WO2023024380A1 - 阀芯、夹管阀及电池注液装置 - Google Patents

阀芯、夹管阀及电池注液装置 Download PDF

Info

Publication number
WO2023024380A1
WO2023024380A1 PCT/CN2021/142471 CN2021142471W WO2023024380A1 WO 2023024380 A1 WO2023024380 A1 WO 2023024380A1 CN 2021142471 W CN2021142471 W CN 2021142471W WO 2023024380 A1 WO2023024380 A1 WO 2023024380A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
wall
air chamber
channel
axis
Prior art date
Application number
PCT/CN2021/142471
Other languages
English (en)
French (fr)
Inventor
蒋中义
孙建军
孙一舟
Original Assignee
无锡先导智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡先导智能装备股份有限公司 filed Critical 无锡先导智能装备股份有限公司
Priority to EP21946246.2A priority Critical patent/EP4166827A4/en
Priority to JP2022581708A priority patent/JP2023542770A/ja
Publication of WO2023024380A1 publication Critical patent/WO2023024380A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/02Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
    • F16K7/04Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
    • F16K7/07Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force by means of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0236Diaphragm cut-off apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of valves, in particular to a valve core, a pinch valve and a battery liquid injection device.
  • the pinch valve As a common flow control device, the pinch valve is widely used in battery injection and other fields.
  • the main element of a pinch valve consists of an elastically deformable hose, the spool.
  • the switching state of the pinch valve can be realized by squeezing the hose pneumatically, electrically or manually.
  • the hose of the pinch valve is prone to aging damage, which leads to failure of the pinch valve.
  • a valve core comprising an elastically deformable main body, the main body is formed with an extruding channel and a pressure receiving part, and both ends of the main body have openings communicating with the extruding channel, wherein the extruding channel
  • the inner wall includes two oppositely arranged half-wall structures. In the radial section of the extrusion channel, there are a first axis and a second axis that are perpendicular to each other and bisect each other. The first axis and the second axis can jointly define a circular shape. or an ellipse, the two half-wall structures are distributed on both sides of the second axis, and both are located within the range of the circle or ellipse;
  • the external force acting on the pressure-receiving part can make the two half-wall structures close together, so as to close the extrusion channel.
  • each of the half-wall structures includes a first arc-shaped wall and a second arc-shaped wall connected to both ends of the first arc-shaped wall, and the first arc-shaped wall faces toward the extrusion channel.
  • the outer side of the extrusion channel protrudes
  • the second arc-shaped wall protrudes toward the inner side of the extrusion channel
  • the first axis divides the first arc-shaped wall into Two sections
  • the second arc-shaped wall gradually converges toward the second axis in the direction of extension away from the first arc-shaped wall.
  • the two second arc-shaped walls at the same end of the two half-wall structures extend to the second axis and are tangent to each other.
  • the two second arc-shaped walls at the same end of the two half-wall structures are connected by a third arc-shaped wall, and in the radial section of the extrusion channel, the second axis will
  • the third arc-shaped wall is divided into two sections, and the third arc-shaped wall protrudes toward the outside of the extrusion channel.
  • the third arc-shaped wall is smoothly connected with two adjacent second arc-shaped walls.
  • each of the half-wall structures includes two interconnected planar walls, and the included angle between the two planar walls is an obtuse angle.
  • the length of the first axis is smaller than the length of the second axis.
  • the middle part of the main body shrinks inwardly to form a constricted part
  • the pressure-receiving part is located in the constricted part
  • the extruding channel is formed in a position of the main body corresponding to the constricted part.
  • a pinch valve comprising:
  • the valve body has a liquid inlet and a liquid outlet, the valve core is accommodated in the valve body and the openings at both ends communicate with the liquid inlet and the liquid outlet respectively;
  • the actuator includes a power assembly and a resisting member, and the power assembly can drive the resisting member to act on the pressed portion to close the extruding channel.
  • the valve body is provided with an air inlet
  • the valve body is formed with an air chamber arranged circumferentially around the valve core, and the air chamber is ventilated or ventilated through the air inlet. Exhausting air can cause the power assembly to drive the resisting member to act on the pressure receiving portion, so as to close the extruding channel.
  • the resisting member penetrates the inner wall of the air chamber and resists the pressure receiving part
  • the power assembly includes:
  • a guide sleeve fixed to one end of the piston and arranged around the circumference of the valve core, the guide sleeve has a resisting slope
  • the elastic piece is accommodated in the air chamber and acts on the guide sleeve.
  • the resisting slope acts on the elastic piece to abut against the abutting piece, and makes the abutting piece act on the a pressurized part to close the extruding channel;
  • ventilating the air chamber can drive the piston to drive the guide sleeve to slide along the air chamber against the elastic force of the elastic member, and the resisting member retreats to open the extruding channel.
  • the above-mentioned pinch valve has at least the following advantages:
  • the above extrusion channel has a thicker wall thickness under the premise of ensuring the flow rate is roughly the same, so the pressure resistance and fatigue resistance of the main body of the valve core are also more prominent , the main body can still maintain good elasticity after repeated switching. In this way, the aging speed of the valve core can be significantly slowed down, so that the above-mentioned pinch valve has a longer service life.
  • the support of the main body of the valve core is also stronger. During the use of the pinch valve, it is not easy to cause unnecessary deformation of the valve core due to pressure changes in the extrusion channel, thereby ensuring accurate flow control.
  • An electrolyte liquid injection device comprising a pinch valve, a liquid injection cup, and a liquid injection nozzle as described in any one of the above preferred embodiments, the liquid injection cup and the liquid injection nozzle are respectively connected to the liquid inlet The port communicates with the liquid outlet.
  • Fig. 1 is the structural representation of the pinch valve in the preferred embodiment of the present application
  • Fig. 2 is a sectional view along A-A of the pinch valve shown in Fig. 1;
  • Fig. 3 is a structural schematic diagram of the pinch valve shown in Fig. 1 rotated 90 degrees around the axis;
  • Fig. 4 is a sectional view along B-B of the pinch valve shown in Fig. 3;
  • Fig. 5 is the front view of the spool in the pinch valve shown in Fig. 1;
  • Fig. 6 is a sectional view of the spool shown in Fig. 5 along C-C;
  • Fig. 7 is the sectional view of the spool in another embodiment along C-C;
