WO2023022063A1 - バッファゲート、ポンプ搬入方法、ポンプ引き上げ方法 - Google Patents

バッファゲート、ポンプ搬入方法、ポンプ引き上げ方法 Download PDF

Info

Publication number
WO2023022063A1
WO2023022063A1 PCT/JP2022/030388 JP2022030388W WO2023022063A1 WO 2023022063 A1 WO2023022063 A1 WO 2023022063A1 JP 2022030388 W JP2022030388 W JP 2022030388W WO 2023022063 A1 WO2023022063 A1 WO 2023022063A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
purge
gas
buffer
purge gas
Prior art date
Application number
PCT/JP2022/030388
Other languages
English (en)
French (fr)
Inventor
修一郎 本田
哲司 笠谷
隼人 池田
光隆 石見
圭 渡次
日向 菊池
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to CA3228555A priority Critical patent/CA3228555A1/en
Priority to JP2023542361A priority patent/JPWO2023022063A1/ja
Priority to CN202280055724.9A priority patent/CN117795240A/zh
Priority to AU2022330643A priority patent/AU2022330643A1/en
Priority to KR1020247008110A priority patent/KR20240042085A/ko
Publication of WO2023022063A1 publication Critical patent/WO2023022063A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • F17C2227/0142Pumps with specified pump type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid

