、例えば、めっき(例えば電解めっき)によって形成することができる。
 第1安定化層7は、上側部分7Aと、下側部分7Bとを有する。上側部分7Aは、第1安定化層7の、第1主面5aに面している部分である。上側部分7Aは、安定化部6の第1部分6A(安定化部6の、第1主面5aに面している部分)である。上側部分7A(第1部分6A)の厚さをT1という。下側部分7Bは、第1安定化層7の、第2主面5cに面している部分である。
 超電導積層体5と、第1安定化層7とは、超電導線材本体11を構成する。
 第2安定化層8は、金属テープで構成されている。金属テープを構成する金属としては、銅、銅合金(例えばCu-Zn合金、Cu-Ni合金等)、アルミニウム、アルミニウム合金、銀等の金属が挙げられる。第2安定化層8は、銅テープであることが好ましい。
 第1安定化層7および第2安定化層8の構成材料として挙げた金属の熱膨張係数の例を以下に示す。Cu-Zn合金の熱膨張係数は19.1×10-6/℃であり、Cu-Ni合金の熱膨張係数は13.8×10-6/℃であり、アルミニウムの熱膨張係数は23.1×10-6/℃であり、アルミニウム合金の一例であるAl-6061の熱膨張係数は22.5×10-6/℃であり、銀の熱膨張係数は18.5×10-6/℃である。これらの熱膨張係数は室温(293K)における値である。
 第2安定化層8は、接合材9によって、第1安定化層7の下面(下側部分7Bの外面)に接合される。接合材9を構成する材料としては、例えば、半田、Sn、Sn合金、In(インジウム)、In合金などの金属が挙げられる。半田としては、Sn-Pb系、Pb-Sn-Sb系、Sn-Pb-Bi系、Bi-Sn系、Sn-Cu系、Sn-Pb-Cu系、Sn-Ag系などの合金が挙げられる。
 安定化部6の、第2主面5cに面している部分を、第2部分6Bという。第2部分6Bは、第1安定化層7の下側部分7Bと、接合材9と、第2安定化層8とを備える。第2部分6Bの厚さをT2という。厚さT2は、下側部分7Bの厚さと、接合材9の厚さと、第2安定化層8の厚さとの合計である。
 第2部分6Bの厚さT2は、第1部分6A(上側部分7A)の厚さT1より大きい。厚さT2が厚さT1より大きいことにより、温度変化による安定化部6の収縮によって生じるせん断応力は、酸化物超電導層3に作用しにくくなる。例えば、冷却時には安定化部6が収縮変形するが、第1部分6Aが第2部分6Bよりも薄いため、せん断応力は酸化物超電導層3に作用しにくい。
 第2部分6Bの厚さT2と、上側部分7A(第1部分6A)の厚さT1との差(T2-T1)は、金属基板1の厚さT3より大きいことが好ましい。この差(T2-T1)が厚さT3より大きいことにより、温度変化による安定化部6の収縮によって生じるせん断応力は、酸化物超電導層3に作用しにくくなる。
 図2は、超電導コイル20の概略図である。図2に示すように、超電導コイル20は、酸化物超電導線材10によって形成される。超電導コイル20は、酸化物超電導線材10が、厚さ方向に積層されて複数回、巻回された多層巻きコイルである。酸化物超電導線材10は、巻回軸C周りに巻回される。超電導コイル20は、円環状に形成され、パンケーキコイルとも称される。巻回軸Cから見て、巻回軸C周りの方向を、超電導コイル20の周方向という。巻回軸Cに直交する方向を、超電導コイル20の径方向という。径方向に沿って、巻回軸Cに接近する向きを、径方向内側といい、巻回軸Cから離反する方向を、径方向外側という。
 酸化物超電導線材10は、金属基板1が径方向外側を向き、酸化物超電導層3が径方向内側を向くように、巻回軸Cまわりに巻回されていることが望ましい。すなわち、酸化物超電導線材10は、酸化物超電導層3が金属基板1よりも径方向内側に位置するように、巻回軸Cまわりに巻回されていることが望ましい。酸化物超電導層3が金属基板1よりも径方向内側に位置するように酸化物超電導線材10を巻回することで、超電導コイル20の径方向に働くローレンツ力によって酸化物超電導層3は金属基板1へ押し付けられる。そのため、酸化物超電導層3が金属基板1から引き剥がされることによる超電導特性の劣化を抑制することができる。
 超電導コイル20は、酸化物超電導線材10に、絶縁テープが巻かれた構成を有していてもよい。超電導コイル20には、エポキシ樹脂などの樹脂が含浸されていてもよい。
[第1実施形態の酸化物超電導線材が奏する効果]
 酸化物超電導線材10では、安定化部6の第2部分6Bの厚さT2は、第1部分6A(上側部分7A)の厚さT1より大きい。酸化物超電導線材10が温度変化にさらされると、安定化部6は収縮する。厚さT2が厚さT1より大きい、すなわち厚さT1が厚さT2より小さいため、第2部分6Bの収縮によって生じるせん断力よりも第1部分6Aの収縮によって生じるせん断力の方が小さくなる。酸化物超電導層3は、第2部分6Bよりも第1部分6Aに近い側に形成されているため、安定化部6の収縮によって生じるせん断応力は、酸化物超電導層3に作用しにくくなる。そのため、酸化物超電導層3が損傷するのを抑制することができる。よって、酸化物超電導線材10の超電導特性の低下を抑えることができる。