  • Fig. 8 is a sectional view along C-C of the valve core in the third embodiment.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • the first feature being “above”, “above” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the present application provides a pinch valve 10 and a valve core 100 .
  • the pinch valve 10 includes a valve core 100 , a valve body 200 and an actuator 300 .
  • the valve core 100 includes an elastically deformable main body 110 , and the main body 110 is generally formed of elastic materials such as rubber.
  • the main body 110 is a hollow structure with two ends open, and openings 102 are formed at both ends.
  • the main body 110 is formed with an extrusion channel 101 and a pressure receiving portion 111 , and the openings 102 at both ends communicate with the extrusion channel 101 .
  • the extrusion channel 101 may pass through the main body 110 and extend from the opening 102 at one end to the opening 102 at the other end.
  • the extruding channel 101 can also be only a section of the hollow part in the main body 110 , corresponding to the position of the pressure receiving part 111 .
  • the main body 110 By acting on the pressure receiving portion 111 , the main body 110 can be deformed and the extrusion channel 101 can be closed, thereby closing the pinch valve 10 .
  • the valve body 200 is used to support and accommodate the valve core 100 , and is generally a cylindrical structure with two ends open.
  • the valve body 200 has a liquid inlet 201 and a liquid outlet 202 .
  • the valve core 100 is accommodated in the valve body 200 and the openings 102 at both ends communicate with the liquid inlet 201 and the liquid outlet 202 respectively.
  • Fluid, such as electrolyte can enter the valve core 100 through the liquid inlet 201 , and flow out through the liquid outlet 202 after flowing through the extrusion channel 101 .
  • the valve body 200 can be integrally formed, or can be assembled from multiple parts.
  • the valve body 200 includes a base 210 , a barrel 230 and an upper cover 220 , the valve core 100 can be positioned on the base 210 first, and then packaged by the barrel 230 and the upper cover 210 .
  • the actuator 300 includes a power assembly 310 and a resisting member 320 , the power assembly 310 can provide power to drive the resisting member 320 to act on the pressure receiving portion 111 , so as to close the extrusion channel 101 .
  • the resisting member 320 may be in the shape of a rod, a block, or the like.
  • the power assembly 310 can drive the abutting member 320 to act in an electric, pneumatic or manual manner, so as to control the switching state of the pinch valve 10 .
  • an air inlet 203 is opened on the valve body 200, and the valve body 200 is formed with an air chamber 204 arranged around the circumference of the valve core 100, through the air inlet 203 to Venting or exhausting the air chamber 204 can make the power assembly 310 drive the resisting member 320 to act on the pressure receiving portion 111 to close the extruding channel 101 .
  • the air chamber 204 is formed between the base 210 , the upper cover 220 and the barrel 230 . Moreover, a sealing ring 240 is disposed between the base 210 and the cylinder 230 to ensure the airtightness of the cylinder 204 .
  • Air is ventilated into the air chamber 204 through the air inlet 203 , so that the air pressure in the air chamber 204 increases, thereby driving the resisting member 320 to cancel the force acting on the pressure receiving portion 111 . Exhausting the air chamber 204 through the air inlet 203 can reduce the air pressure in the air chamber 204 , thereby driving the resisting member 320 to act on the pressure receiving portion 111 .
  • the initial state of the pinch valve 10 is in the normally closed state, and the force acting on the pressure receiving part 111 can be canceled only by ventilating into the air chamber 204 through the air inlet 101, and then the pinch valve 10 is switched to open. state.
  • the resisting member 320 may be columnar, penetrate the inner wall of the air chamber 204 and resist against the pressure receiving portion 111 . By stretching and contracting the resisting member 320 relative to the pressure receiving portion 111 , an external force can be applied to the pressure receiving portion 111 , thereby closing or opening the pinch valve 10 .
  • the power assembly 310 includes a piston 311 , a guide sleeve 312 and an elastic member 313 .
  • the piston 311 is installed in the air chamber 204 .
  • the guide sleeve 312 is fixed on one end of the piston 311 and arranged around the circumference of the valve core 100 .
  • the guide sleeve 312 has a resisting slope 3121 .
  • the elastic member 313 is accommodated in the air chamber 204 and acts on the guide sleeve 312 .
  • the elastic member 313 may be a compression spring.
  • the resisting slope 3121 acts on the elastic member 313 to resist against the resisting member 320 , so that the resisting member 320 acts on the pressed portion 111 and closes the extruding channel 101 .
  • Breathing air into the air chamber 204 can drive the piston 311 to drive the guide sleeve 312 to slide along the air chamber 204 against the elastic force of the elastic member 313 , and the resisting member 320 retreats to open the extrusion channel 101 .
  • the guide sleeve 312 acts on the lower surface of the air chamber 204 under the action of the elastic member 313, and the abutting slope 3121 drives the abutting member 320 to protrude toward the valve core 100, thereby
  • the squeeze channel 101 is closed so that the pinch valve 10 is in a closed state; when the air chamber 204 is inflated through the air inlet 203 , the piston 311 will be driven to slide upward.
  • the resisting slope 3121 gradually releases the pressure on the resisting member 320 , and the valve body 110 resets and pushes the resisting member 320 back, so that the pinch valve 10 is switched to an open state.
  • the initial state of the pinch valve 10 may also be in a normally open state.
  • ventilating the air chamber 204 through the air inlet 203 can increase the air pressure in the air chamber 204 , thereby driving the resisting member 320 to act on the pressure receiving portion 111 , and switching the pinch valve 10 to a closed state.
  • the inner wall of the extrusion channel 101 includes two opposite half-wall structures 112.
  • first axis a and second axis b that are perpendicular to each other.
  • the first axis a and the second axis b can jointly define a circle or an ellipse, and the two half-wall structures 112 are distributed on both sides of the second axis b, and both are located within the range of the above-mentioned circle or ellipse.
  • the circle or ellipse jointly defined by the first axis a and the second axis b refers to a circle with the first axis a and the second axis b as a diameter, or an ellipse with a major axis and a minor axis. It should be pointed out that both the first axis a and the second axis b are virtual axes, not the contour lines that actually exist in the extrusion channel 101 .
  • the length of the second axis b is greater than the length of the first axis a, so the two can jointly define an ellipse c, and the second axis b and the first axis a are respectively used as the major axis and the short axis of the ellipse c axis. It can be seen that, compared with the circular or elliptical hole, the extrusion channel 101 shrinks inward to a certain extent.
  • the external force acting on the pressure-receiving part 111 can make the two half-wall structures 112 close together, so that the extrusion channel 101 is closed.