Definitions

  • the invention when a submerged pump for boosting the pressure of liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen is carried into the pump column and pulled up from the pump column, Regarding the buffer gate used to isolate the Further, the invention relates to a method of loading a submersible pump into a pump column and a method of lifting a submersible pump out of the pump column using such a buffer gate.
  • liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen
  • Natural gas is widely used for thermal power generation and as a chemical raw material. Further, ammonia and hydrogen are expected as energy that does not generate carbon dioxide that causes global warming. Applications of hydrogen for energy include fuel cells and turbine power generation. Since natural gas, ammonia and hydrogen are gaseous at normal temperatures, natural gas, ammonia and hydrogen are cooled and liquefied for their storage and transportation. Liquefied gas such as liquefied natural gas (LNG), liquefied ammonia, and liquefied hydrogen is temporarily stored in a liquefied gas storage tank and then transferred to a power plant, factory, or the like by a pump.
  • LNG liquefied natural gas
  • FIG. 28 is a schematic diagram showing a conventional example of a liquefied gas storage tank in which liquefied gas is stored and a pump for pumping up the liquefied gas.
  • the pump 500 is installed in a vertical pump column 505 installed in the liquefied gas reservoir 501 .
  • the inside of the pump column 505 is filled with liquefied gas, and the entire pump 500 is immersed in the liquefied gas.
  • Pump 500 is thus a submerged pump that can operate in liquefied gas.
  • the pump 500 When the pump 500 is operated, the liquefied gas in the liquefied gas reservoir 501 is drawn into the pump column 505, rises in the pump column 505, and is discharged from the pump column 505 through the liquefied gas discharge port 509.
  • the pump 500 is a machine that includes consumable parts, it requires regular maintenance. When pump 500 is first installed in pump column 505 and when pump 500 is returned to pump column 505 after maintenance, it is necessary to prevent air from entraining pump 500 and entering pump column 505 . be. If air enters the pump column 505 together with the pump 500 , the moisture in the air will be cooled and solidified by the ultra-low temperature liquefied gas, which will hinder the rotation of the pump 500 .
  • the liquefied gas is liquid hydrogen
  • nitrogen and oxygen in the air may liquefy or solidify and become mixed in the liquefied gas. Solidification of nitrogen and oxygen can damage equipment, and liquefied oxygen mixed with liquid hydrogen can cause an explosion.
  • the pump 500 Even when the pump 500 is removed from the pump column 505 for maintenance purposes, etc., it is necessary to prevent ambient air from entering the pump column 505 . That is, the pump 500 that has been in contact with the liquefied gas is at an extremely low temperature, and when the air contacts such a pump 500 , the moisture contained in the air liquefies or solidifies on the surface of the pump 500 , and is trapped inside the pump column 505 . There is a risk that they may fall and be mixed with the liquefied gas. Especially when the liquefied gas is liquid hydrogen, the following problems may occur. That is, since the temperature of liquid hydrogen is ⁇ 253° C. or lower, the pump 500 just removed from the pump column 505 is also at an ultra-low temperature equivalent to that of liquid hydrogen.
  • the present invention provides a buffer gate that can isolate the inside and outside of the pump column when the submerged pump is carried into the pump column and pulled up from the pump column.
  • the present invention also provides a method of loading a submersible pump into the pump column and a method of lifting the submersible pump from the pump column using such a buffer gate.
  • a buffer gate for separating the inside and the outside of a pump column in which a submerged pump for transferring liquefied gas is arranged, the buffer box having a buffer chamber inside; A first partition closing an upper opening of a buffer box, a second partition closing an upper opening of the pump column, and a purge gas inlet port communicating with the buffer chamber, the buffer box being fixed to the upper end of the pump column.
  • a buffer gate is provided.
  • the longitudinal length of the buffer chamber is less than the longitudinal length of the submerged pump.
  • the buffer gate further comprises a leak detector for detecting liquefied gas leaking from the pump column into the buffer chamber.
  • the buffer gate further comprises a purge gas outlet port communicating with the buffer chamber, the purge gas outlet port being connected to a gas treatment device.
  • the buffer gate further comprises an electrical terminal to which a power cable is connected for powering the submersible pump.
  • a method of loading a submersible pump for transferring liquefied gas into a pump column wherein the submersible pump is loaded with an upper lid of a purge container located on a buffer gate open.
  • filling the interior space of the purge container containing the submerged pump with purge gas closing the upper lid, and opening the first gate valve and the second gate valve; from the purge vessel into the pump column through the buffer gate.
  • a purge gas is supplied into the purge vessel, the buffer chamber of the buffer gate, and the pump column while moving the submerged pump from the purge vessel into the pump column through the buffer gate.
  • the pressure of the purge gas supplied into the buffer chamber is higher than the pressure of the purge gas supplied into the purge container.
  • the pressure of the purge gas supplied into the pump column is higher than the pressure of the purge gas supplied into the buffer chamber.
  • the purge is placed into the purge container, the buffer chamber of the buffer gate, and the pump column while moving the submersible pump from the purge container into the pump column through the buffer gate. Purge gas is supplied to the container, the buffer chamber, and the pump column in this order.
  • the buffer is removed from the pump column by supplying the purge gas into the pump column while moving the submersible pump from the purge vessel into the pump column through the buffer gate.
  • the purge gas is passed through the buffer chamber of the gate and into the interior space of the purge container.
  • the method includes introducing a purge gas into the interior of the submersible pump prior to moving the submersible pump into the purge vessel or after moving the submersible pump into the purge vessel. Further comprising the step of providing. In one aspect, the method includes moving the submerged pump from the purge vessel through the buffer gate and into the pump column, followed by removing the top lid, the first gate valve, and the second gate valve. lowering the submersible pump within the pump column with the closed.
  • the liquefied gas is liquid hydrogen and the purge gas includes at least helium gas.
  • the liquefied gas is liquid hydrogen and the purge gas comprises hydrogen gas.
  • the liquefied gas is liquefied ammonia and the purge gas comprises ammonia gas.
  • a method for lifting a submerged pump for transferring liquefied gas from a pump column wherein the submerged pump is lifted from a pump column while an upper opening of a purge container disposed on a buffer gate is closed with a top cover.
  • the top opening of the pump column is closed by the first gate valve
  • the top opening of the purge container is closed by the top lid
  • the purge container is filling the interior of the purge container containing the submerged pump with purge gas
  • opening the upper lid, and closing the lower opening of the second gate valve with the first gate valve and the second gate valve is closed and the submersible pump is withdrawn from the purge vessel.
  • a purge gas is supplied into the purge vessel, the buffer chamber of the buffer gate, and the pump column while moving the submersible pump from the pump column through the buffer gate and into the purge vessel.
  • the pressure of the purge gas supplied into the buffer chamber is higher than the pressure of the purge gas supplied into the purge container.
  • the pressure of the purge gas supplied into the pump column is higher than the pressure of the purge gas supplied into the buffer chamber.
  • the pump is placed into the pump column, the buffer chamber of the buffer gate, and the purge vessel. Purge gas is supplied to the column, the buffer chamber, and the purge container in this order.
  • the purge gas is supplied into the pump column while moving the submersible pump from the pump column through the buffer gate into the purge vessel, thereby removing the buffer from the pump column.
  • the purge gas is passed through the buffer chamber of the gate and into the interior space of the purge container.
  • the method includes opening the top lid, the first gate valve, and the second gate valve prior to moving the submerged pump from the pump column through the buffer gate and into the purge vessel. In the closed state, the step of raising the submersible pump within the pump column is further included.
  • the liquefied gas is liquid hydrogen and the purge gas includes at least helium gas.
  • the liquefied gas is liquid hydrogen and the purge gas comprises hydrogen gas.
  • the liquefied gas is liquefied ammonia and the purge gas comprises ammonia gas.
  • the buffer gate separates the inside and outside of the pump column, while allowing the submerged pump to be carried into the pump column and to be pulled up from the pump column. Therefore, the buffer gate can prevent air present outside the pump column from entering the pump column.
  • the combination of the buffer gate and the purge container can reliably prevent the ingress of air and moisture into the pump column. That is, the air and moisture entrained in the submersible pump are removed from the submersible pump by the purge gas, resulting in drying (degassing) of the submersible pump (hereinafter referred to as dry-up). Therefore, air and moisture are not entrained in the submersible pump, and air and moisture are prevented from entering the pump column. After this dry-up, the submersible pump can be quickly moved into the pump column through the buffer gate with purge gas around the submersible pump.
  • the super-low-temperature submerged pump can be heated with the purge gas while being pulled up from the pump column into the purge container via the buffer gate (hereinafter referred to as hot-up).
  • This hot-up is performed before the submersible pump contacts the surrounding air, so moisture in the air does not liquefy or solidify on the surfaces of the submersible pump.
  • the present invention is effective when the liquefied gas is liquid hydrogen. That is, the submerged pump that has been immersed in liquid hydrogen is at an ultra-low temperature equivalent to that of liquid hydrogen when pulled out of the pump column.
  • the boiling point of hydrogen (-253°C) is lower than the boiling point of oxygen (-183°C) and the boiling point of nitrogen (-196°C)
  • the air not only the nitrogen inside, but also the oxygen liquefies and drips into the pump column.
  • the submerged pump that has been immersed in liquid hydrogen is rapidly warmed by the purge gas before coming into contact with air.
  • the buffer gate could prevent the liquefied oxygen or liquefied nitrogen from dripping into the pump column. As a result, safe removal of the submersible pump can be achieved.
  • FIG. 1 illustrates one embodiment of a pump system for transporting liquefied gas
  • FIG. FIG. 4 is an enlarged cross-sectional view of the buffer gate and pump column
  • FIG. 4 is a cross-sectional view showing a purge container
  • It is a figure explaining the operation
  • FIG. 1 is a schematic diagram showing a conventional example of a liquefied gas storage tank in which liquefied gas is stored and a pump for pumping up the liquefied gas.
  • FIG. 1 illustrates one embodiment of a pump system for transporting liquefied gas.
  • liquefied gases that may be transported by the pump system shown in FIG. 1 include liquefied ammonia, liquid hydrogen, liquid nitrogen, liquefied natural gas, liquefied ethylene gas, liquefied petroleum gas, and the like.
  • the pump system includes a submerged pump 2 for transferring liquefied gas, a pump column 3 in which the submerged pump 2 is housed, and a A buffer gate 1 is provided.
  • the pump column 3 is installed in a liquefied gas storage tank 5 in which liquefied gas is stored.
  • the pump column 3 is a vertically extending hollow container, the upper part of which protrudes upward from the liquefied gas storage tank 5 .
  • a suction valve 6 is provided at the bottom of the pump column 3 .
  • the submerged pump 2 is installed at the bottom of the pump column 3 .
  • the structure of the suction valve 6 is not particularly limited.
  • the suction valve 6 may be of a type in which the suction valve 6 is opened by the weight of the submerged pump 2, or may be an actuator-driven valve (for example, an electric valve).
  • Pump column 3 further has purge gas inlet port 8 and outlet port 9 .
  • the buffer gate 1 is a gate structure for isolating the inside and outside of the pump column 3.
  • the upper opening of the pump column 3 is closed by the buffer gate 1 during operation of the submerged pump 2 .
  • the liquefied gas in the liquefied gas storage tank 5 is introduced into the pump column 3 through the suction valve 6, and the pump column 3 is filled with the liquefied gas.
  • the entire submerged pump 2 is immersed in the liquefied gas. Therefore, the submerged pump 2 is configured to be operable in liquefied gas.
  • the liquefied gas pressurized by the submerged pump 2 is transferred to the outside through the discharge port 9 .
  • FIG. 2 is an enlarged sectional view of the buffer gate 1 and the pump column 3.
  • the buffer gate 1 includes a buffer box 14 having a buffer chamber 12 therein, a partition wall 16 closing an upper opening of the buffer box 14 , a partition wall 17 closing an upper opening of the pump column 3 , and a purge gas inlet port communicating with the buffer chamber 12 . 20.
  • a buffer box 14 is fixed to the upper end of the pump column 3 .
  • the buffer chamber 12 is sealed by an upper partition 16 and a lower partition 17 .
  • the partition walls 16 and 17 are detachably fixed to the buffer box 14 by fasteners (for example, screws) not shown.
  • the longitudinal length of the buffer chamber 12 is smaller than the longitudinal length of the submerged pump 2 , and the width of the buffer chamber 12 is greater than the width of the submerged pump 2 . Therefore, the submerged pump 2 can pass through the buffer chamber 12 .
  • the buffer gate 1 has a movable rod 25 extending through the partition wall 17 .
  • the movable rod 25 is vertically movable relative to the partition wall 17 .
  • a hanging cable 13 is connected to the lower end of the movable rod 25 , and the submerged pump 2 is connected to the lower end of the hanging cable 13 .
  • the buffer gate 1 further comprises a purge gas outlet port 27 communicating with the buffer chamber 12 .
  • Purge gas inlet port 20 is connected to purge gas supply line 28 , which is connected to purge gas supply 40 .
  • a purge gas such as nitrogen gas or helium gas is supplied from the purge gas supply source 40 through the purge gas supply line 28 and the purge gas inlet port 20 into the buffer chamber 12, filling the buffer chamber 12 and supplying the purge gas. It is discharged through outlet port 27 .
  • the purge gas used is a gas composed of a component with a boiling point lower than the boiling point of the liquefied gas to be pumped by the submerged pump 2. This is to prevent the purge gas from liquefying when it contacts the liquefied gas or the ultra-low temperature submersible pump 2 .
  • purge gas include inert gases such as nitrogen gas and helium gas.
  • nitrogen gas which is a gas composed of nitrogen having a boiling point ( ⁇ 196° C.) lower than the boiling point ( ⁇ 162° C.) of liquefied natural gas. is used for the purge gas.
  • helium gas which is a gas made of helium having a boiling point (-269°C) lower than the boiling point of hydrogen (-253°C). is used for the purge gas.
  • the purge gas outlet port 27 may be coupled to the gas treatment device 42, as shown in FIG. Even if the liquefied gas leaks into the buffer chamber 12, the vaporized gas (for example, natural gas or hydrogen gas) from the liquefied gas is discharged from the buffer chamber 12 through the purge gas outlet port 27 together with the purge gas. It is sent through line 43 to gas treatment unit 42 . A gas (for example, natural gas or hydrogen gas) vaporized from the liquefied gas is treated by the gas treatment device 42 and rendered harmless. Examples of gas treatment devices 42 include gas incinerators (flaring devices), chemical gas treatment devices, gas adsorption devices, and the like.
  • the purge gas outlet port 27 may be connected to a gas dissipation device installed in a secure location.
  • a part of the purge gas may contain a gas composed of the same components as those of the liquefied gas.
  • all of the purge gas may be gas of the same composition as the liquefied gas.
  • the purge gas source 40 may comprise a source of gas of the same composition as that of the liquefied gas.
  • purge gas source 40 may include a hydrogen gas source.
  • purge gas supply 40 may include an ammonia gas supply.
  • the buffer gate 1 further comprises an electrical terminal 50 to which a power cable 45 is connected for supplying electrical power to the submersible pump 2 .
  • An electrical terminal 50 is positioned within the buffer chamber 12 .
  • the electrical terminals 50 are installed on the partition wall 17 in this embodiment, the electrical terminals 50 may be installed on the inner surface of the buffer box 14 . Additionally, in one embodiment, the electrical terminals 50 may be located external to the buffer chamber 12 . For example, electrical terminals 50 may be secured to the outer surface of bulkhead 16 .
