WO2023022062A1 - パージ装置およびパージ方法 - Google Patents

パージ装置およびパージ方法 Download PDF

Info

Publication number
WO2023022062A1
WO2023022062A1 PCT/JP2022/030387 JP2022030387W WO2023022062A1 WO 2023022062 A1 WO2023022062 A1 WO 2023022062A1 JP 2022030387 W JP2022030387 W JP 2022030387W WO 2023022062 A1 WO2023022062 A1 WO 2023022062A1
Authority
WO
WIPO (PCT)
Prior art keywords
purge
pump
internal space
gas
purge gas
Prior art date
Application number
PCT/JP2022/030387
Other languages
English (en)
French (fr)
Inventor
修一郎 本田
哲司 笠谷
隼人 池田
光隆 石見
圭 渡次
日向 菊池
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to JP2023542360A priority Critical patent/JPWO2023022062A1/ja
Priority to CN202280055562.9A priority patent/CN117859004A/zh
Priority to CA3228554A priority patent/CA3228554A1/en
Priority to KR1020247008109A priority patent/KR20240045284A/ko
Priority to AU2022329695A priority patent/AU2022329695A1/en
Publication of WO2023022062A1 publication Critical patent/WO2023022062A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/22Arrangements for enabling ready assembly or disassembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts

Definitions

  • the present invention relates to a purge device and a purge method for exposing a submerged pump for pressurizing liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen to purge gas.
  • liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen to purge gas.
  • Natural gas is widely used for thermal power generation and as a chemical raw material. Further, ammonia and hydrogen are expected as energy that does not generate carbon dioxide that causes global warming. Applications of hydrogen for energy include fuel cells and turbine power generation. Since natural gas, ammonia and hydrogen are gaseous at normal temperatures, natural gas, ammonia and hydrogen are cooled and liquefied for their storage and transportation. Liquefied gas such as liquefied natural gas (LNG), liquefied ammonia, and liquefied hydrogen is temporarily stored in a liquefied gas storage tank and then transferred to a power plant, factory, or the like by a pump.
  • LNG liquefied natural gas
  • FIG. 16 is a schematic diagram showing a conventional example of a liquefied gas storage tank in which liquefied gas is stored and a pump for pumping up the liquefied gas.
  • the pump 500 is installed in a vertical pump column 505 installed in the liquefied gas reservoir 501 .
  • the inside of the pump column 505 is filled with liquefied gas, and the entire pump 500 is immersed in the liquefied gas.
  • Pump 500 is thus a submerged pump that can operate in liquefied gas.
  • the pump 500 When the pump 500 is operated, the liquefied gas in the liquefied gas reservoir 501 is drawn into the pump column 505, ascends the pump column 505, and is discharged from the pump column 505 through the liquefied gas discharge port 509.
  • the pump 500 is a machine that includes consumable parts, it requires regular maintenance. When pump 500 is first installed in pump column 505 and when pump 500 is returned to pump column 505 after maintenance, it is necessary to prevent air from entraining pump 500 and entering pump column 505 . be. If air enters the pump column 505 together with the pump 500 , the moisture in the air will be cooled and solidified by the ultra-low temperature liquefied gas, which will hinder the rotation of the pump 500 .
  • the liquefied gas is liquid hydrogen
  • nitrogen and oxygen in the air may liquefy or solidify and become mixed in the liquefied gas. Solidification of nitrogen and oxygen can damage equipment, and liquefied oxygen mixed with liquid hydrogen can cause an explosion.
  • the present invention is capable of preventing entrainment of air when the submersible pump is put into the pump column, and heating the submersible pump when it is taken out of the pump column so that the submerged pump is kept in the air.
  • a purge apparatus for exposing a submerged pump used to transfer liquefied gas to a purge gas, comprising: a closed purge vessel for housing said submerged pump; a vacuum line connected to the vessel and connected to a vacuum source; a purge gas supply line connected to the closed purge vessel and connected to a purge gas supply; and a purge gas supply valve attached to the purge gas supply line.
  • a purge device is provided.
  • the closed purge container includes a container body having an internal space for accommodating the submerged pump, an upper sealing lid closing an upper opening of the container body, the container body and the upper sealing lid. a lower sealing lid that closes the lower opening of the container body; and a lower seal that seals a clearance between the container body and the lower sealing lid.
  • the purge gas supply is a plurality of purge gas supplies.
  • the plurality of purge gas sources includes at least a nitrogen gas source and a helium gas source.
  • the purge device further comprises a check valve attached to the vacuum line.
  • a purge apparatus for exposing a submersible pump used to transfer liquefied gas to a purge gas, comprising: a purge vessel for housing the submersible pump; a pump cover for closing an opening, a pump side exhaust line connected to the pump cover, a vacuum line connected to a vacuum source, a purge gas supply line connected to a purge gas supply source, and the pump side exhaust line.
  • a purging apparatus comprising a switching device for selectively communicating with one of said vacuum line and said purge gas supply line.
  • the purge gas supply line is connected to the purge vessel.
  • the vacuum line is connected to the purge vessel.
  • a purge method for exposing a submersible pump used to transfer a liquefied gas to a purge gas, the submersible pump being contained within an interior space of a closed purge vessel, the submersible pump being evacuating the internal space containing the submerged pump, supplying a purge gas into the evacuated internal space, and then moving the submerged pump from the closed purge container into the pump column;
  • a purge method is provided.
  • the step of evacuating the internal space and the step of supplying a purge gas into the evacuated internal space are repeated.
  • the last purge gas supplied into the interior space is helium gas.
  • the purge gas initially supplied into the interior space is nitrogen gas.
  • the step of supplying a purge gas into the evacuated internal space is started before the step of evacuating the internal space is completed.
  • the purging method comprises: after supplying a purge gas into the interior space and before moving the submersible pump from the closed purge vessel into the pump column; and reducing the pressure in the internal space to a target pressure or less by evacuating the internal space again.
  • the liquefied gas is liquid hydrogen
  • the purge gas is nitrogen gas
  • Pv represents the target pressure
  • Pa represents the atmospheric pressure
  • Vm represents a preset constant
  • Vc represents the volume of the internal space
  • ⁇ G represents the density of nitrogen gas
  • ⁇ S represents the density of solid nitrogen. show.
  • the preset constant Vm is the maximum volume of the ice that the submersible pump can operate within the internal space under the condition that ice is deposited within the internal space.
  • a purge method for exposing a submersible pump used to transfer liquefied gas to a purge gas, the submersible pump being lifted from a pump column and the submersible pump being placed in a closed purge vessel. and evacuating the internal space in which the submerged pump is accommodated, and supplying a purge gas into the evacuated internal space.
  • the step of evacuating the internal space and the step of supplying a purge gas into the evacuated internal space are repeated.
  • the purge gas initially supplied into the interior space is helium gas.
  • the last purge gas supplied into the internal space is nitrogen gas.
  • the step of supplying a purge gas into the evacuated internal space is started before the step of evacuating the internal space is completed.
  • the gas in the internal space is led to the gas treatment device through a vacuum line while the internal space is being evacuated.
  • a purge method for exposing a submersible pump used to transfer a liquefied gas to a purge gas comprising: closing an opening of said submersible pump with a pump cover; A purge method is provided for evacuating a space and supplying a purge gas into the evacuated interior space of the submersible pump.
  • the purging method includes the step of housing the submerged pump in a purge container and supplying a purge gas to the internal space of the purge container before the internal space of the submerged pump is evacuated. Including further. In one aspect, the purging method includes a step of supplying a purge gas into an internal space of the submerged pump, then housing the submerged pump in a purge container, and supplying the purge gas into the internal space of the purge container. further includes
  • the internal space of the sealed purge container containing the submerged pump is evacuated.
  • the pressure within the closed purge vessel is reduced and the air entrained in the submersible pump is removed.
  • water adhering to the submerged pump tends to dry out.
  • a purge gas is supplied to the internal space of the closed purge container. This exposes the submersible pump to the purge gas within the closed purge vessel. Air and moisture entrained in the submersible pump are removed from the submersible pump by the purge gas, resulting in the submersible pump being dried (degassed) (hereinafter referred to as dry-up). Therefore, air and moisture are not entrained in the submersible pump, and air and moisture are prevented from entering the pump column.
  • the internal space of the sealed purge container is evacuated, whereby the submerged pump is removed. Liquefied gas adhering to the pump can be vaporized and removed from the submerged pump.
  • purge gas can be supplied to the interior space of the closed purge vessel to heat the ultra-low temperature submerged pump with the purge gas (hereinafter referred to as hot-up). Components such as nitrogen in the air do not condense on the surface of the heated submersible pump.
  • the submerged pump that has been immersed in liquid hydrogen is at an ultra-low temperature equivalent to that of liquid hydrogen when pulled out of the pump column. Since the boiling point of hydrogen (-253°C) is lower than the boiling point of oxygen (-183°C) and the boiling point of nitrogen (-196°C), when air comes into contact with the submerged pump immediately after being lifted from the pump column, the air Not only the nitrogen inside, but also the oxygen liquefies and drips into the pump column.
  • the submerged pump that has been immersed in liquid hydrogen is heated by the purge gas before being exposed to air. Therefore, when air contacts the submersible pump, the oxygen and nitrogen in the air do not liquefy and the liquefied oxygen and liquefied nitrogen do not drip into the pump column. As a result, safe removal of the submersible pump can be achieved.
  • the internal space of the submerged pump is evacuated, and then the purge gas is supplied into the submerged pump, so the inside of the submerged pump can be reliably dried.
  • FIG. 4 is a schematic diagram for explaining the operation of exposing the submerged pump to purge gas in a closed purge vessel before being installed in the pump column;
  • FIG. 2 illustrates one embodiment of a purge apparatus including a closed purge vessel;
  • FIG. 10 illustrates one embodiment of a method of exposing a submersible pump to purge gas using a closed purge vessel.
  • FIG. 10 illustrates one embodiment of a method of exposing a submersible pump to purge gas using a closed purge vessel.
  • FIG. 10 illustrates one embodiment of a method of exposing a submersible pump to purge gas using a closed purge vessel.
  • FIG. 11 illustrates one embodiment of the process of lifting the submersible pump from the pump column.
  • FIG. 11 illustrates one embodiment of the process of lifting the submersible pump from the pump column.
  • FIG. 11 illustrates one embodiment of the process of lifting the submersible pump from the pump column.
  • FIG. 10 is a diagram illustrating another embodiment of a purge device that includes a closed purge container;
  • FIG. 10 illustrates yet another embodiment of a purge system including a purge container;
  • FIG. 2 illustrates one embodiment of a method of exposing a submersible pump to purge gas.
  • FIG. 2 illustrates one embodiment of a method of exposing a submersible pump to purge gas.
  • FIG. 2 illustrates one embodiment of a method of exposing a submersible pump to purge gas.
  • FIG. 2 illustrates one embodiment of a method of exposing a submersible pump to purge gas.
  • FIG. 2 illustrates one embodiment of a method of exposing a submersible pump to purge gas.
  • FIG. 10 illustrates one embodiment of a method of exposing a submersible pump
  • FIG. 1 is a schematic diagram showing a conventional example of a liquefied gas storage tank in which liquefied gas is stored and a pump for pumping up the liquefied gas.
  • FIG. 1 is a schematic diagram for explaining the operation of exposing a submerged pump to purge gas in a closed purge vessel before being installed in the pump column.
  • a closed purge container 1 is a device for exposing a submerged pump 2 used for transferring liquefied gas to the purge gas. Examples of liquefied gases include liquefied ammonia, liquid hydrogen, liquid nitrogen, liquefied natural gas, liquefied ethylene gas, liquefied petroleum gas, and the like.
  • a closed purge container 1 is detachably connected to a pump column 3 .
  • the closed purge container 1 can be transported integrally with the submerged pump 2 in a state where the submerged pump 2 is housed therein.
  • the closed purge vessel 1 may be fixed to the top of the pump column 3 .
  • the pump column 3 is installed in a liquefied gas storage tank 5 in which liquefied gas is stored.
  • the pump column 3 is a vertically extending hollow container, the upper part of which protrudes upward from the liquefied gas storage tank 5 .
  • a suction valve 6 is provided at the bottom of the pump column 3 .
  • the submerged pump 2 is installed at the bottom of the pump column 3 .
  • the structure of the suction valve 6 is not particularly limited.
  • the suction valve 6 may be of a type in which the suction valve 6 is opened by the weight of the submerged pump 2, or may be an actuator-driven valve (for example, an electric valve).
  • the sealed purge container 1 is transported to a position above the pump column 3 by a transportation device (not shown) such as a crane together with the submerged pump 2 . Furthermore, as shown in FIG. 1, the closed purge vessel 1 is connected to the cable 13 of the lifting device 12 . The closed purge container 1 is lifted and lowered by a lifting device 12 integrally with the submerged pump 2 .
  • the lifting device 12 has a winch 14 such as a hoist or a winch for hoisting the cable 13 .
  • the internal space 20 of the closed purge container 1 is filled with purge gas, and the submerged pump 2 is exposed to (contacts with) the purge gas.
  • the closed purge container 1 is configured to be connected to the upper portion of the pump column 3 .
  • the internal space 20 of the closed purge vessel 1 is filled with purge gas before the closed purge vessel 1 is connected to the top of the pump column 3 . That is, the purge gas is supplied into the closed purge container 1 while the submerged pump 2 is accommodated in the closed purge container 1 .
  • the closed purge container 1 With the inner space 20 of the closed purge container 1 filled with the purge gas, the closed purge container 1 is lifted or lowered together with the submerged pump 2 by the lifting device 12 .
  • Purge gas may be fed into the closed purge vessel 1 at a location remote from the liquefied gas reservoir 5 or after the closed purge vessel 1 has been connected to the cable 13 of the lifting device 12 and the pump column 3 A purge gas may be fed into the closed purge vessel 1 before it is connected to the top of the . Further, in one embodiment, after the closed purge vessel 1 is connected to the top of the pump column 3 and before the submersible pump 2 is moved into the pump column 3 by the lifting device 12, the purge gas is purged. It may be fed into the closed purge vessel 1 . In either case, the submersible pump 2 is exposed to purge gas within the closed purge vessel 1, thereby excluding air and moisture from the interior of the submersible pump 2 and its surfaces. In the following description, the step of exposing the submersible pump 2 to purge gas in the closed purge container 1 before putting the submersible pump 2 into the pump column 3 is called dry-up.
  • the liquefied gas is discharged from the pump column 3. Specifically, while the upper end opening of the pump column 3 is closed, purge gas is supplied into the pump column 3 from the purge gas introduction port 8, and the liquefied gas is discharged from the pump column 3 through the suction valve 6 by the pressure of the purge gas. .
  • this evacuation of liquefied gas from the pump column 3 occurs before the closed purge vessel 1 is transported together with the submersible pump 2 to a position above the pump column 3 .
  • evacuation of the liquefied gas from the pump column 3 may occur after the portable purge vessel 1 has been transported together with the submersible pump 2 to a position above the pump column 3 .
  • the submerged pump 2 is installed on the upper part of the pump column 3.
  • the submerged pump 2 is lowered from the closed purge container 1 into the pump column 3 by the lifting device 12. (moved) and installed at the bottom of the pump column 3 .
  • the top opening of the pump column 3 is closed by a lid.
  • the suction valve 6 is opened, the liquefied gas in the liquefied gas storage tank 5 flows into the pump column 3 .
  • the submerged pump 2 is operated while the entire submerged pump 2 is immersed in the liquefied gas, and pumps up the liquefied gas.
  • the submerged pump 2 is a pump configured to be operable in liquid.
  • a purge gas introduction port 8 and a liquefied gas discharge port 9 are provided in the upper portion of the pump column 3 . The liquefied gas pumped by the submerged pump 2 is discharged through the liquefied gas discharge port 9 .
  • FIG. 2 is a diagram showing an embodiment of a purge device including the closed purge container 1.
  • the purge apparatus comprises a closed purge vessel 1 for housing the submerged pump 2, a vacuum line 37 connected to the closed purge vessel 1 and connected to a vacuum source 39, and connected to the closed purge vessel 1. and a purge gas supply line 38 connected to the purge gas supply sources 40A and 40B, and a purge gas supply valve 35 attached to the purge gas supply line 38.
  • the closed purge container 1 includes a container body 21 having an internal space 20 for accommodating the submerged pump 2, an upper sealing lid 23 closing an upper opening of the container body 21, the container body 21 and the upper sealing lid 23. an upper seal 71 that seals the gap between them, a lower sealing lid 24 that closes the lower opening of the container body 21, and a lower seal 72 that seals a gap between the container body 21 and the lower sealing lid 24.
  • the upper sealing lid 23 and the lower sealing lid 24 have a structure that does not allow passage of gas. Examples of upper seal 71 and lower seal 72 include gaskets, O-rings, and the like.
  • the submerged pump 2 is placed on the lower sealing lid 24. Therefore, the load of the submerged pump 2 is supported by the lower sealing lid 24 .
  • the lower sealing lid 24 is configured to support the submerged pump 2 . More specifically, the lower sealing lid 24 has sufficiently high mechanical strength to support the load of the submerged pump 2 .
  • the differential pressure between the inner space 20 of the container body 21 and the outside of the container body 21 acts on the lower sealing lid 24 .
  • the lower sealing lid 24 has sufficiently high mechanical strength to withstand this differential pressure.
  • a hole 23 a through which the cable 13 of the lifting device 12 can pass is formed in the center of the upper sealing lid 23 , and the hole 23 a is closed by the second lid 65 .
  • a second seal 74 is sandwiched between the upper sealing lid 23 and the second lid 65 . This second seal 74 is configured to seal the gap between the upper sealing lid 23 and the second lid 65 . Examples of the second seal 74 include gaskets, O-rings, and the like.
  • the second lid 65 is fixed to the upper sealing lid 23 by screws (not shown). Once unscrewed, the second lid 65 can be removed from the upper sealing lid 23 .
  • the closed purge container 1 has a purge gas inlet port 27 and an evacuation port 28 communicating with the internal space 20 of the container body 21 .