  • the extruding channel 101 has a thicker wall thickness under the premise of ensuring the same flow rate, so the main body 110 of the valve core 100 has stronger support.
  • the spool 100 is unlikely to be deformed unnecessarily due to pressure changes in the squeeze channel 101 , thereby ensuring accurate flow control. Due to the thicker wall thickness, the main body 110 of the spool 100 has better pressure resistance and fatigue resistance performance, and the main body 110 can still maintain good elasticity after being switched on and off for many times.
  • the distance between the joints of the two half-wall structures 112 is small, and the deformation of the joints is small when the main body 110 is extruded, so it is not easy to fatigue due to frequent deformation, resulting in material cracking, damage and aging. It can be seen from this that the pinch valve 10 also has a longer service life.
  • the length of the first axis a is smaller than the length of the second axis b. That is to say, the extruding channel 101 is narrower and longer. Under the premise of ensuring that the flow rate is approximately the same, the distance between the joints of the two half-wall structures 112 is smaller, so when the extruding channel 101 is closed The stroke can be further reduced.
  • the two half-wall structures 112 are distributed axisymmetrically with the major axis b as the axis of symmetry. In this way, the symmetry of the two half-wall structures 112 is better, and they can fit more tightly when the extrusion channel 101 is closed, thereby ensuring the reliability of closing the pinch valve 10 .
  • the middle part of the main body 110 shrinks inwardly to form a constricted portion 113
  • the pressure receiving portion 111 is located at the constricted portion 113
  • the extruding channel 101 is formed at a position corresponding to the constricted portion 113 of the main body 110 .
  • the extruding channel 101 does not completely pass through the main body 110 , but is only formed at a position corresponding to the contraction portion 113 .
  • the radial dimension of the constricted part 113 is relatively small, and when it is necessary to close the extruding channel 101, the pressure receiving part 111 only needs a small deformation, so the stroke of the resisting part 310 can be significantly reduced, thereby further improving the clamping force.
  • the response speed of the pipe valve 10 during the switching process is relatively small, and when it is necessary to close the extruding channel 101, the pressure receiving part 111 only needs a small deformation, so the stroke of the resisting part 310 can be significantly reduced, thereby further improving the clamping force.
  • each half-wall structure 112 includes a first arc-shaped wall 1121 and a second arc-shaped wall 1122 connected to two ends of the first arc-shaped wall 1121 . Moreover, the first arc-shaped wall 1121 protrudes toward the outside of the extruding channel 101 , and the second arc-shaped wall 1122 protrudes toward the inner side of the extruding channel 101 .
  • the bending direction of the first arc-shaped wall 1121 is opposite to that of the second arc-shaped wall 1122, and the first arc-shaped wall 1121 makes the area of the extruding channel 101 corresponding to the first arc-shaped wall 1121 expand outward, with a larger The flow area; and the second arc-shaped wall 1122 makes the area of the extrusion channel 101 corresponding to the second arc-shaped wall 1122 shrink inwardly, and the flow area decreases, but the wall thickness of the main body 110 corresponding to the area of the second arc-shaped wall 1122 is corresponding Increase.
  • the first axis a divides the first arc-shaped wall 1121 into two sections, and the second arc-shaped wall 1122 gradually moves toward the second arc-shaped wall 1122 in the extending direction away from the first arc-shaped wall 1121 Biaxial b converges.
  • the second arc-shaped wall 1122 gradually converges toward the second axis b in the extension direction, which means that the second arc-shaped wall 1122 gradually approaches the second axis b. In this way, in the extending direction of the second arc-shaped wall 1122 , the distance between the two half-wall structures 112 also decreases gradually. Moreover, the first arc-shaped wall 1121 and the second arc-shaped wall 1122 make the inner wall of the half-wall structure 122 smoother, and when the extrusion channel 101 is closed, the two half-wall structures 122 can be better adhered to.
  • the two second arc-shaped walls 1122 at the same end of the two half-wall structures 112 extend to the second axis b and are connected.
  • the two second arc-shaped walls 1122 at the upper end in the figure extend to the upper end of the second axis b and are connected, and the two second arc-shaped walls 1122 at the lower end also extend to the lower end of the second axis b and are connected.
  • the two half-wall structures 112 are more easily adhered to each other, and thus have a better shut-off effect after the pinch valve 10 is closed.
  • the two second arc-shaped walls 1122 at the upper end are tangent at the upper end of the second axis b, and the two second arc-shaped walls 1122 at the lower end are tangent at the lower end of the second axis b.
  • the two second arc-shaped walls 1122 at the same end of the two half-wall structures 112 are connected by a third arc-shaped wall 114.
  • the first The second axis b divides the third arc-shaped wall 114 into two sections, and the third arc-shaped wall 114 protrudes toward the outside of the extrusion channel 101 .
  • the second arc-shaped wall 1122 of the two half-wall structures 112 transitions through the third arc-shaped wall 114, thereby avoiding the formation of a small knuckle between the two second arc-shaped walls 1122 and squeezing the channel 101.
  • the inner wall is smoother. In this way, the fluid flowing through the extrusion channel 101 can be effectively prevented from remaining in the extrusion channel 101 , and the flow area of the extrusion channel 101 can also be increased to a certain extent.
  • the third arc-shaped wall 114 is smoothly connected with two adjacent second arc-shaped walls 1122 .
  • the occurrence of knuckles can be further avoided, so that the inner wall of the extrusion channel 101 has a smooth curved surface everywhere, and further avoids residues.
  • each half-wall structure 122 includes two interconnected planar walls 1223 , and the angle between the two planar walls 1223 is an obtuse angle.
  • the extruding channel 101 is in the shape of a rhombus. It should be pointed out that the extrusion channel 101 is not limited to the shapes shown in the above three embodiments.
  • the present application also provides an electrolyte injection device.
  • the electrolyte injection device includes a pinch valve 10 , a liquid injection cup (not shown) and a liquid injection nozzle (not shown).
  • the liquid injection cup and the liquid injection nozzle communicate with the liquid inlet 201 and the liquid outlet 202 respectively.
  • the liquid injection cup is used for storing the electrolyte, and the liquid injection nozzle is used for injecting the electrolyte into the battery case.
  • the pinch valve 10 is switched to the open state, and the electrolyte in the liquid injection cup can flow to the liquid injection nozzle through the pinch valve 10, and the liquid injection operation is completed by the liquid injection nozzle. Since the pinch valve 10 can ensure the accuracy of flow control, the injection accuracy of the electrolyte injection device is relatively high.