  • the power cable 45 extends from the electrical terminal 50 to the electric motor of the submerged pump 2 . Power is supplied from a power supply (not shown) through an external power cable 46 to the electrical terminals 50 and through a power cable 45 to the electric motor of the submersible pump 2 .
  • the buffer gate 1 further comprises a gate valve 52 arranged within the buffer chamber 12 .
  • This gate valve 52 is located adjacent to the partition 17 and below the partition 16 . More specifically, gate valve 52 is positioned between buffer box 14 and pump column 3 .
  • the gate valve 52 is a double-opening type valve and is opened and closed by an actuator (not shown) or manually. In one embodiment, the gate valve 52 may be a directional type or another type of valve.
  • the upper opening of the pump column 3 can be closed not only by the partition 17 but also by the gate valve 52 .
  • a pressure control valve 55 is attached to the purge gas supply line 28, and the pressure and supply timing of the purge gas supplied into the buffer chamber 12 are controlled by the pressure control valve 55.
  • a purge gas supply line 58 is connected to the purge gas introduction port 8 of the pump column 3 , and the purge gas supply line 58 is connected to the purge gas supply source 40 .
  • a pressure control valve 59 is attached to the purge gas supply line 58 , and the pressure control valve 59 controls the pressure and supply timing of the purge gas supplied into the pump column 3 .
  • the buffer gate 1 of this embodiment includes a leak detector 65 that detects liquefied gas leaking from the pump column 3 into the buffer chamber 12 .
  • the entire leak detector 65 is located within the buffer chamber 12 .
  • a portion of leak detector 65 may be located within buffer chamber 12 and another portion may be located outside buffer chamber 12 .
  • the entire leak detector 65 may be located outside the buffer chamber 12 and the leak detector 65 communicates with the buffer chamber 12 .
  • leak detector 65 may be connected to purge gas exhaust line 43 that is connected to purge gas outlet port 27 . If the liquefied gas leaks from the pump column 3 into the buffer chamber 12, the leak detector 65 can detect the leaked liquefied gas.
  • the suction valve 6 of the pump column 3 is opened by the weight of the submerged pump 2 , and the liquefied gas in the liquefied gas storage tank 5 (see FIG. 1) flows into the pump column 3 .
  • the suction valve 6 has a valve body 6A that covers the lower end opening of the pump column 3 and a plurality of springs 6B that bias the valve body 6A upward.
  • the valve body 6A is pressed against the lower end of the pump column 3 by a plurality of springs 6B to close the lower end opening of the pump column 3.
  • the suction valve 6 may be an actuator-driven valve (for example, an electric valve).
  • FIG. 3 is a cross-sectional view showing the purge container 71.
  • the purge container 71 is a device for exposing the submerged pump 2 to purge gas.
  • the purge container 71 is detachably connected to the buffer gate 1 .
  • purge container 71 may be secured to the top of buffer gate 1 .
  • the purge container 71 includes a container body 74 having an internal space 72 for accommodating the submerged pump 2, an upper lid 76 covering the upper opening of the container body 74, and a lower opening of the container body 74. and a purge gas inlet port 81 and a purge gas outlet port 82 communicating with the internal space 72 of the container body 74 .
  • the upper lid 76 and the gate valve 79 of this embodiment are of the double opening type, but may be of other types.
  • An upper opening of the purge container 71 is closed by an upper lid 76 and a lower opening of the purge container 71 is closed by a gate valve 79 .
  • a purge gas supply line 85 extending from the purge gas supply source 40 is connected to the purge gas inlet port 81 .
  • a pressure control valve 86 is attached to the purge gas supply line 85 , and the pressure of the purge gas supplied into the internal space 72 of the purge container 71 and the supply timing are controlled by the pressure control valve 86 .
  • the container body 74 is a hollow structure.
  • the container body 74 has a rectangular horizontal cross section, but the shape is not particularly limited.
  • the purge container 71 further includes a horizontal lid 87 that closes an opening 74b formed in the side wall 74a of the container body 74.
  • the lateral lid 87 is detachably fixed to the side wall 74a of the container body 74 by fasteners (for example, a plurality of screws) not shown. When the lateral lid 87 is removed, the operator can access the inner space 72 of the purge container 71 through the opening 74b.
  • the purge gas source 40 described above is a nitrogen gas source or a helium gas source.
  • purge gas supply 40 may include multiple purge gas supplies of different types, such as a nitrogen gas supply and a helium gas supply. In this case, multiple purge gas supply sources may be selectively connected to the purge gas supply line 85 .
  • nitrogen gas is more expensive than nitrogen gas.
  • Nitrogen has a larger atomic weight than helium and has a higher drying effect. Therefore, nitrogen gas may be used as the purge gas at first, and helium gas may be used as the purge gas in the final stage.
  • nitrogen gas is supplied into the buffer chamber 12 and the purge container 71 to replace the air in the internal space 72 of the buffer chamber 12 and the purge container 71 with nitrogen gas, and then helium gas is introduced into the buffer chamber 12 and the purge container 71. to fill the buffer chamber 12 and the internal space 72 of the purge container 71 with helium gas.
  • At least one of the buffer chamber 12 and the pump column 3 is always supplied with purge gas in all the steps described below.
  • a series of operations shown in FIGS. 4 to 12 includes drying up the submersible pump 2 with purge gas and putting the dried submersible pump 2 into the pump column 3 .
  • the liquefied gas is discharged from the pump column 3, as shown in step 1-1 of FIG. Specifically, with the upper opening of the pump column 3 closed by the buffer gate 1, the purge gas is supplied into the pump column 3 from the purge gas introduction port 8, and the liquefied gas is drawn from the pump column 3 by the pressure of the purge gas. Exhaust through 6.
  • the partition 16 is removed from the buffer gate 1, and the purge container 71 is placed on the buffer gate 1 by the lifting device 91.
  • the lifting device 91 has a winch 92 such as a hoist or a winch for hoisting the suspension cable 13 .
  • the purge container 71 is connected to the upper end of the buffer gate 1 with fasteners (for example, screws).
  • step 1-3 purge gas is supplied into the interior space 72 of the purge container 71 through the purge gas inlet port 81, and the interior space 72 is filled with the purge gas. Purge gas is exhausted from interior space 72 through purge gas outlet port 82 .
  • step 1-4 the bulkhead 17 is connected to the suspension cable 13 of the lifting device 91 and removed from the buffer gate 1 by the lifting device 91.
  • FIG. Top lid 76 , gate valve 79 , and gate valve 52 each have a cable penetration, such as a hole or notch, through which suspension cable 13 can pass.
  • the shape and configuration of the cable penetration portion are not particularly limited as long as the suspension cable 13 can pass through.
  • At least one of the top lid 76, the gate valve 79, and the gate valve 52 is closed when the partition 17 passes through the buffer gate 1 and the purge container 71. Specifically, before the partition 17 moves inside the buffer gate 1, the gate valve 79 is opened and the top lid 76 remains closed. After septum 17 has moved from buffer gate 1 into purge container 71, gate valve 52 and gate valve 79 are closed. The upper lid 76 is opened when the partition 17 comes directly under the upper lid 76 , and after the partition 17 comes out of the purge container 71 , the upper lid 76 is closed. Such operation prevents ambient air from entering the pump column 3 through the purge container 71 and the buffer gate 1 .
  • the pump cover 95 is attached to the submerged pump 2, and the opening of the submerged pump 2, that is, the suction port and the discharge port are closed with the pump cover 95.
  • a pump vacuum line 97 and a pump purge line 98 are connected to the pump cover 95 .
  • the pump vacuum line 97 is connected to a vacuum source (not shown), such as a vacuum pump, and the pump barge line is connected to a purge gas supply (not shown).
  • a vacuum valve 101 is attached to the pump vacuum line 97 and a pump purge valve 102 is attached to the pump purge line 98 .
  • step 1-6 while the gas inside the submersible pump 2 is sucked through the pump vacuum line 97, the purge gas made of inert gas such as nitrogen gas or helium gas is passed through the pump purge line 98 to the submersible pump 2. supplied inside the Nitrogen gas may be first supplied into the submerged pump 2 as the purge gas, and then helium gas may be supplied into the submerged pump 2 as the purge gas instead of the nitrogen gas. The purge gas expels air and moisture from the interior of submersible pump 2 . After purging the interior of the submerged pump 2, the vacuum valve 101 and the pump purge valve 102 are closed.
  • inert gas such as nitrogen gas or helium gas
  • step 1-7 with the gate valve 79 and the gate valve 52 closed and the top cover 76 open, the submersible pump 2 is suspended from the cable 13 of the lifting device 91 together with the pump cover 95. and moved into the inner space 72 of the purge container 71 by the lifting device 91 .
  • the interior of the submersible pump 2 is evacuated through pump vacuum line 97 while purge gas is supplied through pump purge line 98 to the submersible pump 2 . 2 may be supplied.
  • the top lid 76 is closed. Further, the lateral lid 87 is opened, and the pump cover 95 is taken out through the opening 74b of the container body 74. As shown in FIG.
  • the lateral lid 87 is closed.
  • Purge gas is fed into the interior space 72 of the purge vessel 71 through the purge gas inlet port 81, and the interior space 72 is filled with the purge gas.
  • Purge gas is exhausted from interior space 72 through purge gas outlet port 82 .
  • the submersible pump 2 is exposed (contacted) to purge gas within the purge vessel 71 , thereby excluding air and moisture from the surfaces of the submersible pump 2 .
  • the step of exposing the submerged pump 2 to purge gas in the purge container 71 before putting the submerged pump 2 into the pump column 3 is called dry-up.
  • the top lid 76, gate valve 79, and gate valve 52 are closed during drying. Purge gas continues to be supplied into the purge container 71, the buffer chamber 12, and the pump column 3 during steps 1-3 to 1-9.
  • step 1-10 When the submersion pump 2 is completely dried up, in step 1-10, the gate valve 79 and the gate valve 52 are opened while the upper lid 76 remains closed, and the submergence pump 2 is lifted by the lifting device 91 to the purge container 71. , is lowered (moved) into the pump column 3 through the buffer gate 1 . While the submerged pump 2 is moved from the purge container 71 into the pump column 3 via the buffer gate 1 , the purge gas continues to be supplied into the purge container 71 , the buffer chamber 12 of the buffer gate 1 and the pump column 3 .
  • the pressure of the purge gas supplied inside the buffer chamber 12 is higher than the pressure of the purge gas supplied inside the purge container 71 . Due to this pressure difference, the air present in the purge container 71 can be prevented from entering the buffer chamber 12 . Furthermore, in one embodiment, the pressure of the purge gas supplied into the pump column 3 is higher than the pressure of the purge gas supplied into the buffer chamber 12 . Due to this pressure difference, the air present in the purge container 71 can be prevented from entering the pump column 3 via the buffer chamber 12 .
  • the purge gas is supplied only from the purge gas introduction port 8 to the pump column as shown in alternative steps 1-9′ and 1-10′ of FIG. 3 and discharged from the purge gas outlet port 82 of the purge container 71 .
  • Purge gas inlet port 20, purge gas outlet port 27, and purge gas inlet port 81 are closed. Therefore, no purge gas is supplied to the purge gas inlet port 81 and the purge gas inlet port 20 .
  • the purge gas supplied into the pump column 3 from the purge gas introduction port 8 flows from the pump column 3 through the buffer chamber 12 of the buffer gate 1 into the internal space 72 of the purge container 71, and then through the purge gas outlet port 82. It is discharged from the internal space 72 of the container 71 .
  • Purge gas outlet port 82 may be connected to a vacuum source to draw purge gas from purge vessel 71 .
  • gate valve 52 and gate valve 79 are closed, but each of gate valve 52 and gate valve 79 has a cable opening, such as a hole or notch through which suspension cable 13 can pass. With penetrations, the purge gas can flow through the cable penetrations.
  • the above step 1-10 consists of step 1-10a of opening gate valve 79 with gate valve 52 closed, and step 1-10a of opening gate valve 52 after opening gate valve 79. It may be divided into steps 1-10b.
  • the purge gas may continue to be supplied to both the inner space 72 of the purge container 71 and the buffer chamber 12, or the purge gas may be supplied to the inner space 72 of the purge container 71 when the gate valve 79 is opened in step 1-10a above.
  • the supply of the purge gas may be stopped and the supply of the purge gas to the buffer chamber 12 may be started.
  • the purge gas is supplied into the pump column 3. may start supplying That is, the purge gas may be supplied to the purge container 71, the buffer chamber 12, and the pump column 3 in this order.
  • purge gas is supplied only from the purge gas introduction port 8 to the pump column, as shown in alternative steps 1-10a′ and 1-10b′ of FIG. 3 and discharged from the purge gas outlet port 82 of the purge container 71 .
  • No purge gas is supplied to the purge gas inlet port 81 and the purge gas inlet port 20 .
  • Purge gas flows from the pump column 3 through the buffer chamber 12 of the buffer gate 1 into the interior space 72 of the purge vessel 71 and is discharged from the interior space 72 of the purge vessel 71 through the purge gas outlet port 82 .
  • Purge gas outlet port 82 may be connected to a vacuum source to draw purge gas from purge vessel 71 .
  • the purge gas supply operation of the embodiment shown in FIG. 10, which is not specifically described, is the same as the purge gas supply operation of the embodiment shown in FIG. 8, so redundant description thereof will be omitted.
  • step 1-11 after the submerged pump 2 moves into the pump column 3, the gate valve 79 and the gate valve 52 are closed. With the upper lid 76 , the gate valve 79 and the gate valve 52 closed, the submerged pump 2 is lowered in the pump column 3 by the lifting device 91 .
  • step 1-12 the cable stopper 105 is attached to the suspending cable 13 to which the submerged pump 2 is connected. Cable stopper 105 is placed on top lid 76 . The load of the submerged pump 2 is supported by the upper lid 76 via the suspending cable 13 and the cable stopper 105 .
  • step 1-13 the partition 17 is connected to the lifting device 91, and the hanging cable 13 is connected to the movable rod 25 extending through the partition 17.
  • the movable rod 25 extends through the partition wall 17 , and the relative position of the movable rod 25 with respect to the partition wall 17 is fixed by a rod stopper 107 .
  • Suspension cable 13 is connected to the lower end of movable rod 25 .
  • the load of the submerged pump 2 is supported by the upper lid 76 via the hanging cable 13 and cable stopper 105 .
  • An electrical terminal 50 is attached in advance to the upper surface of the partition wall 17 .
  • a power cable 45 extending from the submerged pump 2 is electrically connected to an electrical terminal 50 .
  • step 1-14 the cable stopper 105 is removed and the top lid 76 is opened.
  • the partition 17 and the submerged pump 2 are supported by a lifting device 91 . Then, the partition 17 and submerged pump 2 are lowered by the lifting device 91 .
  • step 1-15 when the partition 17 is lowered to the interior of the purge container 71, the partition 17 and submerged pump 2 are temporarily stopped, and the upper lid 76 is closed.
  • Purge gas is supplied into the interior space 72 of the purge container 71 through the purge gas inlet port 81, and the interior space 72 is filled with the purge gas. Purge gas is exhausted from interior space 72 through purge gas outlet port 82 .
  • the septum 17 is exposed (contacted) to purge gas within the purge vessel 71 , thereby excluding air and moisture from the surface of the septum 17 .
  • This step is for drying up the partition walls 17 . While the partition wall 17 is drying up, the upper lid 76 , the gate valve 79 and the gate valve 52 are closed, and the purge gas continues to be supplied into the purge container 71 , the buffer chamber 12 and the pump column 3 .
  • step 1-16 the gate valve 79 and the gate valve 52 are opened while the upper lid 76 remains closed, and the partition 17 is lifted from the purge container 71 into the buffer gate 1 by the lifting device 91. It descends (moves) and is placed on the upper end of the pump column 3 . At this time, the submerged pump 2 is positioned directly above the bottom of the pump column 3 (suction valve 6). While the partition 17 is being moved from the purge container 71 into the buffer gate 1 , the purge gas continues to be supplied into the purge container 71 , the buffer chamber 12 of the buffer gate 1 and the pump column 3 .
  • top lid 76, gate valve 79, and gate valve 52 is closed when partition 17 moves within purge container 71 and buffer gate 1.
  • FIG. Such operation prevents ambient air from entering the pump column 3 through the purge container 71 and the buffer gate 1 .
  • the partition wall 17 is fixed to the upper end of the pump column 3 by fasteners (for example, screws).