  • a purge gas supply line 38 is connected to the purge gas inlet port 27 and a vacuum line 37 is connected to the evacuation port 28 .
  • the container body 21 is a hollow structure. In this embodiment, the container body 21 has a cylindrical shape, but the shape is not particularly limited. In one embodiment, container body 21 may be a polygonal hollow structure, or may have other shapes.
  • the closed purge container 1 is provided with a pump guide 30 for suppressing the rolling of the submerged pump 2 .
  • This pump guide 30 is fixed to the inner surface of the container body 21 .
  • the pump guide 30 is arranged around the submerged pump 2 housed in the container body 21 .
  • the pump guide 30 suppresses the horizontal shaking of the submerged pump 2 within the container body 21 when the sealed purge container 1 containing the submerged pump 2 is transported by a transport device such as a crane. It is provided for the purpose of (preventing). As long as such purpose can be achieved, the pump guide 30 may be a plurality of members or may be a single member. Pump guide 30 may be constructed of metal, elastomeric material, or a combination thereof.
  • the pump guide 30 may be fixed to the side surface of the submerged pump 2 instead of the inner surface of the container body 21 .
  • the container body 21 may be fixed to the top of the pump column 3 (see FIG. 1). In this case, since the sealed purge container 1 is not transported integrally with the submerged pump 2, the pump guide 30 may be omitted.
  • the sealed purge container 1 includes a plurality of bolts 32 and a plurality of nuts 33 as fixtures for detachably fixing the upper sealing lid 23 to the container body 21 .
  • the container body 21 has an upper flange 34 on its top.
  • a plurality of bolts 32 extend through upper sealing lid 23 , upper seal 71 and upper flange 34 .
  • the fasteners that detachably secure upper sealing lid 23 to container body 21 may be one or more clamps instead of bolts 32 and nuts 33 .
  • the purge gas inlet port 27 and the evacuation port 28 are fixed to the side wall 21 a of the container body 21 . More specifically, the purge gas inlet port 27 is fixed to the lower portion of the side wall 21 a of the container body 21 , and the evacuation port 28 is fixed to the upper portion of the side wall 21 a of the container body 21 . In this embodiment, the evacuation port 28 is positioned higher than the purge gas inlet port 27, but their arrangement is not limited to this embodiment. In one embodiment, purge gas inlet port 27 may be secured to the top of side wall 21a of vessel body 21 and vacuum exhaust port 28 may be secured to the bottom of side wall 21a of vessel body 21, or purge gas inlet port 27 and The evacuation ports 28 may be located at the same height. Furthermore, in one embodiment, either one of the purge gas inlet port 27 and the vacuum exhaust port 28 may be secured to the upper sealing lid 23 .
  • the purge gas used is a gas composed of a component with a boiling point lower than the boiling point of the liquefied gas to be pumped by the submerged pump 2. This is to prevent the purge gas from liquefying when it contacts the liquefied gas or the ultra-low temperature submersible pump 2 .
  • purge gas include inert gases such as nitrogen gas and helium gas.
  • nitrogen gas which is a gas composed of nitrogen having a boiling point ( ⁇ 196° C.) lower than the boiling point ( ⁇ 162° C.) of liquefied natural gas. is used for the purge gas.
  • helium gas which is a gas made of helium having a boiling point (-269°C) lower than the boiling point of hydrogen (-253°C). is used for the purge gas.
  • the first purge gas supply source 40A and the second purge gas supply source 40B are connected to the purge gas supply line 38. More specifically, the first purge gas supply source 40A is a nitrogen gas supply source, and the second purge gas supply source 40B is a helium gas supply source. The first purge gas supply source 40A and the second purge gas supply source 40B are connected to the first shutoff valve 42A and the second shutoff valve 42B, respectively. A first shutoff valve 42A and a second shutoff valve 42B are attached to the purge gas supply line 38 .
  • the first shutoff valve 42A is closed and the second shutoff valve 42B is opened, the helium gas as the purge gas flows from the second purge gas supply source 40B through the purge gas supply line 38, the purge gas supply valve 35, and the purge gas inlet port 27 into the container body. 21 is fed into the internal space 20 .
  • helium gas is more expensive than nitrogen gas.
  • Nitrogen has a larger atomic weight than helium and has a higher drying effect. Therefore, nitrogen gas may be used as the purge gas at first, and helium gas may be used as the purge gas in the final stage. For example, nitrogen gas is supplied into the sealed purge container 1 to replace the air in the internal space 20 of the container body 21 with nitrogen gas, and then helium gas is supplied into the sealed purge container 1 to remove the The internal space 20 may be filled with helium gas.
  • only one of the first purge gas supply source 40A and the second purge gas supply source 40B may be provided.
  • the purge gas supply source 40A which is a nitrogen gas supply source
  • the purge gas supply source 40B which is a helium gas supply source
  • three or more different purge gas sources may be provided.
  • the upper sealing lid 23 has a plurality of connection ports 53 to which the cables 13 of the lifting device 12 are connected.
  • the connection port 53 is a structure having a hole into which the cable 13 can be inserted, and its specific shape is not particularly limited.
  • the cable 13 is branched into a plurality of ends and has a plurality of ends. These tips are each connected to a plurality of connection ports 53 .
  • the container body 21 has a lower flange 60 at its lower portion.
  • the lower sealing lid 24 is positioned above the lower flange 60 and the lower seal 72 is sandwiched between the lower sealing lid 24 and the lower flange 60 .
  • the lower sealing lid 24 is detachably arranged at the bottom of the container body 21 .
  • the entire load of the submersible pump 2 is on the lower sealing lid 24 and the submersible pump 2 presses the lower surface of the lower sealing lid 24 against the lower seal 72 on the lower flange 60 .
  • the lower sealing lid 24 may be removably secured to the container body 21 by screws or one or more clamps.
  • the closed purge container 1 further includes a lateral lid 58 that closes the opening 21b formed in the side wall 21a of the container body 21, and a side seal 73 that seals the gap between the side wall 21a of the container body 21 and the lateral lid 58. ing.
  • the side seal 73 is sandwiched between the side wall 21 a of the container body 21 and the lateral lid 58 . Examples of side seals 73 include gaskets, O-rings, and the like.
  • the lateral lid 58 is detachably fixed to the side wall 21a of the container body 21 by a fastening mechanism (for example, a plurality of screws) not shown.
  • an operator can access the lower sealing lid 24 of the container body 21 through the opening 21 b and remove the lower sealing lid 24 from the container body 21 . Similarly, the operator can bring the lower sealing lid 24 into the container body 21 through the opening 21 b and place the lower sealing lid 24 on the lower seal 72 .
  • the closed purge container 1 is equipped with a purge index measuring device 68 communicating with the evacuation port 28 .
  • the purge index measuring device 68 is a device that measures an index value indicating the degree of dryness of the submerged pump 2 exposed to the purge gas and/or an index value indicating the temperature of the submerged pump 2 exposed to the purge gas. be.
  • Examples of purge indicator 68 include dew point meters, thermometers, and combinations thereof.
  • a dew point meter measures the amount of water in the purge gas that has flowed out from the internal space 20 of the container body 21 . Whether or not the submerged pump 2 exposed to the purge gas has been sufficiently dried (that is, whether or not the drying-up described below is sufficient) can be determined from the measured water content.
  • thermometer measures the temperature of the purge gas flowing out of the interior space 20 . Whether or not the submerged pump 2 exposed to the purge gas has been sufficiently warmed (i.e., whether the hot-up described below is sufficient) can be determined from the measured value of the temperature of the purge gas in contact with the submerged pump 2. can judge.
  • the amount of moisture in the purge gas and the temperature of the purge gas are examples of index values for dry-up and hot-up of the submerged pump 2 .
  • the index value may be another physical quantity as long as it indicates the degree of dryness and temperature of the submerged pump 2 .
  • the purge index measuring device 68 is connected to the vacuum line 37 in FIG. 2, the arrangement of the purge index measuring device 68 is limited to the embodiment shown in FIG. can't
  • the vacuum line 37 is connected to a vacuum source 39 such as a vacuum pump.
  • the vacuum line 37 may be a vacuum line as a utility device provided in the facility where the liquefied gas storage tank 5 shown in FIG. It may be a vacuum line dedicated to pulling.
  • a vacuum valve 36 and a check valve 41 are attached to the vacuum line 37 .
  • the vacuum valve 36 is opened when the internal space 20 of the closed purge container 1 is to be evacuated through the vacuum line 37 .
  • the vacuum valve 36 may be omitted if the timing of vacuuming is controlled by operating and stopping a vacuum pump as the vacuum source 39 .
  • the check valve 41 is configured to allow the gas to flow from the internal space 20 of the closed purge container 1 to the outside, while not allowing the gas to flow in the opposite direction. This check valve 41 is provided to prevent ambient air from flowing backward into the internal space 20 in which a vacuum is formed.
  • the arrangement and positions of the vacuum valve 36 and the check valve 41 are not limited to the embodiment shown in FIG.
  • check valve 41 may be located upstream of vacuum valve 36 .
  • the closed purge container 1 further includes a pressure measuring device 77 that measures the pressure inside the internal space 20 .
  • the pressure measuring device 77 is connected to the vacuum line 37, but may be connected to the container body 21 as well.
  • the pressure measuring device 77 can measure the pressure inside the internal space 20 in which the vacuum is formed.
  • FIG. 3 to 5 includes an operation of vacuuming the internal space 20 of the closed purge container 1 in which the submerged pump 2 is accommodated, a dry-up operation of drying the submerged pump 2 with purge gas, and a Including the operation of placing the dried submerged pump 2 into the pump column 3 . Liquefied gas is discharged from the pump column 3 prior to the operation described below.
  • step 1-1 the lower sealing lid 24 is placed on the bottom of the container body 21 of the closed purge container 1, and with the upper sealing lid 23 removed, it is submerged in the internal space 20 of the container body 21. houses the type pump 2; The submerged pump 2 is moved into the closed purge container 1 by a transport device (for example, a crane) not shown. The submersible pump 2 rests on the lower sealing lid 24 and the load of the submersible pump 2 is supported by the lower sealing lid 24 .
  • a transport device for example, a crane
  • step 1-2 the upper sealing lid 23 is attached to the top of the container body 21.
  • the hole 23 a of the upper sealing lid 23 is closed with the second lid 65 .
  • the upper sealing lid 23 is firmly fixed to the container body 21 by bolts 32 and nuts 33 (see FIG. 2) as fixtures.
  • step 1-3 the submerged pump 2 is housed in a state in which the upper opening of the container body 21 is closed with the upper sealing lid 23 and the lower opening of the container body 21 is closed with the lower sealing lid 24.
  • the internal space 20 of the container body 21 is evacuated through the evacuation port 28 .
  • Vacuum valve 36 is open and purge gas supply valve 35 is closed.
  • a vacuum is formed within the interior space 20, which facilitates the drying of moisture adhering to the submersible pump 2. As shown in FIG.
  • a purge gas such as nitrogen gas or helium gas is supplied to the evacuated internal space 20 from the purge gas inlet port 27 to fill the internal space 20 with the purge gas.
  • the purge gas drives air and moisture out of the submersible pump 2 and the submersible pump 2 is dried up.
  • the end of dry-up is determined based on the index value (for example, the moisture content measurement value) output from the purge index measuring device 68 .
  • the step of supplying the purge gas to the internal space 20 may be started after the step of evacuating the internal space 20 is completed, or may be started at the same time as the step of evacuating the internal space 20 is completed.
  • the step of supplying the purge gas to the internal space 20 may be started before the step of evacuating the internal space 20 is finished. That is, the final stage of the process of evacuating the internal space 20 and the initial stage of the process of supplying the purge gas into the evacuated internal space 20 may overlap.
  • the steps of evacuating the interior space 20 in step 1-3 and introducing a purge gas into the evacuated interior space 20 in step 1-4 are performed.
  • the feeding step may be repeated.
  • helium gas composed of helium having a boiling point (-269°C) lower than the boiling point of hydrogen (-253°C) is used as the purge gas. This is because helium gas does not liquefy when it contacts liquid hydrogen.
  • helium gas is generally more expensive than nitrogen gas. Nitrogen has a larger atomic weight than helium and has a higher drying effect. Therefore, nitrogen gas may be used as the purge gas at first, and helium gas may be used as the purge gas in the final stage.
  • the last gas supplied into the internal space 20 is The purge gas used is helium gas.
  • the purge gas initially supplied into the internal space 20 is nitrogen gas. Using different types of purge gas in this manner can reduce operating costs.
  • the number of times of repeating the evacuation of the internal space 20 and the supply of the purge gas into the internal space 20 may be predetermined, or the degree of drying of the submerged pump 2 measured by the purge index measuring device 68 may be determined. It may be determined based on the indicated index value. For example, until the index value indicating the degree of dryness of the submerged pump 2 measured by the purge index measuring device 68 falls below (or exceeds) a threshold value, the internal space 20 is evacuated and the internal space 20 is filled. of purge gas may be repeated.
  • step 1-5 the closed purge container 1 filled with the purge gas is conveyed together with the submersion pump 2 to a position above the pump column 3 by a conveying device (for example, a crane) (not shown). Cable 13 is connected to upper sealing lid 23 .
  • the sealed purge container 1 of this embodiment is a portable purge container that can be transported integrally with the submerged pump 2 housed therein.
  • a closed purge container 1 in which a submerged pump 2 is accommodated is suspended by a lifting device 12 .
  • a purge gas (for example, an inert gas such as nitrogen gas or helium gas) is supplied into the pump column 3 through the purge gas introduction port 8 in order to prevent ambient air from entering the pump column 3 .
  • the supply of purge gas into the pump column 3 is continued in the following steps.
  • step 1-6 the closed purge container 1 and the submerged pump 2 are lowered by the lifting device 12, and the closed purge container 1 is mounted on the upper part of the pump column 3 with bolts and nuts (not shown) serving as a purge container connecting mechanism. not).
  • the purge vessel connection mechanism may be one or more clamps.
  • the load of submerged pump 2 is supported by pump column 3 via lower sealing lid 24 .
  • the second lid 65 is removed from the upper sealing lid 23 while supplying a purge gas such as nitrogen gas or helium gas from the purge gas inlet port 27 into the interior space 20 of the container body 21 .
  • the cable 13 of the lifting device 12 extends to the submerged pump 2 through the hole 23 a of the upper sealing lid 23 and is connected to the submerged pump 2 .
  • the submerged pump 2 is lifted up inside the container body 21 by the lifting device 12 , and then the lower sealing lid 24 is removed from the container body 21 .
  • the load of the submerged pump 2 is supported by the lifting device 12 .
  • the purge gas flows out through holes 23 a in upper sealing lid 23 . Such a purge gas flow can prevent surrounding air from flowing into the container body 21 .
  • a short auxiliary cable is prepared in advance as a cable for lifting the submersible pump 2, the lower end of the auxiliary cable is connected to the upper part of the submersible pump 2, and the upper end of the auxiliary cable is hooked on the back side of the second lid 65. Therefore, the upper end of the auxiliary cable may be connected to the cable 13 of the lifting device 12 when the submerged pump 2 is lifted.
  • step 1 - 8 the submerged pump 2 is lowered by the lifting device 12 to move the submerged pump 2 from the closed purge container 1 into the pump column 3 .
  • Purge gas continues to be supplied into the container body 21 .
  • step 1-9 the cable 13 of the lifting device 12 is connected to the upper sealing lid 23, and the bolts and nuts (not shown) serving as the purge container connecting mechanism are removed. Then, the closed purge container 1 is lifted up by the lifting device 12 and separated from the pump column 3 .
  • the air and moisture entrained in the submersible pump 2 are removed by evacuating the internal space 20 and supplying a purge gas to the internal space 20, resulting in the submersible pump 2 being dried (dehydrated). mind). Therefore, it is possible to prevent air and moisture from entering the pump column 3 .
  • steps 1-3 and 1-4 are performed at a location away from the pump column 3.
  • the sealed purge vessel 1 is conveyed to the pump column 3 together with the submerged pump 2 , and the sealed purge vessel 1 is moved to the pump column 3 .
  • the evacuation of the closed purge container 1 and the supply of the purge gas into the closed purge container 1 may be started. That is, the evacuation of the closed purge container 1 and the drying up of the submerged pump 2 may be started after the closed purge container 1 is connected to the pump column 3 .
  • the submersible pump 2 is housed within the sealed purge vessel 1, and the sealed purge vessel 1 is conveyed with the submersible pump 2 to a position above the pump column 3, and then the sealed purge vessel 1 to the pump column 3, the evacuation of the closed purge vessel 1 and the supply of the purge gas into the closed purge vessel 1 may be started.
  • the submersible pump 2 was housed after supplying the purge gas into the interior space 20 and before moving the submersible pump 2 from the closed purge vessel 1 into the pump column 3.
  • a step of evacuating the internal space 20 again to lower the pressure in the internal space 20 to the target pressure or less may be further performed. That is, after step 1-4 and before step 1-5, the internal space 20 in which the submersible pump 2 is housed is evacuated again to reduce the pressure in the internal space 20 to the target pressure or less.
  • the liquefied gas is liquid hydrogen and the purge gas is nitrogen gas. Helium gas is not used as a purge gas.