Abstract

公开了一种阀芯(100),阀芯(100)的主体内形成有挤压通道(101),挤压通道(101)的内壁包括两个相对设置半壁结构;在挤压通道(101)的径向截面内,具有相互垂直平分的第一轴及第二轴,能够共同限定圆形或椭圆形,两个半壁结构(112)分布于第二轴的两侧,且均位于圆形或椭圆形的范围内,从而保证流量控制的精准;还公开了包括阀芯的夹管阀,包括夹管阀的电池注液装置。

Description

阀芯、夹管阀及电池注液装置
相关申请
本申请要求2021年08月26日申请的,申请号为202122035265.3,名称为“阀芯、夹管阀及电池注液装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及阀门技术领域,特别涉及一种阀芯、夹管阀及电池注液装置。
背景技术
夹管阀作为一种常见的流量控制器件,被广泛应用于电池注液等领域。夹管阀的主要元件包括可产生弹性形变的软管,即阀芯。正常使用时,通过气动、电动或手动方式挤压软管,便可实现夹管阀开关状态的切换。但是,经过多次变形后,夹管阀的软管易产生老化损坏,从而导致夹管阀失效。
申请内容
基于此,有必要针对上述问题,提供一种使用寿命较长的阀芯、夹管阀及电池注液装置。
一种阀芯,包括能够弹性形变的主体,所述主体形成有挤压通道及受压部,所述主体的两端具有与所述挤压通道连通的开口,其中,所述挤压通道的内壁包括两个相对设置半壁结构,在所述挤压通道的径向截面内,具有相互垂直平分的第一轴及第二轴,所述第一轴及所述第二轴能够共同限定圆形或椭圆形,两个所述半壁结构分布于所述第二轴的两侧,且均位于所述圆形或椭圆形的范围内;
其中,外力作用于所述受压部能够使两个所述半壁结构靠拢,以使所述挤压通道闭合。
在其中一个实施例中,每个所述半壁结构包括第一弧形壁及连接于所述第一弧形壁两端的第二弧形壁,所述第一弧形壁朝所述挤压通道的外侧凸起,所 述第二弧形壁朝所述挤压通道的内侧凸起,在所述挤压通道的径向截面内,所述第一轴将所述第一弧形壁分为两段,所述第二弧形壁在远离所述第一弧形壁的延伸方向上逐渐朝所述第二轴收敛。
在其中一个实施例中,在所述挤压通道的径向截面内,两个所述半壁结构同一端的两个所述第二弧形壁延伸至所述第二轴并相切。
在其中一个实施例中,两个所述半壁结构同一端的两个所述第二弧形壁通过第三弧形壁连接,在所述挤压通道的径向截面内,所述第二轴将所述第三弧形壁分为两段,且所述第三弧形壁朝所述挤压通道的外侧凸起。
在其中一个实施例中,所述第三弧形壁与相邻的两个所述第二弧形壁光滑连接。
在其中一个实施例中,每个所述半壁结构包括两个相互连接的平面壁,且两个所述平面壁之间的夹角呈钝角。
在其中一个实施例中,所述第一轴的长度小于所述第二轴的长度。
在其中一个实施例中,所述主体的中部向内收缩形成收缩部,所述受压部位于所述收缩部,所述挤压通道形成于所述主体与所述收缩部对应的位置。
一种夹管阀,包括:
如上述优选实施例中任一项所述的阀芯;
阀体,具有进液口及出液口,所述阀芯收容于所述阀体且两端的所述开口分别与所述进液口及所述出液口连通;
执行机构,包括动力组件及抵持件,所述动力组件能够驱使所述抵持件作用于所述受压部,以使所述挤压通道闭合。
在其中一个实施例中,所述阀体上开设有进气口,所述阀体形成有围绕所述阀芯的周向布设的气室,通过所述进气口向所述气室通气或排气,能够使所述动力组件驱动所述抵持件作用于所述受压部,以使所述挤压通道闭合。
在其中一个实施例中,所述抵持件穿设于所述气室的内侧壁并抵持于所述受压部,所述动力组件包括:
活塞,安装于所述气室内;
导向套,固定于所述活塞的一端并绕所述阀芯的周向布设,所述导向套具有抵持斜面;
弹性件,收容于所述气室并作用于所述导向套,所述抵持斜面在所述弹性件的作用于与所述抵持件相抵持,并使所述抵持件作用于所述受压部以使所述挤压通道闭合;
其中,向所述气室通气可驱使所述活塞带动所述导向套克服所述弹性件的弹性力沿所述气室滑动,所述抵持件回退,以使所述挤压通道打开。
上述夹管阀相较于传统的夹管阀至少具有以下优点:
1、相较于圆形或椭圆形的流体通道,上述挤压通道在保证流量大致相同的前提下,还具有较厚的壁厚,故阀芯的主体的耐压及抗疲劳性能也更加突出,主体在经多次开关切换后依然还能保持较好的弹性。如此,可显著减缓阀芯老化的速度,使得上述夹管阀具有较长的使用寿命。
2、由于具有较厚的壁厚,故阀芯的主体的支撑性也更强。在夹管阀的使用过程中,不易因挤压通道内压力的变化而导致阀芯产生不必要的变形,从而保证流量控制的精准。
3、相较于圆形或椭圆形的流体通道,两个半壁结构相互抵接以使挤压通道闭合时,抵持件所需的行程较小,故上述夹管阀开关响应更及时。
一种电解液注液装置,包括如上述优选实施例中任一项所述的夹管阀、注液杯及注液嘴,所述注液杯及所述注液嘴分别与所述进液口及所述出液口连通。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请较佳实施例中夹管阀的结构示意图;
图2为图1所示夹管阀沿A-A的剖视图;
图3为图1所示夹管阀绕轴线旋转90度的结构示意图;
图4为图3所示夹管阀沿B-B的剖视图;
图5为图1所示夹管阀中阀芯的主视图;
图6为图5所示阀芯沿C-C的剖视图;
图7为另一个实施例中的阀芯沿C-C的剖视图;