  • purge gas is supplied only from the purge gas introduction port 8 to the pump column, as shown in alternative steps 1-15' and 1-16' of FIG. 3 and discharged from the purge gas outlet port 82 of the purge container 71 .
  • No purge gas is supplied to the purge gas inlet port 81 and the purge gas inlet port 20 .
  • Purge gas flows from the pump column 3 through the buffer chamber 12 of the buffer gate 1 into the interior space 72 of the purge vessel 71 and is discharged from the interior space 72 of the purge vessel 71 through the purge gas outlet port 82 .
  • Purge gas outlet port 82 may be connected to a vacuum source to draw purge gas from purge vessel 71 .
  • step 1-15' gate valve 52 and gate valve 79 are closed, but purge gas is allowed to flow through the gap between the cable penetration of gate valve 52 and gate valve 79 and the suspension cable 13. . Since the purge gas supply operation of the embodiment shown in FIG. 13, which is not specifically described, is the same as the purge gas supply operation of the embodiment shown in FIG. 8, redundant description thereof will be omitted.
  • the purge container 71 is separated from the buffer gate 1 and lifted by the lifting device 91.
  • FIG. 1-18 the movable rod 25 is directly connected to the lifting device 91 and the rod stopper 107 is removed. Then, the submersible pump 2 together with the movable rod 25 and suspension cable 13 is lowered slightly by the lifting device 91, and the submersible pump 2 is placed on the bottom of the pump column 3 (suction valve 6). Immediately before that, introduction of the purge gas from the purge gas introduction port 8 to the pump column 3 is stopped. The suction valve 6 is opened by the weight of the submerged pump 2 , and the liquefied gas in the liquefied gas storage tank 5 flows into the pump column 3 .
  • Steps 1-17 and 1-18 may be performed in reverse order. That is, in one embodiment, the movable rod 25 is directly connected to the lifting device 91 and the rod stop 107 is removed. Then, the submersible pump 2 together with the movable rod 25 and suspension cable 13 is lowered slightly by the lifting device 91, and the submersible pump 2 is placed on the bottom of the pump column 3 (suction valve 6). Immediately before that, introduction of the purge gas from the purge gas introduction port 8 to the pump column 3 is stopped. The suction valve 6 is opened by the weight of the submerged pump 2 , and the liquefied gas in the liquefied gas storage tank 5 flows into the pump column 3 . After that, the purge container 71 is separated from the buffer gate 1 and lifted by the lifting device 91 .
  • step 1-19 the partition 16 is placed on top of the buffer gate 1 by the lifting device 91. As shown in FIG. At step 1-20, the lifting device 91 is disconnected from the bulkhead 16, and the bulkhead 16 is secured to the upper end of the pump column 3 with fasteners (eg, screws). Additionally, external power cable 46 is electrically connected to electrical terminals 50 . Installation of the submerged pump 2 in the pump column 3 is thus completed.
  • fasteners eg, screws
  • the submerged pump 2 With the entire submerged pump 2 immersed in the liquefied gas, the submerged pump 2 operates to pump up the liquefied gas.
  • the submerged pump 2 is a pump configured to be operable in liquid.
  • the liquefied gas pumped by the submerged pump 2 is discharged through the liquefied gas discharge port 9 .
  • the purge gas continues to be supplied into the buffer chamber 12 while the submerged pump 2 is in operation.
  • the buffer gate 1 allows the submerged pump 2 to be carried into the pump column 3 while isolating the inside and outside of the pump column 3 . Therefore, the buffer gate 1 can prevent air existing outside the pump column 3 from entering the pump column 3 .
  • the combination of buffer gate 1 and purge container 71 can reliably prevent the ingress of air and moisture into pump column 3 . That is, air and water entrained in the submerged pump 2 are removed from the submerged pump 2 by the purge gas, and as a result, the submerged submerged pump 2 is dried (degassed) (dried up). Therefore, the air and moisture are not entrained in the submersible pump 2 and can be prevented from entering the pump column 3 .
  • the submerged pump 2 can be quickly moved into the pump column 3 through the buffer gate 1 while the purge gas exists around the submerged pump 2 .
  • Buffer gate 1 prevents entry of air and moisture into pump column 3 during movement of submersible pump 2 to pump column 3 .
  • FIG. 15 to 25 At least one of the buffer chamber 12 and the pump column 3 is always supplied with purge gas in all the steps described below.
  • a series of operations shown in FIGS. 15 to 25 includes an operation of pulling up the submerged pump 2 from the pump column 3, and a hot-up operation of heating the ultra-low temperature submerged pump 2 that has been in contact with the liquefied gas with the purge gas. .
  • step 2-1 the external power cable 46 is disconnected from the electrical terminal 50, and the partition 16 is removed from the buffer box 14 by the lifting device 91.
  • step 2-2 the lifting device 91 is connected to the movable rod 25, and the lifting device 91 lifts the movable rod 25 slightly.
  • the submerged pump 2 connected to the movable rod 25 by the hanging cable 13 is separated from the suction valve 6, and the suction valve 6 is closed.
  • a rod stopper 107 is attached to the movable rod 25 to fix the relative position of the movable rod 25 to the partition wall 17 .
  • step 2-3 the liquefied gas is discharged from the pump column 3. Specifically, in a state in which the upper opening of the pump column 3 is closed by the partition wall 17 of the buffer gate 1, the purge gas is supplied into the pump column 3 from the purge gas introduction port 8, and the pressure of the purge gas causes the liquefied gas to flow into the pump column 3. from through the intake valve 6 .
  • the purge container 71 is placed on the buffer gate 1 by the lifting device 91. FIG. The purge container 71 is connected to the upper end of the buffer gate 1 with fasteners (for example, screws).
  • the upper lid 76 and the gate valve 79 are opened, and the partition wall 17 is connected to the lifting device 91 through the purge container 71 .
  • the fasteners eg screws
  • the upper lid 76 is closed and the purge gas is supplied into the buffer gate 1 and the purge container 71. As shown in FIG.
  • the purge gas may be supplied into the pump column 3 only from the purge gas introduction port 8 and discharged from the purge gas outlet port 82 of the purge container 71 .
  • Purge gas inlet port 20, purge gas outlet port 27, and purge gas inlet port 81 are closed. Therefore, no purge gas is supplied to the purge gas inlet port 81 and the purge gas inlet port 20 .
  • the purge gas flows from the pump column 3 through the buffer chamber 12 of the buffer gate 1 into the interior space 72 of the purge container 71 and is discharged from the interior space 72 of the purge container 71 through the purge gas outlet port 82 .
  • Purge gas outlet port 82 may be connected to a vacuum source to draw purge gas from purge vessel 71 .
  • step 2-7 the lifting device 91 lifts the partition 17 into the interior of the purge container 71, and the raising of the partition 17 is temporarily stopped.
  • the gate valve 79 and the gate valve 52 are closed, and the partition wall 17 is heated (hot-up) by the purge gas in this state.
  • the upper lid 76 is opened after the hot-up of the partition wall 17 is completed.
  • the partition 17 and the submerged pump 2 are lifted by the lifting device 91 until the partition 17 is out of the purge container 71 .
  • Hot-up of septum 17 is performed before septum 17 contacts the surrounding air so that moisture in the air does not liquefy or solidify on the surface of septum 17 .
  • At least one of top lid 76, gate valve 79, and gate valve 52 are closed while septum 17 moves through buffer gate 1 and purge container 71.
  • step 2-9 the upper lid 76 is closed, and the cable stopper 105 is attached to the suspending cable 13 connected to the submersible pump 2. As shown in FIG. The load of the submerged pump 2 is supported by the upper lid 76 via the suspending cable 13 and the cable stopper 105 .
  • step 2-10 bulkhead 17, movable rod 25, and electrical terminal 50 are disconnected from lifting device 91, suspension cable 13, and power cable 45, respectively. The lifting device 91 is then connected to the suspension cable 13 .
  • step 2-11 the cable stopper 105 is removed, and the submerged pump 2 is lifted up inside the pump column 3 by the lifting device 91.
  • FIG. The top lid 76, gate valve 79 and gate valve 52 remain closed while the submerged pump 2 is raised in the pump column 3.
  • step 2 - 12 the submerged pump 2 is lifted from the pump column 3 through the buffer gate 1 to a predetermined position in the purge container 71 by the lifting device 91 . More specifically, with the top lid 76 closed, the gate valve 79 and the gate valve 52 are opened, and the submerged pump 2 passes through the buffer gate 1 .
  • the purge gas continues to be supplied into the purge container 71 , the buffer chamber 12 of the buffer gate 1 and the pump column 3 .
  • the pressure of the purge gas supplied inside the buffer chamber 12 is higher than the pressure of the purge gas supplied inside the purge container 71 . Due to this pressure difference, the air present in the purge container 71 can be prevented from entering the buffer chamber 12 . Furthermore, in one embodiment, the pressure of the purge gas supplied into the pump column 3 is higher than the pressure of the purge gas supplied into the buffer chamber 12 . Due to this pressure difference, the air present in the purge container 71 can be prevented from entering the pump column 3 via the buffer chamber 12 .
  • the purge gas is fed into the pump column 3 only through the purge gas introduction port 8 and the purge gas outlet port of the purge vessel 71, as shown in the alternative step 2-12' of FIG. 82 may be discharged.
  • No purge gas is supplied to the purge gas inlet port 81 and the purge gas inlet port 20 .
  • Purge gas flows from the pump column 3 through the buffer chamber 12 of the buffer gate 1 into the interior space 72 of the purge vessel 71 and is discharged from the interior space 72 of the purge vessel 71 through the purge gas outlet port 82 .
  • Purge gas outlet port 82 may be connected to a vacuum source to draw purge gas from purge vessel 71 . Since the purge gas supply operation of the embodiment shown in FIG. 20, which is not specifically described, is the same as the purge gas supply operation of the embodiment shown in FIG. 17, redundant description thereof will be omitted.
  • step 2-12 above includes step 2-12a of opening gate valve 52 with gate valve 79 closed, and step 2-12a of opening gate valve 79 after opening gate valve 52. It may be divided into steps 2-12b.
  • the purge gas may continue to be supplied to both the internal space 72 of the purge container 71 and the buffer chamber 12, or the supply of the purge gas to the pump column 3 may be stopped when the gate valve 52 is opened in step 2-12a. It may be stopped and the supply of purge gas to the buffer chamber 12 may be started.
  • the purge gas is supplied into the internal space 72 of the purge container 71 after starting the supply of the purge gas to the buffer chamber 12 and before opening the gate valve 79 in step 2-12b above. may be started. That is, the purge gas may be supplied to the pump column 3, the buffer chamber 12, and the purge container 71 in this order.
  • purge gas is supplied only from the purge gas introduction port 8 to the pump column, as shown in alternative steps 2-12a′ and 2-12b′ of FIG. 3 and discharged from the purge gas outlet port 82 of the purge container 71 .
  • No purge gas is supplied to the purge gas inlet port 81 and the purge gas inlet port 20 .
  • Purge gas flows from the pump column 3 through the buffer chamber 12 of the buffer gate 1 into the interior space 72 of the purge vessel 71 and is discharged from the interior space 72 of the purge vessel 71 through the purge gas outlet port 82 .
  • Purge gas outlet port 82 may be connected to a vacuum source to draw purge gas from purge vessel 71 . Since the purge gas supply operation of the embodiment shown in FIG. 22, which is not specifically described, is the same as the purge gas supply operation of the embodiment shown in FIG. 17, redundant description thereof will be omitted.
  • step 2-13 after the submerged pump 2 is moved into the internal space 72 of the purge container 71, the gate valves 79 and 52 are closed. The top lid 76 remains closed. Purge gas continues to be supplied into the interior space 72 of the purge container 71 from the purge gas inlet port 81 . The purge gas is discharged from the interior space 72 of the purge container 71 through the purge gas outlet port 82 . The submerged pump 2 is exposed to (contacts with) the purge gas within the purge container 71 .
  • the purge gas supplied into the purge container 71 may be at room temperature, or may be heated in advance by a heating device such as a heater.
  • the purge gas filling the internal space 72 of the purge container 71 heats up the submerged pump 2 (hot-up). According to this embodiment, the ultra-low temperature submerged pump 2 can be heated with the purge gas.
  • This hot-up is performed before the submersible pump 2 contacts the surrounding air, so moisture in the air does not liquefy or solidify on the surface of the submersible pump 2 .
  • this embodiment is effective when the liquefied gas is liquid hydrogen. That is, when the submerged pump 2 that has been immersed in liquid hydrogen is lifted from the pump column 3, it is at an ultra-low temperature equivalent to that of liquid hydrogen. Since the boiling point of hydrogen ( ⁇ 253° C.) is lower than the boiling point of oxygen ( ⁇ 183° C.) and the boiling point of nitrogen ( ⁇ 196° C.), when air comes into contact with the submerged pump 2 immediately after being pulled up from the pump column 3, , not only nitrogen in the air but also oxygen is liquefied and drops into the pump column 3 .
  • the submerged pump 2 immersed in liquid hydrogen is quickly heated by the purge gas before coming into contact with air. Therefore, when air comes into contact with the submerged pump 2 , oxygen and nitrogen in the air do not liquefy, and liquefied oxygen and liquefied nitrogen do not drop into the pump column 3 . Furthermore, even if some of the oxygen and nitrogen in the air are liquefied, the buffer gate 1 can prevent liquefied oxygen and liquefied nitrogen from dripping into the pump column 3 . As a result, safe removal of the submerged pump 2 can be achieved.
  • the upper lid 76 is opened and the submerged pump 2 is pulled up from the purge container 71 by the lifting device 91 in step 2-14.
  • Gate valve 79 and gate valve 52 remain closed.
  • the partition wall 17 is lowered through the purge container 71 and the buffer gate 1 by the lifting device 91.
  • at least one of the top lid 76, the gate valve 79, and the gate valve 52 is closed. More specifically, the partition 17 is carried into the purge container 71 with the gate valves 79 and 52 closed and the upper lid 76 opened.
  • step 2-16 the diaphragm 17 is placed on the upper end of the pump column 3;
  • the partition 17 is fixed to the upper end of the pump column 3 with fasteners (for example, screws) so that the upper opening of the pump column 3 is closed by the partition 17 .
  • the purge container 71 is separated from the buffer gate 1 and lifted by the lifting device 91.
  • FIG. at step 2-18 the partition 16 is placed on top of the buffer gate 1 by the lifting device 91.
  • septum 16 is secured to buffer gate 1 with fasteners (eg, screws).
  • the purge gas is fed into the pump column 3 only through the purge gas inlet port 8 and the purge gas outlet port 82 of the purge vessel 71. discharged from Therefore, the purge gas flows through the pump column 3, the buffer chamber 12 of the buffer gate 1, and the interior space 72 of the purge container 71 in this order.
  • Such purge gas supply can replace the air in the purge container 71 with the purge gas at a smaller flow rate and can prevent the air from entering the purge container 71. was found from the experiment.
  • the tester consisted of two vertically aligned chambers separated by perforated plates that mimic cable penetrations.
  • the purge gas was supplied to the upper and lower chambers for a period of time while the two chambers were filled with purge gas. Then, the increase in oxygen concentration in the upper room was measured when air entered the upper room from the outside.
  • FIG. 26 is a table showing experimental results. From the experimental results shown in this table, it was found that when replacing a space in which a gas heavier than the purge gas exists, the consumption of the purge gas can be suppressed by allowing the purge gas to flow from below the space to be replaced.
  • FIG. 27 shows the purge gas supply position, the purge gas replacement speed, the purge gas consumption, the operability of the supply valve, the dry-up efficiency, and the operational safety (prevention of air intrusion, turbulence of the internal fluid) in each step of the above-described embodiment. etc.) is a table showing the results of relative evaluation.
  • the present invention when a submerged pump for boosting the pressure of liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen is carried into the pump column and pulled up from the pump column, available for buffer gates used to isolate Further, the present invention is applicable to a method of loading a submersible pump into a pump column and a method of lifting a submersible pump from the pump column using such a buffer gate.
  • liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本発明は、液体水素などの液化ガスを昇圧するための潜没式ポンプをポンプコラム内に搬入、およびポンプコラムから引き上げるときに、ポンプコラムの内部と外部とを隔離するのに使用されるバッファゲートに関する。バッファゲート(1)は、液化ガスを移送するための潜没式ポンプ(2)が内部に配置されたポンプコラム(3)の内部と外部とを隔離する。バッファゲート(1)は、バッファ室(12)を内部に有するバッファボックス(14)と、バッファボックス(14)の上部開口を閉じる第1隔壁(16)と、ポンプコラム(3)の上部開口を閉じる第2隔壁(17)と、バッファ室(12)に連通するパージガス入口ポート(20)を備える。バッファボックス(14)はポンプコラム(3)の上端に固定されている。

