WO2023011409A1 - 通过氢甲酰化反应制备含氧有机化合物的方法 - Google Patents

通过氢甲酰化反应制备含氧有机化合物的方法 Download PDF

Info

Publication number
WO2023011409A1
WO2023011409A1 PCT/CN2022/109424 CN2022109424W WO2023011409A1 WO 2023011409 A1 WO2023011409 A1 WO 2023011409A1 CN 2022109424 W CN2022109424 W CN 2022109424W WO 2023011409 A1 WO2023011409 A1 WO 2023011409A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
cobalt
hydroformylation
synthesis gas
carbon
Prior art date
Application number
PCT/CN2022/109424
Other languages
English (en)
French (fr)
Inventor
王海京
宗保宁
夏春谷
刘凌涛
甄栋兴
张晓昕
刘建华
许传芝
郧栋
刘祺壬
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
中国科学院兰州化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司, 中国科学院兰州化学物理研究所 filed Critical 中国石油化工股份有限公司
Publication of WO2023011409A1 publication Critical patent/WO2023011409A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/125Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present application relates to the field of hydroformylation reaction, in particular to a method for preparing oxygen-containing organic compounds through hydroformylation reaction.
  • Organic compounds with carbon-carbon double bonds such as olefins can be hydroformylated with carbon monoxide and hydrogen under the action of a catalyst to obtain aldehydes and/or alcohols with one carbon atom added.
  • Conventional hydroformylation processes involve contacting an ethylenically unsaturated compound with carbon monoxide and hydrogen in the presence of a catalyst under reaction conditions to produce one or more aldehydes and/or alcohols.
  • the catalysts used in hydroformylation reactions in industrial production are generally cobalt (Co)-based or rhodium (Rh)-based catalysts.
  • CN102123978A discloses a method for hydroformylation of ⁇ -olefins to produce two or more aldehydes comprising normal aldehydes and one or more isomeric aldehydes, the normal aldehydes being combined with one or more
  • the target molar ratio of isomeric aldehydes is in the selectable range of 3/1-60/1.
  • the method uses a transition metal-ligand complex catalyst comprising a symmetrical calixarene diphosphite ligand.
  • CN108586219A discloses a method for preparing aldehydes by hydroformylation of olefins.
  • the preparation method is as follows: step 1: carry out continuous hydroformylation of C2-C4 olefins, carbon monoxide and hydrogen in the first reactor under the action of a catalyst To prepare aldehyde, its temperature is 90 DEG C and pressure is 2.5MPa simultaneously; Step 2: carry out heating in the second reactor, heating temperature is 70-80 DEG C, pass into inert gas in the second reactor simultaneously; Step 3: Connect the first reactor to the second reactor, introduce the aldehyde prepared by the first reactor into the second reactor; step 4: when introducing in step 3, carry out under the conditions of equal pressure and different temperatures, and introduce Carry out secondary introduction afterward; This technical reaction process is complicated, and adopts rhodium-phosphine complex catalyst, expensive.
  • rhodium complexes Compared with cobalt catalysts, rhodium complexes have higher reactivity and can react at milder temperatures and pressures.
  • the rhodium catalyst has poor high-temperature performance, and it is difficult to be used for the carbonylation of higher olefins.
  • the existing rhodium catalyst has a better catalytic effect on terminal olefins, but has poor activity on internal olefins.
  • the treatment is relatively complicated, and rhodium is scarce as a precious metal resource, and the price is expensive, and its recycling cost is relatively high.
  • CN1370137A discloses a continuous process for the hydroformylation of olefins having 6-20 carbon atoms, wherein: a) an aqueous cobalt(II) salt solution is contacted sufficiently with hydrogen and carbon monoxide to form a hydroformylation active cobalt catalyst , the aqueous phase containing the cobalt catalyst is then brought into intimate contact with the olefin and optionally an organic solvent and hydrogen and carbon monoxide in at least one reaction zone where the cobalt catalyst is extracted into the organic phase and the olefin is hydroformylated , b) treating the effluent from the reaction zone with oxygen in the presence of an acidic cobalt(II) brine solution, wherein the cobalt catalyst decomposes to form cobalt(II) salts and these are stripped into the aqueous phase; and subsequently separated The phases, c) the cobalt(II) brine solution are recycled unchanged to step a).
  • the object of the present application is to provide an improved process for the preparation of oxygenated organic compounds by hydroformylation which enables reduced selectivity to alkanes and increased selectivity to alcohols and aldehydes.
  • the application provides a method for preparing oxygen-containing organic compounds by hydroformylation, comprising the steps of:
  • Hydroformylation is carried out by contacting an organic compound having 2 to 60 carbon atoms and at least one carbon-carbon double bond with synthesis gas comprising CO and H in the presence of a hydroformylation catalyst at a first reaction temperature oxidization reaction to obtain a reaction material comprising the oxygen-containing organic compound and heavies, wherein the oxygen-containing organic compound is an alcohol, an aldehyde, or an alcohol having one carbon atom added to the organic compound having a carbon-carbon double bond. combination, the first reaction temperature is 60-150°C; and
  • step 2) In the presence of synthesis gas containing CO and H2 and at a second reaction temperature, the reaction material obtained in step 1) is continued to react to decompose the heavy matter therein, so that the content of the heavy matter is reduced and the obtained A reaction product with an increased content of oxygen-containing organic compounds, wherein the second reaction temperature is 140-200°C, and the second reaction temperature is 20-100°C higher than the first reaction temperature.
  • the method of the present application can realize reduced alkane selectivity and improved alcohol selectivity; and can reduce the content of heavy substances in the product, thereby greatly reducing the amount of externally thrown material and reducing waste liquid discharge , is conducive to environmental protection.
  • the method of the present application has a simple process flow, can be implemented in a continuous manner, has high raw material conversion rate, high target product yield, low alkane selectivity, and less waste liquid discharge, and has good industrial application prospects.
  • the olefin can be an alkene or a cyclic olefin, and the number of its carbon-carbon double bond can be one (ie, a monoolefin), two (ie, a diene) or more, and the carbon-carbon double bond It can be at the end of the carbon chain (ie, terminal olefin, such as an ⁇ -olefin) or in the middle of the carbon chain (ie, internal olefin).
  • olefins may contain other functional groups, such as hydroxyl groups, aromatic rings, and the like.
  • the olefin is preferably a monoolefin, more preferably a linear or branched monoolefin.
  • C8 olefin refers to an olefinic compound having 8 carbon atoms, preferably a linear or branched monoolefin having 8 carbon atoms, including 1-octene and its various isomers solids, such as 2,4,4-trimethyl-1-pentene, 2,4,4-trimethyl-2-pentene, 3,4,4-trimethyl-2-pentene, 2, 3,3-Trimethyl-1-pentene, 5,5-Dimethyl-2-hexene, 3,5-Dimethyl-2-hexene, 2,4-Dimethyl-2-hexene ene, 2,3-dimethyl-3-hexene, 3,4-dimethyl-2-hexene, etc.
  • hydroformylation catalyst generally refers to various catalysts suitable for catalyzing hydroformylation reactions to generate aldehydes. This type of catalyst is well known in the art, such as mentioned in Chinese patent application publication CN106103399A catalyst, the contents of which are incorporated herein by reference in their entirety.
  • organic phosphorus-containing ligand has the meaning generally understood in the art, especially refers to the molecular structure containing phosphorus and phosphorus-bonded
  • the ligand of the group, wherein the hydrocarbon group in the hydrocarbon group and the hydrocarbon group can be various aliphatic hydrocarbon groups, alicyclic hydrocarbon groups and aromatic hydrocarbon groups, such as alkyl, cycloalkyl and aryl groups, the heterocyclic group
  • the group can be various organic groups having one or more heteroatoms selected from O, N, S and the like in the ring.
  • the groups may also optionally have various substituents that do not adversely affect the properties of the resulting complex, such as sulfonic acid groups, halogens, amino groups, nitro groups, hydroxyl groups, carbonyl groups, and the like.
  • the organophosphorus-containing ligand may be a ligand containing phosphorus in its molecular structure and a hydrocarbon group bonded to phosphorus through a "P-C” bond and/or a hydrocarbon group bonded to phosphorus through a "P-O" bond.
  • organic phosphorus-containing ligands include various phosphine ligands known in the art, especially phosphine ligands with alkyl, aryl and/or heterocyclic groups, such as trialkyl Phosphine ligands.
  • the organic phosphorus-containing ligand has the general formula PR3, wherein each group R is independently selected from hydrocarbon groups, hydrocarbon oxygen groups and heterocyclic groups, preferably independently selected from alkyl, cycloalkyl, aromatic radical, alkoxy, cycloalkoxy and aryloxy.
  • the group R may also optionally have various substituents that do not adversely affect the properties of the resulting complex, such as sulfonic acid groups, halogens, amino groups, nitro groups, hydroxyl groups, carbonyl groups, and the like.
  • organic phosphorus-containing ligands include, but are not limited to, phosphite ligands, triarylphosphine ligands, trialkylphosphine ligands and alkylarylphosphine ligands, etc., such as triphenylphosphine ligands , tributylphosphine ligand, tri-tert-butylphosphine ligand, tricyclohexylphosphine ligand, sec-butyldiphenylphosphine ligand, di-tert-butyl neopentylphosphine ligand, trioctylphosphine ligand wait.
  • the term "cobalt-phosphine complex” broadly refers to various cobalt complexes comprising an organic phosphorus-containing ligand, wherein the organic phosphorus-containing ligand is as defined above.
  • the cobalt-phosphine complex may be a cobalt phosphine complex containing various phosphine ligands known in the art (such as triphenylphosphine ligand, tributylphosphine ligand, tri-tert-butylphosphine ligand, etc.) complexes.
  • the cobalt-phosphine complex when used as a hydroformylation catalyst, preferably also contains a carbonyl ligand in addition to the organic phosphorus-containing ligand.
  • organic phosphorus-containing ligand compound refers to a compound capable of obtaining a metal complex comprising a metal and the above-mentioned organic phosphorus-containing ligand by reacting with a metal source.
  • the "heavy substance” refers to the product obtained from the further reaction between the oxygen-containing organic compounds or between the oxygen-containing organic compound and other compounds, especially refers to the product derived from at least two molecules of the oxygen-containing organic compound Reaction products of oxygen-organic compounds, i.e. reaction products obtained from at least two molecules of said oxygen-containing organic compounds through one or more chemical reaction processes, for example by aldol condensation reactions, acetalization reactions, etherification reactions, oxidation reactions and Acetal compounds, hydroxy aldehyde compounds, ether compounds, ester compounds, etc. obtained by esterification reaction or the like or combinations thereof.
  • the heavy substances can be acetal compounds, hydroxy aldehyde compounds, ether compounds obtained by at least two molecules of C9 aldehydes and/or C9 alcohols through one or more chemical reaction processes , ester compounds, etc. or a combination thereof.