图8为第三个实施例中的阀芯沿C-C的剖视图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征 在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参阅图1至图4,本申请提供了一种夹管阀10及阀芯100。其中,夹管阀10包括阀芯100、阀体200及执行机构300。
请一并参阅图5,阀芯100包括能够弹性形变的主体110,主体110一般由橡胶等弹性材料成型。主体110为两端开口的中空结构,其两端形成有开口102。主体110形成有挤压通道101及受压部111,两端的开口102与挤压通道101连通。具体的,挤压通道101可以贯通主体110并由其中一端的开口102延伸至另一端的开口102。此外,挤压通道101也可仅为主体110内中空部分的一段,并与受压部111的位置对应。
通过作用于受压部111,能够使主体110变形并使挤压通道101闭合,从而将夹管阀10关闭。
阀体200用于支撑及收容阀芯100,一般为两端开口的筒状结构。阀体200具有进液口201及出液口202,阀芯100收容于阀体200且两端的开口102分别与进液口201及出液口202连通。流体,如电解液可经进液口201进入阀芯100,并在流过挤压通道101后再由出液口202流出。阀体200可以是一体成型的结构,也可由多个部分组装而成。譬如,在本实施例中,阀体200包括底座210、筒体230及上盖220,阀芯100可先定位于底座210,再由筒体230及上盖210进行封装。
执行机构300包括动力组件310及抵持件320,动力组件310能够提供动力以驱使抵持件320作用于受压部111,从而使挤压通道101闭合。抵持件320可以是杆状、块状等结构。动力组件310可以通过电动、气动或手动等方式驱使抵持件320动作,从而对夹管阀10的开关状态进行控制。
请再次参阅图2及图4,在本实施例中,阀体200上开设有进气口203,阀体200形成有围绕阀芯100的周向布设的气室204,通过进气口203向气室204通气或排气,能够使动力组件310驱动抵持件320作用于受压部111,以使挤压通道101闭合。
具体的,气室204形成于底座210、上盖220及筒体230之间。而且,底座210与筒体230间配置有密封圈240,以保证其实204的气密性。通过进气口203向气室204通气,使得气室204内的气压升高,从而驱动抵持件320撤销作用于受压部111的作用力。通过进气口203使气室204排气可使气室204内的气压降低,从而驱动抵持件320作用于受压部111。也就是说,夹管阀10的初始状态处于常闭状态,只有通过进气口101向气室204内通气,才能撤销作用于受压部111的作用力,进而将夹管阀10切换至打开状态。
抵持件320可以呈柱状,穿设于气室204的内侧壁并抵持于受压部111。通过使抵持件320相对于受压部111伸缩,便能够对受压部111施加外力的作用,进而关闭或打开夹管阀10。
进一步的,在本实施例中,动力组件310包括活塞311、导向套312及弹性件313。
活塞311安装于气室204内。当气室204充气后,可驱使活塞311沿气室204滑动。导向套312固定于活塞311的一端并绕阀芯100的周向布设,导向套312具有抵持斜面3121。弹性件313收容于气室204并作用于导向套312。具体的,弹性件313可以是压缩弹簧。抵持斜面3121在弹性件313的作用于与抵持件320相抵持,以使抵持件320作用于受压部111并使挤压通道101闭合。向气室204通气可驱使活塞311带动导向套312克服弹性件313的弹性力沿气室204滑动,抵持件320回退,以使挤压通道101打开。
以图2所示为例,初始状态下,导向套312在弹性件313的作用于抵持于气室204的下表面,抵持斜面3121则驱动抵持件320朝阀芯100伸出,从而使挤压通道101闭合以使夹管阀10处于关闭状态;当通过进气口203向气室204充气后,将驱使活塞311向上滑动。同时,抵持斜面3121逐渐解除对抵持件320的挤压,阀体110则复位并推动抵持件320回退,从而使夹管阀10切换至打开状态。
需要指出的是,在其他实施例中,夹管阀10的初始状态也可处于常开状态。此时,通过进气口203向气室204通气可使气室204内的气压升高,从而驱动抵持件320作用于受压部111,并将夹管阀10切换至关闭状态。
请一并参阅图6至图8,挤压通道101的内壁包括两个相对设置半壁结构112,在挤压通道101的径向截面内,具有相互垂直平分的第一轴a及第二轴b,第一轴a及第二轴b能够共同限定圆形或椭圆形,两个半壁结构112分布于第二轴b的两侧,且均位于上述与圆形或椭圆形的范围内。
具体的,第一轴a及第二轴b共同限定的圆形或椭圆形,指的是第一轴a及第二轴b作为直径的圆形,或作为长轴及短轴的椭圆形。需要指出的是,第一轴a及第二轴b均为虚拟的轴线,并非挤压通道101内实际存在的轮廓线。本实施例中,第二轴b的长度大于第一轴a的长度,故两者可共同限定一椭圆形c,且第二轴b及第一轴a分别作为椭圆形c的长轴及短轴。可见,相较于圆形或椭圆形的孔,挤压通道101在一定程度上向内收缩。
其中,外力作用于受压部111能够使两个半壁结构112靠拢,以使挤压通道101闭合。相较于圆形或椭圆形的流体通道,上述挤压通道101在保证流量大致相同的前提下,还具有较厚的壁厚,故阀芯100的主体110的支撑性更强。在夹管阀10的使用过程中,不易因挤压通道101内压力的变化而导致阀芯100产生不必要的变形,从而保证流量控制的精准。由于具有较厚的壁厚,阀芯100的主体110耐压及抗疲劳性能也更加突出,主体110在经多次开关切换后依然还能保持较好的弹性。而且,两个半壁结构112连接处的间距较小,挤压主体110时连接处的形变量较小,故不易因为频繁形变而疲劳,从而导致材料开裂损坏老化。由此可见,故上述夹管阀10还具有较长的使用寿命。