Description

バッファゲート、ポンプ搬入方法、ポンプ引き上げ方法
 本発明は、液化アンモニアや液化天然ガス(LNG)や液体水素などの液化ガスを昇圧するための潜没式ポンプをポンプコラム内に搬入、およびポンプコラムから引き上げるときに、ポンプコラムの内部と外部とを隔離するのに使用されるバッファゲートに関する。さらに、本発明はそのようなバッファゲートを用いて、潜没式ポンプをポンプコラム内に搬入する方法、および潜没式ポンプをポンプコラムから引き上げる方法に関する。
 天然ガスは、火力発電や化学原料として広く利用されている。また、アンモニアや水素は、地球温暖化の原因となる二酸化炭素を発生しないエネルギーとして期待されている。エネルギーとしての水素の用途には、燃料電池およびタービン発電などが挙げられる。天然ガス、アンモニア、および水素は、常温では気体の状態であるため、これらの貯蔵および運搬のために、天然ガス、アンモニア、および水素は冷却され、液化される。液化天然ガス(LNG)や液化アンモニアや液体水素などの液化ガスは、一旦液化ガス貯槽に貯蔵された後、ポンプによって発電所や工場などに移送される。
 図28は、液化ガスが貯蔵された液化ガス貯槽と、液化ガスを汲み上げるためのポンプの従来例を示す模式図である。ポンプ500は、液化ガス貯槽501に設置された縦型ポンプコラム505内に設置される。ポンプコラム505内は液化ガスで満たされ、ポンプ500の全体は液化ガス中に浸漬される。したがって、ポンプ500は、液化ガス中で運転可能な潜没式ポンプである。ポンプ500が運転されると、液化ガス貯槽501内の液化ガスはポンプコラム505内に吸い込まれ、ポンプコラム505内を上昇し、そしてポンプコラム505から液化ガス排出ポート509を通じて排出される。
特許3197645号公報 特許3198248号公報 特許3472379号公報
 ポンプ500は消耗部材を含む機械であるため、定期的なメンテナンスを必要とする。ポンプ500を最初にポンプコラム505内に設置するとき、およびメンテナンスが施されたポンプ500をポンプコラム505に戻すとき、空気がポンプ500に同伴してポンプコラム505内に侵入することを防ぐ必要がある。もし、空気がポンプ500とともにポンプコラム505内に侵入すると、空気中の水分が超低温の液化ガスによって冷却されて凝固し、ポンプ500の回転動作を阻害してしまう。特に、液化ガスが液体水素である場合、空気中の窒素および酸素が液化または固化して、液化ガス中に混入してしまうおそれがある。窒素や酸素が固化すると機器に損傷を与えることがあり、さらに、液化酸素が液体水素に混入すると、爆発が起こる危険性がある。
 メンテナンスなどの目的でポンプ500をポンプコラム505から取り出すときも、周囲の空気がポンプコラム505内に侵入することを防止する必要がある。すなわち、液化ガスに接触していたポンプ500は超低温であり、このようなポンプ500に空気が接触すると、空気中に含まれる水分がポンプ500の表面上で液化または固化し、ポンプコラム505内に落下して液化ガスに混入してしまうおそれがある。特に、液化ガスが液体水素である場合、以下のような問題が起こる可能性がある。すなわち、液体水素の温度は-253℃以下であるため、ポンプコラム505から取り出したばかりのポンプ500も液体水素と同等の超低温となる。このような超低温のポンプ500に空気が接触すると、空気中の窒素のみならず、酸素も液化してしまう。液化酸素が液化ガス貯槽501内に滴下して液体水素に混入すると、爆発が起こる可能性があり、極めて危険である。
 そこで、本発明は、潜没式ポンプをポンプコラム内に搬入、およびポンプコラムから引き上げるときに、ポンプコラムの内部と外部とを隔離することができるバッファゲートを提供する。また、本発明は、そのようなバッファゲートを用いて、潜没式ポンプをポンプコラム内に搬入する方法、および潜没式ポンプをポンプコラムから引き上げる方法を提供する。
 一態様では、液化ガスを移送するための潜没式ポンプが内部に配置されたポンプコラムの内部と外部とを隔離するためのバッファゲートであって、バッファ室を内部に有するバッファボックスと、前記バッファボックスの上部開口を閉じる第1隔壁と、前記ポンプコラムの上部開口を閉じる第2隔壁と、前記バッファ室に連通するパージガス入口ポートを備え、前記バッファボックスは前記ポンプコラムの上端に固定されている、バッファゲートが提供される。
 一態様では、前記バッファ室の縦方向の長さは、前記潜没式ポンプの縦方向の長さよりも小さい。
 一態様では、前記バッファゲートは、前記ポンプコラムから前記バッファ室内に漏洩した液化ガスを検出する漏洩検出器をさらに備えている。
 一態様では、前記バッファゲートは、前記バッファ室に連通するパージガス出口ポートをさらに備え、前記パージガス出口ポートは、ガス処理装置に接続されている。
 一態様では、前記バッファゲートは、前記潜没式ポンプに電力を供給するための電力ケーブルが接続された電気端子をさらに備えている。
 一態様では、液化ガスを移送するための潜没式ポンプをポンプコラム内に搬入する方法であって、バッファゲート上に配置されたパージ容器の上蓋を開いた状態で、前記潜没式ポンプを前記パージ容器内に移動させ、前記ポンプコラムの上部開口を第1ゲート弁で閉じ、前記パージ容器の上部開口を前記上蓋で閉じ、かつ前記パージ容器の下部開口を第2ゲート弁で閉じた状態で、前記潜没式ポンプが収容された前記パージ容器の内部空間をパージガスで満たし、前記上蓋を閉じ、かつ前記第1ゲート弁および前記第2ゲート弁を開いた状態で、前記潜没式ポンプを前記バッファゲートを経由して前記パージ容器から前記ポンプコラム内に移動させる、方法が提供される。
 一態様では、前記潜没式ポンプを前記バッファゲートを経由して前記パージ容器から前記ポンプコラム内に移動させる間、前記パージ容器、前記バッファゲートのバッファ室、および前記ポンプコラム内にパージガスを供給し続ける。
 一態様では、前記バッファ室内に供給される前記パージガスの圧力は、前記パージ容器内に供給される前記パージガスの圧力よりも高い。
 一態様では、前記ポンプコラム内に供給される前記パージガスの圧力は、前記バッファ室内に供給される前記パージガスの圧力よりも高い。
 一態様では、前記潜没式ポンプを前記バッファゲートを経由して前記パージ容器から前記ポンプコラム内に移動させる間、前記パージ容器、前記バッファゲートのバッファ室、および前記ポンプコラム内に、前記パージ容器、前記バッファ室、前記ポンプコラムの順でパージガスを供給する。
 一態様では、前記潜没式ポンプを前記バッファゲートを経由して前記パージ容器から前記ポンプコラム内に移動させる間、前記ポンプコラム内に前記パージガスを供給することで、前記ポンプコラムから、前記バッファゲートのバッファ室を経由して、前記パージ容器の内部空間に前記パージガスを流す。
 一態様では、前記方法は、前記潜没式ポンプを前記パージ容器内に移動させる前、または前記潜没式ポンプを前記パージ容器内に移動させた後に、前記潜没式ポンプの内部にパージガスを供給する工程をさらに含む。
 一態様では、前記方法は、前記潜没式ポンプを前記パージ容器から前記バッファゲートを経由して前記ポンプコラム内に移動させた後、前記上蓋、前記第1ゲート弁、および前記第2ゲート弁を閉じた状態で、前記潜没式ポンプを前記ポンプコラム内で下降させる工程をさらに含む。
 一態様では、前記液化ガスは液体水素であり、前記パージガスは少なくともヘリウムガスを含む。
 一態様では、前記液化ガスは液体水素であり、前記パージガスは水素ガスを含む。
 一態様では、前記液化ガスは液化アンモニアであり、前記パージガスはアンモニアガスを含む。
 一態様では、液化ガスを移送するための潜没式ポンプをポンプコラムから引き上げる方法であって、バッファゲート上に配置されたパージ容器の上部開口を上蓋で閉じた状態で、前記潜没式ポンプを前記バッファゲートを経由して前記ポンプコラムから前記パージ容器内に移動させ、前記ポンプコラムの上部開口を第1ゲート弁で閉じ、前記パージ容器の上部開口を前記上蓋で閉じ、かつ前記パージ容器の下部開口を第2ゲート弁で閉じた状態で、前記潜没式ポンプが収容された前記パージ容器の内部をパージガスで満たし、前記上蓋を開き、かつ前記第1ゲート弁および前記第2ゲート弁を閉じた状態で、前記潜没式ポンプを前記パージ容器から引き上げる、方法が提供される。
 一態様では、前記潜没式ポンプを前記バッファゲートを経由して前記ポンプコラムから前記パージ容器内に移動させる間、前記パージ容器、前記バッファゲートのバッファ室、および前記ポンプコラム内にパージガスを供給し続ける。
 一態様では、前記バッファ室内に供給される前記パージガスの圧力は、前記パージ容器内に供給される前記パージガスの圧力よりも高い。
 一態様では、前記ポンプコラム内に供給される前記パージガスの圧力は、前記バッファ室内に供給される前記パージガスの圧力よりも高い。
 一態様では、前記潜没式ポンプを前記ポンプコラムから前記バッファゲートを経由して前記パージ容器内に移動させる間、前記ポンプコラム、前記バッファゲートのバッファ室、および前記パージ容器内に、前記ポンプコラム、前記バッファ室、前記パージ容器の順でパージガスを供給する。
 一態様では、前記潜没式ポンプを前記ポンプコラムから前記バッファゲートを経由して前記パージ容器内に移動させる間、前記ポンプコラム内に前記パージガスを供給することで、前記ポンプコラムから、前記バッファゲートのバッファ室を経由して、前記パージ容器の内部空間に前記パージガスを流す。
 一態様では、前記方法は、前記潜没式ポンプを前記ポンプコラムから前記バッファゲートを経由して前記パージ容器内に移動させる前、前記上蓋、前記第1ゲート弁、および前記第2ゲート弁を閉じた状態で、前記潜没式ポンプを前記ポンプコラム内で上昇させる工程をさらに含む。
 一態様では、前記液化ガスは液体水素であり、前記パージガスは少なくともヘリウムガスを含む。
 一態様では、前記液化ガスは液体水素であり、前記パージガスは水素ガスを含む。
 一態様では、前記液化ガスは液化アンモニアであり、前記パージガスはアンモニアガスを含む。
 バッファゲートは、ポンプコラムの内部と外部とを隔離しつつ、潜没式ポンプをポンプコラム内に搬入することを可能とし、かつ潜没式ポンプをポンプコラムから引き上げることを可能とする。したがって、バッファゲートは、ポンプコラム外に存在する空気のポンプコラムへの進入を防ぐことができる。特に、バッファゲートとパージ容器との組み合わせは、空気および水分のポンプコラムへの進入を確実に防止することができる。すなわち、潜没式ポンプに同伴した空気および水分は、パージガスによって潜没式ポンプから除去され、結果として潜没式ポンプが乾燥(脱気)される(以下、これをドライアップと称する)。したがって、空気および水分は潜没式ポンプに同伴せず、空気および水分がポンプコラム内に侵入してしまうことが防止できる。このドライアップ後、潜没式ポンプの周囲にパージガスが存在している状態で、潜没式ポンプをバッファゲートを経由してポンプコラム内に速やかに移動させることができる。
 また、超低温の潜没式ポンプをポンプコラムからバッファゲートを経由してパージ容器内に引き上げながら、潜没式ポンプをパージガスで加温することができる(以下、これをホットアップと称する)。このホットアップは、潜没式ポンプが周囲の空気に接触する前に実行されるので、空気中の水分が潜没式ポンプの表面上で液化または固化しない。特に、本発明によれば、液化ガスが液体水素の場合に効果的である。すなわち、液体水素中に浸漬していた潜没式ポンプは、ポンプコラムから引き上げるとき、液体水素と同等の超低温となっている。水素の沸点(-253℃)は酸素の沸点(-183℃)および窒素の沸点(-196℃)よりも低いので、ポンプコラムから引き上げられた直後の潜没式ポンプに空気が接触すると、空気中の窒素のみならず、酸素も液化し、ポンプコラム内に滴下してしまう。この点、本発明によれば、液体水素中に浸漬していた潜没式ポンプは、空気に触れる前にパージガスによって速やかに加温される。さらに、仮に空気中の一部の酸素や窒素が液化したとしても、バッファゲートは、液化酸素や液化窒素のポンプコラムへの滴下を防ぐことができる。結果として、潜没式ポンプの安全な取り出しが達成できる。
液化ガスを移送するためのポンプシステムの一実施形態を示す図である。 バッファゲートおよびポンプコラムの拡大断面図である。 パージ容器を示す断面図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラム内に搬入する作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 潜没式ポンプをポンプコラムから引き上げる作業を説明する図である。 パージガスの流入実験の結果を示す表である。 パージガスの流入位置によって変わる相対評価を示す表である。 液化ガスが貯蔵された液化ガス貯槽と、液化ガスを汲み上げるためのポンプの従来例を示す模式図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、液化ガスを移送するためのポンプシステムの一実施形態を示す図である。図1に示すポンプシステムによって移送される液化ガスの例としては、液化アンモニア、液体水素、液体窒素、液化天然ガス、液化エチレンガス、液化石油ガスなどが挙げられる。
 図1に示すように、ポンプシステムは、液化ガスを移送するための潜没式ポンプ2と、潜没式ポンプ2が内部に収容されたポンプコラム3と、ポンプコラム3の上端に固定されたバッファゲート1を備えている。ポンプコラム3は、液化ガスが貯留される液化ガス貯槽5内に設置されている。ポンプコラム3は、鉛直方向に延びた中空状の容器であり、その上部は液化ガス貯槽5から上方に突出している。ポンプコラム3の底部には吸込み弁6が設けられている。潜没式ポンプ2はポンプコラム3の底部に設置される。吸込み弁6の構成は、特に限定されないが、例えば、吸込み弁6は潜没式ポンプ2の自重で吸込み弁6が開くタイプでもよいし、あるいはアクチュエータ駆動型弁(例えば電動弁)でもよい。ポンプコラム3はパージガス導入ポート8および吐出しポート9をさらに有している。
 バッファゲート1は、ポンプコラム3の内部と外部とを隔離するためのゲート構造体である。潜没式ポンプ2の運転中は、ポンプコラム3の上部開口は、バッファゲート1によって閉止されている。潜没式ポンプ2の運転中は、液化ガス貯槽5内の液化ガスは、吸込み弁6を通じてポンプコラム3内に導入され、ポンプコラム3内は液化ガスで満たされる。潜没式ポンプ2の運転中、潜没式ポンプ2の全体は液化ガス中に浸漬される。したがって、潜没式ポンプ2は、液化ガス中で運転可能なように構成されている。潜没式ポンプ2によって昇圧された液化ガスは、吐出しポート9を通じて外部に移送される。
 図2は、バッファゲート1およびポンプコラム3の拡大断面図である。バッファゲート1は、バッファ室12を内部に有するバッファボックス14と、バッファボックス14の上部開口を閉じる隔壁16と、ポンプコラム3の上部開口を閉じる隔壁17と、バッファ室12に連通するパージガス入口ポート20を備えている。バッファボックス14はポンプコラム3の上端に固定されている。バッファ室12は、上側の隔壁16と下側の隔壁17により密閉されている。隔壁16,17は、図示しない締結具(例えばねじ)によりバッファボックス14に着脱可能に固定されている。バッファ室12の縦方向の長さは、潜没式ポンプ2の縦方向の長さよりも小さく、バッファ室12の幅は潜没式ポンプ2の幅よりも大きい。したがって、潜没式ポンプ2は、バッファ室12を通過することができる。
 バッファゲート1は、隔壁17を貫通して延びる可動ロッド25を有している。可動ロッド25は、隔壁17に対して相対的に上下方向に移動可能である。可動ロッド25の下端に吊りケーブル13が連結されており、潜没式ポンプ2は吊りケーブル13の下端に連結されている。
 バッファゲート1は、バッファ室12に連通するパージガス出口ポート27をさらに備えている。パージガス入口ポート20は、パージガス供給ライン28に接続されており、パージガス供給ライン28はパージガス供給源40に連結されている。潜没式ポンプ2の運転中、窒素ガスまたはヘリウムガスなどのパージガスは、パージガス供給源40からパージガス供給ライン28およびパージガス入口ポート20を通じてバッファ室12内に供給され、バッファ室12を満たし、そしてパージガス出口ポート27を通じて排出される。
 使用されるパージガスは、潜没式ポンプ2が汲み上げる対象の液化ガスの沸点以下の沸点を持つ成分からなるガスである。これは、パージガスが液化ガスまたは超低温の潜没式ポンプ2に接触したときに、パージガスが液化しないようにするためである。パージガスの例としては、窒素ガス、ヘリウムガスなどの不活性ガスが挙げられる。例えば、潜没式ポンプ2が汲み上げる対象の液化ガスが液化天然ガスである場合、液化天然ガスの沸点(-162℃)よりも低い沸点(-196℃)を持つ窒素からなるガスである窒素ガスがパージガスに使用される。他の例では、潜没式ポンプ2が汲み上げる対象の液化ガスが液体水素である場合、水素の沸点(-253℃)よりも低い沸点(-269℃)を持つヘリウムからなるガスであるヘリウムガスがパージガスに使用される。
 一実施形態では、図2に示すように、パージガス出口ポート27は、ガス処理装置42に連結されてもよい。万が一、液化ガスがバッファ室12内に漏洩した場合であっても、液化ガスから気化したガス(例えば天然ガスまたは水素ガス)は、パージガスとともにパージガス出口ポート27を通じてバッファ室12から排出され、パージガス排出ライン43を通ってガス処理装置42に送られる。液化ガスから気化したガス(例えば天然ガスまたは水素ガス)はガス処理装置42により処理され、無害化される。ガス処理装置42の例としては、ガス焼却装置(フレアリング装置)、化学的ガス処理装置、ガス吸着装置などが挙げられる。一実施形態では、パージガス出口ポート27は、安全な場所に設置されたガス放散装置に連結されてもよい。
 パージガスの一部には、液化ガスの成分と同じ成分からなるガスが含まれてもよい。パージガス出口ポート27がガス処理装置42に連結されている場合には、パージガスの全ては、液化ガスの成分と同じ成分からなるガスであってもよい。例えば、液化ガスが液体水素である場合は、パージガスの一部または全ては、水素ガスであってもよい。他の例では、液化ガスが液化アンモニアである場合は、パージガスの一部または全てはアンモニアガスであってもよい。一実施形態では、パージガス供給源40は、液化ガスの成分と同じ成分からなるガスの供給源を含んでもよい。例えば、液化ガスが液体水素である場合は、パージガス供給源40は、水素ガス供給源を含んでもよい。他の例では、液化ガスが液化アンモニアである場合は、パージガス供給源40はアンモニアガス供給源を含んでもよい。