 比較として、第2安定化層8が、第1安定化層7の下側部分7Bの外面(第1安定化層7のの下面)ではなく、上側部分7Aの外面(第1安定化層7の上面)に接合された酸化物超電導線材を想定する。この酸化物超電導線材では、安定化部の第1部分は第2部分より厚い。この酸化物超電導線材では、温度変化による第2安定化層8の収縮によって酸化物超電導層3にせん断応力が作用しやすくなる。せん断応力は、第2安定化層8が厚いほど大きくなる傾向がある。
[酸化物超電導線材](第2実施形態)
 図3は、第2実施形態の酸化物超電導線材110の断面図である。第1実施形態との共通構成については、同じ符号を付して説明を省略する。
 図3に示すように、酸化物超電導線材110は、超電導積層体5と、安定化部106とを備えている。酸化物超電導線材110は、「超電導線材」の具体例である。
 安定化部106は、超電導積層体5を覆って一体的に形成された層である。安定化部106は、超電導積層体5の第1主面5a、側面5b,5bおよび第2主面5cを覆う。安定化部106は、超電導積層体5を囲んで形成されている。安定化部106は、第1主面5aから第2主面5cにわたって形成されている。
 安定化部106の熱膨張係数は、金属基板1の熱膨張係数よりも大きい。安定化部106の構成材料としては、銅、銅合金(例えばCu-Zn合金、Cu-Ni合金等)、アルミニウム、アルミニウム合金、銀等の金属が挙げられる。安定化部106は、例えば、めっき(例えば電解めっき)によって形成することができる。
 安定化部106の、第1主面5aに面している部分を、第1部分106Aという。第1部分106Aの厚さをT11という。安定化部106の、第2主面5cに面している部分を、第2部分106Bという。第2部分106Bの厚さをT12という。
 第2部分106Bの厚さT12は、第1部分106Aの厚さT11より大きい。厚さT12が厚さT11より大きいことにより、温度変化による安定化部106の収縮によって生じるせん断応力は、酸化物超電導層3に作用しにくくなる。例えば、冷却時には安定化部106が収縮変形するが、第1部分106Aは第2部分106Bよりも薄いため、せん断応力は酸化物超電導層3に作用しにくい。
 第2部分106Bの厚さT12と、第1部分106Aの厚さT11との差(T12-T11)は、金属基板1の厚さT3より大きいことが好ましい。この差(T12-T11)が厚さT3より大きいことにより、温度変化による安定化部106の収縮によって生じるせん断応力は、酸化物超電導層3に作用しにくくなる。
[第2実施形態の酸化物超電導線材が奏する効果]
 酸化物超電導線材110では、安定化部106の第2部分106Bの厚さT12は、第1部分106Aの厚さT11より大きい。酸化物超電導線材110が温度変化にさらされると、安定化部106は収縮する。厚さT12が厚さT11より大きい、すなわち厚さT11が厚さT12より小さいため、第2部分106Bの収縮によって生じるせん断力よりも第1部分106Aの収縮によって生じるせん断力の方が小さくなる。酸化物超電導層3は、第2部分106Bよりも第1部分106Aに近い側に形成されているため、安定化部106の収縮によって生じるせん断応力は、酸化物超電導層3に作用しにくくなる。そのため、酸化物超電導層3が損傷するのを抑制することができる。よって、酸化物超電導線材110の超電導特性の低下を抑えることができる。
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。例えば、図1に示す酸化物超電導線材10では、第2安定化層8は接合材9によって第1安定化層7に接合されているが、第2安定化層8は、接合材9を介さずに直接、第1安定化層7に接合されていてもよい。この場合、第2安定化層8は、例えば、超音波接合、拡散接合などにより第1安定化層7に接合される。
 超電導積層体の構造は、図1に示す構造に限定されない。超電導積層体は、保護層を備えていなくてもよい。超電導積層体には、金属基板、中間層、酸化物超電導層、および保護層以外の層が含まれていてもよい。
 図4は、第1実施形態の変形例の酸化物超電導線材10の断面図である。図4に示すように、本変形例では、酸化物超電導層3に、非配向領域(非超電導領域)32が形成されている。すなわち、酸化物超電導層3は、配向領域(超電導領域)31と、非配向領域32と、を有している。例えば、金属基板1または中間層2に溝が形成され、この溝の上に酸化物超電導層3が設けられることで、非配向領域32が形成されてもよい。非配向領域32は、酸化物超電導層3の長手方向に延びる。複数の非配向領域32が、幅方向Xに並んで配置されている。非配向領域32は、配向性が乱されていることにより、超電導特性を有さない。したがって、使用時には、非配向領域32には電流が流れにくくなり、酸化物超電導層3は、実質的に幅方向に分断される。非配向領域32により酸化物超電導層3が幅方向に分断されると、酸化物超電導層3が細線化(マルチフィラメント化)される。したがって、酸化物超電導線材10の遮蔽電流および磁化損失を低減することができ、超電導コイル20の特性の低下を抑制することができる。