  • the pressure inside the internal space 20 is measured by the pressure measuring device 77 shown in FIG.
  • the target pressure is expressed by the following formula.
  • Pv Pa ⁇ Vm/(Vc ⁇ G/ ⁇ S) (1)
  • Pv represents the target pressure
  • Pa represents the atmospheric pressure
  • Vm represents a preset constant
  • Vc represents the volume of the internal space 20 of the closed purge container 1
  • ⁇ G represents the density of nitrogen gas
  • ⁇ S represents the density of solid nitrogen.
  • the preset constant Vm is the maximum volume of ice that allows the submerged pump 2 to operate within the internal space 20 under the condition that ice is deposited within the internal space 20 .
  • the constant Vm is determined from experiments or past operating results.
  • air is introduced into the internal space 20 of the closed purge container 1 in which the submersible pump 2 is arranged, and the moisture in the air is frozen to precipitate ice in the internal space 20.
  • 2 determines the maximum ice volume at which normal operation can be performed.
  • the fact that the submerged pump 2 can operate in the internal space 20 where the ice is deposited means that the submerged pump 2 can perform normal operation, that is, the submerged pump 2 discharges the liquefied gas at the intended flow rate. means that you can
  • the target pressure Pv is inversely proportional to the volume of the internal space 20 of the closed purge container 1. According to this embodiment, even if the nitrogen gas present in the internal space 20 contacts the liquid hydrogen and solidifies, the solidified nitrogen does not substantially hinder the operation of the submerged pump 2 . Therefore, there is no need to use helium gas as the purge gas, and costs can be reduced.
  • FIG. A series of operations shown in FIGS. 6 to 8 include the operation of pulling up the ultra-low temperature submerged pump 2 that has been in contact with the liquefied gas from the pump column 3, and the internal space 20 in which the submerged pump 2 is housed is evacuated. including operation and hot-up to warm the submersible pump 2 with purge gas. Liquefied gas is discharged from the pump column 3 prior to the operation described below.
  • step 2-1 the closed purge container 1 is lowered by the lifting device 12, and the closed purge container 1 is connected to the upper part of the pump column 3 with bolts and nuts (not shown) as a purge container connecting mechanism.
  • the lower sealing lid 24 is not attached to the container body 21 .
  • the upper sealing lid 23 is fixed to the upper part of the container body 21 by bolts 32 and nuts 33 (see FIG. 2) as fasteners, and the cable 13 of the lifting device 12 is connected to the upper sealing lid 23 .
  • the second lid 65 (see FIG. 2) is detached from the upper sealing lid 23, but it may be attached to the upper sealing lid 23.
  • a purge gas (for example, an inert gas such as nitrogen gas or helium gas) is supplied into the pump column 3 through the purge gas introduction port 8 in order to prevent ambient air from entering the pump column 3 .
  • the supply of purge gas into the pump column 3 is continued in the following steps.
  • step 2-2 a purge gas such as nitrogen gas or helium gas is supplied to the internal space 20 of the container body 21 from the purge gas inlet port 27, and the submerged pump 2 is is pulled up from the pump column 3 into the closed purge vessel 1 .
  • a second lid 65 (see FIG. 2) is detached from the upper sealing lid 23 .
  • step 2-3 when the submerged pump 2 is positioned within the internal space 20 of the container body 21, the lower sealing lid 24 is placed on the bottom of the container body 21. As shown in FIG.
  • step 2-4 the submersible pump 2 is lowered inside the container body 21 by the lifting device 12, and the submersible pump 2 is placed on the lower sealing lid 24.
  • the load of the submerged pump 2 is supported by the lower sealing lid 24 .
  • the cable 13 of the lifting device 12 is disconnected from the submerged pump 2 and connected to the upper sealing lid 23 .
  • the supply of purge gas to the internal space 20 is stopped, and the second lid 65 is attached to the upper sealing lid 23 .
  • the upper opening of the container main body 21 is covered with the upper sealing lid 23 and the lower opening of the container main body 21 is covered with the lower sealing lid 24, and the submerged pump 2 is accommodated in the container main body 21.
  • the interior space 20 of is evacuated through the evacuation port 28 .
  • Vacuum valve 36 is open and purge gas supply valve 35 is closed. A vacuum is created within the interior space 20 , whereby the liquefied gas adhering to the submersible pump 2 is vaporized and removed from the submersible pump 2 .
  • the removed gas (for example, natural gas or hydrogen gas) is recovered by a recovering device (not shown) via a vacuum line 37 or detoxified by a processing device.
  • a purge gas such as nitrogen gas or helium gas is supplied to the evacuated internal space 20 from the purge gas inlet port 27 to fill the internal space 20 with the purge gas.
  • the purge gas may be at room temperature, or may be preheated by a heating device such as a heater.
  • the purge gas in the internal space 20 heats up the submerged pump 2 (hot-up). The end of hot-up is determined based on the index value (for example, the measured value of the purge gas temperature) output from the purge index measuring device 68 .
  • the process of supplying the purge gas to the internal space 20 may be started after the process of evacuating the internal space 20 is completed, or may be started at the same time as the process of evacuating the internal space 20 is completed.
  • the step of supplying the purge gas to the internal space 20 may be started before the step of evacuating the internal space 20 is completed. That is, the final stage of the process of evacuating the internal space 20 and the initial stage of the process of supplying the purge gas into the evacuated internal space 20 may overlap.
  • the step of doing may be repeated.
  • helium may be used as the purge gas at first, and nitrogen gas may be used as the purge gas in the final stage. That is, when repeating the step of evacuating the internal space 20 in step 2-4 and the step of supplying the purge gas into the evacuated internal space 20 in step 2-5, the gas supplied first into the internal space 20 is The purge gas used is helium gas. In this case, the last purge gas supplied into the internal space 20 is nitrogen gas. Using different types of purge gas in this manner can reduce operating costs.
  • the number of repetitions of vacuuming the internal space 20 and supplying the purge gas into the internal space 20 may be predetermined, or an index indicating the temperature of the submerged pump 2 measured by the purge index measuring device 68. It may be determined based on the value. For example, the evacuation of the internal space 20 and the supply of the purge gas into the internal space 20 are repeated until the index value indicating the temperature of the submerged pump 2 measured by the purge index measuring device 68 exceeds the threshold value. good too.
  • step 2-6 the bolts and nuts (not shown) serving as the purge container connecting mechanism are removed, and the closed purge container 1 with the submerged pump 2 housed therein is lifted by the lifting device 12 from the pump column 3. detach.
  • step 2-7 the sealed purge container 1 in which the submerged pump 2 is accommodated is moved to a location away from the pump column 3 by a transport device (for example, a crane) (not shown).
  • step 2-8 the upper sealing lid 23 is removed from the container body 21, and the submerged pump 2 is removed from the closed purge container 1 by a lifting device (eg, a crane) not shown.
  • a lifting device eg, a crane
  • the submerged pump 2 is already warmed by the purge gas and has a temperature higher than the boiling point of oxygen (-183°C) and the boiling point of nitrogen (-196°C). Therefore, even if the air comes into contact with the submersible pump 2, the oxygen and nitrogen in the air will not liquefy.
  • FIG. 9 is a diagram showing another embodiment of the purge device including the closed purge container 1.
  • FIG. 9 Since the configuration of this embodiment, which is not particularly described, is the same as that of the embodiment shown in FIG. 2, redundant description thereof will be omitted.
  • the embodiment shown in FIG. 9 further comprises a gas treatment device 80 connected downstream of the vacuum source 39 via a gas transfer line 81 . While the internal space 20 is being evacuated, the gas in the internal space 20 is led to the gas treatment device 80 through the gas transfer line 81 . Gas treatment device 80 is connected to gas transfer line 81 at a location downstream of vacuum source 39 . Thus, gas flowing through vacuum line 37 is sent to gas treatment device 80 via vacuum source 39 and gas transfer line 81 .
  • This gas processing device 80 is a device for processing gas (for example, natural gas or hydrogen gas) vaporized from liquefied gas adhering to the submerged pump 2 . Examples of gas treatment devices 80 include gas incinerators (flaring devices), chemical gas treatment devices, gas adsorption devices, and the like.
  • this embodiment is effective during the lifting process of the submerged pump 2 described with reference to FIGS.
  • the gas for example, natural gas or hydrogen gas
  • the gas treatment device 80 so that it is not released into the atmosphere.
  • FIG. 10 is a diagram showing still another embodiment of a purge device including a purge container. Since the configuration of this embodiment, which is not particularly described, is the same as that of the embodiment shown in FIG. 2, redundant description thereof will be omitted.
  • the internal space of the submerged pump 2 is evacuated and the purge gas is supplied to the internal space of the submerged pump 2 .
  • a purge container 100 shown in FIG. 10 is a non-sealed type that does not have seals 71, 72, and 73, unlike the sealed purge container 1 in each of the above-described embodiments.
  • the closed purge container 1 shown in FIG. 2 may also be used in this embodiment.
  • FIG. 10 shows a state in which the submerged pump 2 is accommodated in the purge container 100.
  • An upper opening of the container body 21 is closed by an upper lid 101 and a lower opening of the container body is closed by a lower lid 102 .
  • the submersible pump 2 is suspended from the upper lid 101 by a suspension member 82 and is not in contact with the lower lid 102 .
  • the purge device further includes a pump cover 85 that closes the openings of the submersible pump 2, that is, the suction port and the discharge port, and a pump-side exhaust line 87 connected to the pump cover 85.
  • the pump cover 85 is configured to be detachably attached to the submerged pump 2 .
  • the pump-side exhaust line 87 communicates with the inside of the pump cover 85 .
  • An on-off valve 88 is attached to the pump-side exhaust line 87 .
  • the purge device further includes a communication line 90 that connects the purge gas supply line 38 and the vacuum line 37 and a second purge gas supply valve 92 attached to the communication line 90 .
  • a connection point between the purge gas supply line 38 and the communication line 90 is located upstream of the first purge gas supply valve 35 in the flow direction of the purge gas.
  • a connection point between the vacuum line 37 and the communication line 90 is positioned upstream of the vacuum valve 36 in the gas flow direction.
  • the pump side exhaust line 87 communicates with the vacuum line 37 . Therefore, a vacuum is formed in the internal space of the submerged pump 2 .
  • the pump side exhaust line 87 communicates with the purge gas supply line 38 . Therefore, the purge gas is supplied to the internal space of the submerged pump 2 .
  • the purge gas supply line 38 communicates with the internal space 20 of the container body 21 . Therefore, the purge gas is supplied to the internal space 20 of the container body 21 .
  • the first purge gas supply valve 35, the second purge gas supply valve 92, the communication line 90, and the vacuum valve 36 select the pump-side exhaust line 87 as either the vacuum line 37 or the purge gas supply line 38.
  • a switching device is configured to connect the However, as long as the pump-side exhaust line 87 can be selectively communicated with either the vacuum line 37 or the purge gas supply line 38, the switching device is not limited to the configuration of this embodiment.
  • the switching device may be a branch line branched from the vacuum line 37 and the purge gas supply line 38 and a three-way valve connected to these branch lines and the pump-side exhaust line 87 .
  • a method for exposing the submersible pump 2 to purge gas using the pump cover 85 and the pump-side exhaust line 87 shown in FIG. 10 is implemented as follows. As shown in FIG. 11, in step 3-1, before moving the submerged pump 2 into the purge container 100, the pump cover 85 connected to the pump-side exhaust line 87 is attached to the submerged pump 2, By closing the openings (that is, the suction port and the discharge port) of the submersion pump 2 , a sealed internal space is formed within the submersion pump 2 .
  • the pump-side exhaust line 87 is connected to the vacuum line 37 shown in FIG. 10 to evacuate the sealed internal space of the submerged pump 2.
  • the pump-side exhaust line 87 may be connected to the vacuum line 37 via the vacuum exhaust port 28, or the pump-side exhaust line 87 may be connected to a branch line (not shown) branching off from the vacuum line 37. You may
  • the pump-side exhaust line 87 is communicated with the purge gas supply line 38 shown in FIG. 10 to supply purge gas (for example, nitrogen gas or helium gas) to the internal space of the evacuated submerged pump 2 ( first dry-up).
  • purge gas for example, nitrogen gas or helium gas
  • the pump-side exhaust line 87 may be connected to the purge gas supply line 38 via the vacuum exhaust port 28 and the communication line 90, or the pump-side exhaust line 87 may be connected to a branch line ( (not shown).
  • step 3-4 with the pump cover 85 connected to the pump-side exhaust line 87 attached to the submersible pump 2, the submersible pump 2 is moved to the purge container 100 by a conveying device (eg, a crane) (not shown). is moved inside. More specifically, the submerged pump 2 is moved into the purge container 100 while suspended from the upper lid 101 by the suspension member 82 . Lower lid 102 rests on lower flange 60 . When the top lid 101 is placed on top of the container body 21 , the load of the submerged pump 2 is supported by the top lid 101 .
  • a conveying device eg, a crane
  • step 3-5 the pump-side exhaust line 87 is connected to the vacuum line 37 via the vacuum exhaust port 28.
  • the vacuum valve 36, the first purge gas supply valve 35, and the second purge gas supply valve 92 are closed.
  • step 3-6 the first purge gas supply valve 35 is opened to supply a purge gas such as nitrogen gas or helium gas to the internal space 20 of the container body 21 through the purge gas inlet port 27 to fill the internal space 20 with the purge gas.
  • the purge gas drives air and moisture out of the submersible pump 2 and the outside of the submersible pump 2 is dried (second dryup).
  • step 3-7 the vacuum valve 36 is opened to evacuate the sealed internal space of the submerged pump 2 through the evacuation port 28 and the pump-side exhaust line 87.
  • step 3-8 the vacuum valve 36 and the first purge gas supply valve 35 are closed, and the second purge gas supply valve 92 is opened to supply a purge gas such as nitrogen gas or helium gas to the communication line 90 and the It is supplied into the internal space of the submerged pump 2 via the evacuation port 28 .
  • the purge gas drives air and moisture out of the interior space of the submersible pump 2 and the interior of the submersible pump 2 is dried (third dry-up). Either one of steps 3-2 and 3-3 or steps 3-7 and 3-8 may be omitted.
  • the internal space of the submerged pump 2 is evacuated, and then the purge gas is supplied into the submerged pump 2, so that the inside of the submerged pump 2 can be reliably dried. is.
  • step 3-9 the second purge gas supply valve 92 is closed, the lateral lid 103 (see FIG. 10) is removed, and the pump cover 85 and the pump-side exhaust line 87 are removed from the internal space 20 of the container body 21.
  • step 3-10 the horizontal lid 103 (see FIG. 10) is attached to the container body 21, and then the first purge gas supply valve 35 is opened to supply a purge gas such as nitrogen gas or helium gas from the purge gas inlet port 27 to the container body 21. into the internal space 20 of the.
  • a purge gas such as nitrogen gas or helium gas
  • the purge container 100 of this embodiment is a portable purge container that can be transported integrally with the submerged pump 2 housed therein.
  • a purge container 100 in which the submerged pump 2 is accommodated is suspended by a lifting device 12 .
  • a purge gas (for example, an inert gas such as nitrogen gas or helium gas) is supplied into the pump column 3 through the purge gas introduction port 8 in order to prevent ambient air from entering the pump column 3 .
  • the supply of purge gas into the pump column 3 is continued in the following steps.
  • step 3-12 the purge container 100 and the submerged pump 2 are lowered by the lifting device 12, and the purge container 100 is connected to the upper part of the pump column 3 by bolts and nuts (not shown) as a purge container connecting mechanism. do.
  • the purge vessel connection mechanism may be one or more clamps.
  • step 3-13 the lower lid 102 is removed from the container body 21 through the horizontal lid 103 (see FIG. 10), and the cable 13 of the lifting device 12 is connected to the submerged pump 2.
  • step 3-14 the submerged pump 2 is lowered by the lifting device 12 to move the submerged pump 2 from the purge container 100 into the pump column 3.
  • Purge gas continues to be supplied into the container body 21 .
  • step 3-15 the cable 13 of the lifting device 12 is connected to the upper lid 101, and the bolts and nuts (not shown) serving as the purge container connecting mechanism are removed. Then, the purge container 100 is lifted up by the lifting device 12 and separated from the pump column 3 .
  • steps 3-1 to 3-10 are performed before the purge container 100 is connected to the pump column 3.
  • the purge container 100 is transported to the pump column 3 with the submersible pump 2, and after the purge container 100 is connected to the pump column 3, the submerged Evacuation of the submerged pump 2 and supply of purge gas into the submerged pump 2 may be started.
  • the drying up of the submerged pump 2 may be started after the purge container 100 is connected to the pump column 3 .
  • the closed-type purge container 1 and the purge container 100 described with reference to FIGS. 1 to 15 are portable types that can be moved together with the submerged pump 2 housed therein. It is not limited to the embodiment.
  • the closed purge vessel 1 and the vessel body 21 of the purge vessel 100 may be pre-fixed to the top of the pump column 3 (see FIG. 1). Also in this case, the evacuation of the internal space 20 of the container body 21 and the supply of the purge gas to the internal space 20 are performed in the same manner as in the above-described embodiment.
  • the present invention can be used for a purge device and a purge method for exposing a submerged pump for pressurizing liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen to purge gas.
  • liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen to purge gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