  • any matters or matters not mentioned are directly applicable to those known in the art without any change.
  • any of the implementations described herein can be freely combined with one or more other implementations described herein, and the resulting technical solutions or technical ideas are regarded as a part of the original disclosure or original record of the application, and should not be It is regarded as a new content that has not been disclosed or expected in this paper, unless those skilled in the art think that the combination is obviously unreasonable.
  • the application provides a method for preparing oxygen-containing organic compounds by hydroformylation, comprising the steps of:
  • Hydroformylation is carried out by contacting an organic compound having 2 to 60 carbon atoms and at least one carbon-carbon double bond with synthesis gas comprising CO and H in the presence of a hydroformylation catalyst at a first reaction temperature oxidization reaction to obtain a reaction material comprising the oxygen-containing organic compound and heavies, wherein the oxygen-containing organic compound is an alcohol, an aldehyde, or an alcohol having one carbon atom added to the organic compound having a carbon-carbon double bond. combination, the first reaction temperature is 60-150°C; and
  • step 2) In the presence of synthesis gas containing CO and H2 and at a second reaction temperature, the reaction material obtained in step 1) is continued to react to decompose the heavy matter therein, so that the content of the heavy matter is reduced and the obtained A reaction product with an increased content of oxygen-containing organic compounds, wherein the second reaction temperature is 140-200°C, and the second reaction temperature is 20-100°C higher than the first reaction temperature.
  • the first reaction temperature of step 1) is 100-145°C
  • the second reactant temperature of step 2) is 170-200°C
  • the second reaction temperature is higher than the first reaction temperature 30-70°C higher, preferably 40-60°C higher.
  • the hydroformylation reaction of step 1) is carried out at a lower temperature and in the presence of synthesis gas, which can also produce target oxygen-containing organic compounds.
  • synthesis gas which can also produce target oxygen-containing organic compounds.
  • the reaction of step 2) is carried out under higher temperature and the presence of syngas, can make the heaviness
  • the target oxygen-containing organic compound is re-decomposed into the target oxygen-containing organic compound, and the by-product alkane does not increase substantially in the reaction process of step 2), which can significantly reduce the heavies content in the final product, reduce the alkane selectivity and improve the alcohol selectivity .
  • the reaction conditions of step 1) include: the reaction temperature is 60-150°C, preferably 100-145°C, more preferably 100°C to less than 130°C; the reaction pressure is 1-12MPa, preferably 2 -10MPa; and the reaction time is 1-60h, preferably 2-25h.
  • the reaction conditions of step 2) include: the reaction temperature is 140-200°C, preferably 170-200°C; the reaction pressure is 1-12MPa, preferably 2-10MPa; and the reaction time is 1-40h , preferably 2-25h.
  • the molar ratio of the syngas to the organic compound having a carbon-carbon double bond in step 1) of the method of the present application is (0.1-12): 1, preferably (3 -6): 1, wherein the molar amount of the syngas is the sum of the molar amounts of each gas in the syngas.
  • said steps 1) and 2) are carried out under a synthesis gas atmosphere. At this time, the amount of CO and H2 in the reaction system is in large excess relative to the requirement of the reaction.
  • the reaction time of step 1) is longer than the reaction time of step 2). Further preferably, the reaction temperature in step 1) is lower than 130°C, thereby further reducing the alkane selectivity.
  • the hydroformylation catalyst is not particularly limited, as long as it can effectively catalyze the hydroformylation reaction of the organic compound having a carbon-carbon double bond to form an aldehyde.
  • the hydroformylation catalyst is a transition metal complex catalyst suitable for catalyzing olefin hydroformylation.
  • the transition metal in the transition metal complex is selected from group VIII metals, more preferably selected from rhodium (Rh), cobalt (Co), iridium (Ir), ruthenium (Ru) or Their combination is more preferably selected from rhodium, cobalt, or their combination, particularly preferably cobalt.
  • the transition metal complex comprises a carbonyl ligand, an organic phosphorus-containing ligand or a combination thereof, wherein the organic phosphorus-containing ligand is as defined above.
  • the organic phosphorus-containing ligand has the general formula PR 3 , wherein each group R is independently selected from hydrocarbon groups, hydrocarbon oxygen groups and heterocyclic groups, preferably independently selected from alkyl groups, cycloalkyl groups, Aryl, alkoxy, cycloalkoxy and aryloxy.
  • the group R may also optionally have various substituents that do not adversely affect the properties of the resulting complex, such as sulfonic acid groups, halogens, amino groups, nitro groups, hydroxyl groups, carbonyl groups, and the like.
  • the organic phosphorus-containing ligands are selected from phosphite ligands, triarylphosphine ligands, trialkylphosphine ligands, alkylarylphosphine ligands or combinations thereof, for example selected from triphenyl Phosphine ligand, tributylphosphine ligand, tri-tert-butylphosphine ligand, tricyclohexylphosphine ligand, sec-butyldiphenylphosphine ligand, di-tert-butylneopentylphosphine ligand, trioctyl Phosphine ligands, or combinations thereof.
  • the hydroformylation catalyst is used in the form of a solution of the transition metal complex in an organic solvent, and the mass concentration of the transition metal in the solution is preferably 0.01-3 %, more preferably 0.2-2%.
  • the organic solvent there is no particular limitation on the organic solvent, as long as it can dissolve the transition metal complex and has no adverse effect on the hydroformylation reaction.
  • the organic solvent is selected from alkanes, aromatic hydrocarbons, alcohols, ethers, aldehydes, ketones, nitriles, esters or combinations thereof, more preferably selected from alcohols, aldehydes or combinations thereof, particularly preferably selected from Oxygenated organic compounds have alcohols or aldehydes with the same number of carbon atoms.
  • the transition metal complex is a cobalt complex comprising an organophosphorous ligand (also referred to herein as a "cobalt-phosphine complex"), and the hydroformylation
  • the catalyst is used as a solution of the cobalt complex.
  • the cobalt complex further comprises a carbonyl ligand.
  • the method of the present application also includes pretreatment of the hydroformylation catalyst in the form of cobalt complex solution in the presence of synthesis gas containing CO and H before step 1).
  • step preferably the pretreatment conditions include: the temperature is 50-150°C, preferably 75-130°C; the pressure is 0.1-12MPa, preferably 1-9MPa, more preferably 3-8MPa; the pretreatment time is 0.1-10h, preferably 1-3h.
  • the pretreatment step is beneficial to the formation of active units of the hydroformylation catalyst, reduces catalyst decomposition, improves catalyst activity and stability, and prolongs catalyst service life.
  • the cobalt complex solution is obtained by contacting a cobalt-containing raw material with an organic phosphorus-containing ligand compound in the presence of an organic solvent, wherein the cobalt-containing raw material is selected from cobalt salts, cobalt oxides or their combination, preferably selected from cobalt carbonate, cobalt nitrate, cobalt acetate, cobalt levulinate, cobalt formate, dicobalt octacarbonyl, cobalt naphthenate or their combination; the organic phosphorus-containing ligand compound is as above defined.
  • the organic phosphorus-containing ligand compound is a compound comprising phosphorus and a group bonded to phosphorus selected from a hydrocarbon group, an alkoxy group, a heterocyclic group or a combination thereof, more preferably a compound having the general formula PR3 Compounds, wherein each group R is independently selected from hydrocarbyl, hydrocarbyloxy and heterocyclic groups, preferably independently selected from alkyl, cycloalkyl, aryl, alkoxy, cycloalkoxy and aryloxy base.
  • the organic phosphorus-containing ligand compound is selected from phosphite, triarylphosphine, trialkylphosphine, alkylarylphosphine or combinations thereof, for example, selected from triphenylphosphine, tributylphosphine, Tri-tert-butylphosphine, tricyclohexylphosphine, sec-butyldiphenylphosphine, di-tert-butylneopentylphosphine, trioctylphosphine, or combinations thereof.
  • the conditions of the contact reaction include: temperature 80-180°C, preferably 100-150°C; pressure 0.1-6MPa, preferably 1-4MPa; time 0.5-24h, preferably 1-15h. More preferably, the contacting reaction is carried out in the presence of CO, especially synthesis gas comprising CO and H2 .
  • the organic compound having a carbon-carbon double bond as a raw material for the hydroformylation reaction can be various organic compounds having at least one carbon-carbon double bond in the carbon chain, and the carbon-carbon double bond The position of may be at the end of the carbon chain or in the middle of the carbon chain, and the organic compound may have a hydroxyl group, an aromatic ring, or the like.
  • the organic compound having a carbon-carbon double bond is a hydrocarbon compound, such as an olefin.
  • the organic compound having a carbon-carbon double bond is an alkene having 3-60 carbon atoms, more preferably an alkene having 4-30 carbon atoms, and even more preferably an alkene having 6- Alkenes with 20 carbon atoms, particularly preferred are alkenes with 8 to 12 carbon atoms.
  • the olefins can be linear olefins, branched olefins, cyclic olefins or mixed olefins comprising any two or three of them, and the branched olefins can have one or more branches.
  • the olefin is a C8 olefin, such as an olefin selected from 1-octene and its various isomers, such as 2,4,4-trimethyl-1-pentene, 2,4, 4-Trimethyl-2-pentene, 3,4,4-trimethyl-2-pentene, 2,3,3-trimethyl-1-pentene, 5,5-dimethyl-2 -hexene, 3,5-dimethyl-2-hexene, 2,4-dimethyl-2-hexene, 2,3-dimethyl-3-hexene and 3,4-dimethyl -2-Hexene.
  • trimethyl branched chain olefins are more difficult to hydroformylate than olefins with fewer branches due to large steric hindrance.
  • step 1) of the method of the present application includes: in the presence of the cobalt complex solution and at the first reaction temperature, contacting C8 olefins with the synthesis gas for hydroformylation react to obtain a reaction mass comprising the oxygen-containing organic compound and heavies.
  • step 1) of the method of the present application in terms of mass, the amount of the transition metal complex solution used as a hydroformylation catalyst and the organic compound with a carbon-carbon double bond
  • the ratio is (0.1-10):1, preferably (2-5):1.
  • the molar ratio of carbon monoxide to hydrogen in the synthesis gas comprising CO and H used in each step of the method of the present application is independently 10:1 to 1:10, preferably 4:1 to 1:1: 4. More preferably 3:1 to 1:3, for example 3:1 to 1:1, or 1:2 to 1:3.
  • the ratio of CO and H in the used synthesis gas can be the same or different, so that it is convenient to adjust the organic compound with carbon-carbon double bond and CO, The ratio between H2 is optimal, which is conducive to achieving higher conversion and better selectivity.
  • the inventors of the present application have unexpectedly found that the use of synthesis gas with a higher carbon monoxide to hydrogen molar ratio in step 1), for example a CO/ H molar ratio of 3:1 to 1:1, can improve the reaction in step 1).