 ここで、酸化物超電導層3が細線化された酸化物超電導線材10では、非配向領域32を挟んで隣り合う配向領域31の間に、安定化部6(第1部分6A)を介して、カップリング電流が流れる可能性がある。カップリング電流は、超電導コイル20の特性を低下させる可能性がある。しかしながら、安定化部6の第1部分6Aが第2部分6Bよりも薄いことにより、第1部分6Aが第2部分6Bよりも厚い場合と比較して、配向領域31の間にカップリング電流が流れにくくなる。したがって、カップリング電流による超電導コイル20の特性の低下を抑制することができる。
 また、上記と同様に、第2実施形態の酸化物超電導線材110において、酸化物超電導層3に、非配向領域32が形成されていてもよい。すなわち、酸化物超電導線材110において、酸化物超電導層3は、配向領域31と、非配向領域32と、を有していてもよい。この場合も、非配向領域32により酸化物超電導層3が細線化(マルチフィラメント化)されるため、酸化物超電導線材10の遮蔽電流および磁化損失を低減することができ、超電導コイル20の特性の低下を抑制することができる。また、安定化部106の第1部分106Aが第2部分106Bよりも薄いことにより、第1部分106Aが第2部分106Bよりも厚い場合と比較して、配向領域31の間にカップリング電流が流れにくくなる。したがって、カップリング電流による超電導コイル20の特性の低下を抑制することができる。
 以下、実施例をもって本発明を具体的に説明する。
(実施例1~3)
 図1に示す酸化物超電導線材10のサンプルを次のようにして作製した。
 ハステロイ(登録商標)で構成されるテープ状の金属基板1の一方の面に中間層2を形成した。中間層2は、拡散防止層、ベッド層、配向層およびキャップ層をこの順に積層した構成である。中間層2の上に、GdBCOで構成される酸化物超電導層3を形成した。酸化物超電導層3の上に、Agで構成される保護層4を形成した。これにより、超電導積層体5を得た。超電導積層体5の外面に、銅で構成される第1安定化層7を電解めっきにより形成し、幅4mmの超電導線材本体11を得た。第1安定化層7の下面(下側部分7Bの外面)に、半田を接合材9として、銅テープである第2安定化層8を接合した。これにより、安定化部6を形成した。
 酸化物超電導線材10のサンプルを液体窒素に入れ、臨界電流(Ic)を測定した。
 安定化部6が形成される前の超電導線材(すなわち、超電導積層体5)のサンプルを作製し、このサンプルを液体窒素に入れ、臨界電流(Ic0)を測定した。
 酸化物超電導線材10の臨界電流(Ic)と、超電導積層体5の臨界電流(Ic0)との比(Ic/Ic0)が0.95以上の場合は、超電導特性が低下していないと判定した。Ic/Ic0が0.95を下回った場合は、超電導特性が低下したと判定した。超電導特性が低下していない場合を「合格」とする。超電導特性が低下した場合を「不合格」とする。結果を表1に示す。
(実施例4)
 図3に示す酸化物超電導線材110のサンプルを次のようにして作製した。
 実施例1~3と同様にして作製した超電導積層体5の外面に、銅で構成される安定化部106を電解めっきにより形成し、酸化物超電導線材110を得た。
 酸化物超電導線材110のサンプルにつき、実施例1~3と同様にして超電導特性の低下の有無を判定した。結果を表1に示す。
(比較例1,2)
 第2安定化層8を第1安定化層7の上側部分7Aの外面(第1安定化層7の上面)に接合したこと以外は実施例1に準じて酸化物超電導線材のサンプルを作製した。このサンプルにつき、実施例1~3と同様にして超電導特性の低下の有無を判定した。結果を表1に示す。
(比較例3)
 安定化部の第1部分が第2部分より厚いこと以外は実施例4に準じて酸化物超電導線材のサンプルを作製した。このサンプルにつき、実施例1~3と同様にして超電導特性の低下の有無を判定した。結果を表1に示す。
(参考例1)
 第2安定化層8が比較的薄いこと以外は比較例1と同様にして酸化物超電導線材のサンプルを作製した。このサンプルにつき、実施例1~3と同様にして超電導特性の低下の有無を判定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4では、超電導特性の低下を抑えることができた。これに対し、比較例1~3では、超電導特性の低下がみられた。
 なお、参考例1では、超電導特性の低下は見られなかった。これは、第1部分が薄いためであると考えられる。
 1…金属基板、3…酸化物超電導層、4…保護層、5…超電導積層体、5a…第1主面、5c…第2主面、6,106…安定化部、6A,106A…第1部分、6B,106B…第2部分、7…第1安定化層、7B…下側部分(第2主面に面している部分)、8…第2安定化層、10,110…酸化物超電導線材(超電導線材)、20…超電導コイル、32…非配向領域、T1,T11…第1部分の厚さ、T2,T12…第2部分の厚さ。