 バッファゲート1は、電力を潜没式ポンプ2に供給するための電力ケーブル45が接続された電気端子50をさらに備えている。電気端子50は、バッファ室12内に配置されている。本実施形態では、電気端子50は隔壁17上に設置されているが、電気端子50はバッファボックス14の内面に設置されてもよい。さらに、一実施形態では、電気端子50はバッファ室12の外部に設置されてもよい。例えば、電気端子50は隔壁16の外面に固定されてもよい。
 電力ケーブル45は、電気端子50から潜没式ポンプ2の電動機まで延びている。電力は、電源(図示せず)から外部電力ケーブル46を通って電気端子50に供給され、さらに電力ケーブル45を通って潜没式ポンプ2の電動機に供給される。
 バッファゲート1は、バッファ室12内に配置されたゲート弁52をさらに備えている。このゲート弁52は、隔壁17に隣接し、かつ隔壁16の下方に位置している。より具体的には、ゲート弁52は、バッファボックス14とポンプコラム3との間に位置している。ゲート弁52は、両開きタイプの弁であり、アクチュエータ(図示せず)または手動により開閉される。一実施形態では、ゲート弁52は、方開きタイプ、あるいは別のタイプの弁であってもよい。ポンプコラム3の上部開口は、隔壁17のみならず、ゲート弁52でも閉じることができる。
 パージガス供給ライン28には圧力調節弁55が取り付けられており、バッファ室12内に供給されるパージガスの圧力および供給タイミングは圧力調節弁55によって調節される。ポンプコラム3のパージガス導入ポート8にはパージガス供給ライン58が連結されており、このパージガス供給ライン58はパージガス供給源40に連結されている。パージガス供給ライン58には圧力調節弁59が取り付けられており、ポンプコラム3内に供給されるパージガスの圧力および供給タイミングは圧力調節弁59によって調節される。
 本実施形態のバッファゲート1は、ポンプコラム3からバッファ室12内に漏洩した液化ガスを検出する漏洩検出器65を備えている。図2に示す例では、漏洩検出器65の全体はバッファ室12内に配置されている。一実施形態では、漏洩検出器65の一部がバッファ室12内に配置され、他の部分はバッファ室12外に配置されてもよい。あるいは、漏洩検出器65の全体はバッファ室12外に配置され、漏洩検出器65はバッファ室12に連通してもよい。例えば、漏洩検出器65は、パージガス出口ポート27に連結されたパージガス排出ライン43に連結されてもよい。漏洩検出器65は、万が一、液化ガスがポンプコラム3からバッファ室12内に漏洩した場合には、漏洩した液化ガスを検出することができる。
 ポンプコラム3の吸込み弁6は、潜没式ポンプ2の自重により開き、これにより液化ガス貯槽5(図1参照)内の液化ガスがポンプコラム3内に流入する。吸込み弁6は、ポンプコラム3の下端開口を覆う弁体6Aと、弁体6Aを上方に付勢する複数のばね6Bを有している。潜没式ポンプ2が弁体6A上に置かれていないときは、弁体6Aは複数のばね6Bによってポンプコラム3の下端に押し付けられ、ポンプコラム3の下端開口を閉じる。潜没式ポンプ2が弁体6A上に置かれると、潜没式ポンプ2の自重により弁体6Aはばね6Bの力に抗って下方に移動し、これにより吸込み弁6が開く。ただし、吸込み弁6は、アクチュエータ駆動型弁(例えば電動弁)でもよい。
 潜没式ポンプ2をポンプコラム3に搬入するとき、および潜没式ポンプ2をポンプコラム3から引き上げるとき、以下に説明するパージ容器71が使用される。図3は、パージ容器71を示す断面図である。パージ容器71は、潜没式ポンプ2をパージガスにさらすための装置である。本実施形態では、パージ容器71は、バッファゲート1に着脱可能に連結される。一実施形態では、パージ容器71は、バッファゲート1の上端に固定されてもよい。
 図3に示すように、パージ容器71は、潜没式ポンプ2を収容するための内部空間72を有する容器本体74と、容器本体74の上部開口を覆う上蓋76と、容器本体74の下部開口を覆うゲート弁79と、容器本体74の内部空間72に連通するパージガス入口ポート81およびパージガス出口ポート82を備えている。本実施形態の上蓋76およびゲート弁79は、両開きタイプであるが、他のタイプであってもよい。パージ容器71の上部開口は上蓋76によって閉じられ、パージ容器71の下部開口はゲート弁79によって閉じられるように構成されている。
 パージガス入口ポート81には、パージガス供給源40から延びるパージガス供給ライン85が連結されている。パージガス供給ライン85には圧力調節弁86が取り付けられており、パージ容器71の内部空間72内に供給されるパージガスの圧力および供給タイミングは圧力調節弁86によって調節される。
 容器本体74は中空状の構造体である。本実施形態では、容器本体74は四角形の水平断面を有するが、その形状は特に限定されない。パージ容器71は、容器本体74の側壁74aに形成された開口部74bを閉じる横蓋87をさらに備えている。横蓋87は、図示しない締結具(例えば複数のねじ)によって容器本体74の側壁74aに取り外し可能に固定されている。横蓋87を取り外すと、作業員は開口部74bを通じてパージ容器71の内部空間72にアクセスすることができる。
 一実施形態では、上述したパージガス供給源40は、窒素ガス供給源またはヘリウムガス供給源である。さらに一実施形態では、パージガス供給源40は、異なる種類の複数のパージガス供給源、例えば窒素ガス供給源およびヘリウムガス供給源を含んでもよい。この場合は、複数のパージガス供給源は、選択的にパージガス供給ライン85に接続されてもよい。
 一般に、ヘリウムガスは、窒素ガスよりも高価である。また、窒素はヘリウムよりも原子量が大きく、乾燥効果が高い。したがって、最初は窒素ガスをパージガスとして使用し、最終段階でヘリウムガスをパージガスとして使用してもよい。例えば、窒素ガスをバッファ室12およびパージ容器71内に供給してバッファ室12およびパージ容器71の内部空間72内の空気を窒素ガスに置換し、その後ヘリウムガスをバッファ室12およびパージ容器71内に供給してバッファ室12およびパージ容器71の内部空間72をヘリウムガスで満たしてもよい。
 次に、潜没式ポンプ2をポンプコラム3内に搬入する作業の一実施形態について説明する。以下に説明する全てのステップでは、バッファ室12およびポンプコラム3の少なくとも一方にはパージガスが常に供給し続けられる。図4乃至図12に示す一連の動作は、潜没式ポンプ2をパージガスで乾燥させるドライアップ、および乾燥された潜没式ポンプ2をポンプコラム3内に入れる動作を含む。
 図4のステップ1-1に示すように、液化ガスは、ポンプコラム3から排出される。具体的には、ポンプコラム3の上部開口がバッファゲート1で閉じられた状態で、パージガスをパージガス導入ポート8からポンプコラム3内に供給し、パージガスの圧力により液化ガスをポンプコラム3から吸込み弁6を通じて排出する。
 ステップ1-2では、隔壁16がバッファゲート1から取り外され、パージ容器71は昇降装置91によってバッファゲート1上に置かれる。昇降装置91は、吊りケーブル13を巻き上げるホイスト、ウインチなどの巻き上げ機92を有している。パージ容器71は、バッファゲート1の上端に締結具(例えばねじ)により連結される。
 図5に示すように、ステップ1-3では、パージガスは、パージガス入口ポート81を通じてパージ容器71の内部空間72内に供給され、内部空間72はパージガスで満たされる。パージガスはパージガス出口ポート82を通じて内部空間72から排出される。
 ステップ1-4では、隔壁17が昇降装置91の吊りケーブル13に連結され、昇降装置91によってバッファゲート1から取り外される。上蓋76、ゲート弁79、およびゲート弁52のそれぞれは、吊りケーブル13が通ることができる穴または切り欠きなどのケーブル貫通部を有している。ケーブル貫通部の形状および構成は、吊りケーブル13が通ることができる限りにおいて、特に限定されない。
 隔壁17がバッファゲート1およびパージ容器71を通過するときは、上蓋76、ゲート弁79、およびゲート弁52のうちの少なくとも1つは閉じられている。具体的には、隔壁17がバッファゲート1内を移動する前に、ゲート弁79が開かれ、上蓋76は閉じたままである。隔壁17がバッファゲート1からパージ容器71内に移動した後に、ゲート弁52およびゲート弁79が閉じられる。そして、隔壁17が上蓋76の直下に来たときに上蓋76が開かれ、隔壁17がパージ容器71から出た後、上蓋76は閉じられる。このような操作により、周囲の空気がパージ容器71およびバッファゲート1を通ってポンプコラム3内に進入することを防止することができる。
 図6に示すように、ステップ1-5では、ポンプカバー95が潜没式ポンプ2に取り付けられ、潜没式ポンプ2の開口、すなわち吸込み口および吐出し口をポンプカバー95で閉じる。ポンプカバー95には、ポンプ真空ライン97およびポンプパージライン98が接続されている。ポンプ真空ライン97は真空ポンプなどの真空源(図示せず)に連結され、ポンプバージラインはパージガス供給源(図示せず)に連結されている。ポンプ真空ライン97には真空弁101が取り付けられており、ポンプパージライン98にはポンプパージ弁102が取り付けられている。
 ステップ1-6では、ポンプ真空ライン97を通じて潜没式ポンプ2の内部のガスが吸引されながら、窒素ガス、ヘリウムガスなどの不活性ガスからなるパージガスは、ポンプパージライン98を通じて潜没式ポンプ2の内部に供給される。パージガスとして最初に窒素ガスを潜没式ポンプ2内に供給し、その後窒素ガスに代えてヘリウムガスをパージガスとして潜没式ポンプ2内に供給してもよい。パージガスは、潜没式ポンプ2の内部から空気および水分を追い出す。潜没式ポンプ2の内部のパージが完了すると、真空弁101およびポンプパージ弁102が閉じられる。
 ステップ1-7では、ゲート弁79およびゲート弁52が閉じられた状態、かつ上蓋76が開かれた状態で、潜没式ポンプ2は、ポンプカバー95とともに、昇降装置91のケーブル13に吊り下げられ、昇降装置91によってパージ容器71の内部空間72内に移動される。一実施形態では、潜没式ポンプ2をパージ容器71内に移動させた後に、潜没式ポンプ2の内部をポンプ真空ライン97を通じて真空引きしながら、パージガスをポンプパージライン98を通じて潜没式ポンプ2内に供給してもよい。
 図7に示すように、ステップ1-8では、上蓋76が閉じられる。さらに横蓋87が開かれ、容器本体74の開口部74bを通じてポンプカバー95が取り出される。
 ステップ1-9では、横蓋87が閉じられる。パージガスは、パージガス入口ポート81を通じてパージ容器71の内部空間72内に供給され、内部空間72はパージガスで満たされる。パージガスはパージガス出口ポート82を通じて内部空間72から排出される。潜没式ポンプ2はパージ容器71内でパージガスにさらされ(接触し)、これによって潜没式ポンプ2の表面から空気および水分が排除される。以下の説明では、潜没式ポンプ2をポンプコラム3に入れる前にパージ容器71内で潜没式ポンプ2をパージガスにさらす工程をドライアップと称する。ドライアップ中は、上蓋76、ゲート弁79、およびゲート弁52は閉じられている。上記ステップ1-3から上記ステップ1-9の間、パージ容器71、バッファ室12、およびポンプコラム3内にはパージガスが供給され続ける。
 潜没式ポンプ2のドライアップが完了すると、ステップ1-10では、上蓋76は閉じたままで、ゲート弁79およびゲート弁52が開かれ、潜没式ポンプ2は、昇降装置91によってパージ容器71からバッファゲート1を通ってポンプコラム3内に下降(移動)される。潜没式ポンプ2をパージ容器71からバッファゲート1を経由してポンプコラム3内に移動させる間、パージ容器71、バッファゲート1のバッファ室12、およびポンプコラム3内にパージガスを供給し続ける。
 一実施形態では、バッファ室12内に供給されるパージガスの圧力は、パージ容器71内に供給されるパージガスの圧力よりも高い。このような圧力差により、パージ容器71内に存在する空気がバッファ室12内に進入することを防止することができる。さらに、一実施形態では、ポンプコラム3内に供給されるパージガスの圧力は、バッファ室12内に供給されるパージガスの圧力よりも高い。このような圧力差により、パージ容器71内に存在する空気がバッファ室12を経由してポンプコラム3内に進入することを防止することができる。
 一実施形態では、上記ステップ1-9および上記ステップ1-10において、図8の代替ステップ1-9’および代替ステップ1-10’に示すように、パージガスを、パージガス導入ポート8のみからポンプコラム3内に供給し、パージ容器71のパージガス出口ポート82から排出してもよい。パージガス入口ポート20、パージガス出口ポート27、パージガス入口ポート81は閉じられる。したがって、パージガス入口ポート81およびパージガス入口ポート20にはパージガスは供給されない。
 パージガス導入ポート8からポンプコラム3内に供給されたパージガスは、ポンプコラム3から、バッファゲート1のバッファ室12を経由して、パージ容器71の内部空間72に流れ、そしてパージガス出口ポート82を通じてパージ容器71の内部空間72から排出される。パージガス出口ポート82を真空源に連結し、パージガスをパージ容器71から吸引してもよい。図8のステップ1-9’では、ゲート弁52およびゲート弁79は閉じられているが、ゲート弁52およびゲート弁79のそれぞれは、吊りケーブル13が通ることができる穴または切り欠きなどのケーブル貫通部を有しているので、パージガスはケーブル貫通部を通じて流れることができる。
 一実施形態では、図9に示すように、上記ステップ1-10は、ゲート弁52を閉じた状態でゲート弁79を開くステップ1-10aと、ゲート弁79を開いた後にゲート弁52を開くステップ1-10bに分けてもよい。この場合、パージ容器71の内部空間72およびバッファ室12の両方にパージガスを供給し続けてもよく、あるいは上記ステップ1-10aでゲート弁79を開くときに、パージ容器71の内部空間72へのパージガスの供給を停止し、かつバッファ室12へのパージガスの供給を開始してもよい。さらに、一実施形態では、上記ステップ1-10aでバッファ室12へのパージガスの供給を開始した後であって、上記ステップ1-10bでゲート弁52を開く前に、ポンプコラム3内へのパージガスの供給を開始してもよい。すなわち、パージガスは、パージ容器71、バッファ室12、ポンプコラム3の順に供給されてもよい。
 一実施形態では、上記ステップ1-10aおよび上記ステップ1-10bにおいて、図10の代替ステップ1-10a’および代替ステップ1-10b’に示すように、パージガスを、パージガス導入ポート8のみからポンプコラム3内に供給し、パージ容器71のパージガス出口ポート82から排出してもよい。パージガス入口ポート81およびパージガス入口ポート20にはパージガスは供給されない。パージガスは、ポンプコラム3から、バッファゲート1のバッファ室12を経由して、パージ容器71の内部空間72に流れ、そしてパージガス出口ポート82を通じてパージ容器71の内部空間72から排出される。パージガス出口ポート82を真空源に連結し、パージガスをパージ容器71から吸引してもよい。特に説明しない図10の実施形態のパージガス供給動作は、図8に示す実施形態のパージガス供給動作と同じであるので、その重複する説明を省略する。
 図11に示すように、ステップ1-11では、潜没式ポンプ2がポンプコラム3内に移動した後、ゲート弁79およびゲート弁52が閉じられる。上蓋76、ゲート弁79、およびゲート弁52が閉じられた状態で、潜没式ポンプ2は昇降装置91によってポンプコラム3内を下降される。
 ステップ1-12では、潜没式ポンプ2が連結されている吊りケーブル13にケーブルストッパ105が取り付けられる。ケーブルストッパ105は上蓋76の上に置かれる。潜没式ポンプ2の荷重は吊りケーブル13およびケーブルストッパ105を介して上蓋76に支持される。
 ステップ1-13では、隔壁17は昇降装置91に連結され、さらに隔壁17を貫通して延びる可動ロッド25に吊りケーブル13が連結される。可動ロッド25は隔壁17を貫通して延びており、隔壁17に対する可動ロッド25の相対位置はロッドストッパ107によって固定されている。吊りケーブル13は可動ロッド25の下端に連結される。この段階では、潜没式ポンプ2の荷重は、吊りケーブル13およびケーブルストッパ105を介して上蓋76によって支持されている。隔壁17の上面には電気端子50が予め取り付けられている。潜没式ポンプ2から延びる電力ケーブル45は、電気端子50に電気的に接続される。
 ステップ1-14では、ケーブルストッパ105が取り外され、上蓋76が開かれる。隔壁17および潜没式ポンプ2は昇降装置91によって支持される。そして、隔壁17および潜没式ポンプ2は昇降装置91によって下降される。
 ステップ1-15では、隔壁17がパージ容器71の内部まで下降されたところで隔壁17および潜没式ポンプ2の下降が一時停止され、上蓋76が閉じられる。パージガスはパージガス入口ポート81を通じてパージ容器71の内部空間72内に供給され、内部空間72はパージガスで満たされる。パージガスはパージガス出口ポート82を通じて内部空間72から排出される。隔壁17はパージ容器71内でパージガスにさらされ(接触し)、これによって隔壁17の表面から空気および水分が排除される。この工程は、隔壁17のドライアップである。隔壁17のドライアップ中は、上蓋76、ゲート弁79、およびゲート弁52は閉じられ、パージ容器71、バッファ室12、およびポンプコラム3内にはパージガスが供給され続ける。
 隔壁17のドライアップが完了すると、ステップ1-16では、上蓋76は閉じたままで、ゲート弁79およびゲート弁52が開かれ、隔壁17は、昇降装置91によってパージ容器71からバッファゲート1内に下降(移動)し、ポンプコラム3の上端に置かれる。このとき、潜没式ポンプ2はポンプコラム3の底部(吸込み弁6)の直上に位置している。隔壁17をパージ容器71からバッファゲート1内に移動させる間、パージ容器71、バッファゲート1のバッファ室12、およびポンプコラム3内にパージガスを供給し続ける。このように、隔壁17がパージ容器71およびバッファゲート1内を移動するときは、上蓋76、ゲート弁79、およびゲート弁52のうちの少なくとも1つは閉じられている。このような操作により、周囲の空気がパージ容器71およびバッファゲート1を通ってポンプコラム3内に進入することを防止することができる。隔壁17はポンプコラム3の上端に締結具(例えばねじ)により固定される。
 一実施形態では、上記ステップ1-15および上記ステップ1-16において、図13の代替ステップ1-15’および代替ステップ1-16’に示すように、パージガスを、パージガス導入ポート8のみからポンプコラム3内に供給し、パージ容器71のパージガス出口ポート82から排出してもよい。パージガス入口ポート81およびパージガス入口ポート20にはパージガスは供給されない。パージガスは、ポンプコラム3から、バッファゲート1のバッファ室12を経由して、パージ容器71の内部空間72に流れ、そしてパージガス出口ポート82を通じてパージ容器71の内部空間72から排出される。パージガス出口ポート82を真空源に連結し、パージガスをパージ容器71から吸引してもよい。ステップ1-15’では、ゲート弁52およびゲート弁79は閉じられているが、パージガスは、ゲート弁52およびゲート弁79のケーブル貫通部と、吊りケーブル13との間の隙間を通じて流れることができる。特に説明しない図13の実施形態のパージガス供給動作は、図8に示す実施形態のパージガス供給動作と同じであるので、その重複する説明を省略する。