  • the aldehyde content of the product although at this point the amount of carbon monoxide and hydrogen in the synthesis gas is still in large excess for the reaction of step 1). Therefore, when aldehyde is used as the target product, it is advantageous to adopt such an embodiment, because the aldehyde product can be separated from the reaction product of step 1) after the reaction of step 1), thereby increasing the yield of the target aldehyde product .
  • the inventors of the present application also unexpectedly found that when part of the raw organic compound remains in the reaction product of step 1), the aldehyde content in the product is relatively high; and when the conversion rate of the raw organic compound is relatively high or completely converted , the aldehyde content in the product is significantly reduced. Therefore, by controlling the raw material conversion rate of step 1) ⁇ 100%, in particular, controlling the raw material conversion rate of step 1) ⁇ 95%, and after the reaction in step 1), the untreated product is separated from the reaction product of step 1). The raw material organic compound of reaction, and it is recycled back to further reaction in step 1), can improve the aldehyde yield of step 1) reaction.
  • the reactor for implementing the reaction of step 1) and step 2) there is no particular limitation on the reactor for implementing the reaction of step 1) and step 2), as long as the reaction can be carried out and the temperature can be controlled freely.
  • the reaction of step 1) and the reaction of step 2) are carried out in the same or different tubular reactors, more preferably the method is carried out in a continuous manner, and the reaction of step 1) and the reaction of step 2 ) are carried out in different tubular reactors or in different zones of the same tubular reactor.
  • the reaction raw materials (such as olefins, synthesis gas and catalyst solution) may flow in from the lower part of the tubular reactor, and the reaction product may flow out from the upper part of the tubular reactor; it may also be that the reaction raw materials flow in from the upper part of the tubular reactor, The reaction product flows out from the lower part of the tubular reactor.
  • reaction in step 2) is carried out with the addition of water.
  • reaction in step 2) is carried out without adding water.
  • the method of the present application further includes before step 2): separating the reaction material obtained in step 1), separating the oxygen-containing organic compound such as aldehyde, and then making the separated residue The reaction is continued in step 2).
  • the method of the present application further comprises after step 2):
  • step 2) separating the reaction product obtained in step 2) to obtain a light component comprising the oxygen-containing organic compound and a heavy component comprising the hydroformylation catalyst and optional residual heavies;
  • step 4) Returning at least a part of the heavy component obtained in step 3) to step 1) for further reaction.
  • step 2) after the reaction in step 2) is completed, part of the organic oxygen-containing compound products (such as alcohols and aldehydes), by-product alkanes and unreacted raw material organic compounds can be separated (such as by distillation) from the crude reaction product, and the remaining The catalyst-containing material is recycled to step 1) for further reaction. Or alternatively, the remaining catalyst-containing material is recycled to the pretreatment step, and then returned to step 1) for further reaction after pretreatment.
  • organic oxygen-containing compound products such as alcohols and aldehydes
  • by-product alkanes and unreacted raw material organic compounds can be separated (such as by distillation) from the crude reaction product, and the remaining The catalyst-containing material is recycled to step 1) for further reaction.
  • the remaining catalyst-containing material is recycled to the pretreatment step, and then returned to step 1) for further reaction after pretreatment.
  • the recycled heavy component contains 0.1-99.9wt%, preferably 3-70wt%, more preferably 3-30wt% of the heavy substance by mass.
  • the method of the present application may also include hydrogenation of the separated oxygenated organic compound product, thereby obtaining a high-yield alcohol.
  • the method of the present application is carried out in a continuous manner, and comprises the following steps:
  • the C8 olefin is subjected to a hydroformylation reaction under a synthesis gas atmosphere containing CO and H2 to obtain a first C9 aldehyde and a C9 alcohol.
  • Stream also contains heavy material in the first stream;
  • step ii) under a synthesis gas atmosphere comprising CO and H and at a second reaction temperature, the first stream obtained in step i) is continuously reacted to decompose the heavy matter therein to obtain a second stream with reduced heavy matter content ;
  • the light component contains C9 alcohols, C9 aldehydes and C8 alkanes
  • the heavy component contains the hydroformylation catalyst and any Selected residual heavies
  • the separation may be performed first with gas-liquid separation, and then with distillation separation.
  • the gas-liquid separation is carried out in the gas-liquid separation tank under the condition of lowering the temperature without reducing the pressure, and the gas-liquid separation temperature is 0-100°C, preferably 20-80°C, more preferably 20- 40°C.
  • the gas phase stream obtained after gas-liquid separation is basically synthesis gas, and after condensation and/or absorption, the remaining synthesis gas can be recycled to the pretreatment reactor and/or the inlet of the reactor used in step i) ,reuse.
  • the liquid phase stream after gas-liquid separation can be distilled and separated by a distillation device, the top discharge is a mixed product containing C9 alcohol, C8 alkane and C9 aldehyde, and the bottom is obtained containing the heavy component of the hydroformylation catalyst and the solvent.
  • the amount of said heavy component recycled back to step i) in step iv) accounts for 0.1-90 wt%, preferably 0.1-40 wt%, more preferably 0.1 wt% of all said heavy component obtained in step iii). -20 wt%.
  • the heavy component recycled back to step i) contains a certain amount of the heavies, for example, 0.1-99.9wt%, preferably 3-70wt%, or more based on the mass of the recycled heavy component. Preference is given to 3-30% by weight of heavies. The inventors of the present application unexpectedly found that including a certain amount of heavies in the recycled heavies can increase the solubility of the catalyst, which in turn is beneficial to reduce the reaction temperature and alkane selectivity in step i).
  • a small amount of fresh catalyst can be added as needed.
  • the method of the present application is carried out in a continuous manner, and comprises the following steps:
  • step B) making the reaction product obtained in step A) enter a second tubular reactor for further reaction at a second reaction temperature and a synthesis gas atmosphere;
  • step B) separating the reaction product obtained in step B) to obtain light components and heavy components, the light components comprising C9 alcohols, C9 aldehydes and C8 alkanes, and the heavy components comprising the cobalt complex catalyst;
  • step D) returning at least a part of the heavy component obtained in step C) to the inlet of the first tubular reactor for recycling.
  • step A) first C8 olefin is converted into C8 alkane, C9 aldehyde, C9 alcohol and heavies at lower reaction temperature in step A); Then, in step B) at higher reaction temperature Next, the heavies are converted to C9 alcohols.
  • Analysis showed that the hydroformylation reaction in step A) resulted in a reaction product containing heavies, which unexpectedly re-decomposed into products such as C9 alcohols with essentially no C8 produced in the reaction in step B) alkanes.
  • a part of the heavy component obtained in step C) is thrown out of the reaction system, especially preferably the part of the heavy component is sent to a downstream reaction unit before being thrown out of the system, and the synthesis gas is fed into it but the raw organic material is not fed into it.
  • Compounds are post-treated under higher temperature conditions, and the residual heavy substances in them will be decomposed into products such as C9 alcohols, which not only further increases the yield of target products, but also can significantly reduce the amount of externally thrown materials, thereby significantly reducing waste Liquid discharge, reducing the environmental protection problems of the hydroformylation process.
  • the selectivity of alcohol can be improved, the amount of externally thrown materials can be significantly reduced, and the discharge of waste liquid can be reduced, which is beneficial to environmental protection and has industrialization prospects;
  • a cobalt catalyst with a lower price than the rhodium catalyst can be used, and the hydroformylation reaction temperature of the first step is obviously reduced, which is conducive to the stability of the cobalt catalyst;
  • the catalyst pretreatment process can reduce the decomposition of the cobalt complex catalyst, facilitate the formation of the active unit of the cobalt complex catalyst, improve the activity and stability of the catalyst, and prolong the service life of the catalyst;
  • prolonging the second-step reaction time can reduce the aldehyde content in the second-step reaction product to ⁇ 0.1wt%, which is advantageous when alcohol is the target product, because it can be omitted Subsequent hydrogenation step to convert aldehydes to alcohols.
  • the proportion of aldol in the reaction product of the first step can be adjusted, and then more aldehydes can be produced as required, which is beneficial to product diversification.
  • the raw materials used are all commercially available products, and the purity is industrial pure.
  • the olefin raw materials used are commercially available C8 olefins, consisting of: 2,4,4-trimethyl-1-pentene 75.1wt%, 2,4,4 - Trimethyl-2-pentene 21.2 wt%, the remainder being multi-branched alkenes; the CO/ H molar ratio in the synthesis gas used is 1:2.
  • Raw material conversion rate [1-(the total mass of 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene in the reaction product)/(2 in the raw material, The total mass of 4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene)] ⁇ 100%.
  • Catalyst solution A1 (recycled during the reaction) and synthesis gas are fed into the pretreatment reactor, the temperature of the pretreatment reactor is 125°C, the pressure is 8MPa, and the pretreatment time is 0.5h.
  • the pretreated catalyst solution A1 and C8 olefin enter the first tubular reactor at a ratio of 83g:30g.
  • the temperature of the first tubular reactor is 120° C. and the pressure is 8 MPa, and the synthesis gas is fed for 15 hours.
  • the product was subjected to chromatographic analysis, and the results are shown in Table 2-1.
  • the effluent material from the first tubular reactor enters the second tubular reactor.
  • the temperature of the second tubular reactor is 153-155° C.
  • the pressure is 8 MPa
  • the synthesis gas is fed into the second tubular reactor for 4 hours.
  • the product was subjected to chromatographic analysis, and the results are shown in Table 2-1.
  • the heavies content in the product of step 2) is reduced, and the heavies that reduce are basically all converted into isononyl alcohol, and by-product 2,
  • the amount of 2,4-trimethylpentane remained essentially unchanged.
  • the conversion rate of the raw material is increased from 92.8wt% to 99.7wt%, and the complete conversion of the raw material is basically realized.
  • Example 2 The experiment was carried out with reference to Example 1, the difference being that the temperature of the second tubular reactor was 120° C., the pressure was 8 MPa, and the synthesis gas was fed in for reaction for 4 hours.
  • the product is carried out to chromatographic analysis, and the results show that compared with the product of step 1), the heavies content in the product of step 2) has increased by 1wt%, while the content of isononyl alcohol is substantially the same as that of the product of step 1), indicating that Reaction in the second tubular reactor at a lower temperature, the heavy matter cannot be well converted into isononanol, but the content increases to some extent.
  • Catalyst solution A2 (recycled during the reaction) and synthesis gas are fed into the pretreatment reactor, the temperature of the pretreatment reactor is 150°C, the pressure is 8MPa, and the pretreatment time is 0.5h.
  • the pretreated catalyst solution A2 and C8 olefins enter the first tubular reactor at a ratio of 83g:30g.
  • the temperature of the first tubular reactor is 150° C. and the pressure is 8 MPa, and synthesis gas is added to react for 12 hours.
  • the product was subjected to chromatographic analysis, and the results are shown in Table 2-2.
  • the effluent material from the first tubular reactor enters the second tubular reactor.