潜没式ポンプをポンプコラム内に入れるときに空気の同伴を防ぐことができ、かつ潜没式ポンプをポンプコラムから取り出すときに潜没式ポンプを加温して空気中の成分の液化を防止することができ、液化ガスが大気に放出されるのを防止することができるパージ装置を提供する。パージ装置は、潜没式ポンプ(2)を収容するための密閉型パージ容器(1)と、密閉型パージ容器(1)に接続され、かつ真空源(39)に接続された真空ライン(37)と、密閉型パージ容器(1)に接続され、かつパージガス供給源(40B)に接続されたパージガス供給ライン(38)と、パージガス供給ライン(38)に取り付けられたパージガス供給弁(35)を備えている。

Description

パージ装置およびパージ方法
 本発明は、液化アンモニアや液化天然ガス(LNG)や液体水素などの液化ガスを昇圧するための潜没式ポンプをパージガスにさらすためのパージ装置およびパージ方法に関する。
 天然ガスは、火力発電や化学原料として広く利用されている。また、アンモニアや水素は、地球温暖化の原因となる二酸化炭素を発生しないエネルギーとして期待されている。エネルギーとしての水素の用途には、燃料電池およびタービン発電などが挙げられる。天然ガス、アンモニア、および水素は、常温では気体の状態であるため、これらの貯蔵および運搬のために、天然ガス、アンモニア、および水素は冷却され、液化される。液化天然ガス(LNG)や液化アンモニアや液体水素などの液化ガスは、一旦液化ガス貯槽に貯蔵された後、ポンプによって発電所や工場などに移送される。
 図16は、液化ガスが貯蔵された液化ガス貯槽と、液化ガスを汲み上げるためのポンプの従来例を示す模式図である。ポンプ500は、液化ガス貯槽501に設置された縦型ポンプコラム505内に設置される。ポンプコラム505内は液化ガスで満たされ、ポンプ500の全体は液化ガス中に浸漬される。したがって、ポンプ500は、液化ガス中で運転可能な潜没式ポンプである。ポンプ500が運転されると、液化ガス貯槽501内の液化ガスはポンプコラム505内に吸い込まれ、ポンプコラム505を上昇し、そしてポンプコラム505から液化ガス排出ポート509を通じて排出される。
特許3197645号公報 特許3198248号公報 特許3472379号公報
 ポンプ500は消耗部材を含む機械であるため、定期的なメンテナンスを必要とする。ポンプ500を最初にポンプコラム505内に設置するとき、およびメンテナンスが施されたポンプ500をポンプコラム505に戻すとき、空気がポンプ500に同伴してポンプコラム505内に侵入することを防ぐ必要がある。もし、空気がポンプ500とともにポンプコラム505内に侵入すると、空気中の水分が超低温の液化ガスによって冷却されて凝固し、ポンプ500の回転動作を阻害してしまう。特に、液化ガスが液体水素である場合、空気中の窒素および酸素が液化または固化して、液化ガス中に混入してしまうおそれがある。窒素や酸素が固化すると機器に損傷を与えることがあり、さらに、液化酸素が液体水素に混入すると、爆発が起こる危険性がある。
 メンテナンスなどの目的でポンプ500をポンプコラム505から取り出すときは、ポンプ500に付着した液化ガスおよびポンプコラム505からの液化ガス蒸気が大気に放出されることを防止する必要がある。例えば、天然ガスは可燃性であり、さらに温室効果を促進する性質があるので、天然ガスが大気中に放出されることは防ぐべきである。また、水素は、大気中の酸素と化学反応を起こして爆発を起こす危険性があるので、水素も大気中に放出されるべきではない。
 そこで、本発明は、潜没式ポンプをポンプコラム内に入れるときに空気の同伴を防ぐことができ、かつ潜没式ポンプをポンプコラムから取り出すときに潜没式ポンプを加温して空気中の成分の液化を防止することができ、液化ガスが大気に放出されるのを防止することができるパージ装置およびパージ方法を提供する。
 一態様では、液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ装置であって、前記潜没式ポンプを収容するための密閉型パージ容器と、前記密閉型パージ容器に接続され、かつ真空源に接続された真空ラインと、前記密閉型パージ容器に接続され、かつパージガス供給源に接続されたパージガス供給ラインと、前記パージガス供給ラインに取り付けられたパージガス供給弁を備えている、パージ装置が提供される。
 一態様では、前記密閉型パージ容器は、前記潜没式ポンプを収容するための内部空間を有する容器本体と、前記容器本体の上側開口を閉じる上側密閉蓋と、前記容器本体と前記上側密閉蓋との隙間を封止する上側シールと、前記容器本体の下側開口を閉じる下側密閉蓋と、前記容器本体と前記下側密閉蓋との隙間を封止する下側シールを備えている。
 一態様では、前記パージガス供給源は、複数のパージガス供給源である。
 一態様では、前記複数のパージガス供給源は、窒素ガス供給源とヘリウムガス供給源を少なくとも含む。
 一態様では、前記パージ装置は、前記真空ラインに取り付けられた逆止弁をさらに備えている。
 一態様では、液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ装置であって、前記潜没式ポンプを収容するためのパージ容器と、前記潜没式ポンプの開口を閉じるためのポンプカバーと、前記ポンプカバーに連結されたポンプ側排気ラインと、真空源に接続された真空ラインと、パージガス供給源に接続されたパージガス供給ラインと、前記ポンプ側排気ラインを、前記真空ラインおよび前記パージガス供給ラインのいずれか一方に選択的に連通させる切り替え装置を備えている、パージ装置が提供される。
 一態様では、前記パージガス供給ラインは前記パージ容器に接続されている。
 一態様では、前記真空ラインは前記パージ容器に接続されている。
 一態様では、液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ方法であって、前記潜没式ポンプを密閉型パージ容器の内部空間内に収容し、前記潜没式ポンプが収容された前記内部空間を真空引きし、真空引きされた前記内部空間内にパージガスを供給し、その後、前記潜没式ポンプを前記密閉型パージ容器からポンプコラム内に移動させる、パージ方法が提供される。
 一態様では、前記内部空間を真空引きする工程と、真空引きされた前記内部空間内にパージガスを供給する工程を繰り返す。
 一態様では、前記内部空間内に最後に供給されるパージガスは、ヘリウムガスである。
 一態様では、前記内部空間内に最初に供給されるパージガスは、窒素ガスである。
 一態様では、前記内部空間を真空引きする工程が終了する前に、真空引きされた前記内部空間内にパージガスを供給する工程を開始する。
 一態様では、前記パージ方法は、前記内部空間内にパージガスを供給した後であって、前記潜没式ポンプを前記密閉型パージ容器から前記ポンプコラム内に移動させる前に、前記潜没式ポンプが収容された前記内部空間を再度真空引きして前記内部空間内の圧力を目標圧力以下にまで低下させる工程をさらに含む。
 一態様では、前記液化ガスは液体水素であり、前記パージガスは窒素ガスであり、前記目標圧力は、以下の式により表され、
  Pv=Pa・Vm/(Vc・ρG/ρS)
 Pvは前記目標圧力を表し、Paは大気圧を表し、Vmは予め設定された定数を表し、Vcは内部空間の体積を表し、ρGは窒素ガスの密度を表し、ρSは固体窒素の密度を表す。
 一態様では、前記予め設定された定数Vmは、前記内部空間内に氷が析出した条件下で前記潜没式ポンプが前記内部空間内で運転を実行できる前記氷の体積の最大値である。
 一態様では、液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ方法であって、潜没式ポンプをポンプコラムから引き上げ、前記潜没式ポンプを密閉型パージ容器の内部空間内に収容し、前記潜没式ポンプが収容された前記内部空間を真空引きし、真空引きされた前記内部空間内にパージガスを供給する、パージ方法が提供される。
 一態様では、前記内部空間を真空引きする工程と、真空引きされた前記内部空間内にパージガスを供給する工程を繰り返す。
 一態様では、前記内部空間内に最初に供給されるパージガスは、ヘリウムガスである。
 一態様では、前記内部空間内に最後に供給されるパージガスは、窒素ガスである。
 一態様では、前記内部空間を真空引きする工程が終了する前に、真空引きされた前記内部空間内にパージガスを供給する工程を開始する。
 一態様では、前記内部空間を真空引きしながら、前記内部空間内の気体を真空ラインを通じてガス処理装置に導く。
 一態様では、液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ方法であって、前記潜没式ポンプの開口をポンプカバーで閉じ、前記潜没式ポンプの内部空間を真空引きし、真空引きされた前記潜没式ポンプの内部空間内にパージガスを供給する、パージ方法が提供される。
 一態様では、前記パージ方法は、前記潜没式ポンプの内部空間を真空引きする前に、前記潜没式ポンプをパージ容器内に収容し、前記パージ容器の内部空間にパージガスを供給する工程をさらに含む。
 一態様では、前記パージ方法は、前記潜没式ポンプの内部空間内にパージガスを供給した後に、前記潜没式ポンプをパージ容器内に収容し、前記パージ容器の内部空間にパージガスを供給する工程をさらに含む。
 本発明によれば、潜没式ポンプが収容された密閉型パージ容器の内部空間は真空引きされる。その結果、密閉型パージ容器内の圧力が低下し、潜没式ポンプに同伴した空気が除去される。加えて、潜没式ポンプに付着している水分は乾燥しやすくなる。密閉型パージ容器の真空引き後、密閉型パージ容器の内部空間にパージガスが供給される。これにより、潜没式ポンプは、密閉型パージ容器内でパージガスにさらされる。潜没式ポンプに同伴した空気および水分は、パージガスによって潜没式ポンプから除去され、結果として潜没式ポンプが乾燥(脱気)される(以下、これをドライアップと称する)。したがって、空気および水分は潜没式ポンプに同伴せず、空気および水分がポンプコラム内に侵入してしまうことが防止できる。
 また、本発明によれば、液化ガスに接触していた潜没式ポンプをポンプコラムから密閉型パージ容器内に引き上げた後、密閉型パージ容器の内部空間を真空引きすることにより、潜没式ポンプに付着している液化ガスを気化させ、潜没式ポンプから除去することができる。真空引き後、パージガスを密閉型パージ容器の内部空間に供給して、超低温の潜没式ポンプをパージガスで加温することができる(以下、これをホットアップと称する)。空気中の窒素などの成分は、加温された潜没式ポンプの表面上では液化しない。
 特に、本発明によれば、液化ガスが液体水素の場合に効果的である。すなわち、液体水素中に浸漬していた潜没式ポンプは、ポンプコラムから引き上げるとき、液体水素と同等の超低温となっている。水素の沸点(-253℃)は酸素の沸点(-183℃)および窒素の沸点(-196℃)よりも低いので、ポンプコラムから引き上げられた直後の潜没式ポンプに空気が接触すると、空気中の窒素のみならず、酸素も液化し、ポンプコラム内に滴下してしまう。この点、本発明によれば、液体水素中に浸漬していた潜没式ポンプは、空気に触れる前にパージガスによって加温される。したがって、空気が潜没式ポンプに触れたときに、空気中の酸素および窒素は液化せず、液化した酸素や液化した窒素がポンプコラムに滴下することはない。結果として、潜没式ポンプの安全な取り出しが達成できる。
 さらに本発明によれば、潜没式ポンプの内部空間が真空引きされ、その後パージガスが潜没式ポンプ内に供給されるので、潜没式ポンプの内側を確実に乾燥させることが可能である。
ポンプコラム内に設置される前に、潜没式ポンプを密閉型パージ容器内でパージガスにさらす作業を説明するための模式図である。 密閉型パージ容器を含むパージ装置の一実施形態を説明する図である。 密閉型パージ容器を用いて潜没式ポンプをパージガスにさらす方法の一実施形態を説明する図である。 密閉型パージ容器を用いて潜没式ポンプをパージガスにさらす方法の一実施形態を説明する図である。 密閉型パージ容器を用いて潜没式ポンプをパージガスにさらす方法の一実施形態を説明する図である。 潜没式ポンプをポンプコラムから引き上げる工程の一実施形態を説明する図である。 潜没式ポンプをポンプコラムから引き上げる工程の一実施形態を説明する図である。 潜没式ポンプをポンプコラムから引き上げる工程の一実施形態を説明する図である。 密閉型パージ容器を含むパージ装置の他の実施形態を説明する図である。 パージ容器を含むパージ装置のさらに他の実施形態を示す図である。 潜没式ポンプをパージガスにさらす方法の一実施形態を説明する図である。 潜没式ポンプをパージガスにさらす方法の一実施形態を説明する図である。 潜没式ポンプをパージガスにさらす方法の一実施形態を説明する図である。 潜没式ポンプをパージガスにさらす方法の一実施形態を説明する図である。 潜没式ポンプをパージガスにさらす方法の一実施形態を説明する図である。 液化ガスが貯蔵された液化ガス貯槽と、液化ガスを汲み上げるためのポンプの従来例を示す模式図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、ポンプコラム内に設置される前に、潜没式ポンプを密閉型パージ容器内でパージガスにさらす作業を説明するための模式図である。密閉型パージ容器1は、液化ガスを移送するために使用される潜没式ポンプ2をパージガスにさらすための装置である。液化ガスの例としては、液化アンモニア、液体水素、液体窒素、液化天然ガス、液化エチレンガス、液化石油ガスなどが挙げられる。密閉型パージ容器1は、ポンプコラム3に着脱可能に連結される。密閉型パージ容器1は、その内部に潜没式ポンプ2を収容した状態で、潜没式ポンプ2と一体に搬送することができる。一実施形態では、密閉型パージ容器1は、ポンプコラム3の上部に固定されてもよい。
 図1に示すように、ポンプコラム3は、液化ガスが貯留される液化ガス貯槽5内に設置されている。ポンプコラム3は、鉛直方向に延びた中空状の容器であり、その上部は液化ガス貯槽5から上方に突出している。ポンプコラム3の底部には吸込み弁6が設けられている。潜没式ポンプ2はポンプコラム3の底部に設置される。吸込み弁6の構成は、特に限定されないが、例えば、吸込み弁6は潜没式ポンプ2の自重で吸込み弁6が開くタイプでもよいし、あるいはアクチュエータ駆動型弁(例えば電動弁)でもよい。
 密閉型パージ容器1は潜没式ポンプ2と一体にクレーンなどの搬送装置(図示せず)によってポンプコラム3の上方位置に搬送される。さらに、図1に示すように、密閉型パージ容器1は、昇降装置12のケーブル13に連結される。密閉型パージ容器1は潜没式ポンプ2と一体に昇降装置12によって上昇および下降される。昇降装置12は、ケーブル13を巻き上げるホイスト、ウインチなどの巻き上げ機14を有している。
 密閉型パージ容器1の内部空間20はパージガスで満たされており、潜没式ポンプ2はパージガスにさらされている(接触している)。密閉型パージ容器1は、ポンプコラム3の上部に連結されるように構成されている。密閉型パージ容器1の内部空間20は、密閉型パージ容器1がポンプコラム3の上部に連結される前に、パージガスで満たされる。すなわち、潜没式ポンプ2が密閉型パージ容器1内に収容された状態で、パージガスは密閉型パージ容器1内に供給される。密閉型パージ容器1の内部空間20がパージガスで充填された状態で、密閉型パージ容器1は潜没式ポンプ2と一体に昇降装置12によって上昇または下降される。
 パージガスは、液化ガス貯槽5から離れた場所で密閉型パージ容器1内に供給されてもよく、あるいは密閉型パージ容器1が昇降装置12のケーブル13に連結された後であって、ポンプコラム3の上部に連結される前に、パージガスが密閉型パージ容器1内に供給されてもよい。さらに、一実施形態では、密閉型パージ容器1がポンプコラム3の上部に連結された後であって、潜没式ポンプ2が昇降装置12によってポンプコラム3内に移動される前に、パージガスが密閉型パージ容器1内に供給されてもよい。いずれの場合でも、潜没式ポンプ2は、密閉型パージ容器1内でパージガスにさらされ、これによって潜没式ポンプ2の内部およびその表面から空気および水分が排除される。以下の説明では、潜没式ポンプ2をポンプコラム3に入れる前に密閉型パージ容器1内で潜没式ポンプ2をパージガスにさらす工程をドライアップと称する。
 ドライアップの前または後に、液化ガスは、ポンプコラム3から排出される。具体的には、ポンプコラム3の上端開口が閉じられた状態で、パージガスをパージガス導入ポート8からポンプコラム3内に供給し、液化ガスをパージガスの圧力によりポンプコラム3から吸込み弁6を通じて排出する。一実施形態では、この液化ガスのポンプコラム3からの排出は、密閉型パージ容器1が潜没式ポンプ2と一体にポンプコラム3の上方位置に搬送される前に行われる。一実施形態では、液化ガスのポンプコラム3からの排出は、可搬型パージ容器1が潜没式ポンプ2と一体にポンプコラム3の上方位置に搬送された後に行われてもよい。
 潜没式ポンプ2がポンプコラム3の上部に設置され、潜没式ポンプ2のドライアップが完了すると、潜没式ポンプ2は、昇降装置12によって密閉型パージ容器1からポンプコラム3内に下降(移動)され、ポンプコラム3の底部に設置される。潜没式ポンプ2がポンプコラム3の底部に設置される前または後に、ポンプコラム3の上部開口は蓋によって閉じられる。吸込み弁6が開くと、液化ガス貯槽5内の液化ガスがポンプコラム3に流入する。潜没式ポンプ2の全体が液化ガス中に浸漬された状態で、潜没式ポンプ2は運転し、液化ガスを汲み上げる。潜没式ポンプ2は、液体中で運転可能に構成されたポンプである。ポンプコラム3の上部には、パージガス導入ポート8と、液化ガス排出ポート9が設けられている。潜没式ポンプ2によって汲み上げられた液化ガスは、液化ガス排出ポート9を通じて排出される。
 図2は、密閉型パージ容器1を含むパージ装置の一実施形態を示す図である。パージ装置は、潜没式ポンプ2を収容するための密閉型パージ容器1と、密閉型パージ容器1に接続され、かつ真空源39に接続された真空ライン37と、密閉型パージ容器1に接続され、かつパージガス供給源40A,40Bに接続されたパージガス供給ライン38と、パージガス供給ライン38に取り付けられたパージガス供給弁35を備えている。
 密閉型パージ容器1は、潜没式ポンプ2を収容するための内部空間20を有する容器本体21と、容器本体21の上側開口を閉じる上側密閉蓋23と、容器本体21と上側密閉蓋23との隙間を封止する上側シール71と、容器本体21の下側開口を閉じる下側密閉蓋24と、容器本体21と下側密閉蓋24との隙間を封止する下側シール72を備えている。上側密閉蓋23および下型密閉蓋24は、気体の通過を許容しない構成を有している。上側シール71および下側シール72の例としては、ガスケット、Oリングなどが挙げられる。
 潜没式ポンプ2は下側密閉蓋24上に置かれている。したがって、潜没式ポンプ2の荷重は下側密閉蓋24によって支持される。下側密閉蓋24は、潜没式ポンプ2を支持可能に構成されている。より具体的には、下側密閉蓋24は、潜没式ポンプ2の荷重を支持するのに十分に高い機械的強度を有している。容器本体21内に真空が形成されたときに、容器本体21の内部空間20と容器本体21の外との間の差圧が下側密閉蓋24に作用する。下側密閉蓋24は、この差圧に耐えうるのに十分に高い機械的強度を有している。
 上側密閉蓋23の中央には、昇降装置12のケーブル13が通過可能な穴23aが形成されており、穴23aは第2蓋65によって塞がれている。上側密閉蓋23と第2蓋65との間には、第2シール74が挟まれている。この第2シール74は、上側密閉蓋23と第2蓋65との隙間を封止するように構成されている。第2シール74の例としては、ガスケット、Oリングなどが挙げられる。第2蓋65は、図示しないねじによって上側密閉蓋23に固定されている。ねじを外すと、第2蓋65は上側密閉蓋23から取り外すことが可能である。