 ステップ1-17では、パージ容器71がバッファゲート1から切り離され、昇降装置91によってパージ容器71が吊り上げられる。
 ステップ1-18では、可動ロッド25は昇降装置91に直接連結され、ロッドストッパ107が取り外される。そして、可動ロッド25および吊りケーブル13とともに潜没式ポンプ2は昇降装置91によって少しだけ下降され、潜没式ポンプ2はポンプコラム3の底部(吸込み弁6)上に置かれる。その直前に、パージガス導入ポート8からポンプコラム3へのパージガスの導入は停止される。吸込み弁6は、潜没式ポンプ2の重みによって開かれ、液化ガス貯槽5内の液化ガスがポンプコラム3に流入する。
 ステップ1-17とステップ1-18は逆の順序で実行されてもよい。すなわち、一実施形態では、可動ロッド25は昇降装置91に直接連結され、ロッドストッパ107が取り外される。そして、可動ロッド25および吊りケーブル13とともに潜没式ポンプ2は昇降装置91によって少しだけ下降され、潜没式ポンプ2はポンプコラム3の底部(吸込み弁6)上に置かれる。その直前に、パージガス導入ポート8からポンプコラム3へのパージガスの導入は停止される。吸込み弁6は、潜没式ポンプ2の重みによって開かれ、液化ガス貯槽5内の液化ガスがポンプコラム3に流入する。その後、パージ容器71がバッファゲート1から切り離され、昇降装置91によってパージ容器71が吊り上げられる。
 ステップ1-19では、隔壁16が昇降装置91によってバッファゲート1の上端に置かれる。
 ステップ1-20では、昇降装置91が隔壁16から切り離され、隔壁16は、ポンプコラム3の上端に締結具(例えばねじ)により固定される。さらに、外部電力ケーブル46は電気端子50に電気的に接続される。以上により、潜没式ポンプ2のポンプコラム3内への設置が完了する。
 潜没式ポンプ2の全体が液化ガス中に浸漬された状態で、潜没式ポンプ2は運転し、液化ガスを汲み上げる。潜没式ポンプ2は、液体中で運転可能に構成されたポンプである。潜没式ポンプ2によって汲み上げられた液化ガスは、液化ガス排出ポート9を通じて排出される。潜没式ポンプ2の運転中は、パージガスはバッファ室12内に供給され続ける。
 以上説明したように、バッファゲート1は、ポンプコラム3の内部と外部とを隔離しつつ、潜没式ポンプ2をポンプコラム3内に搬入することを可能とする。したがって、バッファゲート1は、ポンプコラム3外に存在する空気のポンプコラム3への進入を防ぐことができる。特に、バッファゲート1とパージ容器71との組み合わせは、空気および水分のポンプコラム3への進入を確実に防止することができる。すなわち、潜没式ポンプ2に同伴した空気および水分は、パージガスによって潜没式ポンプ2から除去され、結果として潜没式ポンプ2が乾燥(脱気)される(ドライアップ)。したがって、空気および水分は潜没式ポンプ2に同伴せず、空気および水分がポンプコラム3内に侵入してしまうことが防止できる。このドライアップ後、潜没式ポンプ2の周囲にパージガスが存在している状態で、潜没式ポンプ2をバッファゲート1を経由して通じてポンプコラム3内に速やかに移動させることができる。潜没式ポンプ2のポンプコラム3への移動中、バッファゲート1は、空気および水分のポンプコラム3への進入を防止する。
 次に、潜没式ポンプ2をポンプコラム3から引き上げる作業の一実施形態について、図15乃至図25を参照して説明する。以下に説明する全てのステップでは、バッファ室12およびポンプコラム3の少なくとも一方にはパージガスが常に供給し続けられる。図15乃至図25に示す一連の動作は、潜没式ポンプ2をポンプコラム3から引き上げる動作、および液化ガスに接触していた超低温の潜没式ポンプ2をパージガスで加温するホットアップを含む。
 ステップ2-1では、外部電力ケーブル46は電気端子50から切り離され、隔壁16がバッファボックス14から昇降装置91により取り外される。
 ステップ2-2では、可動ロッド25に昇降装置91が連結され、昇降装置91によって可動ロッド25が少しだけ引き上げられる。これにより吊りケーブル13によって可動ロッド25に連結されている潜没式ポンプ2が吸込み弁6から離れ、吸込み弁6が閉じられる。さらに、ロッドストッパ107が可動ロッド25に取り付けられ、可動ロッド25の隔壁17に対する相対位置が固定される。
 ステップ2-3では、液化ガスは、ポンプコラム3から排出される。具体的には、ポンプコラム3の上部開口がバッファゲート1の隔壁17で閉じられた状態で、パージガスをパージガス導入ポート8からポンプコラム3内に供給し、パージガスの圧力により液化ガスをポンプコラム3から吸込み弁6を通じて排出する。
 ステップ2-4では、パージ容器71は昇降装置91によってバッファゲート1上に置かれる。パージ容器71は、バッファゲート1の上端に締結具(例えばねじ)により連結される。
 ステップ2-5では、上蓋76、ゲート弁79が開かれ、パージ容器71を通して隔壁17が昇降装置91と連結される。その後、隔壁17をポンプコラム3上端部に固定している締結具(例えばねじ)が取り外される。
 ステップ2-6では、上蓋76が閉じられ、バッファゲート1内およびパージ容器71内にパージガスが供給される。
 一実施形態では、上記ステップ2-6において、図17の代替ステップ2-6’に示すように、上蓋76が閉じられた後であって、昇降装置91により隔壁17の引き上げを開始した直後に、パージガスを、パージガス導入ポート8のみからポンプコラム3内に供給し、パージ容器71のパージガス出口ポート82から排出してもよい。パージガス入口ポート20、パージガス出口ポート27、パージガス入口ポート81は閉じられる。したがって、パージガス入口ポート81およびパージガス入口ポート20にはパージガスは供給されない。
 パージガスは、ポンプコラム3から、バッファゲート1のバッファ室12を経由して、パージ容器71の内部空間72に流れ、そしてパージガス出口ポート82を通じてパージ容器71の内部空間72から排出される。パージガス出口ポート82を真空源に連結し、パージガスをパージ容器71から吸引してもよい。
 ステップ2-7では、昇降装置91により隔壁17がパージ容器71の内部まで引き上げられ、隔壁17の上昇が一旦停止される。ゲート弁79およびゲート弁52が閉じられ、この状態で隔壁17はパージガスにより加温(ホットアップ)される。
 ステップ2-8では、隔壁17のホットアップの完了後、上蓋76が開けられる。隔壁17がパージ容器71の外に出るまで、昇降装置91によって隔壁17および潜没式ポンプ2が引き上げられる。隔壁17のホットアップは、隔壁17が周囲の空気に接触する前に実行されるので、空気中の水分が隔壁17の表面上で液化または固化しない。隔壁17がバッファゲート1およびパージ容器71内を移動する間、上蓋76、ゲート弁79、およびゲート弁52の少なくとも1つは閉じられる。より具体的には、上蓋76が閉じられた状態で、ゲート弁79およびゲート弁52が開かれ、隔壁17がバッファゲート1からパージ容器71内に移動する。その後、ゲート弁79およびゲート弁52が閉じられ、上蓋76が開いて、隔壁17がパージ容器71から取り出される。このような操作により、周囲の空気がパージ容器71およびバッファゲート1を通ってポンプコラム3内に進入することを防止することができる。
 ステップ2-9では、上蓋76が閉じられ、潜没式ポンプ2に連結されている吊りケーブル13にケーブルストッパ105が取り付けられる。潜没式ポンプ2の荷重は吊りケーブル13およびケーブルストッパ105を介して上蓋76に支持される。
 ステップ2-10では、隔壁17、可動ロッド25、および電気端子50は、昇降装置91、吊りケーブル13、および電力ケーブル45からそれぞれ切り離される。次いで、昇降装置91は吊りケーブル13に連結される。
 ステップ2-11では、ケーブルストッパ105が取り外され、潜没式ポンプ2は昇降装置91によってポンプコラム3内を引き上げられる。潜没式ポンプ2がポンプコラム3内を引き上げられる間、上蓋76、ゲート弁79、およびゲート弁52は閉じたままである。
 ステップ2-12では、潜没式ポンプ2は昇降装置91によってポンプコラム3からバッファゲート1を通過してパージ容器71内の所定位置まで引き上げられる。より具体的には、上蓋76が閉じられた状態で、ゲート弁79およびゲート弁52が開かれ、潜没式ポンプ2がバッファゲート1を通過する。
 潜没式ポンプ2をポンプコラム3からバッファゲート1を経由してパージ容器71内に移動させる間、パージ容器71、バッファゲート1のバッファ室12、およびポンプコラム3内にパージガスを供給し続ける。
 一実施形態では、バッファ室12内に供給されるパージガスの圧力は、パージ容器71内に供給されるパージガスの圧力よりも高い。このような圧力差により、パージ容器71内に存在する空気がバッファ室12内に進入することを防止することができる。さらに、一実施形態では、ポンプコラム3内に供給されるパージガスの圧力は、バッファ室12内に供給されるパージガスの圧力よりも高い。このような圧力差により、パージ容器71内に存在する空気がバッファ室12を経由してポンプコラム3内に進入することを防止することができる。
 一実施形態では、上記ステップ2-12において、図20の代替ステップ2-12’に示すように、パージガスを、パージガス導入ポート8のみからポンプコラム3内に供給し、パージ容器71のパージガス出口ポート82から排出してもよい。パージガス入口ポート81およびパージガス入口ポート20にはパージガスは供給されない。パージガスは、ポンプコラム3から、バッファゲート1のバッファ室12を経由して、パージ容器71の内部空間72に流れ、そしてパージガス出口ポート82を通じてパージ容器71の内部空間72から排出される。パージガス出口ポート82を真空源に連結し、パージガスをパージ容器71から吸引してもよい。特に説明しない図20の実施形態のパージガス供給動作は、図17に示す実施形態のパージガス供給動作と同じであるので、その重複する説明を省略する。
 一実施形態では、図21に示すように、上記ステップ2-12は、ゲート弁79を閉じた状態でゲート弁52を開くステップ2-12aと、ゲート弁52を開いた後にゲート弁79を開くステップ2-12bに分けてもよい。この場合、パージ容器71の内部空間72およびバッファ室12の両方にパージガスを供給し続けてもよく、あるいは上記ステップ2-12aでゲート弁52を開くときに、ポンプコラム3へのパージガスの供給を停止し、かつバッファ室12へのパージガスの供給を開始してもよい。さらに、一実施形態では、バッファ室12へのパージガスの供給を開始した後であって、上記ステップ2-12bでゲート弁79を開く前に、パージ容器71の内部空間72内へのパージガスの供給を開始してもよい。すなわち、パージガスは、ポンプコラム3、バッファ室12、パージ容器71の順に供給されてもよい。
 一実施形態では、上記ステップ2-12aおよび上記ステップ2-12bにおいて、図22の代替ステップ2-12a’および代替ステップ2-12b’に示すように、パージガスを、パージガス導入ポート8のみからポンプコラム3内に供給し、パージ容器71のパージガス出口ポート82から排出してもよい。パージガス入口ポート81およびパージガス入口ポート20にはパージガスは供給されない。パージガスは、ポンプコラム3から、バッファゲート1のバッファ室12を経由して、パージ容器71の内部空間72に流れ、そしてパージガス出口ポート82を通じてパージ容器71の内部空間72から排出される。パージガス出口ポート82を真空源に連結し、パージガスをパージ容器71から吸引してもよい。特に説明しない図22の実施形態のパージガス供給動作は、図17に示す実施形態のパージガス供給動作と同じであるので、その重複する説明を省略する。
 ステップ2-13では、潜没式ポンプ2がパージ容器71の内部空間72内に移動された後、ゲート弁79およびゲート弁52が閉じられる。上蓋76は閉じられたままである。パージガスはパージガス入口ポート81からパージ容器71の内部空間72内に供給され続ける。パージガスはパージガス出口ポート82を通じてパージ容器71の内部空間72から排出される。潜没式ポンプ2は、パージ容器71内でパージガスにさらされる(接触する)。パージ容器71内に供給されるパージガスは常温でもよく、あるいはヒータなどの加熱装置により予め加熱されてもよい。パージ容器71の内部空間72を満たすパージガスは、潜没式ポンプ2を加温する(ホットアップ)。本実施形態によれば、超低温の潜没式ポンプ2をパージガスで加温することができる。
 このホットアップは、潜没式ポンプ2が周囲の空気に接触する前に実行されるので、空気中の水分が潜没式ポンプ2の表面上で液化または固化しない。特に、本実施形態は、液化ガスが液体水素の場合に効果的である。すなわち、液体水素中に浸漬していた潜没式ポンプ2は、ポンプコラム3から引き上げるとき、液体水素と同等の超低温となっている。水素の沸点(-253℃)は酸素の沸点(-183℃)および窒素の沸点(-196℃)よりも低いので、ポンプコラム3から引き上げられた直後の潜没式ポンプ2に空気が接触すると、空気中の窒素のみならず、酸素も液化し、ポンプコラム3内に滴下してしまう。この点、本実施形態によれば、液体水素中に浸漬していた潜没式ポンプ2は、空気に触れる前にパージガスによって速やかに加温される。したがって、空気が潜没式ポンプ2に触れたときに、空気中の酸素および窒素は液化せず、液化酸素や液化窒素はポンプコラム3に滴下しない。さらに、仮に空気中の一部の酸素や窒素が液化したとしても、バッファゲート1は、液化酸素や液化窒素のポンプコラム3への滴下を防ぐことができる。結果として、潜没式ポンプ2の安全な取り出しが達成できる。
 潜没式ポンプ2のホットアップが終了すると、ステップ2-14では、上蓋76が開かれ、昇降装置91により潜没式ポンプ2がパージ容器71から引き上げられる。ゲート弁79およびゲート弁52は閉じられたままである。
 ステップ2-15では、隔壁17が昇降装置91によってパージ容器71およびバッファゲート1内を下降される。このステップ2-15では、上蓋76、ゲート弁79、およびゲート弁52の少なくとも1つは閉じられる。より具体的には、ゲート弁79およびゲート弁52が閉じられ、上蓋76が開かれた状態で、隔壁17がパージ容器71に搬入される。その後、上蓋76が閉じられ、ゲート弁79およびゲート弁52が開いて、隔壁17がバッファゲート1内に搬入される。
 ステップ2-16では、隔壁17はポンプコラム3の上端に置かれる。隔壁17はポンプコラム3の上端に締結具(例えばねじ)により固定され、これによりポンプコラム3の上部開口は隔壁17によって閉じられる。
 ステップ2-17では、パージ容器71がバッファゲート1から切り離され、昇降装置91によってパージ容器71が吊り上げられる。
 ステップ2-18では、隔壁16が昇降装置91によってバッファゲート1の上端に置かれる。
 ステップ2-19では、隔壁16は締結具(例えばねじ)によりバッファゲート1に固定される。
 図8、図10、図13、図17、図20、および図22に示す上記代替ステップでは、パージガスは、パージガス導入ポート8のみからポンプコラム3内に供給され、パージ容器71のパージガス出口ポート82から排出される。したがって、パージガスは、ポンプコラム3、バッファゲート1のバッファ室12、およびパージ容器71の内部空間72内をこの順に流れる。このようなパージガスの供給は、より少ない流量のパージガスで、パージ容器71内の空気のパージガスへの置換が可能であり、かつパージ容器71内への空気の侵入を防止することが可能であることが、実験から分かった。
 その一方で、ステップ1-9およびステップ1-15に示すドライアップでは、図7および図12に示すように、パージガスをパージガス入口ポート81を通じてパージ容器71内に供給することで、ドライアップが促進されることが、実験から分かった。
 これらの実験は、小型モックアップ試験機を用いて行った。試験機は、ケーブル貫通部を模倣した穴の開いた板で、上下に並んだ2つの部屋を仕切る構造を有するものであった。2つの部屋をパージガスで満たした状態で、上の部屋と下の部屋に一定時間パージガスを供給した。そして、外部から上の部屋に空気が侵入したときの、上の部屋の酸素濃度の上昇を測定した。
 図26は、実験結果を示す表である。この表に示す実験結果から、パージガスよりも重いガスが存在する空間を置換する場合には、置換したい空間の下方からパージガスを流入させることでパージガスの消費量を抑えられることが分かった。
 図27は、上述した実施形態の各ステップにおけるパージガスの供給位置、パージガス置換速度、パージガス消費量、供給バルブの操作性、ドライアップ効率、運転上の安全性(空気の侵入防止、内部流体の乱れなど)に関する相対評価の結果を示す表である。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、液化アンモニアや液化天然ガス(LNG)や液体水素などの液化ガスを昇圧するための潜没式ポンプをポンプコラム内に搬入、およびポンプコラムから引き上げるときに、ポンプコラムの内部と外部とを隔離するのに使用されるバッファゲートに利用可能である。さらに、本発明はそのようなバッファゲートを用いて、潜没式ポンプをポンプコラム内に搬入する方法、および潜没式ポンプをポンプコラムから引き上げる方法に利用可能である。
 1   バッファゲート
 2   潜没式ポンプ
 3   ポンプコラム
 5   液化ガス貯槽
 6   吸込み弁
 9   吐出しポート
12   バッファ室
13   吊りケーブル
14   バッファボックス
16,17   隔壁
20   パージガス入口ポート
25   可動ロッド
27   パージガス出口ポート
28   パージガス供給ライン
40   パージガス供給源
42   ガス処理装置
43   パージガス排出ライン
45   電力ケーブル
46   外部電力ケーブル
50   電気端子
52   ゲート弁
55   圧力調節弁
58   パージガス供給ライン
59   圧力調節弁
65   漏洩検出器
71   パージ容器
72   内部空間
74   容器本体
76   上蓋
79   ゲート弁
81   パージガス入口ポート
82   パージガス出口ポート
85   パージガス供給ライン
86   圧力調節弁
87   横蓋
95   ポンプカバー
97   ポンプ真空ライン
98   ポンプパージライン
101  真空弁
102  ポンプパージ弁
105  ケーブルストッパ
107  ロッドストッパ