  • the temperature of the second tubular reactor is 180° C.
  • the pressure is 8 MPa
  • the synthesis gas is fed into the second tubular reactor for 2 hours.
  • the product was subjected to chromatographic analysis, and the results are shown in Table 2-2.
  • the heavies content in the product of step 2) is reduced, and the heavies reduced are basically all converted into isononyl alcohol, and by-product 2,
  • the amount of 2,4-trimethylpentane remained essentially unchanged.
  • the conversion rate of the raw material is increased from 91.6wt% to 99.7wt%, and the complete conversion of the raw material is basically realized.
  • Catalyst solution A3 (recycled during the reaction) and synthesis gas are fed into the pretreatment reactor, the temperature of the pretreatment reactor is 130°C, the pressure is 8MP, and the pretreatment time is 0.5h.
  • the pretreated catalyst solution A3 and C8 olefins enter the first tubular reactor at a ratio of 330g:30g.
  • the temperature of the first tubular reactor is 130° C. and the pressure is 8 MPa, and the synthesis gas is fed for 8 hours.
  • the product was subjected to chromatographic analysis, and the results are shown in Table 2-4.
  • the effluent material from the first tubular reactor enters the second tubular reactor.
  • the temperature of the second tubular reactor is 155° C. and the pressure is 8 MPa, and the synthesis gas is fed into the second tubular reactor for 5 hours.
  • the product was subjected to chromatographic analysis, and the results are shown in Table 2-3.
  • the heavies content in the product of step 2) reduces, and the heavies that reduce basically all change into isononyl alcohol, and by-product 2, The amount of 2,4-trimethylpentane remained essentially unchanged.
  • the conversion rate of the raw material is increased from 88.3wt% to 98.9wt%, basically realizing the complete conversion of the raw material.
  • catalyst solution A4 is used instead of catalyst solution A1
  • the reaction time in the first tubular reactor is 23h
  • the temperature of the second tubular reactor is 150°C
  • the pressure is 8MPa
  • the product was subjected to chromatographic analysis, and the results are shown in Table 2-4.
  • the heavies content in the product of step 2) reduces, and the heavies that reduce basically all change into isononyl alcohol, and by-product 2, The amount of 2,4-trimethylpentane remained essentially unchanged.
  • the conversion rate of the raw material is increased from 91.8wt% to 99.9wt%, and the complete conversion of the raw material is basically realized.
  • the heavies content in the product of step 2) reduces, and the heavies that reduce basically all converts into isononyl alcohol, and by-product 2,
  • the content of 2,4-trimethylpentane is slightly reduced, while isononanal can be reduced to ⁇ 0.1 wt%.
  • This is advantageous when isononanol is the target product, since no subsequent hydrogenation step is necessary to convert the isononanal to isononanol (the aldehyde content in the isononanol standard needs to be ⁇ 0.1 wt%).
  • the conversion rate of the raw material is increased from 91.6wt% to 99.9wt%, and the complete conversion of the raw material is basically realized.
  • the olefin raw materials used are commercially available C8 olefins, composed of: 2,4,4-trimethyl-1-pentene 64.7.1wt%, 2,4,4-trimethyl-1- 2-pentene is 18.5wt%, and the rest is basically multi-branched olefins.
  • Catalyst solution A5 after pretreatment and C8 olefin enter the first tubular reactor according to the ratio of 110g: 73.4g, and the first tubular reactor temperature is 130 °C, and pressure is 8MPa, feeds syngas (CO/H 2 mole The ratio is 1:2) for 15 hours.
  • the product was subjected to chromatographic analysis, and the results are shown in Table 2-7.
  • the effluent material of the first tubular reactor enters the second tubular reactor, the temperature of the second tubular reactor is 180°C, the pressure is 8MPa, and the synthetic gas (CO/ H molar ratio is 1:2) is fed into the reaction 7h. After the reaction, the product was subjected to chromatographic analysis, and the results are shown in Table 2-6.
  • the heavies content in the product of step 2) reduces, and the heavies that reduce basically all change into isononyl alcohol, and by-product 2, The amount of 2,4-trimethylpentane remained essentially unchanged.
  • the conversion rate of the raw material is increased from 98.2wt% to 100wt%, and the complete conversion of the raw material is realized.
  • step 2) by prolonging the reaction time of step 2) to 10 h, the content of isononanal in the product can be reduced to 0 wt%, and the other compositions have little change.
  • the heavies content in the product of step 2) reduces, and the heavies that reduce basically all change into isononyl alcohol, and by-product 2, The amount of 2,4-trimethylpentane decreased slightly.
  • the conversion rate of raw materials is increased from 92.4wt% to 100wt%, and the isononanal can be reduced to 0.1wt%, which can save the subsequent step of isononanal hydrogenation into isononanol, and realize the complete production of raw materials. transform.