Claims (5)

  1.  金属基板と酸化物超電導層とを有する超電導積層体と、
     前記超電導積層体を覆って形成され、前記金属基板より熱膨張係数が大きい安定化部と、
     を備え、
     前記超電導積層体は、前記酸化物超電導層が設けられる側の面である第1主面と、前記金属基板が設けられる側の面である第2主面と、を有し、
     前記安定化部は、前記第1主面に面している第1部分と、前記第2主面に面している第2部分と、を有し、
     前記第2部分の厚さは、前記第1部分の厚さより大きい、
     超電導線材。
  2.  前記第1部分の厚さと前記第2部分の厚さとの差は、前記金属基板の厚さより大きい、請求項1に記載の超電導線材。
  3.  前記安定化部は、
     前記超電導積層体を囲む第1安定化層と、
     金属テープで形成され、前記第1安定化層の、前記第2主面に面している部分に接合される第2安定化層と、
     を備える、請求項1または2に記載の超電導線材。
  4.  前記酸化物超電導層に、前記酸化物超電導層の長手方向に延びる非配向領域が形成されている、請求項1~3のうちいずれか1項に記載の超電導線材。
  5.  請求項1~4のうちいずれか1項に記載の超電導線材を備え、
     前記超電導線材は、前記第1部分が前記第2部分よりも径方向内側に位置するように、巻回されている、超電導コイル。
PCT/JP2022/032059 2021-08-26 2022-08-25 超電導線材および超電導コイル WO2023027149A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280051789.6A CN117693796A (zh) 2021-08-26 2022-08-25 超导线材及超导线圈
GB2402841.7A GB2624590A (en) 2021-08-26 2022-08-25 Superconducting wire material and superconducting coil
JP2023543981A JPWO2023027149A1 (ja) 2021-08-26 2022-08-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-137967 2021-08-26
JP2021137967 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023027149A1 true WO2023027149A1 (ja) 2023-03-02