Claims (26)

  1.  液化ガスを移送するための潜没式ポンプが内部に配置されたポンプコラムの内部と外部とを隔離するためのバッファゲートであって、
     バッファ室を内部に有するバッファボックスと、
     前記バッファボックスの上部開口を閉じる第1隔壁と、
     前記ポンプコラムの上部開口を閉じる第2隔壁と、
     前記バッファ室に連通するパージガス入口ポートを備え、
     前記バッファボックスは前記ポンプコラムの上端に固定されている、バッファゲート。
  2.  前記バッファ室の縦方向の長さは、前記潜没式ポンプの縦方向の長さよりも小さい、請求項1に記載のバッファゲート。
  3.  前記ポンプコラムから前記バッファ室内に漏洩した液化ガスを検出する漏洩検出器をさらに備えている、請求項1または2に記載のバッファゲート。
  4.  前記バッファ室に連通するパージガス出口ポートをさらに備え、前記パージガス出口ポートは、ガス処理装置に接続されている、請求項1に記載のバッファゲート。
  5.  前記潜没式ポンプに電力を供給するための電力ケーブルが接続された電気端子をさらに備えている、請求項1に記載のバッファゲート。
  6.  液化ガスを移送するための潜没式ポンプをポンプコラム内に搬入する方法であって、
     バッファゲート上に配置されたパージ容器の上蓋を開いた状態で、前記潜没式ポンプを前記パージ容器内に移動させ、
     前記ポンプコラムの上部開口を第1ゲート弁で閉じ、前記パージ容器の上部開口を前記上蓋で閉じ、かつ前記パージ容器の下部開口を第2ゲート弁で閉じた状態で、前記潜没式ポンプが収容された前記パージ容器の内部空間をパージガスで満たし、
     前記上蓋を閉じ、かつ前記第1ゲート弁および前記第2ゲート弁を開いた状態で、前記潜没式ポンプを前記バッファゲートを経由して前記パージ容器から前記ポンプコラム内に移動させる、方法。
  7.  前記潜没式ポンプを前記バッファゲートを経由して前記パージ容器から前記ポンプコラム内に移動させる間、前記パージ容器、前記バッファゲートのバッファ室、および前記ポンプコラム内にパージガスを供給し続ける、請求項6に記載の方法。
  8.  前記バッファ室内に供給される前記パージガスの圧力は、前記パージ容器内に供給される前記パージガスの圧力よりも高い、請求項7に記載の方法。
  9.  前記ポンプコラム内に供給される前記パージガスの圧力は、前記バッファ室内に供給される前記パージガスの圧力よりも高い、請求項7に記載の方法。
  10.  前記潜没式ポンプを前記バッファゲートを経由して前記パージ容器から前記ポンプコラム内に移動させる間、前記パージ容器、前記バッファゲートのバッファ室、および前記ポンプコラム内に、前記パージ容器、前記バッファ室、前記ポンプコラムの順でパージガスを供給する、請求項6に記載の方法。
  11.  前記潜没式ポンプを前記バッファゲートを経由して前記パージ容器から前記ポンプコラム内に移動させる間、前記ポンプコラム内に前記パージガスを供給することで、前記ポンプコラムから、前記バッファゲートのバッファ室を経由して、前記パージ容器の内部空間に前記パージガスを流す、請求項6に記載の方法。
  12.  前記潜没式ポンプを前記パージ容器内に移動させる前、または前記潜没式ポンプを前記パージ容器内に移動させた後に、前記潜没式ポンプの内部にパージガスを供給する工程をさらに含む、請求項6に記載の方法。
  13.  前記潜没式ポンプを前記パージ容器から前記バッファゲートを経由して前記ポンプコラム内に移動させた後、前記上蓋、前記第1ゲート弁、および前記第2ゲート弁を閉じた状態で、前記潜没式ポンプを前記ポンプコラム内で下降させる工程をさらに含む、請求項6に記載の方法。
  14.  前記液化ガスは液体水素であり、前記パージガスは少なくともヘリウムガスを含む、請求項6に記載の方法。
  15.  前記液化ガスは液体水素であり、前記パージガスは水素ガスを含む、請求項6に記載の方法。
  16.  前記液化ガスは液化アンモニアであり、前記パージガスはアンモニアガスを含む、請求項6に記載の方法。
  17.  液化ガスを移送するための潜没式ポンプをポンプコラムから引き上げる方法であって、
     バッファゲート上に配置されたパージ容器の上部開口を上蓋で閉じた状態で、前記潜没式ポンプを前記バッファゲートを経由して前記ポンプコラムから前記パージ容器内に移動させ、
     前記ポンプコラムの上部開口を第1ゲート弁で閉じ、前記パージ容器の上部開口を前記上蓋で閉じ、かつ前記パージ容器の下部開口を第2ゲート弁で閉じた状態で、前記潜没式ポンプが収容された前記パージ容器の内部をパージガスで満たし、
     前記上蓋を開き、かつ前記第1ゲート弁および前記第2ゲート弁を閉じた状態で、前記潜没式ポンプを前記パージ容器から引き上げる、方法。
  18.  前記潜没式ポンプを前記バッファゲートを経由して前記ポンプコラムから前記パージ容器内に移動させる間、前記パージ容器、前記バッファゲートのバッファ室、および前記ポンプコラム内にパージガスを供給し続ける、請求項17に記載の方法。
  19.  前記バッファ室内に供給される前記パージガスの圧力は、前記パージ容器内に供給される前記パージガスの圧力よりも高い、請求項18に記載の方法。
  20.  前記ポンプコラム内に供給される前記パージガスの圧力は、前記バッファ室内に供給される前記パージガスの圧力よりも高い、請求項18に記載の方法。
  21.  前記潜没式ポンプを前記ポンプコラムから前記バッファゲートを経由して前記パージ容器内に移動させる間、前記ポンプコラム、前記バッファゲートのバッファ室、および前記パージ容器内に、前記ポンプコラム、前記バッファ室、前記パージ容器の順でパージガスを供給する、請求項17に記載の方法。
  22.  前記潜没式ポンプを前記ポンプコラムから前記バッファゲートを経由して前記パージ容器内に移動させる間、前記ポンプコラム内に前記パージガスを供給することで、前記ポンプコラムから、前記バッファゲートのバッファ室を経由して、前記パージ容器の内部空間に前記パージガスを流す、請求項17に記載の方法。
  23.  前記潜没式ポンプを前記ポンプコラムから前記バッファゲートを経由して前記パージ容器内に移動させる前、前記上蓋、前記第1ゲート弁、および前記第2ゲート弁を閉じた状態で、前記潜没式ポンプを前記ポンプコラム内で上昇させる工程をさらに含む、請求項17に記載の方法。
  24.  前記液化ガスは液体水素であり、前記パージガスは少なくともヘリウムガスを含む、請求項17に記載の方法。
  25.  前記液化ガスは液体水素であり、前記パージガスは水素ガスを含む、請求項17に記載の方法。
  26.  前記液化ガスは液化アンモニアであり、前記パージガスはアンモニアガスを含む、請求項17に記載の方法。
PCT/JP2022/030388 2021-08-17 2022-08-09 バッファゲート、ポンプ搬入方法、ポンプ引き上げ方法 WO2023022063A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3228555A CA3228555A1 (en) 2021-08-17 2022-08-09 Buffer gate, pump carrying-in method, and pump pulling-up method
JP2023542361A JPWO2023022063A1 (ja) 2021-08-17 2022-08-09
CN202280055724.9A CN117795240A (zh) 2021-08-17 2022-08-09 缓冲闸、泵搬入方法、泵提升方法
AU2022330643A AU2022330643A1 (en) 2021-08-17 2022-08-09 Buffer gate, pump carrying-in method, and pump pulling-up method
KR1020247008110A KR20240042085A (ko) 2021-08-17 2022-08-09 버퍼 게이트, 펌프 반입 방법, 펌프 인상 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132903 2021-08-17
JP2021132903 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023022063A1 true WO2023022063A1 (ja) 2023-02-23

Family

ID=85240706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030388 WO2023022063A1 (ja) 2021-08-17 2022-08-09 バッファゲート、ポンプ搬入方法、ポンプ引き上げ方法

Country Status (6)

Country Link
JP (1) JPWO2023022063A1 (ja)
KR (1) KR20240042085A (ja)
CN (1) CN117795240A (ja)
AU (1) AU2022330643A1 (ja)
CA (1) CA3228555A1 (ja)
WO (1) WO2023022063A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137684A (en) * 1980-10-09 1982-08-25 Itt Pump apparatus
JPH09256985A (ja) * 1996-03-21 1997-09-30 Hitachi Ltd 液化ガスタンク用潜没ポンプ装置とその吊り上げ用治具
JP3197645B2 (ja) 1993-01-08 2001-08-13 株式会社日立製作所 液化ガスタンク用潜設ポンプ装置
JP3472379B2 (ja) 1995-04-26 2003-12-02 日機装株式会社 サブマージドモータポンプの設置装置
JP2007064065A (ja) * 2005-08-30 2007-03-15 Ebara Corp 送液装置及びその運転方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197645U (ja) 2015-03-10 2015-05-28 有限会社是川建設 慶弔用花表示装置
JP3198248U (ja) 2015-03-31 2015-06-25 博一 母袋 吐水制御部付手動回転水栓

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137684A (en) * 1980-10-09 1982-08-25 Itt Pump apparatus
JP3197645B2 (ja) 1993-01-08 2001-08-13 株式会社日立製作所 液化ガスタンク用潜設ポンプ装置
JP3472379B2 (ja) 1995-04-26 2003-12-02 日機装株式会社 サブマージドモータポンプの設置装置
JPH09256985A (ja) * 1996-03-21 1997-09-30 Hitachi Ltd 液化ガスタンク用潜没ポンプ装置とその吊り上げ用治具
JP3198248B2 (ja) 1996-03-21 2001-08-13 株式会社日立製作所 液化ガスタンク用潜没ポンプ装置とその吊り上げ用治具
JP2007064065A (ja) * 2005-08-30 2007-03-15 Ebara Corp 送液装置及びその運転方法

Also Published As

Publication number Publication date
KR20240042085A (ko) 2024-04-01
JPWO2023022063A1 (ja) 2023-02-23
CA3228555A1 (en) 2023-02-23
CN117795240A (zh) 2024-03-29
AU2022330643A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2023022063A1 (ja) バッファゲート、ポンプ搬入方法、ポンプ引き上げ方法
WO2023022062A1 (ja) パージ装置およびパージ方法
WO2023022059A1 (ja) 昇降装置、ポンプ搬入方法、ポンプ引き上げ方法
WO2023022058A1 (ja) 一体可搬型パージ容器および該一体可搬型パージ容器の使用方法
WO2023022060A1 (ja) パージ容器および該パージ容器の使用方法
US11742538B2 (en) Liquid tank system and Li-ion battery cooling system therewith
WO2023210508A1 (ja) ポンプ設置装置、ポンプ設置方法、ポンプ取り出し方法
JP2023101955A (ja) ポンプの昇降装置、ポンプ搬入方法、ポンプ引き上げ方法
WO2023136033A1 (ja) 潜没式ポンプのための電力ケーブル、ポンプ搬入方法、ポンプ引き上げ方法
KR102277003B1 (ko) 화재선박의 화물탱크 내 손상 화학화물 제거방법
JP2024044536A (ja) 液化ガスタンク
JP2024090009A (ja) 潜没式ポンプをポンプコラムに搬入および搬出するときに使用されるアタッチメント組立体、ポンプ搬入方法、およびポンプ搬出方法
CN215556048U (zh) 一种液态危险品贮存桶
JP2021081357A (ja) 水素処理装置及びその運転方法
JP2023163323A (ja) 液化ガスタンク
JP2022062406A (ja) 配管撤去前処理装置およびそれを用いた配管撤去前処理方法
NO20220699A1 (en) Safety and Support System for a Fuel Cell Module
US2702308A (en) Method and means for the charging of accumulators or forming of accumulator plates
RU1122187C (ru) Энергоустановка подводного применени
JPS61231849A (ja) タ−ビン発電機の冷却システム
KR20010094666A (ko) 고압의 액체 및 초임계 유체내에 가공 및 세정 대상고체물질의 연속 공급 및 배출 장치
JP2018138462A (ja) 液封システム及び保存ケース
JPH01241113A (ja) ガス置換方法及びそれを用いた処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3228555

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280055724.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023542361

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022330643

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022858384

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022858384

Country of ref document: EP

Effective date: 20240318

ENP Entry into the national phase

Ref document number: 2022330643

Country of ref document: AU

Date of ref document: 20220809

Kind code of ref document: A