此外,相较于圆形或椭圆形的流体通道,两个半壁结构112相互抵接以使挤压通道101闭合时,抵持件320所需的行程较小,故上述夹管阀10开关响应更及时。
具体在本实施例中,第一轴a的长度小于第二轴b的长度。也就是说,挤压通道101更狭长,在保证流量大致相同的前提下,两个半壁结构112连接处之间的间距更小,故在使挤压通道101闭合时抵持件320所需的行程能够进一步减小。
具体在本实施例中,在挤压通道101的径向截面内,两个半壁结构112以长轴b为对称轴呈轴对称分布。如此,两个半壁结构112的对称性更好,在挤压通道101闭合时能够更加紧密的配合,从而保证夹管阀10关闭的可靠性。
请再次参阅图5,在本实施例中,主体110的中部向内收缩形成收缩部113,受压部111位于收缩部113,挤压通道101形成于主体110与收缩部113对应的位置。
也就是说,挤压通道101并未完全贯通主体110,而是仅形成于与收缩部113对应的位置。收缩部113的径向尺寸较小,在需要使挤压通道101闭合时,受压部111只需较小的形变即可,故可显著减小抵持件310的行程,从而进一步提升上述夹管阀10在开关过程中的响应速度。
如图6及图7所示,在一个实施例中,每个半壁结构112包括第一弧形壁1121及连接于第一弧形壁1121两端的第二弧形壁1122。而且,第一弧形壁1121朝挤压通道101的外侧凸起,第二弧形壁1122朝挤压通道101的内侧凸起。
也就是说,第一弧形壁1121与第二弧形壁1122的弯曲方向相反,第一弧形壁1121使得挤压通道101对应第一弧形壁1121的区域向外膨胀,具有较大的过流面积;而第二弧形壁1122使得挤压通道101对应第二弧形壁1122的区域向内收缩,过流面积减小,但主体110对应第二弧形壁1122区域的壁厚相应增加。
进一步的,挤压通道101的径向截面内,第一轴a将第一弧形壁1121分为两段,第二弧形壁1122在远离第一弧形壁1121的延伸方向上逐渐朝第二轴b收敛。
第二弧形壁1122在延伸方向上逐渐朝第二轴b收敛,指的是第二弧形壁1122逐渐靠近第二轴b。如此,在第二弧形壁1122的延伸方向上,两个半壁结构112之间的间距也逐渐减小。而且,第一弧形壁1121及第二弧形壁1122使得半壁结构122的内壁更平滑,当挤压通道101闭合时两个半壁结构122能够更好地贴紧。
请再次参阅图6,在第一个实施例中,在挤压通道101的径向截面内,两个半壁结构112同一端的两个第二弧形壁1122延伸至第二轴b并相连。
即,图示位于上端的两个第二弧形壁1122延伸至第二轴b的上端并相连, 而位于下端的两个第二弧形壁1122也延伸至第二轴b的下端并相连。如此,两个半壁结构112更容易贴紧,故在夹管阀10关闭后具有更佳的截流效果。可选的,位于上端的两个第二弧形壁1122在第二轴b的上端相切,而位于下端的两个第二弧形壁1122则在第二轴b的下端相切。
请再次参阅图7,在第二个实施例中,两个半壁结构112同一端的两个第二弧形壁1122通过第三弧形壁114连接,在挤压通道101的径向截面内,第二轴b将第三弧形壁114分为两段,且第三弧形壁114朝所述挤压通道101的外侧凸起。
也就是说,两个半壁结构112的第二弧形壁1122通过第三弧形壁114进行过渡,从而避免两个第二弧形壁1122之间形成角度较小的折角,挤压通道101的内壁更为平滑。如此,能够有效地避免流经挤压通道101的流体在挤压通道101内发生残留,也能够在一定程度上增加挤压通道101的过流面积。
进一步的,具体在本实施例中,第三弧形壁114与相邻的两个第二弧形壁1122光滑连接。如此,能够进一步避免折角的产生,从而使挤压通道101内壁各处均呈光滑的曲面,进一步避免发生残留。
请再次参阅图8,在第三个实施例中,每个半壁结构122包括两个相互连接的平面壁1223,且两个平面壁1223之间的夹角呈钝角。
此时,挤压通道101呈菱形。需要指出的是,挤压通道101不限于呈上述三个实施例中所示出的形状。
基于上述内容,本申请还提供一种电解液注液装置。该电解液注液装置包括夹管阀10、注液杯(图未示)及注液嘴(图未示),注液杯及注液嘴分别与进液口201及出液口202连通。
注液杯用于存储电解液,注液嘴用于向电池壳体内注入电解液。在进行注液操作时,夹管阀10切换至打开状态,注液杯内的电解液便可经夹管阀10流向注液嘴,并由注液嘴完成注液操作。由于夹管阀10能够保证流量控制的精准度,故上述电解液注液装置的注液精度也较高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种阀芯,包括能够弹性形变的主体,所述主体形成有挤压通道及受压部,所述主体的两端具有与所述挤压通道连通的开口,其特征在于,所述挤压通道的内壁包括两个相对设置半壁结构,在所述挤压通道的径向截面内,具有相互垂直平分的第一轴及第二轴,所述第一轴及所述第二轴能够共同限定圆形或椭圆形,两个所述半壁结构分布于所述第二轴的两侧,且均位于所述圆形或椭圆形的范围内;
    其中,外力作用于所述受压部能够使两个所述半壁结构靠拢,以使所述挤压通道闭合。