 密閉型パージ容器1は、容器本体21の内部空間20に連通するパージガス入口ポート27および真空排気ポート28を備えている。パージガス供給ライン38はパージガス入口ポート27に接続され、真空ライン37は真空排気ポート28に接続されている。容器本体21は中空状の構造体である。本実施形態では、容器本体21は円筒形状を有するが、その形状は特に限定されない。一実施形態では、容器本体21は多角形状の中空状の構造体であってもよく、あるいはその他の形状を有してもよい。
 密閉型パージ容器1は、潜没式ポンプ2の横揺れを抑制するためのポンプガイド30を備えている。このポンプガイド30は、容器本体21の内面に固定されている。ポンプガイド30は、容器本体21内に収容された潜没式ポンプ2の周囲に配置されている。ポンプガイド30は、潜没式ポンプ2が内部に収容された密閉型パージ容器1をクレーンなどの搬送装置で搬送するときに、容器本体21内での潜没式ポンプ2の横揺れを抑制する(防止する)目的で設けられている。このような目的を達成することができる限りにおいて、ポンプガイド30は複数の部材であってもよく、あるいは単一の部材であってもよい。ポンプガイド30は、金属、弾性材料、またはこれらの組み合わせから構成されてもよい。一実施形態では、ポンプガイド30は、容器本体21の内面ではなく、潜没式ポンプ2の側面に固定されていてもよい。容器本体21は、ポンプコラム3(図1参照)の上部に固定されてもよい。この場合は、密閉型パージ容器1は、潜没式ポンプ2と一体に搬送されないので、ポンプガイド30は省略してもよい。
 密閉型パージ容器1は、上側密閉蓋23を容器本体21に着脱可能に固定する固定具としての複数のボルト32および複数のナット33を備えている。容器本体21は、その上部に上部フランジ34を有している。複数のボルト32は、上側密閉蓋23、上側シール71、および上部フランジ34を貫通して延びる。複数のナット33が複数のボルト32にそれぞれ締結されると、上側密閉蓋23は容器本体21に強固に固定されるとともに、上側シール71は上側密閉蓋23と容器本体21との間に挟まれる。ナット33をボルト32から取り外すと、上側密閉蓋23は容器本体21から取り外すことができる。一実施形態では、上側密閉蓋23を容器本体21に着脱可能に固定する固定具は、ボルト32およびナット33に代えて、1つまたは複数のクランプであってもよい。
 パージガス入口ポート27および真空排気ポート28は、容器本体21の側壁21aに固定されている。より具体的には、パージガス入口ポート27は、容器本体21の側壁21aの下部に固定され、真空排気ポート28は、容器本体21の側壁21aの上部に固定されている。本実施形態では、真空排気ポート28はパージガス入口ポート27よりも高い位置にあるが、これらの配列は本実施形態に限定されない。一実施形態では、パージガス入口ポート27は、容器本体21の側壁21aの上部に固定され、真空排気ポート28は、容器本体21の側壁21aの下部に固定されてもよく、あるいはパージガス入口ポート27および真空排気ポート28は同じ高さに位置してもよい。さらに一実施形態では、パージガス入口ポート27および真空排気ポート28のうちのいずれか一方は、上側密閉蓋23に固定されてもよい。
 使用されるパージガスは、潜没式ポンプ2が汲み上げる対象の液化ガスの沸点以下の沸点を持つ成分からなるガスである。これは、パージガスが液化ガスまたは超低温の潜没式ポンプ2に接触したときに、パージガスが液化しないようにするためである。パージガスの例としては、窒素ガス、ヘリウムガスなどの不活性ガスが挙げられる。例えば、潜没式ポンプ2が汲み上げる対象の液化ガスが液化天然ガスである場合、液化天然ガスの沸点(-162℃)よりも低い沸点(-196℃)を持つ窒素からなるガスである窒素ガスがパージガスに使用される。他の例では、潜没式ポンプ2が汲み上げる対象の液化ガスが液体水素である場合、水素の沸点(-253℃)よりも低い沸点(-269℃)を持つヘリウムからなるガスであるヘリウムガスがパージガスに使用される。
 本実施形態では、第1パージガス供給源40Aおよび第2パージガス供給源40Bがパージガス供給ライン38に接続されている。より具体的には、第1パージガス供給源40Aは窒素ガス供給源であり、第2パージガス供給源40Bはヘリウムガス供給源である。第1パージガス供給源40Aおよび第2パージガス供給源40Bは、第1閉止弁42Aおよび第2閉止弁42Bにそれぞれ接続されている。第1閉止弁42Aおよび第2閉止弁42Bはパージガス供給ライン38に取り付けられている。第2閉止弁42Bを閉じ、第1閉止弁42Aを開くと、パージガスとしての窒素ガスが第1パージガス供給源40Aからパージガス供給ライン38、パージガス供給弁35、およびパージガス入口ポート27を通って容器本体21の内部空間20内に供給される。第1閉止弁42Aを閉じ、第2閉止弁42Bを開くと、パージガスとしてのヘリウムガスが第2パージガス供給源40Bからパージガス供給ライン38、パージガス供給弁35、およびパージガス入口ポート27を通って容器本体21の内部空間20内に供給される。
 一般に、ヘリウムガスは、窒素ガスよりも高価である。また、窒素はヘリウムよりも原子量が大きく、乾燥効果が高い。したがって、最初は窒素ガスをパージガスとして使用し、最終段階でヘリウムガスをパージガスとして使用してもよい。例えば、窒素ガスを密閉型パージ容器1内に供給して容器本体21の内部空間20内の空気を窒素ガスに置換し、その後ヘリウムガスを密閉型パージ容器1内に供給して容器本体21の内部空間20をヘリウムガスで満たしてもよい。
 一実施形態では、第1パージガス供給源40Aおよび第2パージガス供給源40Bのうちのいずれか一方のみが設けられてもよい。例えば、潜没式ポンプ2が汲み上げる対象の液化ガスが液化天然ガスである場合、窒素ガス供給源であるパージガス供給源40Aのみが設けられてもよい。他の例では、潜没式ポンプ2が汲み上げる対象の液化ガスが液体水素である場合、ヘリウムガス供給源であるパージガス供給源40Bのみが設けられてもよい。さらに他の例では、異なる3種類以上のパージガス供給源が設けられてもよい。
 上側密閉蓋23は、昇降装置12のケーブル13が連結される複数の連結ポート53を有している。連結ポート53は、ケーブル13が挿入可能な穴を有する構造体であり、その具体的な形状は特に限定されない。ケーブル13は複数に分岐しており、複数の先端を有している。これらの先端は、複数の連結ポート53にそれぞれ連結される。
 容器本体21は、その下部に下部フランジ60を有している。下側密閉蓋24は、下部フランジ60の上方に配置されており、下側シール72は下側密閉蓋24と下部フランジ60との間に挟まれている。下側密閉蓋24は、取り外し可能に容器本体21の底部に配置されている。潜没式ポンプ2の荷重の全体は、下側密閉蓋24に加わっており、潜没式ポンプ2は、下側密閉蓋24の下面を下部フランジ60上の下側シール72に対して押し付ける。下側密閉蓋24は、ねじ、または1つまたは複数のクランプにより容器本体21に取り外し可能に固定されてもよい。
 密閉型パージ容器1は、容器本体21の側壁21aに形成された開口部21bを閉じる横蓋58と、容器本体21の側壁21aと横蓋58の隙間を封止する側部シール73をさらに備えている。側部シール73は、容器本体21の側壁21aと横蓋58との間に挟まれている。側部シール73の例としては、ガスケット、Oリングなどが挙げられる。横蓋58は、図示しない締結機構(例えば複数のねじ)によって容器本体21の側壁21aに取り外し可能に固定されている。横蓋58を取り外すと、作業員は開口部21bを通じて容器本体21の下側密閉蓋24にアクセスし、下側密閉蓋24を容器本体21から取り除くことができる。同様に、作業員は、開口部21bを通じて下側密閉蓋24を容器本体21内に運び入れ、下側密閉蓋24を下側シール72上に置くことができる。
 密閉型パージ容器1は、真空排気ポート28に連通するパージ指標測定器68を備えている。パージ指標測定器68は、パージガスにさらされた潜没式ポンプ2の乾燥の程度を示す指標値、および/またはパージガスにさらされた潜没式ポンプ2の温度を示す指標値を測定する装置である。パージ指標測定器68の具体例としては、露点計、温度計、およびこれらの組み合わせが挙げられる。例えば、露点計は、容器本体21の内部空間20から流出したパージガス中の水分量を測定する。パージガスにさらされた潜没式ポンプ2が十分に乾燥されたか否か(すなわち以下に説明するドライアップが十分か否か)は、水分量の測定値から判断することができる。温度計は、内部空間20から流出したパージガスの温度を測定する。パージガスにさらされた潜没式ポンプ2が十分に加温されたか否か(すなわち以下に説明するホットアップが十分か否か)は、潜没式ポンプ2に接触したパージガスの温度の測定値から判断することができる。パージガス中の水分量、およびパージガスの温度は、潜没式ポンプ2のドライアップおよびホットアップの指標値の例である。潜没式ポンプ2の乾燥の程度および温度を示すものであれば、指標値は他の物理量であってもよい。図2ではパージ指標測定器68は真空ライン37に接続されているが、パージ指標測定器68の意図した機能が発揮できる限りにおいて、パージ指標測定器68の配置は図2に示す実施形態に限られない。
 真空ライン37は、真空ポンプなどの真空源39に接続されている。真空ライン37は、図1に示す液化ガス貯槽5が設置されている施設内に設けられているユーティリティ装置としての真空ラインであってもよいし、あるいは密閉型パージ容器1の内部空間20を真空引きするために専用に設けられた真空ラインであってもよい。
 真空ライン37には、真空弁36および逆止弁41が取り付けられている。真空ライン37によって密閉型パージ容器1の内部空間20を真空引きするときは、真空弁36は開かれる。真空源39としての真空ポンプの運転および停止によって真空引きのタイミングを制御する場合には、真空弁36はなくてもよい。逆止弁41は、密閉型パージ容器1の内部空間20から外部に向かって気体が流れることを許容し、その一方で気体の逆方向の流れは許容しないように構成されている。この逆止弁41は、真空が形成された内部空間20に周囲の空気が逆流することを防止するために設けられている。真空弁36および逆止弁41の配列および位置は、図2に示す実施形態に限られない。例えば、逆止弁41は真空弁36の上流側に位置してもよい。
 密閉型パージ容器1は、内部空間20内の圧力を測定する圧力測定装置77をさらに備えている。圧力測定装置77は、真空ライン37に接続されているが、容器本体21に接続されてもよい。圧力測定装置77は、真空が形成された内部空間20内の圧力を測定することができる。
 次に、上述した密閉型パージ容器1を用いて潜没式ポンプ2をパージガスにさらす方法の一実施形態について図3乃至図5を参照して説明する。図3乃至図5に示す一連の動作は、潜没式ポンプ2が収容された密閉式パージ容器1の内部空間20を真空引きする動作、潜没式ポンプ2をパージガスで乾燥させるドライアップ、および乾燥された潜没式ポンプ2をポンプコラム3内に入れる動作を含む。以下に説明する動作の前に、ポンプコラム3から液化ガスが排出される。
 ステップ1-1では、下側密閉蓋24は密閉型パージ容器1の容器本体21の底部に配置され、かつ上側密閉蓋23が取り外された状態で、容器本体21の内部空間20内に潜没式ポンプ2を収容する。潜没式ポンプ2は、図示しない搬送装置(例えばクレーン)によって密閉型パージ容器1内に移動される。潜没式ポンプ2は、下側密閉蓋24上に置かれ、潜没式ポンプ2の荷重は、下側密閉蓋24によって支持される。
 ステップ1-2では、上側密閉蓋23が容器本体21の上部に取り付けられる。上側密閉蓋23の穴23aは第2蓋65で塞がれている。上側密閉蓋23は、固定具としてのボルト32およびナット33(図2参照)によって容器本体21に強固に固定される。
 ステップ1-3では、容器本体21の上側開口が上側密閉蓋23で閉じられ、かつ容器本体21の下側開口が下側密閉蓋24で閉じられた状態で、潜没式ポンプ2が収容された容器本体21の内部空間20を、真空排気ポート28を通じて真空引きする。真空弁36は開かれ、パージガス供給弁35は閉じられている。内部空間20内に真空が形成され、これにより潜没式ポンプ2に付着している水分が乾燥しやすくなる。
 ステップ1-4では、真空引きされた内部空間20に、窒素ガスまたはヘリウムガスなどのパージガスをパージガス入口ポート27から供給し、内部空間20をパージガスで満たす。パージガスは、潜没式ポンプ2から空気および水分を追い払い、潜没式ポンプ2は乾燥される(ドライアップ)。ドライアップの終了は、パージ指標測定器68から出力された指標値(例えば、水分量の測定値)に基づいて判断される。内部空間20にパージガスを供給する工程は、内部空間20を真空引きする工程が終了した後に開始してもよいし、あるいは内部空間20を真空引きする工程が終了すると同時に開始してもよい。一実施形態では、内部空間20を真空引きする工程が終了する前に、内部空間20にパージガスを供給する工程を開始してもよい。すなわち、内部空間20を真空引きする工程の終了段階と、真空引きされた内部空間20内にパージガスを供給する工程の初期段階は、重複してもよい。
 潜没式ポンプ2からの空気および水分の除去を確実とするために、ステップ1-3の内部空間20を真空引きする工程と、ステップ1-4の真空引きされた内部空間20内にパージガスを供給する工程を繰り返してもよい。内部空間20の真空引きと、内部空間20内へのパージガスの供給を交互に繰り返すことで、潜没式ポンプ2の表面のみならず、潜没式ポンプ2の内部に存在する空気や水分を速やかに、かつ確実に除去することができる。
 潜没式ポンプ2が汲み上げる対象の液化ガスが液体水素である場合は、水素の沸点(-253℃)よりも低い沸点(-269℃)を持つヘリウムからなるヘリウムガスがパージガスに使用される。これは、ヘリウムガスが液体水素に接触したときに、ヘリウムガスは液化しないからである。しかしながら、一般に、ヘリウムガスは、窒素ガスよりも高価である。また、窒素はヘリウムよりも原子量が大きく、乾燥効果が高い。そこで、最初は窒素ガスをパージガスとして使用し、最終段階でヘリウムガスをパージガスとして使用してもよい。すなわち、ステップ1-3の内部空間20を真空引きする工程と、ステップ1-4の真空引きされた内部空間20内にパージガスを供給する工程を繰り返す場合において、内部空間20内に最後に供給されるパージガスは、ヘリウムガスである。この場合、内部空間20内に最初に供給されるパージガスは、窒素ガスである。このように、異なる種類のパージガスを使用することで、作業コストを下げることができる。
 内部空間20の真空引きと、内部空間20内へのパージガスの供給を繰り返す回数は、予め定められてもよいし、あるいはパージ指標測定器68によって測定された潜没式ポンプ2の乾燥の程度を示す指標値に基づいて定められてもよい。例えば、パージ指標測定器68によって測定された潜没式ポンプ2の乾燥の程度を示す指標値がしきい値を下回るまで(または上回るまで)、内部空間20の真空引きと、内部空間20内へのパージガスの供給を繰り返してもよい。
 ステップ1-5では、パージガスが充填された密閉型パージ容器1を、潜没式ポンプ2と一体に、図示しない搬送装置(例えばクレーン)によってポンプコラム3の上方位置に搬送し、昇降装置12のケーブル13を上側密閉蓋23に連結する。本実施形態の密閉型パージ容器1は、その内部に収容された潜没式ポンプ2と一体に搬送可能な可搬型パージ容器である。潜没式ポンプ2が内部に収容された密閉型パージ容器1は、昇降装置12によって吊り下げられる。周囲の空気がポンプコラム3内に侵入することを防ぐために、パージガス導入ポート8を通じてポンプコラム3内にパージガス(例えば、窒素ガスまたはヘリウムガスなどの不活性ガス)が供給される。ポンプコラム3内へのパージガスの供給は、以下のステップでも継続される。
 ステップ1-6では、昇降装置12によって、密閉型パージ容器1および潜没式ポンプ2を下降させ、密閉型パージ容器1をポンプコラム3の上部にパージ容器連結機構としてのボルトおよびナット(図示せず)により連結する。パージ容器連結機構は、1つまたは複数のクランプであってもよい。潜没式ポンプ2の荷重は、下側密閉蓋24を経由してポンプコラム3によって支持される。
 ステップ1-7では、窒素ガスまたはヘリウムガスなどのパージガスをパージガス入口ポート27から容器本体21の内部空間20内に供給しながら、第2蓋65が上側密閉蓋23から取り外される。昇降装置12のケーブル13は上側密閉蓋23の穴23aを通って潜没式ポンプ2まで延び、潜没式ポンプ2に連結される。さらに、昇降装置12によって潜没式ポンプ2を容器本体21内で引き上げ、その後下側密閉蓋24を容器本体21から取り外す。潜没式ポンプ2の荷重は昇降装置12によって支持される。パージガスは、上側密閉蓋23の穴23aを通じて流出する。このようなパージガスの流れは、周囲の空気が容器本体21内に流入することを防止することができる。潜没式ポンプ2を吊り上げるケーブルとして、予め短い補助ケーブルを用意し、その補助ケーブルの下端を潜没式ポンプ2の上部に接続し、補助ケーブルの上端を第2蓋65の裏側にひっかけておいて、潜没式ポンプ2の吊り上げ時に、補助ケーブルの上端を昇降装置12のケーブル13に連結してもよい。
 ステップ1-8では、昇降装置12によって潜没式ポンプ2を下降させ、潜没式ポンプ2を密閉型パージ容器1からポンプコラム3内に移動させる。パージガスは、容器本体21内に供給し続ける。
 ステップ1-9では、昇降装置12のケーブル13を上側密閉蓋23に連結し、上記パージ容器連結機構としてのボルトおよびナット(図示せず)を取り外す。そして、昇降装置12によって密閉型パージ容器1を引き上げてポンプコラム3から切り離す。
 本実施形態によれば、潜没式ポンプ2に同伴した空気および水分は、内部空間20の真空排気と内部空間20へのパージガスの供給によって除去され、結果として潜没式ポンプ2が乾燥(脱気)される。したがって、空気および水分がポンプコラム3内に侵入してしまうことが防止できる。
 本実施形態では、上記ステップ1-3,1-4は、ポンプコラム3から離れた場所で実施される。一実施形態では、潜没式ポンプ2を密閉型パージ容器1内に収容した後、密閉型パージ容器1を潜没式ポンプ2とともにポンプコラム3に搬送し、密閉型パージ容器1をポンプコラム3に連結した後に、密閉型パージ容器1の真空引きおよびパージガスの密閉型パージ容器1内への供給を開始してもよい。つまり、密閉型パージ容器1の真空引きおよび潜没式ポンプ2のドライアップは、密閉型パージ容器1をポンプコラム3に連結した後に開始してもよい。あるいは、一実施形態では、潜没式ポンプ2を密閉型パージ容器1内に収容し、密閉型パージ容器1を潜没式ポンプ2とともにポンプコラム3の上方位置に搬送した後、密閉型パージ容器1をポンプコラム3に連結する前に、密閉型パージ容器1の真空引きおよびパージガスの密閉型パージ容器1内への供給を開始してもよい。
 一実施形態では、内部空間20内にパージガスを供給した後であって、潜没式ポンプ2を密閉型パージ容器1からポンプコラム3内に移動させる前に、潜没式ポンプ2が収容された内部空間20を再度真空引きして内部空間20内の圧力を目標圧力以下にまで低下させる工程をさらに実行してもよい。すなわち、上記ステップ1-4の後であって、上記ステップ1-5の前に、潜没式ポンプ2が収容された内部空間20を再度真空引きして内部空間20内の圧力を目標圧力以下にまで低下させる。この実施形態では、液化ガスは液体水素であり、パージガスは窒素ガスである。パージガスとしてヘリウムガスは使用されない。内部空間20内の圧力は、図2に示す圧力測定装置77によって測定される。
 上記目標圧力は、以下の式により表される。
   Pv=Pa・Vm/(Vc・ρG/ρS)   (1)