  • step 2) by prolonging the reaction time of step 2) to 10 h, the content of isononanal in the product can be reduced to 0 wt%, and the other compositions have little change.
  • the heavies content in the product of step 2) reduces, and the heavies that reduce basically all change into isononyl alcohol, and by-product 2, The amount of 2,4-trimethylpentane decreased slightly. And, through the step 2), the conversion rate of the raw material is increased from 96.6wt% to 100wt%, and the complete conversion of the raw material is realized.
  • step 1) is carried out under the atmosphere of synthesis gas, so that the amount of carbon monoxide and hydrogen in the reaction system are far in excess compared to the requirements of the olefin reaction.
  • the reaction of step 1) can be carried out before step 2)
  • the product is separated to separate the aldehyde product, thereby increasing the yield of the isononyl aldehyde product.
  • the two-step reaction method of the present application can greatly reduce the selectivity of alkanes in the preparation of oxygen-containing organic compounds by hydroformylation of olefins, while improving the selectivity of alcohols.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

公开了一种通过氢甲酰化反应制备含氧有机化合物的方法,包括:1)在氢甲酰化催化剂存在下和第一反应温度下,使具有2-60个碳原子和至少一个碳-碳双键的有机化合物与合成气接触进行氢甲酰化反应,得到包含所述含氧有机化合物和重质物的反应物料,所述第一反应温度为60-150℃;以及2)在合成气存在下和第二反应温度下,使步骤1)所得的反应物料继续反应,使其中的重质物分解,得到所述重质物的含量降低且所述含氧有机化合物的含量提高的反应产物,其中所述第二反应温度比所述第一反应温度高20-100℃。所述方法能够实现降低的烷烃选择性,和提高的醇选择性;并且能够减少产物中重质物的含量,大幅降低外甩物料量,减少废液排放,有利于环保,具有工业化前景。

Description

通过氢甲酰化反应制备含氧有机化合物的方法 技术领域
本申请涉及氢甲酰化反应的领域,具体涉及一种通过氢甲酰化反应制备含氧有机化合物的方法。
背景技术
具有碳-碳双键的有机化合物如烯烃可与一氧化碳及氢气在催化剂作用下发生氢甲酰化反应得到增加一个碳原子的醛和/或醇。常规的氢甲酰化方法包括在反应条件下使烯属不饱和化合物与一氧化碳和氢气在催化剂的存在下接触反应,以产生一种或多种醛和/或醇。工业生产中氢甲酰化反应所用的催化剂一般为钴(Co)基或铑(Rh)基催化剂。
CN102123978A公开了一种加氢甲酰化α-烯烃以产生包含正构醛和一种或多种异构醛的两种或更多种醛的方法,所述正构醛与一种或多种异构醛的目标摩尔比在3/1-60/1的可选择范围内。该方法使用包含对称的杯芳烃二亚磷酸酯配体的过渡金属-配体配合物催化剂。
CN108586219A公开了一种烯烃氢甲酰化反应制备醛的方法,制备方法如下:步骤一:在第一反应釜内进行C2-C4烯烃与一氧化碳和氢气在催化剂作用下经氢甲酰化反应连续化地制备醛,同时其温度90℃和压力为2.5MPa;步骤二:在第二反应釜内进行加热,加热温度为70-80℃,同时在第二反应釜内通入惰性气体;步骤三:将第一反应釜与第二反应釜连通,将第一反应釜制备醛引入第二反应釜内;步骤四:在步骤三中引入时,通过等压且不等温度的情况下进行,且引入后进行二次引入;该技术反应过程复杂,而且采用铑-膦络合催化剂,价格昂贵。
与钴催化剂相比铑络合物反应活性更高,可以在更温和的温度和压力下反应。但铑催化剂高温性能差,用于高级烯烃羰基化有一定困难,现有铑催化剂对端烯烃催化效果较好,但是对内烯烃活性较差,催化剂为油溶性和产物分离也较困难,使得后处理较为复杂,铑作为贵金属资源稀少,价格昂贵,其回收再利用成本较高。
CN1370137A公开了一种加氢甲酰化具有6-20个碳原子的烯烃的连续方法,其中:a)将钴(II)盐水溶液与氢和一氧化碳充分接触以形成 加氢甲酰化活性钴催化剂,然后将包含该钴催化剂的水相与烯烃和任选的有机溶剂以及氢和一氧化碳在至少一个反应区中充分接触,在此,钴催化剂被萃取到有机相中并将烯烃加氢甲酰化,b)将来自反应区的排出物在酸性钴(II)盐水溶液的存在下用氧进行处理,其中钴催化剂分解形成钴(II)盐且这些物质被反萃取到水相中;并随后分离各相,c)钴(II)盐水溶液以未变化的形式再循环至步骤a)。该方法工艺过程复杂。
在氢甲酰化反应过程中,较高烷烃选择性使装置经济效益降低,降低烷烃选择性,提高醇和醛的选择性可提高装置经济性;降低反应产物中重质物含量,可减少重质物料外甩量,减少装置外甩废液量,对环境保护有利,外甩物料量的多少也决定着氢甲酰化工艺的工业实施前景。
因此,仍然需要一种能够低成本、高效率地将具有碳-碳双键的有机化合物转化为目标醛和/或醇产物的方法。
发明内容
本申请的目的是提供一种改进的通过氢甲酰化反应制备含氧有机化合物的方法,所述方法能够实现降低的烷烃选择性和提高的醇、醛选择性。
为了实现上述目的,本申请提供了一种通过氢甲酰化反应制备含氧有机化合物的方法,包括如下步骤:
1)在氢甲酰化催化剂存在下和第一反应温度下,使具有2-60个碳原子和至少一个碳-碳双键的有机化合物与包含CO和H 2的合成气接触进行氢甲酰化反应,得到包含所述含氧有机化合物和重质物的反应物料,其中所述含氧有机化合物为相比所述具有碳-碳双键的有机化合物增加一个碳原子的醇、醛或者它们的组合,所述第一反应温度为60-150℃;以及
2)在包含CO和H 2的合成气存在下和第二反应温度下,使步骤1)所得的反应物料继续反应,使其中的重质物分解,得到所述重质物的含量降低且所述含氧有机化合物的含量提高的反应产物,其中所述第二反应温度为140-200℃,并且所述第二反应温度比所述第一反应温度高20-100℃。
与现有技术的方法相比,本申请的方法能够实现降低的烷烃选择 性和提高的醇选择性;并且能够减少产物中重质物的含量,进而大幅降低外甩物料量,减少废液排放,有利于环保。
同时,本申请的方法工艺流程简单,能够以连续方式实施,原料转化率高,目标产物收率高,烷烃选择性低,且废液排放少,有良好的工业应用前景。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下将通过具体的实施方式对本申请作出进一步的详细描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,但不以任何方式限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
在本申请中,术语“烯烃”具有本领域通常理解的含义,即具有碳-碳双键(C=C键)的不饱和烃类化合物。所述烯烃可以是链烯烃、也可以是环烯烃,其碳-碳双键数目可以为一个(即单烯烃)、二个(即二烯烃)或更多个,并且所述碳-碳双键可以在碳链的末端(即端烯烃,例如α-烯烃)也可在碳链的中间(即内烯烃)。另外,烯烃可含其它官能团,如羟基、芳香环等等。在本申请的方法中,所述烯烃优选为单烯烃,更优选为直链或支链的单烯烃。
在本申请中,表述“C8”指具有8个碳原子,类似地表述“C9”指具有9个碳原子。
在本申请中,术语“C8烯烃”指具有8个碳原子的烯烃化合物,优选为具有8个碳原子的直链或支链的单烯烃,包括1-辛烯及其各种同分异构体,例如2,4,4-三甲基-1-戊烯、2,4,4-三甲基-2-戊烯、3,4,4- 三甲基-2-戊烯、2,3,3-三甲基-1-戊烯、5,5-二甲基-2-己烯、3,5-二甲基-2-己烯、2,4-二甲基-2-己烯、2,3-二甲基-3-己烯、3,4-二甲基-2-己烯等。
在本申请中,术语“氢甲酰化催化剂”泛指各种适用于催化氢甲酰化反应生成醛的催化剂,这类催化剂是本领域所熟知的,例如中国专利申请公开CN106103399A中所提及的催化剂,其内容通过引用方式全文并入本文。
在本申请中,术语“有机含磷配体”具有本领域通常理解的含义,特别指分子结构中包含磷和与磷键接的选自烃基、烃氧基、杂环基团或者它们的组合的基团的配体,其中所述烃基和烃氧基中的烃基部分可以为各种脂族烃基、脂环烃基和芳香烃基,例如烷基、环烷基和芳基,所述杂环基团可以为各种在环中具有一个或多个选自O、N、S等杂原子的有机基团。所述基团上还可以任选具有对所得络合物性能没有不利影响的各种取代基,例如磺酸基、卤素、氨基、硝基、羟基、羰基等。例如,所述有机含磷配体可以为分子结构中包含磷以及通过“P-C”键与磷键接的烃基和/或通过“P-O”键与磷键接的烃氧基的配体。作为所述有机含磷配体的具体例子,可以举出本领域已知的各种膦配体,特别是具有烷基、芳基和/或杂环基团的膦配体,如三烷基膦配体。优选地,所述有机含磷配体具有通式PR3,其中各个基团R相互独立地选自烃基、烃氧基和杂环基团,优选相互独立地选自烷基、环烷基、芳基、烷氧基、环烷氧基和芳氧基。所述基团R上还可以任选具有对所得络合物性能没有不利影响的各种取代基,例如磺酸基、卤素、氨基、硝基、羟基、羰基等。所述有机含磷配体的例子包括,但不限于,亚磷酸酯配体、三芳基膦配体、三烷基膦配体和烷基芳基膦配体等,例如三苯基膦配体、三丁基膦配体、三叔丁基膦配体、三环己基膦配体、仲丁基二苯基膦配体、二叔丁基新戊基膦配体、三辛基膦配体等。
在本申请中,术语“钴-膦络合物”泛指各种包含有机含磷配体的钴络合物,其中所述有机含磷配体如上文所定义。例如,所述钴-膦络合物可以是包含本领域已知的各种膦配体(例如三苯基膦配体、三丁基膦配体、三叔丁基膦配体等)的钴络合物。特别地,当作为氢甲酰化催化剂使用时,除了所述有机含磷配体以外,所述钴-膦络合物优选还包含羰基配体。
在本申请中,术语“有机含磷配体化合物”指能够通过与金属源反应得到包含金属和上述有机含磷配体的金属络合物的化合物。