  2. 根据权利要求1所述的阀芯,其特征在于,每个所述半壁结构包括第一弧形壁及连接于所述第一弧形壁两端的第二弧形壁,所述第一弧形壁朝所述挤压通道的外侧凸起,所述第二弧形壁朝所述挤压通道的内侧凸起,在所述挤压通道的径向截面内,所述第一轴将所述第一弧形壁分为两段,所述第二弧形壁在远离所述第一弧形壁的延伸方向上逐渐朝所述第二轴收敛。
  3. 根据权利要求2所述的阀芯,其特征在于,在所述挤压通道的径向截面内,两个所述半壁结构同一端的两个所述第二弧形壁延伸至所述第二轴并相连。
  4. 根据权利要求2所述的阀芯,其特征在于,两个所述半壁结构同一端的两个所述第二弧形壁通过第三弧形壁连接,在所述挤压通道的径向截面内,所述第二轴将所述第三弧形壁分为两段,且所述第三弧形壁朝所述挤压通道的外侧凸起。
  5. 根据权利要求4所述的阀芯,其特征在于,所述第三弧形壁与相邻的两个所述第二弧形壁光滑连接。
  6. 根据权利要求1所述的阀芯,其特征在于,每个所述半壁结构包括两个相互连接的平面壁,且两个所述平面壁之间的夹角呈钝角。
  7. 根据权利要求1至6中任一项所述的阀芯,其特征在于,所述第一轴的长度小于所述第二轴的长度。
  8. 根据权利要求1至6中任一项所述的阀芯,其特征在于,所述主体的 中部向内收缩形成收缩部,所述受压部位于所述收缩部,所述挤压通道形成于所述主体与所述收缩部对应的位置。
  9. 一种夹管阀,其特征在于,包括:
    如上述权利要求1至6中任一项所述的阀芯;
    阀体,具有进液口及出液口,所述阀芯收容于所述阀体且两端的所述开口分别与所述进液口及所述出液口连通;
    执行机构,包括动力组件及抵持件,所述动力组件能够驱使所述抵持件作用于所述受压部,以使所述挤压通道闭合。
  10. 根据权利要求9所述的夹管阀,其特征在于,所述阀体上开设有进气口,所述阀体形成有围绕所述阀芯的周向布设的气室,通过所述进气口向所述气室通气或排气,能够使所述动力组件驱动所述抵持件作用于所述受压部,以使所述挤压通道闭合。
  11. 根据权利要求10所述的夹管阀,其特征在于,所述抵持件穿设于所述气室的内侧壁并抵持于所述受压部,所述动力组件包括:
    活塞,安装于所述气室内;
    导向套,固定于所述活塞的一端并绕所述阀芯的周向布设,所述导向套具有抵持斜面;
    弹性件,收容于所述气室并作用于所述导向套,所述抵持斜面在所述弹性件的作用于与所述抵持件相抵持,并使所述抵持件作用于所述受压部以使所述挤压通道闭合;
    其中,向所述气室通气可驱使所述活塞带动所述导向套克服所述弹性件的弹性力沿所述气室滑动,所述抵持件回退,以使所述挤压通道打开。
  12. 根据权利要求9所述的夹管阀,其特征在于,所述第一轴的长度小于所述第二轴的长度。
  13. 根据权利要求9所述的夹管阀,其特征在于,所述主体的中部向内收缩形成收缩部,所述受压部位于所述收缩部,所述挤压通道形成于所述主体与所述收缩部对应的位置。
  14. 一种电解液注液装置,其特征在于,包括如上述权利要求9所述的夹管阀、注液杯及注液嘴,所述注液杯及所述注液嘴分别与所述进液口及所述出 液口连通。
  15. 根据权利要求14所述的电解液注液装置,其特征在于,所述阀体上开设有进气口,所述阀体形成有围绕所述阀芯的周向布设的气室,通过所述进气口向所述气室通气或排气,能够使所述动力组件驱动所述抵持件作用于所述受压部,以使所述挤压通道闭合。
  16. 根据权利要求15所述的电解液注液装置,其特征在于,所述抵持件穿设于所述气室的内侧壁并抵持于所述受压部,所述动力组件包括:
    活塞,安装于所述气室内;
    导向套,固定于所述活塞的一端并绕所述阀芯的周向布设,所述导向套具有抵持斜面;
    弹性件,收容于所述气室并作用于所述导向套,所述抵持斜面在所述弹性件的作用于与所述抵持件相抵持,并使所述抵持件作用于所述受压部以使所述挤压通道闭合;
    其中,向所述气室通气可驱使所述活塞带动所述导向套克服所述弹性件的弹性力沿所述气室滑动,所述抵持件回退,以使所述挤压通道打开。
  17. 根据权利要求14所述的电解液注液装置,其特征在于,所述第一轴的长度小于所述第二轴的长度。
  18. 根据权利要求14所述的电解液注液装置,其特征在于,所述主体的中部向内收缩形成收缩部,所述受压部位于所述收缩部,所述挤压通道形成于所述主体与所述收缩部对应的位置。
PCT/CN2021/142471 2021-08-26 2021-12-29 阀芯、夹管阀及电池注液装置 WO2023024380A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21946246.2A EP4166827A4 (en) 2021-08-26 2021-12-29 VALVE CORE, PINCH VALVE AND BATTERY ELECTROLYTE FILLING DEVICE
JP2022581708A JP2023542770A (ja) 2021-08-26 2021-12-29 バルブコア、ピンチバルブおよび電池注液装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122035265.3U CN216344061U (zh) 2021-08-26 2021-08-26 阀芯、夹管阀及电池注液装置
CN202122035265.3 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023024380A1 true WO2023024380A1 (zh) 2023-03-02