 ここで、Pvは目標圧力を表し、Paは大気圧を表し、Vmは予め設定された定数を表し、Vcは密閉型パージ容器1の内部空間20の体積を表し、ρGは窒素ガスの密度を表し、ρSは固体窒素の密度を表す。上記予め設定された定数Vmは、内部空間20内に氷が析出した条件下で潜没式ポンプ2が内部空間20内で運転を実行できる氷の体積の最大値である。定数Vmは、実験または過去の運転結果から定められる。一例では、潜没式ポンプ2が配置された密閉型パージ容器1の内部空間20内に空気を導入し、空気中の水分を凍らせて氷を内部空間20内に析出させ、潜没式ポンプ2が通常の運転を実行できる氷の体積の最大値を決定する。氷が析出した内部空間20内で潜没式ポンプ2が運転を実行できることは、潜没式ポンプ2が通常の運転を実行できること、すなわち潜没式ポンプ2が意図した流量で液化ガスを排出することができることを意味する。
 上記式(1)から分かるように、目標圧力Pvは密閉型パージ容器1の内部空間20の体積に反比例する。この実施形態によれば、内部空間20内に存在する窒素ガスが液体水素に接触して固形化しても、固形化した窒素は潜没式ポンプ2の運転を実質的に阻害しない。したがって、パージガスとしてヘリウムガスを使用する必要がなく、コストを低減することができる。
 次に、潜没式ポンプ2をポンプコラム3から引き上げる工程の一実施形態について、図6乃至図8を参照して説明する。図6乃至図8に示す一連の動作は、液化ガスに接触していた超低温の潜没式ポンプ2をポンプコラム3から引き上げる動作、潜没式ポンプ2が収容された内部空間20を真空引きする動作、および潜没式ポンプ2をパージガスで加温するホットアップを含む。以下に説明する動作の前に、ポンプコラム3から液化ガスが排出される。
 ステップ2-1では、昇降装置12によって密閉型パージ容器1を下降させ、密閉型パージ容器1をポンプコラム3の上部にパージ容器連結機構としてのボルトおよびナット(図示せず)により連結する。この段階では、下側密閉蓋24は容器本体21には取り付けられていない。上側密閉蓋23は、固定具としてのボルト32およびナット33(図2参照)により容器本体21の上部に固定されており、昇降装置12のケーブル13は上側密閉蓋23に連結されている。図6では、第2蓋65(図2参照)は上側密閉蓋23から外されているが、上側密閉蓋23に取り付けられてもよい。周囲の空気がポンプコラム3内に侵入することを防ぐために、パージガス導入ポート8を通じてポンプコラム3内にパージガス(例えば、窒素ガスまたはヘリウムガスなどの不活性ガス)が供給される。ポンプコラム3内へのパージガスの供給は、以下のステップでも継続される。
 ステップ2-2では、容器本体21の内部空間20に、窒素ガスまたはヘリウムガスなどのパージガスをパージガス入口ポート27から供給し、内部空間20をパージガスで満たしながら、昇降装置12によって潜没式ポンプ2をポンプコラム3から密閉型パージ容器1内に引き上げる。第2蓋65(図2参照)は上側密閉蓋23から外されている。
 ステップ2-3では、潜没式ポンプ2が容器本体21の内部空間20内に位置すると、下側密閉蓋24が容器本体21の底部に置かれる。
 ステップ2-4では、昇降装置12によって潜没式ポンプ2を容器本体21内で下降させ、潜没式ポンプ2を下側密閉蓋24上に置く。潜没式ポンプ2の荷重は、下側密閉蓋24によって支持される。昇降装置12のケーブル13は、潜没式ポンプ2から切り離され、上側密閉蓋23に連結される。さらに、パージガスの内部空間20への供給を停止し、第2蓋65を上側密閉蓋23に取り付ける。その後、容器本体21の上側開口が上側密閉蓋23で覆われ、かつ容器本体21の下側開口が下側密閉蓋24で覆われた状態で、潜没式ポンプ2が収容された容器本体21の内部空間20を、真空排気ポート28を通じて真空引きする。真空弁36は開かれ、パージガス供給弁35は閉じられている。内部空間20内に真空が形成され、これにより潜没式ポンプ2に付着している液化ガスが気化し、潜没式ポンプ2から除去される。除去されたガス(例えば、天然ガスまたは水素ガス)は、真空ライン37を経由して図示しない回収装置により回収されるか、処理装置によって除害処理される。
 ステップ2-5では、真空引きされた内部空間20に、窒素ガスまたはヘリウムガスなどのパージガスをパージガス入口ポート27から供給し、内部空間20をパージガスで満たす。パージガスは常温でもよく、あるいはヒータなどの加熱装置により予め加熱されてもよい。内部空間20内のパージガスは、潜没式ポンプ2を加温する(ホットアップ)。ホットアップの終了は、パージ指標測定器68から出力された指標値(例えば、パージガスの温度の測定値)に基づいて判断される。
 内部空間20にパージガスを供給する工程は、内部空間20を真空引きする工程が終了した後に開始してもよいし、あるいは内部空間20を真空引きする工程が終了すると同時に開始してもよい。一実施形態では、内部空間20を真空引きする工程が終了する前に、内部空間20にパージガスを供給する工程を開始してもよい。すなわち、内部空間20を真空引きする工程の終了段階と、真空引きされた内部空間20内にパージガスを供給する工程の初期段階は、重複してもよい。
 潜没式ポンプ2からの液化ガスの除去を確実とするために、ステップ2-4の内部空間20を真空引きする工程と、ステップ2-5の真空引きされた内部空間20内にパージガスを供給する工程を繰り返してもよい。内部空間20の真空引きと、内部空間20内へのパージガスの供給を交互に繰り返すことで、潜没式ポンプ2の表面のみならず、潜没式ポンプ2の内部に存在する液化ガスを速やかに、かつ確実に除去することができる。
 潜没式ポンプ2が汲み上げる対象の液化ガスが液体水素である場合は、最初はヘリウムスをパージガスとして使用し、最終段階で窒素ガスをパージガスとして使用してもよい。すなわち、ステップ2-4の内部空間20を真空引きする工程と、ステップ2-5の真空引きされた内部空間20内にパージガスを供給する工程を繰り返す場合において、内部空間20内に最初に供給されるパージガスは、ヘリウムガスである。この場合、内部空間20内に最後に供給されるパージガスは、窒素ガスである。このように、異なる種類のパージガスを使用することで、作業コストを下げることができる。
 内部空間20の真空引きと、内部空間20内へのパージガスの供給を繰り返す回数は、予め定められてもよいし、あるいはパージ指標測定器68によって測定された潜没式ポンプ2の温度を示す指標値に基づいて定められてもよい。例えば、パージ指標測定器68によって測定された潜没式ポンプ2の温度を示す指標値がしきい値を上回るまで、内部空間20の真空引きと、内部空間20内へのパージガスの供給を繰り返してもよい。
 ステップ2-6では、パージ容器連結機構としてのボルトおよびナット(図示せず)を取り外し、潜没式ポンプ2が内部に収容された密閉型パージ容器1を昇降装置12によって引き上げてポンプコラム3から切り離す。
 ステップ2-7では、潜没式ポンプ2が内部に収容された密閉型パージ容器1を、図示しない搬送装置(例えばクレーン)によりポンプコラム3から離れた場所に移動する。
 ステップ2-8では、上側密閉蓋23を容器本体21から取り外し、図示しない吊り上げ装置(例えばクレーン)により、潜没式ポンプ2を密閉型パージ容器1から取り出す。この時点では、潜没式ポンプ2は、パージガスによって既に加温されており、酸素の沸点(-183℃)および窒素の沸点(-196℃)よりも高い温度を有している。したがって、空気が潜没式ポンプ2に接触しても、空気中の酸素および窒素は、液化しない。
 図9は、密閉型パージ容器1を含むパージ装置の他の実施形態を示す図である。特に説明しない本実施形態の構成は、図2に示す実施形態と同じであるので、その重複する説明を省略する。
 図9に示す実施形態は、真空源39の下流側にガス移送ライン81を介して接続されたガス処理装置80をさらに備えている。内部空間20を真空引きしながら、内部空間20内の気体はガス移送ライン81を通じてガス処理装置80に導かれる。ガス処理装置80は、真空源39の下流側の位置でガス移送ライン81に接続されている。したがって、真空ライン37を流れるガスは、真空源39およびガス移送ライン81を経由してガス処理装置80に送られる。このガス処理装置80は、潜没式ポンプ2に付着した液化ガスから気化したガス(例えば天然ガスまたは水素ガス)を処理する装置である。ガス処理装置80の例としては、ガス焼却装置(フレアリング装置)、化学的ガス処理装置、ガス吸着装置などが挙げられる。
 特に、本実施形態は、図6乃至図8を参照して説明した、潜没式ポンプ2の引き上げ工程時に効果的である。本実施形態によれば、液化ガスから気化したガス(例えば天然ガスまたは水素ガス)はガス処理装置80によって処理されるので、大気に放出されることがない。
 図10は、パージ容器を含むパージ装置のさらに他の実施形態を示す図である。特に説明しない本実施形態の構成は、図2に示す実施形態と同じであるので、その重複する説明を省略する。本実施形態では、以下に説明するように、潜没式ポンプ2の内部空間を真空引きし、かつパージガスを潜没式ポンプ2の内部空間に供給する。
 図10に示すパージ容器100は、上述した各実施形態における密閉型パージ容器1とは異なり、シール71,72,73を備えていない非密閉型である。ただし、本実施形態でも、図2に示す密閉型パージ容器1が用いられてもよい。図10は、潜没式ポンプ2がパージ容器100内に収容されている状態を示している。容器本体21の上側開口は上蓋101によって閉じられ、容器本体の下側開口は下蓋102によって閉じられている。潜没式ポンプ2は、吊り下げ部材82によって上蓋101から吊り下げられており、潜没式ポンプ2は下蓋102には接触していない。
 図10に示すように、パージ装置は、潜没式ポンプ2の開口、すなわち吸込み口および吐出し口を閉じるポンプカバー85と、ポンプカバー85に連結されたポンプ側排気ライン87をさらに備えている。ポンプカバー85は、着脱可能に潜没式ポンプ2に取り付けることが可能に構成されている。ポンプ側排気ライン87は、ポンプカバー85の内側に連通している。ポンプカバー85が潜没式ポンプ2に取り付けられると、潜没式ポンプ2の内部空間は密閉され、ポンプ側排気ライン87は、潜没式ポンプ2の密閉された内部空間に連通する。ポンプ側排気ライン87には、開閉弁88が取り付けられている。
 パージ装置は、パージガス供給ライン38と真空ライン37とを連通する連通ライン90と、連通ライン90に取り付けられた第2パージガス供給弁92をさらに備えている。パージガス供給ライン38と連通ライン90との接続点は、パージガスの流れ方向において、第1パージガス供給弁35よりも上流側に位置している。真空ライン37と連通ライン90との接続点は、ガスの流れ方向において、真空弁36よりも上流側に位置している。
 第1パージガス供給弁35および第2パージガス供給弁92を閉じ、かつ真空弁36を開くと、ポンプ側排気ライン87は真空ライン37に連通する。したがって、潜没式ポンプ2の内部空間には真空が形成される。第1パージガス供給弁35および真空弁36を閉じ、かつ第2パージガス供給弁92を開くと、ポンプ側排気ライン87はパージガス供給ライン38に連通する。したがって、潜没式ポンプ2の内部空間にはパージガスが供給される。第2パージガス供給弁92および真空弁36を閉じ、かつ第1パージガス供給弁35を開くと、パージガス供給ライン38は容器本体21の内部空間20に連通する。したがって、容器本体21の内部空間20にはパージガスが供給される。
 本実施形態では、第1パージガス供給弁35、第2パージガス供給弁92、連通ライン90、および真空弁36は、ポンプ側排気ライン87を、真空ライン37およびパージガス供給ライン38のいずれか一方に選択的に連通させる切り替え装置を構成する。ただし、ポンプ側排気ライン87を、真空ライン37およびパージガス供給ライン38のいずれか一方に選択的に連通させることができる限りにおいて、切り替え装置は、本実施形態の構成に限定されない。例えば、切り替え装置は、真空ライン37およびパージガス供給ライン38からそれぞれ分岐する分岐ラインと、これら分岐ラインとポンプ側排気ライン87に接続された三方弁であってもよい。
 図10に示すポンプカバー85およびポンプ側排気ライン87を用いて潜没式ポンプ2をパージガスにさらすための方法は、次のようにして実施される。
 図11に示すように、ステップ3-1では、潜没式ポンプ2をパージ容器100内に移動する前に、ポンプ側排気ライン87が連結されたポンプカバー85を潜没式ポンプ2に取り付け、潜没式ポンプ2の開口(すなわち吸込み口および吐出し口)を閉じることで、密閉された内部空間を潜没式ポンプ2内に形成する。
 ステップ3-2では、ポンプ側排気ライン87を図10に示す真空ライン37に連通させ、潜没式ポンプ2の密閉された内部空間を真空引きする。例えば、ポンプ側排気ライン87を真空排気ポート28を経由して真空ライン37に連結してもよいし、あるいはポンプ側排気ライン87を、真空ライン37から分岐する分岐ライン(図示せず)に連結してもよい。
 ステップ3-3では、ポンプ側排気ライン87を図10に示すパージガス供給ライン38に連通させ、真空引きされた潜没式ポンプ2の内部空間にパージガス(例えば窒素ガスまたはヘリウムガス)を供給する(第1ドライアップ)。例えば、ポンプ側排気ライン87を真空排気ポート28および連通ライン90を経由してパージガス供給ライン38に連結してもよいし、あるいはポンプ側排気ライン87を、パージガス供給ライン38から分岐する分岐ライン(図示せず)に連結してもよい。
 ステップ3-4では、ポンプ側排気ライン87が連結されたポンプカバー85が潜没式ポンプ2に取り付けられた状態で、潜没式ポンプ2は、図示しない搬送装置(例えばクレーン)によってパージ容器100内に移動される。より具体的には、潜没式ポンプ2は上蓋101から吊り下げ部材82によって吊り下げられた状態で、パージ容器100内に移動される。下蓋102は下部フランジ60上に置かれている。上蓋101が容器本体21の上部に置かれると、潜没式ポンプ2の荷重は、上蓋101によって支持される。
 図12に示すように、ステップ3-5では、ポンプ側排気ライン87は、真空排気ポート28を経由して真空ライン37に連結される。この段階では真空弁36、第1パージガス供給弁35、および第2パージガス供給弁92は閉じられている。
 ステップ3-6では、第1パージガス供給弁35を開き、窒素ガスまたはヘリウムガスなどのパージガスをパージガス入口ポート27を通じて容器本体21の内部空間20に供給し、内部空間20をパージガスで満たす。パージガスは、空気および水分を潜没式ポンプ2から追い払い、潜没式ポンプ2の外側は乾燥される(第2ドライアップ)。
 ステップ3-7では、真空弁36を開き、真空排気ポート28およびポンプ側排気ライン87を通じて潜没式ポンプ2の密閉された内部空間を真空引きする。
 図13に示すように、ステップ3-8では、真空弁36および第1パージガス供給弁35を閉じ、第2パージガス供給弁92を開くことで、窒素ガスまたはヘリウムガスなどのパージガスを連通ライン90および真空排気ポート28を経由して潜没式ポンプ2の内部空間内に供給する。パージガスは、潜没式ポンプ2の内部空間から空気および水分を追い払い、潜没式ポンプ2の内側は乾燥される(第3ドライアップ)。上記ステップ3-2,3-3または上記ステップ3-7,3-8のいずれか一方は、省略してもよい。
 本実施形態によれば、潜没式ポンプ2の内部空間が真空引きされ、その後パージガスが潜没式ポンプ2内に供給されるので、潜没式ポンプ2の内側を確実に乾燥させることが可能である。
 ステップ3-9では、第2パージガス供給弁92を閉じ、横蓋103(図10参照)を外して、ポンプカバー85およびポンプ側排気ライン87を容器本体21の内部空間20から取り出す。
 ステップ3-10では、横蓋103(図10参照)を容器本体21に取り付け、その後、第1パージガス供給弁35を開いて、窒素ガスまたはヘリウムガスなどのパージガスをパージガス入口ポート27から容器本体21の内部空間20内に供給する。
 図14に示すように、ステップ3-11では、ポンプコラム3の上方に設置されている昇降装置12のケーブル13を上蓋101に連結する。本実施形態のパージ容器100は、その内部に収容された潜没式ポンプ2と一体に搬送可能な可搬型パージ容器である。潜没式ポンプ2が内部に収容されたパージ容器100は、昇降装置12によって吊り下げられる。周囲の空気がポンプコラム3内に侵入することを防ぐために、パージガス導入ポート8を通じてポンプコラム3内にパージガス(例えば、窒素ガスまたはヘリウムガスなどの不活性ガス)が供給される。ポンプコラム3内へのパージガスの供給は、以下のステップでも継続される。
 ステップ3-12では、昇降装置12によって、パージ容器100および潜没式ポンプ2を下降させ、パージ容器100をポンプコラム3の上部にパージ容器連結機構としてのボルトおよびナット(図示せず)により連結する。パージ容器連結機構は、1つまたは複数のクランプであってもよい。
 ステップ3-13では、横蓋103(図10参照)を通じて下蓋102を容器本体21から取り外し、昇降装置12のケーブル13を潜没式ポンプ2に連結する。
 図15に示すように、ステップ3-14では、昇降装置12によって潜没式ポンプ2を下降させ、潜没式ポンプ2をパージ容器100からポンプコラム3内に移動させる。パージガスは、容器本体21内に供給し続ける。
 ステップ3-15では、昇降装置12のケーブル13を上蓋101に連結し、上記パージ容器連結機構としてのボルトおよびナット(図示せず)を取り外す。そして、昇降装置12によってパージ容器100を引き上げてポンプコラム3から切り離す。
 本実施形態では、上記ステップ3-1~3-10は、パージ容器100がポンプコラム3に連結される前に実施される。一実施形態では、潜没式ポンプ2をパージ容器100内に収容した後、パージ容器100を潜没式ポンプ2とともにポンプコラム3に搬送し、パージ容器100をポンプコラム3に連結した後に、潜没式ポンプ2の真空引きおよびパージガスの潜没式ポンプ2内への供給を開始してもよい。つまり、潜没式ポンプ2のドライアップは、パージ容器100をポンプコラム3に連結した後に開始してもよい。
 図1乃至図15を参照して説明した密閉型パージ容器1およびパージ容器100は、その内部に収容された潜没式ポンプ2と一体に移動可能な可搬型であるが、本発明はこれらの実施形態に限定されない。一実施形態では、密閉型パージ容器1およびパージ容器100の容器本体21は、ポンプコラム3(図1参照)の上部に予め固定されてもよい。この場でも、容器本体21の内部空間20の真空引きと、内部空間20へのパージガスの供給は、上述した実施形態と同じように行われる。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、液化アンモニアや液化天然ガス(LNG)や液体水素などの液化ガスを昇圧するための潜没式ポンプをパージガスにさらすためのパージ装置およびパージ方法に利用可能である。
 1   密閉型パージ容器
 2   潜没式ポンプ
 3   ポンプコラム
 5   液化ガス貯槽
 6   吸込み弁
 8   パージガス導入ポート
 9   液化ガス排出ポート
12   昇降装置
13   ケーブル
14   巻き上げ機
20   内部空間
21   容器本体
23   上側密閉蓋
23a  穴
24   下側密閉蓋
27   パージガス入口ポート
28   真空排気ポート
30   ポンプガイド
32   ボルト
33   ナット
34   上部フランジ
35   パージガス供給弁
36   真空弁
37   真空ライン
38   パージガス供給ライン
39   真空源
40A,40B   パージガス供給源
41   逆止弁
42A  第1閉止弁
42B  第2閉止弁
53   連結ポート
58   横蓋
60   下部フランジ
68   パージ指標測定器
71   上側シール
72   下側シール
73   側部シール
74   第2シール
80   ガス処理装置
82   吊り下げ部材
85   ポンプカバー
87   ポンプ側排気ライン
88   開閉弁
90   連通ライン
92   第2パージガス供給弁
100  パージ容器
101  上蓋
102  下蓋
103  横蓋