在本申请中,所述的“重质物”指所述含氧有机化合物之间或者所述含氧有机化合物与其他化合物之间进一步反应得到的产物,特别指衍生自至少两分子所述含氧有机化合物的反应产物,即由至少两分子所述含氧有机化合物经过一个或多个化学反应过程得到的反应产物,例如通过羟醛缩合反应、缩醛化反应、醚化反应、氧化反应和酯化反应等等得到的缩醛化合物、羟基醛化合物、醚类化合物、酯类化合物等或者它们的组合。例如,当以C8烯烃为原料时,所述重质物可以是由至少两分子的C9醛和/或C9醇经过一个或多个化学反应过程得到的缩醛化合物、羟基醛化合物、醚类化合物、酯类化合物等或者它们的组合。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本申请原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,本申请提供了一种通过氢甲酰化反应制备含氧有机化合物的方法,包括如下步骤:
1)在氢甲酰化催化剂存在下和第一反应温度下,使具有2-60个碳原子和至少一个碳-碳双键的有机化合物与包含CO和H 2的合成气接触进行氢甲酰化反应,得到包含所述含氧有机化合物和重质物的反应物料,其中所述含氧有机化合物为相比所述具有碳-碳双键的有机化合物增加一个碳原子的醇、醛或者它们的组合,所述第一反应温度为60-150℃;以及
2)在包含CO和H 2的合成气存在下和第二反应温度下,使步骤1)所得的反应物料继续反应,使其中的重质物分解,得到所述重质物的含量降低且所述含氧有机化合物的含量提高的反应产物,其中所述第二反应温度为140-200℃,并且所述第二反应温度比所述第一反应温度 高20-100℃。
在优选的实施方式中,步骤1)的第一反应温度为100-145℃,步骤2)的第二反应物温度为170-200℃,并且所述第二反应温度比所述第一反应温度高30-70℃,优选高40-60℃。
本申请的发明人在研究中发现,按照本申请的二段反应工艺,步骤1)的氢甲酰化反应在较低温度和合成气存在下进行,其在生成目标含氧有机化合物的同时还会产生由至少两分子的所述含氧有机化合物经过一个或多个化学反应过程形成的重质物;而步骤2)的反应在较高温度和合成气存在下进行,可以使所述重质物重新分解成所述目标含氧有机化合物,而副产物烷烃在步骤2)反应过程中基本不增加,由此可显著减少最终产物中的重质物含量,降低烷烃选择性并提高醇选择性。
在优选的实施方式中,步骤1)的反应条件包括:反应温度为60-150℃,优选为100-145℃,更优选为100℃至小于130℃;反应压力为1-12MPa,优选为2-10MPa;以及反应时间为1-60h,优选为2-25h。
在优选的实施方式中,步骤2)的反应条件包括:反应温度为140-200℃,优选为170-200℃;反应压力为1-12MPa,优选为2-10MPa;以及反应时间为1-40h,优选为2-25h。
在某些优选的实施方式中,本申请方法的步骤1)中所述合成气与所述具有碳-碳双键的有机化合物的用量摩尔比为(0.1-12)∶1,优选为(3-6)∶1,其中所述合成气的摩尔用量为合成气中各气体的摩尔用量之和。
在特别优选的实施方式中,所述步骤1)和步骤2)在合成气气氛下进行。此时,反应体系中的CO和H 2的量相对于反应所需是大大过量的。
在优选的实施方式中,所述步骤1)的反应时间长于步骤2)的反应时间。进一步优选地,步骤1)的反应温度低于130℃,由此可以进一步降低烷烃选择性。
在本申请中,对所述氢甲酰化催化剂并没有特别的限制,只要其能够有效地催化所述具有碳-碳双键的有机化合物氢甲酰化生成醛的反应即可。在优选的实施方式中,所述氢甲酰化催化剂为适用于催化烯烃氢甲酰化反应的过渡金属络合物催化剂。
在进一步优选的实施方式中,所述过渡金属络合物中的过渡金属选自第VIII族金属,更优选选自铑(Rh)、钴(Co)、铱(Ir)、钌(Ru)或者它们的组合,更进一步优选选自铑、钴,或者它们的组合,特别优选为钴。
在更进一步优选的实施方式中,所述过渡金属络合物包含羰基配体、有机含磷配体或者它们的组合,其中所述有机含磷配体如上文所定义。优选地,所述有机含磷配体具有通式PR 3,其中各个基团R相互独立地选自烃基、烃氧基和杂环基团,优选相互独立地选自烷基、环烷基、芳基、烷氧基、环烷氧基和芳氧基。所述基团R上还可以任选具有对所得络合物性能没有不利影响的各种取代基,例如磺酸基、卤素、氨基、硝基、羟基、羰基等。特别优选地,所述有机含磷配体选自亚磷酸酯配体、三芳基膦配体、三烷基膦配体、烷基芳基膦配体或者它们的组合,例如选自三苯基膦配体、三丁基膦配体、三叔丁基膦配体、三环己基膦配体、仲丁基二苯基膦配体、二叔丁基新戊基膦配体、三辛基膦配体,或者它们的组合。
在本申请方法的优选实施方式中,所述氢甲酰化催化剂以所述过渡金属络合物在有机溶剂中的溶液形式使用,所述溶液中所述过渡金属的质量浓度优选为0.01-3%,更优选为0.2-2%。在本申请中,对于所述有机溶剂没有特别的限制,只要其能够溶解所述过渡金属络合物并且对所述氢甲酰化反应没有不利影响即可。优选地,所述有机溶剂选自烷烃、芳烃、醇、醚、醛、酮、腈、酯或者它们的组合,更优选选自醇、醛或者它们的组合,特别优选选自与作为目标产物的含氧有机化合物具有相同碳原子数的醇或醛。
在进一步优选的实施方式中,所述过渡金属络合物为包含有机含磷配体的钴络合物(本文中也称为“钴-膦络合物”),并且所述氢甲酰化催化剂以所述钴络合物的溶液形式使用。优选地,所述钴络合物溶液中钴的质量浓度为0.01-3%,优选为0.2-2%,更优选为0.3-1.5%,其中所述钴的质量浓度=(钴的质量/催化剂溶液质量)×100%;更优选地,所述钴络合物溶液中,钴元素与磷元素的质量比为(0.1-10)∶1,优选为(0.1-3)∶1,更优选为(0.2-2)∶1,最优选为(0.3-1)∶1。在更进一步优选的实施方式中,所述钴络合物还包含羰基配体。
在更进一步优选的实施方式中,本申请的方法还包括在步骤1)之 前、在包含CO和H 2的合成气存在下对所述钴络合物溶液形式的氢甲酰化催化剂进行预处理的步骤,优选地所述预处理的条件包括:温度为50-150℃,优选为75-130℃;压力为0.1-12MPa,优选为1-9MPa,更优选为3-8MPa;预处理时间为0.1-10h,优选为1-3h。在该优选实施方式中,所述预处理步骤有利于所述氢甲酰化催化剂的活性单元的形成,减少催化剂分解,提高催化剂的活性和稳定性,延长催化剂使用寿命。
在特别优选的实施方式中,所述钴络合物溶液通过在有机溶剂存在下,使含钴原料与有机含磷配体化合物接触反应得到,其中所述含钴原料选自钴盐、钴氧化物或者它们的组合,优选选自碳酸钴、硝酸钴、醋酸钴、乙酰丙酸钴、甲酸钴、八羰基二钴、环烷酸钴或者它们的组合;所述有机含磷配体化合物如上文所定义。优选地,所述有机含磷配体化合物为包含磷和与磷键接的选自烃基、烃氧基、杂环基团或者它们的组合的基团的化合物,更优选为具有通式PR3的化合物,其中各个基团R相互独立地选自烃基、烃氧基和杂环基团,优选相互独立地选自烷基、环烷基、芳基、烷氧基、环烷氧基和芳氧基。特别优选地,所述有机含磷配体化合物选自亚磷酸酯、三芳基膦、三烷基膦、烷基芳基膦或者它们的组合,例如选自三苯基膦、三丁基膦、三叔丁基膦、三环己基膦、仲丁基二苯基膦、二叔丁基新戊基膦、三辛基膦,或者它们的组合。优选地,所述接触反应的条件包括:温度为80-180℃,优选为100-150℃;压力为0.1-6MPa,优选为1-4MPa;时间为0.5-24h,优选为1-15h。更优选地,所述接触反应在CO存在下,特别是包含CO和H 2的合成气存在下进行。
根据本申请,作为氢甲酰化反应原料的所述具有碳-碳双键的有机化合物可以是各种在碳链中具有至少一个碳-碳双键的有机化合物,所述碳-碳双键的位置可以在碳链的末端、也可以在碳链的中间,并且所述有机化合物可以具有羟基、芳香环等。在优选的实施方式中,所述具有碳-碳双键的有机化合物为烃类化合物,例如烯烃。在进一步优选的实施方式中,所述具有碳-碳双键的有机化合物为具有3-60个碳原子的烯烃,进一步优选为具有4-30个碳原子的烯烃,更进一步优选为具有6-20个碳原子的烯烃,特别优选为具有8-12个碳原子的烯烃。所述烯烃可以是直链烯烃、支链烯烃、环烯烃或者包含任意两者或三者的 混合烯烃,所述支链烯烃可具有一个或多个支链。最优选地,所述烯烃为C8烯烃,例如选自1-辛烯及其各种同分异构体的烯烃,例如2,4,4-三甲基-1-戊烯、2,4,4-三甲基-2-戊烯、3,4,4-三甲基-2-戊烯、2,3,3-三甲基-1-戊烯、5,5-二甲基-2-己烯、3,5-二甲基-2-己烯、2,4-二甲基-2-己烯、2,3-二甲基-3-己烯和3,4-二甲基-2-己烯。通常,三甲基多支链烯烃由于空间位阻大,氢甲酰化难度高于具有更少支链的烯烃。
在特别优选的实施方式中,本申请方法的步骤1)包括:在所述钴络合物溶液存在下和所述第一反应温度下,使C8烯烃与所述合成气接触进行氢甲酰化反应,得到包含所述含氧有机化合物和重质物的反应物料。
在优选的实施方式中,本申请方法的步骤1)中,以质量计,用作氢甲酰化催化剂的所述过渡金属络合物溶液与所述具有碳-碳双键的有机化合物的用量比为(0.1-10)∶1,优选为(2-5)∶1。
在优选的实施方式中,本申请方法的各步骤中所用的包含CO和H 2的合成气中一氧化碳与氢气的摩尔比各自独立地为10∶1至1∶10,优选4∶1至1∶4,更优选为3∶1至1∶3,例如为3∶1至1∶1,或者1∶2至1∶3。各步骤中,如步骤1)和步骤2)中,所用的合成气中CO与H 2的比例可相同或不同,这样可以方便调节每一步骤中具有碳-碳双键的有机化合物与CO、H 2之间的比例至最佳,有利于实现更高转化率和更优选择性。
本申请的发明人意外地发现,在步骤1)中采用具有较高一氧化碳与氢气摩尔比,例如CO/H 2摩尔比为3∶1至1∶1,的合成气,可以提高步骤1)反应产物中的醛含量,尽管此时对于步骤1)的反应而言,所述合成气中一氧化碳和氢气的量依然是大大过量的。因此,当以醛作为目标产物时,采用此类实施方式是有利的,因为可以在步骤1)的反应之后,从步骤1)的反应产物中分离出醛产物,从而提高目标醛产物的收率。
此外,本申请的发明人还意外地发现,当步骤1)的反应产物中留有部分原料有机化合物时,该产物中的醛含量较高;而当原料有机化合物转化率较高或完全转化时,产物中的醛含量明显降低。因此,通过控制步骤1)的原料转化率<100%,特别地,控制步骤1)的原料转化率<95%,并在步骤1)的反应之后,从步骤1)的反应产物中分离 出未反应的原料有机化合物,并将其再循环回步骤1)中进一步反应,能够提高步骤1)反应的醛收率。
在本申请中,对于实施步骤1)和步骤2)的反应的反应器没有特别的限制,只要能够使所述反应进行,并能够实现温度的自由调控即可。在优选的实施方式中,步骤1)的反应和步骤2)的反应在相同或不同的管式反应器中进行,更优选地所述方法以连续方式进行,并且步骤1)的反应和步骤2)的反应在不同的管式反应器中或者在同一管式反应器的不同区域中进行。在反应过程中,可以是反应原料(如烯烃、合成气和催化剂溶液)从管式反应器下部流入,反应产物从管式反应器上部流出;也可以是反应原料从管式反应器上部流入,反应产物从管式反应器下部流出。
在某些优选的实施方式中,所述步骤2)的反应是在添加水的情况下进行的。
在另一些优选的实施方式中,所述步骤2)的反应是在不添加水的情况下进行的。
在某些具体实施方式中,本申请的方法在步骤2)之前进一步包括:对步骤1)所得的反应物料进行分离,从中分离出所述含氧有机化合物如醛,而后使分离得到的残留物在步骤2)中继续反应。
在优选的实施方式中,本申请的方法在步骤2)之后进一步包括:
3)将步骤2)所得的反应产物分离,得到包含所述含氧有机化合物的轻组分以及包含所述氢甲酰化催化剂和任选的残留重质物的重组分;以及
4)将步骤3)所得的重组分的至少一部分返回步骤1)中进一步反应。