Family

ID=85322921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032059 WO2023027149A1 (ja) 2021-08-26 2022-08-25 超電導線材および超電導コイル

Country Status (4)

Country Link
JP (1) JPWO2023027149A1 (ja)
CN (1) CN117693796A (ja)
GB (1) GB2624590A (ja)
WO (1) WO2023027149A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222212A (ja) * 1990-01-29 1991-10-01 Central Res Inst Of Electric Power Ind 高温超電導線材の製造方法
JPH0513216A (ja) * 1991-07-03 1993-01-22 Hitachi Cable Ltd 酸化物超電導コイル・マグネツト
JPH06231940A (ja) * 1993-02-04 1994-08-19 Fujikura Ltd ABaCuO系超電導コイルおよびその製造方法
JP2000251547A (ja) * 1999-02-26 2000-09-14 Toshiba Corp 酸化物超電導線材及び超電導装置
JP2006196720A (ja) * 2005-01-14 2006-07-27 Masataka Iwakuma 超電導導体及びそれを用いた超電導コイル
JP2012216504A (ja) * 2011-03-31 2012-11-08 Fujikura Ltd 高温超電導線材および高温超電導コイル
JP2016157686A (ja) * 2015-02-23 2016-09-01 古河電気工業株式会社 超電導線材、超電導コイル及び超電導線材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243485Y2 (ja) * 1985-08-13 1990-11-19
JP3222212U (ja) * 2019-05-07 2019-07-18 株式会社アイデア企画 三次元の装飾照明器具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222212A (ja) * 1990-01-29 1991-10-01 Central Res Inst Of Electric Power Ind 高温超電導線材の製造方法
JPH0513216A (ja) * 1991-07-03 1993-01-22 Hitachi Cable Ltd 酸化物超電導コイル・マグネツト
JPH06231940A (ja) * 1993-02-04 1994-08-19 Fujikura Ltd ABaCuO系超電導コイルおよびその製造方法
JP2000251547A (ja) * 1999-02-26 2000-09-14 Toshiba Corp 酸化物超電導線材及び超電導装置
JP2006196720A (ja) * 2005-01-14 2006-07-27 Masataka Iwakuma 超電導導体及びそれを用いた超電導コイル
JP2012216504A (ja) * 2011-03-31 2012-11-08 Fujikura Ltd 高温超電導線材および高温超電導コイル
JP2016157686A (ja) * 2015-02-23 2016-09-01 古河電気工業株式会社 超電導線材、超電導コイル及び超電導線材の製造方法

Also Published As

Publication number Publication date
GB202402841D0 (en) 2024-04-10
JPWO2023027149A1 (ja) 2023-03-02
GB2624590A (en) 2024-05-22
CN117693796A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
JP5693784B2 (ja) 超電導線材および超電導コイル
JP5847009B2 (ja) 酸化物超電導線材
WO2011129252A1 (ja) 超電導線材の電極部接合構造、超電導線材、及び超電導コイル
US20190172612A1 (en) Oxide superconducting wire
WO2016021343A1 (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
JP6329736B2 (ja) 積層パンケーキ型超電導コイル及びそれを備えた超電導機器
JP2024020665A (ja) 超電導コイル
JP6688914B1 (ja) 酸化物超電導線材及び超電導コイル
WO2023027149A1 (ja) 超電導線材および超電導コイル
JP2013247281A (ja) 酸化物超電導コイル
JP5405069B2 (ja) テープ状酸化物超電導体及びそれに用いる基板
JP2015228357A (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
WO2018207727A1 (ja) 超電導線材および超電導コイル
US11710583B2 (en) Oxide superconducting wire and superconducting coil
JP6078522B2 (ja) 超電導線材及びこれを使用した超電導コイル
JP6484658B2 (ja) 酸化物超電導線材及び超電導コイル
JP2013186966A (ja) 酸化物超電導線材およびその製造方法
WO2021112181A1 (ja) 酸化物超電導線材の接続構造、超電導コイル、酸化物超電導線材の接続方法
JP6031494B2 (ja) 超電導線材及びこれを使用した超電導コイル
JP2023032076A (ja) 超電導コイル
JP2018195612A (ja) 超電導コイル
JP2023032075A (ja) 超電導コイル
JP6724125B2 (ja) 酸化物超電導線材及びその製造方法
JP6318284B1 (ja) 超電導線材
RU2575664C1 (ru) Сверхпроводящий провод и сверхпроводящая катушка

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543981

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280051789.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 202402841

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220825

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22861437

Country of ref document: EP

Kind code of ref document: A1