Claims (25)

  1.  液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ装置であって、
     前記潜没式ポンプを収容するための密閉型パージ容器と、
     前記密閉型パージ容器に接続され、かつ真空源に接続された真空ラインと、
     前記密閉型パージ容器に接続され、かつパージガス供給源に接続されたパージガス供給ラインと、
     前記パージガス供給ラインに取り付けられたパージガス供給弁を備えている、パージ装置。
  2.  前記密閉型パージ容器は、
      前記潜没式ポンプを収容するための内部空間を有する容器本体と、
      前記容器本体の上側開口を閉じる上側密閉蓋と、
      前記容器本体と前記上側密閉蓋との隙間を封止する上側シールと、
      前記容器本体の下側開口を閉じる下側密閉蓋と、
      前記容器本体と前記下側密閉蓋との隙間を封止する下側シールを備えている、請求項1に記載のパージ装置。
  3.  前記パージガス供給源は、複数のパージガス供給源である、請求項1に記載のパージ装置。
  4.  前記複数のパージガス供給源は、窒素ガス供給源とヘリウムガス供給源を少なくとも含む、請求項3に記載のパージ装置。
  5.  前記真空ラインに取り付けられた逆止弁をさらに備えている、請求項1に記載のパージ装置。
  6.  液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ装置であって、
     前記潜没式ポンプを収容するためのパージ容器と、
     前記潜没式ポンプの開口を閉じるためのポンプカバーと、
     前記ポンプカバーに連結されたポンプ側排気ラインと、
     真空源に接続された真空ラインと、
     パージガス供給源に接続されたパージガス供給ラインと、
     前記ポンプ側排気ラインを、前記真空ラインおよび前記パージガス供給ラインのいずれか一方に選択的に連通させる切り替え装置を備えている、パージ装置。
  7.  前記パージガス供給ラインは前記パージ容器に接続されている、請求項6に記載のパージ装置。
  8.  前記真空ラインは前記パージ容器に接続されている、請求項6に記載のパージ装置。
  9.  液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ方法であって、
     前記潜没式ポンプを密閉型パージ容器の内部空間内に収容し、
     前記潜没式ポンプが収容された前記内部空間を真空引きし、
     真空引きされた前記内部空間内にパージガスを供給し、その後、
     前記潜没式ポンプを前記密閉型パージ容器からポンプコラム内に移動させる、パージ方法。
  10.  前記内部空間を真空引きする工程と、真空引きされた前記内部空間内にパージガスを供給する工程を繰り返す、請求項9に記載のパージ方法。
  11.  前記内部空間内に最後に供給されるパージガスは、ヘリウムガスである、請求項10に記載のパージ方法。
  12.  前記内部空間内に最初に供給されるパージガスは、窒素ガスである、請求項11に記載のパージ方法。
  13.  前記内部空間を真空引きする工程が終了する前に、真空引きされた前記内部空間内にパージガスを供給する工程を開始する、請求項10に記載のパージ方法。
  14.  前記内部空間内にパージガスを供給した後であって、前記潜没式ポンプを前記密閉型パージ容器から前記ポンプコラム内に移動させる前に、前記潜没式ポンプが収容された前記内部空間を再度真空引きして前記内部空間内の圧力を目標圧力以下にまで低下させる工程をさらに含む、請求項9に記載のパージ方法。
  15.  前記液化ガスは液体水素であり、
     前記パージガスは窒素ガスであり、
     前記目標圧力は、以下の式により表され、
      Pv=Pa・Vm/(Vc・ρG/ρS)
     Pvは前記目標圧力を表し、Paは大気圧を表し、Vmは予め設定された定数を表し、Vcは内部空間の体積を表し、ρGは窒素ガスの密度を表し、ρSは固体窒素の密度を表す、請求項14に記載のパージ方法。
  16.  前記予め設定された定数Vmは、前記内部空間内に氷が析出した条件下で前記潜没式ポンプが前記内部空間内で運転を実行できる前記氷の体積の最大値である、請求項15に記載のパージ方法。
  17.  液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ方法であって、
     潜没式ポンプをポンプコラムから引き上げ、
     前記潜没式ポンプを密閉型パージ容器の内部空間内に収容し、
     前記潜没式ポンプが収容された前記内部空間を真空引きし、
     真空引きされた前記内部空間内にパージガスを供給する、パージ方法。
  18.  前記内部空間を真空引きする工程と、真空引きされた前記内部空間内にパージガスを供給する工程を繰り返す、請求項17に記載のパージ方法。
  19.  前記内部空間内に最初に供給されるパージガスは、ヘリウムガスである、請求項18に記載のパージ方法。
  20.  前記内部空間内に最後に供給されるパージガスは、窒素ガスである、請求項19に記載のパージ方法。
  21.  前記内部空間を真空引きする工程が終了する前に、真空引きされた前記内部空間内にパージガスを供給する工程を開始する、請求項17に記載のパージ方法。
  22.  前記内部空間を真空引きしながら、前記内部空間内の気体を真空ラインを通じてガス処理装置に導く、請求項17に記載のパージ方法。
  23.  液化ガスを移送するために使用される潜没式ポンプをパージガスにさらすためのパージ方法であって、
     前記潜没式ポンプの開口をポンプカバーで閉じ、
     前記潜没式ポンプの内部空間を真空引きし、
     真空引きされた前記潜没式ポンプの内部空間内にパージガスを供給する、パージ方法。
  24.  前記潜没式ポンプの内部空間を真空引きする前に、前記潜没式ポンプをパージ容器内に収容し、前記パージ容器の内部空間にパージガスを供給する工程をさらに含む、請求項23に記載のパージ方法。
  25.  前記潜没式ポンプの内部空間内にパージガスを供給した後に、前記潜没式ポンプをパージ容器内に収容し、前記パージ容器の内部空間にパージガスを供給する工程をさらに含む、請求項23に記載のパージ方法。
PCT/JP2022/030387 2021-08-17 2022-08-09 パージ装置およびパージ方法 WO2023022062A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023542360A JPWO2023022062A1 (ja) 2021-08-17 2022-08-09
CN202280055562.9A CN117859004A (zh) 2021-08-17 2022-08-09 吹扫装置及吹扫方法
CA3228554A CA3228554A1 (en) 2021-08-17 2022-08-09 Purge apparatus and purge method
KR1020247008109A KR20240045284A (ko) 2021-08-17 2022-08-09 퍼지 장치 및 퍼지 방법
AU2022329695A AU2022329695A1 (en) 2021-08-17 2022-08-09 Purge apparatus and purge method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132902 2021-08-17
JP2021132902 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023022062A1 true WO2023022062A1 (ja) 2023-02-23

Family

ID=85240745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030387 WO2023022062A1 (ja) 2021-08-17 2022-08-09 パージ装置およびパージ方法

Country Status (6)

Country Link
JP (1) JPWO2023022062A1 (ja)
KR (1) KR20240045284A (ja)
CN (1) CN117859004A (ja)
AU (1) AU2022329695A1 (ja)
CA (1) CA3228554A1 (ja)
WO (1) WO2023022062A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117108560A (zh) * 2023-10-21 2023-11-24 江苏源泉泵业股份有限公司 一种取水泵船潜水泵防冻水下升降支架

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030281B1 (ja) * 1968-11-19 1975-09-30
JPS5287701A (en) * 1976-01-12 1977-07-22 Itt Method of sealing storage vessels from atmosphere and apparatus therefor
JPS57137684A (en) * 1980-10-09 1982-08-25 Itt Pump apparatus
JP2000120992A (ja) * 1998-10-20 2000-04-28 Nippon Sanso Corp ガス容器へのガス充填方法及びガス充填装置
JP3197645B2 (ja) 1993-01-08 2001-08-13 株式会社日立製作所 液化ガスタンク用潜設ポンプ装置
JP3198248B2 (ja) 1996-03-21 2001-08-13 株式会社日立製作所 液化ガスタンク用潜没ポンプ装置とその吊り上げ用治具
JP3472379B2 (ja) 1995-04-26 2003-12-02 日機装株式会社 サブマージドモータポンプの設置装置
WO2006049055A1 (ja) * 2004-11-01 2006-05-11 Hitachi Kokusai Electric Inc. 基板処理装置および半導体デバイスの製造方法
JP2008078285A (ja) * 2006-09-20 2008-04-03 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197645U (ja) 2015-03-10 2015-05-28 有限会社是川建設 慶弔用花表示装置
JP3198248U (ja) 2015-03-31 2015-06-25 博一 母袋 吐水制御部付手動回転水栓

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030281B1 (ja) * 1968-11-19 1975-09-30
JPS5287701A (en) * 1976-01-12 1977-07-22 Itt Method of sealing storage vessels from atmosphere and apparatus therefor
JPS57137684A (en) * 1980-10-09 1982-08-25 Itt Pump apparatus
JP3197645B2 (ja) 1993-01-08 2001-08-13 株式会社日立製作所 液化ガスタンク用潜設ポンプ装置
JP3472379B2 (ja) 1995-04-26 2003-12-02 日機装株式会社 サブマージドモータポンプの設置装置
JP3198248B2 (ja) 1996-03-21 2001-08-13 株式会社日立製作所 液化ガスタンク用潜没ポンプ装置とその吊り上げ用治具
JP2000120992A (ja) * 1998-10-20 2000-04-28 Nippon Sanso Corp ガス容器へのガス充填方法及びガス充填装置
WO2006049055A1 (ja) * 2004-11-01 2006-05-11 Hitachi Kokusai Electric Inc. 基板処理装置および半導体デバイスの製造方法
JP2008078285A (ja) * 2006-09-20 2008-04-03 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117108560A (zh) * 2023-10-21 2023-11-24 江苏源泉泵业股份有限公司 一种取水泵船潜水泵防冻水下升降支架
CN117108560B (zh) * 2023-10-21 2024-03-19 江苏源泉泵业股份有限公司 一种取水泵船潜水泵防冻水下升降支架

Also Published As

Publication number Publication date
JPWO2023022062A1 (ja) 2023-02-23
AU2022329695A1 (en) 2024-03-28
KR20240045284A (ko) 2024-04-05
CN117859004A (zh) 2024-04-09
CA3228554A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2023022062A1 (ja) パージ装置およびパージ方法
CN102654241B (zh) 气体减压供给装置、具有该气体减压供给装置的气瓶柜、阀箱以及基板处理装置
US11317501B2 (en) Method of purifying target material for an EUV light source
WO2023022059A1 (ja) 昇降装置、ポンプ搬入方法、ポンプ引き上げ方法
WO2023022058A1 (ja) 一体可搬型パージ容器および該一体可搬型パージ容器の使用方法
WO2023022060A1 (ja) パージ容器および該パージ容器の使用方法
WO2023022063A1 (ja) バッファゲート、ポンプ搬入方法、ポンプ引き上げ方法
CN211289568U (zh) 一种具有冷量回收利用系统的氧气充装生产线
CN212537479U (zh) 一种液氧罐充装装置
WO2023210508A1 (ja) ポンプ設置装置、ポンプ設置方法、ポンプ取り出し方法
JP2023101955A (ja) ポンプの昇降装置、ポンプ搬入方法、ポンプ引き上げ方法
WO2023136033A1 (ja) 潜没式ポンプのための電力ケーブル、ポンプ搬入方法、ポンプ引き上げ方法
US3696975A (en) Submerged pump removal system
KR100785406B1 (ko) 액화석유가스 회수장치
KR101610475B1 (ko) 저장탱크 유지보수 시스템 및 방법
CN221069363U (zh) 一种用于高压外输泵长期存储的封存工装
KR100905651B1 (ko) 발전기 냉각용 수소가스 순도 유지장치
CN114441235A (zh) 液态金属取样装置
CN108569670A (zh) 一种酒精快速装卸鹤管及其应用
CN117662419A (zh) 一种循环智能抽真空系统
Arendt et al. A Brief Guide to UF6 Handling
CN118068033A (zh) 一种液态金属环境动态腐蚀样品在线换料装置
WO2012004138A1 (fr) Appareil integre de liquefaction de dioxyde de carbone et de stockage de dioxyde de carbone liquide et procede de regulation en pression de stockage d'un tel appareil
JP2017129487A (ja) 地中の気液混合流体観測装置用ガス精製・排出ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3228554

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280055562.9

Country of ref document: CN

Ref document number: 2023542360

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022329695

Country of ref document: AU

Ref document number: AU2022329695

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022858383

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022858383

Country of ref document: EP

Effective date: 20240318

ENP Entry into the national phase

Ref document number: 2022329695

Country of ref document: AU

Date of ref document: 20220809

Kind code of ref document: A