根据本申请,步骤2)的反应完毕后,可以从反应粗产物中分离(如通过蒸馏)出部分有机含氧化合物产物(如醇和醛)、副产物烷烃及未反应的原料有机化合物,剩余的包含催化剂的物料循环至步骤1)进一步反应。或者可选择地,将剩余的包含催化剂的物料循环至预处理步骤,经预处理后再返回步骤1)进一步反应。
在优选的实施方式中,在步骤4)中,以质量计,所述循环的重组分含有0.1-99.9wt%、优选3-70wt%、更优选3-30wt%的所述重质物。
在某些优选的实施方式中,本申请的方法还可以包括对分离得到 的含氧有机化合物产物进行加氢,从而得到高收率的醇。
在某些优选的实施方式中,本申请的方法以连续方式进行,并且包括如下步骤:
i)在所述氢甲酰化催化剂存在下和第一反应温度下,使C8烯烃在包含CO和H 2的合成气气氛下进行氢甲酰化反应,得到含有C9醛和C9醇的第一物流,所述第一物流中还含有重质物;
ii)在包含CO和H 2的合成气气氛下和第二反应温度下,使步骤i)所得的第一物流继续反应,使其中的重质物分解,得到重质物含量降低的第二物流;
iii)将所述第二物流进行分离,得到轻组分和重组分,所述轻组分中含有C9醇、C9醛和C8烷烃,所述重组分中含有所述氢甲酰化催化剂和任选的残留重质物;以及
iv)将至少部分所述重组分循环回步骤i)中进行所述氢甲酰化反应;
优选地,在步骤iii)中,所述分离可以先进行气液分离,再进行蒸馏分离。
在进一步优选的实施方式中,所述气液分离在气液分离罐中降温不降压的条件下进行,气液分离温度为0-100℃,优选为20-80℃,更优选为20-40℃。
在进一步优选的实施方式中,气液分离后得到的气相物流基本为合成气,经冷凝和/或吸收后,剩余合成气可以循环至预处理反应器和/或步骤i)所用反应器的入口,重复使用。
气液分离后的液相物流可以通过蒸馏装置进行蒸馏分离,顶部出料为含C9醇、C8烷烃和C9醛的混合产物,底部得到含所述氢甲酰化催化剂的重组分,以及溶剂。
在优选的实施方式中,步骤iv)中循环回步骤i)的所述重组分的量占步骤iii)中得到的全部所述重组分的0.1-90wt%,优选0.1-40wt%,更优选0.1-20wt%。进一步优选地,循环回步骤i)的所述重组分中包含一定量的所述重质物,例如以循环的所述重组分的质量计包含0.1-99.9wt%、优选3-70wt%、更优选3-30wt%的重质物。本申请的发明人意外地发现,在循环的重组分中包含一定量的重质物可以提高催化剂的溶解度,进而有利于降低步骤i)的反应温度和烷烃选择性。
在优选的实施方式中,所述重组分返回步骤i)所用的反应器和/或预处理反应器入口参与所述氢甲酰化反应时,可根据需要补加少量新鲜催化剂。
在特别优选的实施方式中,本申请的方法以连续方式进行,并且包括以下步骤:
A)将包含有机含磷配体的钴络合物催化剂溶液与C8烯烃通入第一管式反应器,在第一反应温度和合成气气氛下进行氢甲酰化反应;
B)使步骤A)所得的反应产物进入第二管式反应器,在第二反应温度和合成气气氛下进一步反应;
C)对步骤B)所得的反应产物进行分离得到轻组分和重组分,所述轻组分包含C9醇、C9醛和C8烷烃,所述重组分包含所述钴络合物催化剂;以及
D)将步骤C)所得的重组分的至少一部分返回第一管式反应器的入口循环使用。
在上述特别优选的实施方式中,在步骤A)中先将C8烯烃在较低反应温度下转化为C8烷烃,C9醛、C9醇和重质物;然后,在步骤B)中在较高反应温度下,将所述重质物转化为C9醇。分析表明,经步骤A)的氢甲酰化反应得到包含重质物的反应产物,而经过步骤B)的反应,所述重质物出人意料地重新分解为C9醇等产物,而基本不产生C8烷烃。
进一步优选地,将步骤C)所得的重组分的一部分外甩出反应系统,特别优选地在外甩出系统前将该部分重组分送至下游反应单元,向其中通入合成气但不通入原料有机化合物,在较高温度条件下进行后处理,其中的残留重质物又会分解为C9醇等产物,这不仅使目标产物收率进一步增加,而且可以明显减少外甩物料量,进而显著减少废液排放,减轻氢甲酰化工艺的环保问题。
本申请的通过氢甲酰化反应制备含氧有机化合物的方法具有以下优点中的一个或者多个:
1、显著减少烷烃选择性,并提高醇选择性,显著提高工艺的经济效益;
2、通过在第二步反应中使重质物重新分解为醇等产物,能够提高醇选择性,显著降低外甩物料量,减少废液排放,有利于环保,具有 工业化前景;
3、适用的原料广泛,尤其适用于空间位阻大的多支链烯烃氢甲酰化反应,反应压力低,装置投资和加工成本显著降低;
4、在第一步的氢甲酰化反应中可以采用价格相对于铑催化剂更低的钴催化剂,并且第一步的氢甲酰化反应温度明显降低,有利于钴催化剂稳定;
5、在优选实施方式中,采用催化剂预处理工艺能够减少钴络合物催化剂的分解,有利于钴络合物催化剂活性单元形成,提高催化剂的活性和稳定性,延长催化剂使用寿命;
6、在某些优选实施方式中,延长第二步反应时间,可将第二步反应产物中的醛含量降至<0.1wt%,这在以醇为目标产物时是有利的,因为可以省略将醛转化成醇的后续加氢步骤。
7、通过改变第一步的氢甲酰化反应所用合成气的组成,可以调节第一步反应产物中的醇醛比例,进而可以根据需要多产醛,有利于产品多样化。
实施例
下面将通过实施例来进一步说明本申请,但是本申请并不因此而受到任何限制。
以下实施例和对比例中,在没有特别说明的情况下,所用的原料均为市售产品,纯度为工业纯。
以下实施例1-5和对比例1-2中,所用的烯烃原料为市售C8烯烃,组成为:2,4,4-三甲基-1-戊烯75.1wt%,2,4,4-三甲基-2-戊烯21.2wt%,其余为多支链烯烃;所用的合成气中CO/H 2摩尔比为1∶2。
以下实施例和对比例中,原料转化率的计算公式如下:
原料转化率=[1-(反应产物中2,4,4-三甲基-1-戊烯和2,4,4-三甲基-2-戊烯的总质量)/(原料中2,4,4-三甲基-1-戊烯和2,4,4-三甲基-2-戊烯的总质量)]×100%。
催化剂制备例1
在反应釜中,将环烷酸钴与三苯基膦溶解于异壬醇中,用量使得得到的溶液中钴元素含量为0.13wt%,磷元素含量为0.07wt%,用合成 气将空气置换,并充入合成气至压力为1.7MPa,在400rpm搅拌下,140℃反应9h后得到钴-膦络合物溶液,记为催化剂溶液A1,其组成见表1。
催化剂制备例2
在反应釜中,将环烷酸钴与三苯基膦溶解于异壬醇中,用量使得得到的溶液中钴元素含量为0.1wt%,磷元素含量为0.06wt%,用合成气将空气置换,并充入合成气至压力为1.8MPa,在400rpm搅拌下,140℃反应9h后得到钴-膦络合物溶液,记为催化剂溶液A2,其组成见表1。
催化剂制备例3
在反应釜中,将环烷酸钴与三苯基膦溶解于异壬醇中,用量使得得到的溶液中钴元素含量为0.077wt%,磷元素含量为0.069wt%,用合成气将空气置换,并充入合成气至压力为2MPa,在400rpm搅拌下,140℃反应9h后得到钴-膦络合物溶液,记为催化剂溶液A3,其组成见表1。
催化剂制备例4
在反应釜中,将环烷酸钴与三苯基膦溶解于异壬醇中,用量使得得到的溶液中钴元素含量为0.11wt%,磷元素含量为0.07wt%,用合成气将空气置换,并充入合成气至压力为2MPa,在400rpm搅拌下,140℃反应9h后得到钴-膦催化剂溶液,记为催化剂溶液A4,其组成见表1。
催化剂制备例5
在反应釜中,将环烷酸钴与三苯基膦溶解于异壬醇中,用量使得得到的溶液中钴元素含量为0.1wt%,磷元素含量为0.1wt%,用合成气将空气置换,并充入合成气至压力为3MPa,在400rpm搅拌下,110℃反应20h后得到钴-膦络合物溶液,记为催化剂溶液A5,其组成见表1。
表1 催化剂溶液A1至A4的组成
Figure PCTCN2022109424-appb-000001
实施例1
将催化剂溶液A1(在反应过程中循环使用)与合成气加入预处理反应器,预处理反应器温度125℃,压力8MPa,预处理时间0.5h。预处理后的催化剂溶液A1与C8烯烃按照83g∶30g的比例进入第一管式反应器,第一管式反应器温度为120℃,压力为8MPa,通入合成气反应15h。反应后对产物进行色谱分析,结果见表2-1。
第一管式反应器的流出物料进入第二管式反应器,第二管式反应器温度为153-155℃,压力为8MPa,通入合成气反应4h。反应后对产物进行色谱分析,结果见表2-1。
表2-1 实施例1的反应结果
Figure PCTCN2022109424-appb-000002
如表2-1所示,与步骤1)的产物相比,步骤2)的产物中的重质物含量降低,且减少的重质物基本都转化成了异壬醇,而副产物2,2,4-三甲基戊烷的量基本保持不变。并且,通过步骤2),原料转化率由92.8wt%提高到99.7wt%,基本实现了原料的完全转化。
对比例1
参照实施例1进行实验,区别在于第二管式反应器的温度为120℃、压力为8MPa,通入合成气反应4h。反应后对产物进行色谱分析,结果显示,与步骤1)的产物相比,步骤2)的产物中重质物含量增加了1wt%,而异壬醇含量与步骤1)产物中基本相同,说明在较低温度下在第二管式反应器中反应,重质物不能很好地转化成异壬醇,反而含量有所增加。
实施例2
将催化剂溶液A2(在反应过程中循环使用)与合成气加入预处理反应器,预处理反应器温度为150℃,压力为8MPa,预处理时间0.5h。预处理后的催化剂溶液A2与C8烯烃按照83g∶30g的比例进入第一管式反应器,第一管式反应器温度为150℃,压力为8MPa,加入合成气反应12h。反应后对产物进行色谱分析,结果见表2-2。
第一管式反应器的流出物料进入第二管式反应器,第二管式反应器温度为180℃,压力为8MPa,通入合成气反应2h。反应后对产物进行色谱分析,结果见表2-2。
表2-2 实施例2的反应结果
Figure PCTCN2022109424-appb-000003
如表2-2所示,与步骤1)的产物相比,步骤2)的产物中的重质物含量降低,且减少的重质物基本都转化成了异壬醇,而副产物2,2,4-三甲基戊烷的量基本保持不变。并且,通过步骤2),原料转化率由91.6wt%提高到99.7wt%,基本实现了原料的完全转化。
对比例2
参照实施例2进行实验,区别在于第一和第二管式反应器的温度均为180℃,反应后对产物进行色谱分析。结果显示,对比例2的最终产物中副产物2,2,4-三甲基戊烷的含量高达7wt%,2,2,4-三甲基戊烷含 量显著升高。
实施例3
将催化剂溶液A3(在反应过程中循环使用)与合成气加入预处理反应器,预处理反应器温度130℃,压力8MP,预处理时间0.5h。预处理后的催化剂溶液A3与C8烯烃按照330g∶30g的比例进入第一管式反应器,第一管式反应器温度为130℃,压力为8MPa,通入合成气反应8h。反应后对产物进行色谱分析,结果见表2-4。
第一管式反应器的流出物料进入第二管式反应器,第二管式反应器温度为155℃、压力为8MPa,通入合成气反应5h。反应后对产物进行色谱分析,结果见表2-3。
表2-3 实施例3的反应结果
Figure PCTCN2022109424-appb-000004
如表2-3所示,与步骤1)的产物相比,步骤2)的产物中的重质物含量降低,且减少的重质物基本都转化成了异壬醇,而副产物2,2,4-三甲基戊烷的量基本保持不变。并且,通过步骤2),原料转化率由88.3wt%提高到98.9wt%,基本实现了原料的完全转化。
实施例4
参照实施例1进行实验,区别在于采用催化剂溶液A4替代催化剂溶液A1,第一管式反应器中反应时间为23h,并且第二管式反应器的温度为150℃、压力为8MPa、加入2.5wt%水并通入合成气反应5h。反应后对产物进行色谱分析,结果见表2-4。
表2-4 实施例4的反应结果
Figure PCTCN2022109424-appb-000005
如表2-4所示,与步骤1)的产物相比,步骤2)的产物中的重质物含量降低,且减少的重质物基本都转化成了异壬醇,而副产物2,2,4-三甲基戊烷的量基本保持不变。并且,通过步骤2),原料转化率由91.8wt%提高到99.9wt%,基本实现了原料的完全转化。