Family

ID=81168847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142471 WO2023024380A1 (zh) 2021-08-26 2021-12-29 阀芯、夹管阀及电池注液装置

Country Status (4)

Country Link
EP (1) EP4166827A4 (zh)
JP (1) JP2023542770A (zh)
CN (1) CN216344061U (zh)
WO (1) WO2023024380A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101156009A (zh) * 2005-04-12 2008-04-02 艾安·德拉库普·多伊格 阀与泵的改进
ATE497589T1 (de) * 2007-02-12 2011-02-15 Festo Ag & Co Kg Quetschventil
CN104712787A (zh) * 2015-03-20 2015-06-17 海安阀门厂有限公司 一种气动夹管阀
AU2018101478A4 (en) * 2017-10-11 2018-11-08 Flowrox Oy A pinch valve
CN113294550A (zh) * 2021-05-20 2021-08-24 黄少兴 一种气动夹管阀的防自闭机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199109A (ja) * 1996-01-17 1997-07-31 Toshiba Corp 電池製造における電解液注入装置および電解液注入方法
US7168444B2 (en) * 2004-06-01 2007-01-30 Nelson Irrigation Corporation Flow through pressure regulator with pinch valve
KR101296760B1 (ko) * 2005-04-06 2013-08-14 셈백 에이/에스 가요성 밸브
DE102006048573B4 (de) * 2006-10-13 2011-03-10 Festo Ag & Co. Kg Quetschventil
DE102007006764B3 (de) * 2007-02-12 2008-04-30 Festo Ag & Co. Quetschventil
WO2016037629A1 (de) * 2014-09-10 2016-03-17 Festo Ag & Co. Kg Quetschventil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101156009A (zh) * 2005-04-12 2008-04-02 艾安·德拉库普·多伊格 阀与泵的改进
ATE497589T1 (de) * 2007-02-12 2011-02-15 Festo Ag & Co Kg Quetschventil
CN104712787A (zh) * 2015-03-20 2015-06-17 海安阀门厂有限公司 一种气动夹管阀
AU2018101478A4 (en) * 2017-10-11 2018-11-08 Flowrox Oy A pinch valve
CN113294550A (zh) * 2021-05-20 2021-08-24 黄少兴 一种气动夹管阀的防自闭机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166827A4

Also Published As

Publication number Publication date
EP4166827A1 (en) 2023-04-19
CN216344061U (zh) 2022-04-19
EP4166827A4 (en) 2024-01-24
JP2023542770A (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
JP7377009B2 (ja) ピンチバルブ
WO2023024380A1 (zh) 阀芯、夹管阀及电池注液装置
WO2023103238A1 (zh) 一种适用于氢能手持火炬的单向瓶口阀
KR20210015764A (ko) 핀치 밸브
WO2022262296A1 (zh) 泵头、具有泵头的泵芯及具有泵芯的掌压式积木泵罐
US20240084906A1 (en) Check valve
WO2021233076A1 (zh) 截止阀
WO2023130949A1 (zh) 切换用夹管阀阀头及夹管阀阀组
CN216158329U (zh) 防冻阀
CN215721195U (zh) 一种灌装阀
WO2021193011A1 (ja) ピンチバルブ
CN208793769U (zh) 具有外延连接结构的减压阀
CN210318627U (zh) 一种常闭式气动隔膜阀
CN108458141B (zh) 手动泄压式止回阀
CN106895258B (zh) 一种密封性强的二氧化碳气瓶充装接头
WO2023036318A1 (zh) 防冻阀
CN220770146U (zh) 防漏调压阀
CN212028653U (zh) 一种软硬双重密封的高温止回阀
CN215410283U (zh) 一种同向进出水的角阀
KR102529432B1 (ko) 항공기 배관 연결구용 실리콘 도포기
CN220956968U (zh) 一种单向阀
CN218818310U (zh) 一种用于管道的节能远程控制阀
CN217815011U (zh) 一种多重密封型蝶阀
JP7202081B2 (ja) ピンチバルブ
CN219529838U (zh) 一种控制阀

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022581708

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021946246

Country of ref document: EP

Effective date: 20221227

NENP Non-entry into the national phase

Ref country code: DE