实施例5
参照实施例2进行实验,区别在于第二管式反应区较高反应温度段的反应温度为180℃、压力8MPa、反应2h,然后在反应温度180℃、压力为8MPa,加入3wt%水并通入合成气反应2h。反应后对产物进行色谱分析,结果见表2-5。
表2-5 实施例5的反应结果
Figure PCTCN2022109424-appb-000006
如表2-5所示,与步骤1)的产物相比,步骤2)的产物中的重质物含量降低,且减少的重质物基本都转化成了异壬醇,而副产物2,2,4-三甲基戊烷的含量略降低,同时异壬醛可降至<0.1wt%。在以异壬醇为目标产物时这是有利的,因为无须后续将异壬醛转化成异壬醇的加氢步骤(异壬醇标准中醛含量需<0.1wt%)。并且,通过步骤2),原料转化率由91.6wt%提高到99.9wt%,基本实现了原料的完全转化。
以下实施例6-8中,所用的烯烃原料为市售C8烯烃,组成为:2,4,4-三甲基-1-戊烯64.7.1wt%,2,4,4-三甲基-2-戊烯18.5wt%,其余基本为多支链烯烃。
实施例6
将催化剂溶液A5(在反应过程中循环使用)与合成气(CO/H 2摩尔比为1∶2)加入预处理反应器,预处理反应器温度为100℃,压力为8MPa,预处理时间1h。预处理后的催化剂溶液A5与C8烯烃按照110g∶73.4g的比例进入第一管式反应器,第一管式反应器温度为130℃,压力为8MPa,通入合成气(CO/H 2摩尔比为1∶2)反应15h。反应后对产物进行色谱分析,结果见表2-7。
第一管式反应器的流出物料进入第二管式反应器,第二管式反应器的温度为180℃,压力为8MPa,通入合成气(CO/H 2摩尔比为1∶2)反应7h。反应后对产物进行色谱分析,结果见表2-6。
表2-6 实施例6的反应结果
Figure PCTCN2022109424-appb-000007
如表2-6所示,与步骤1)的产物相比,步骤2)的产物中的重质物含量降低,且减少的重质物基本都转化成了异壬醇,而副产物2,2,4-三甲基戊烷的量基本保持不变。并且,通过步骤2),原料转化率由98.2wt%提高到100wt%,实现了原料的完全转化。
同时,延长步骤2)的反应时间至10h,产物中的异壬醛含量可降至0wt%,其它组成变化不大。
实施例7
参照实施例6进行实验,区别在于各步骤所用的合成气的CO/H 2摩尔比为1∶1,第二管式反应器的温度为180℃,压力为8MPa,加入1.5wt%水并通入合成气反应7h。反应后对产物进行色谱分析,结果见表2-7。
表2-7 实施例7的反应结果
Figure PCTCN2022109424-appb-000008
如表2-7所示,与步骤1)的产物相比,步骤2)的产物中的重质物含量降低,且减少的重质物基本都转化成了异壬醇,而副产物2,2,4-三甲基戊烷的量略降低。并且,通过步骤2),原料转化率由92.4wt%提高到100wt%,异壬醛可降至0.1wt%,即可省去后续异壬醛加氢成异壬醇步骤,实现了原料的完全转化。
同时,延长步骤2)的反应时间至10h,产物中的异壬醛含量可降至0wt%,其它组成变化不大。
实施例8
参照实施例6进行实验,区别在于各步骤所用的合成气的CO/H 2摩尔比为2∶1,并且第二管式反应器的温度为180℃,压力为8MPa,加入1.5wt%水并通入合成气反应7h。反应后对产物进行色谱分析,结果见表2-8。
表2-8 实施例8的反应结果
Figure PCTCN2022109424-appb-000009
如表2-8所示,与步骤1)的产物相比,步骤2)的产物中的重质物含量降低,且减少的重质物基本都转化成了异壬醇,而副产物2,2,4-三甲基戊烷的量略降低。并且,通过步骤2),原料转化率由96.6wt%提高到100wt%,实现了原料的完全转化。
对比表2-6至表2-8的数据可以发现,与采用CO/H 2摩尔比为正常化学计量比,即CO/H 2=1∶2,的合成气进行反应的实施例6相比,实施 例7-8在合成气中CO/H 2摩尔比高于正常化学计量比条件下进行反应,在步骤1)中原料转化率>95%(如实施例8)的条件下,步骤1)产物中仍然包含较高含量的异壬醛并且烷烃含量更低,而一般情况下,在烯烃高转化率时,醛选择性低。这一结果是令人意外的,因为步骤1)的反应过程在合成气气氛下进行,使得反应体系中的一氧化碳和氢气量相比烯烃反应所需都是远远过量的。在以异壬醛作为目标产品的情况下,采用合成气中CO/H 2摩尔比高于正常化学计量比的条件是更为有利的,此时可以在步骤2)之前对步骤1)的反应产物进行分离从中分离出醛产物,进而提高异壬醛产品的收率。
通过上述实验结果可以看出,本申请的两步反应方法能够大幅降低通过烯烃氢甲酰化制备含氧有机化合物的烷烃选择性,同时提高醇选择性。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (15)

  1. 通过氢甲酰化反应制备含氧有机化合物的方法,包括如下步骤:
    1)在氢甲酰化催化剂存在下和第一反应温度下,使具有2-60个碳原子和至少一个碳-碳双键的有机化合物与包含CO和H 2的合成气接触进行氢甲酰化反应,得到包含所述含氧有机化合物和重质物的反应物料,其中所述含氧有机化合物为相比所述具有碳-碳双键的有机化合物增加一个碳原子的醇、醛或者它们的组合,所述第一反应温度为60-150℃,优选为100-145℃;以及
    2)在包含CO和H 2的合成气存在下和第二反应温度下,使步骤1)所得的反应物料继续反应,使其中的重质物分解,得到所述重质物的含量降低且所述含氧有机化合物的含量提高的反应产物,其中所述第二反应温度为140-200℃,优选为170-200℃,并且所述第二反应温度比所述第一反应温度高20-100℃,优选高30-70℃,更优选高40-60℃。
  2. 根据权利要求1所述的方法,其中:
    步骤1)的反应条件包括:反应温度为60-150℃,优选为100-145℃;反应压力为1-12MPa,优选为2-10MPa;以及反应时间为1-60h,优选为2-25h;以及
    步骤2)的反应条件包括:反应温度为140-200℃,优选为170-200℃;反应压力为1-12MPa,优选为2-10MPa;以及反应时间为1-40h,优选为2-25h;
    优选地,所述步骤1)和步骤2)在合成气气氛下进行。
  3. 根据在先权利要求中任一项所述的方法,其中所述氢甲酰化催化剂为过渡金属络合物催化剂,
    优选地,所述过渡金属络合物中的过渡金属选自第VIII族金属,更优选选自铑(Rh)、钴(Co)、铱(Ir)、钌(Ru)或者它们的组合,更进一步优选选自铑、钴,或者它们的组合,特别优选为钴;
    更优选地,所述过渡金属络合物包含羰基配体、有机含磷配体或者它们的组合,所述有机含磷配体优选为包含磷和与磷键接的选自烃基、烃氧基、杂环基团或者它们的组合的基团的配体,更优选为具有通式PR3的配体,其中各个基团R相互独立地选自烃基、烃氧基和杂 环基团,优选相互独立地选自烷基、环烷基、芳基、烷氧基、环烷氧基和芳氧基。
  4. 根据权利要求3所述的方法,其中所述氢甲酰化催化剂以所述过渡金属络合物在有机溶剂中的溶液形式使用,所述溶液中所述过渡金属的质量浓度优选为0.01-3%,更优选为0.2-2%,
    所述有机溶剂优选选自烷烃、芳烃、醇、醚、醛、酮、腈、酯或者它们的组合,更优选选自醇、醛或者它们的组合,特别优选选自与所述含氧有机化合物具有相同碳原子数的醇或醛。
  5. 根据权利要求4所述的方法,其中所述过渡金属络合物为包含所述有机含磷配体的钴络合物,并且所述钴络合物溶液中钴的质量浓度为0.01-3%,优选为0.2-2%,更优选地所述钴络合物还包含羰基配体。
  6. 根据权利要求5所述的方法,其中所述钴络合物溶液通过在有机溶剂存在下,使含钴原料与有机含磷配体化合物接触反应得到,其中所述含钴原料选自钴盐、钴氧化物或者它们的组合,优选选自碳酸钴、硝酸钴、醋酸钴、乙酰丙酸钴、甲酸钴、八羰基二钴、环烷酸钴或者它们的组合;所述有机含磷配体化合物为包含磷和与磷键接的选自烃基、烃氧基、杂环基团或者它们的组合的基团的化合物,更优选为具有通式PR3的化合物,其中各个基团R相互独立地选自烃基、烃氧基和杂环基团,优选相互独立地选自烷基、环烷基、芳基、烷氧基、环烷氧基和芳氧基;
    优选地,所述接触反应的条件包括:温度为80-180℃,优选为100-150℃;压力为0.1-6MPa,优选为1-4MPa;时间为0.5-24h,优选为1-15h;
    更优选地,所述接触反应在CO存在下,特别是包含CO和H 2的合成气存在下进行。
  7. 根据权利要求5或6所述的方法,其中所述方法还包括在步骤1)之前、在包含CO和H 2的合成气存在下对所述氢甲酰化催化剂进行预处理的步骤,优选地所述预处理的条件包括:温度为50-150℃,优选为75-130℃;压力为0.1-12MPa,优选为1-9MPa,更优选为3-8MPa;预处理时间为0.1-10h,优选为1-3h。
  8. 根据在先权利要求中任一项所述的方法,其中所述具有碳-碳双键的有机化合物为具有3-60个碳原子的烯烃、优选为具有4-30个碳原 子的烯烃,更优选为具有6-20个碳原子的烯烃,特别优选为具有8-12个碳原子的烯烃,最优选为C8烯烃。
  9. 根据权利要求6所述的方法,其中所述步骤1)包括:在所述钴络合物溶液存在下和所述第一反应温度下,使C8烯烃与所述合成气接触进行氢甲酰化反应,得到包含所述含氧有机化合物和重质物的反应物料,
    优选地,所述C8烯烃选自1-辛烯及其各种同分异构体,例如2,4,4-三甲基-1-戊烯、2,4,4-三甲基-2-戊烯、3,4,4-三甲基-2-戊烯、2,3,3-三甲基-1-戊烯、5,5-二甲基-2-己烯、3,5-二甲基-2-己烯、2,4-二甲基-2-己烯、2,3-二甲基-3-己烯和3,4-二甲基-2-己烯。
  10. 根据权利要求4-7和9中任一项所述的方法,其中以质量计,步骤1)中用作氢甲酰化催化剂的所述过渡金属络合物溶液与所述具有碳-碳双键的有机化合物的用量比为(0.1-10)∶1,优选为(2-5)∶1。
  11. 根据在先权利要求中任一项所述的方法,其中各步骤中所用的包含CO和H 2的合成气中一氧化碳与氢气的摩尔比各自独立地为10∶1至1∶10优选为4∶1至1∶4,更优选为3∶1至1∶3。
  12. 根据在先权利要求中任一项所述的方法,其中步骤1)的反应和步骤2)的反应在相同或不同的管式反应器中进行,优选地所述方法以连续方式进行,并且步骤1)的反应和步骤2)的反应在不同的管式反应器中或者在同一管式反应器的不同区域中进行。
  13. 根据在先权利要求中任一项所述的方法,其中所述方法在步骤2)之前进一步包括:对步骤1)所得的反应物料进行分离,从中分离出所述含氧有机化合物,而后使分离得到的残留物在步骤2)中继续反应。
  14. 根据在先权利要求中任一项所述的方法,其中所述方法在步骤2)之后进一步包括:
    3)将步骤2)所得的反应产物分离,得到包含所述含氧有机化合物的轻组分以及包含所述氢甲酰化催化剂和任选的残留重质物的重组分;以及
    4)将步骤3)所得的重组分的至少一部分返回步骤1)中进一步反应,优选地,以质量计,所述循环的重组分含有0.1-99.9wt%、优选3-70wt%、更优选3-30wt%的所述重质物。
  15. 根据在先权利要求中任一项所述的方法,其中步骤2)的反应是在添加水的情况下进行的。
PCT/CN2022/109424 2021-08-02 2022-08-01 通过氢甲酰化反应制备含氧有机化合物的方法 WO2023011409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110881236.0A CN115701418B (zh) 2021-08-02 2021-08-02 醛醇组合物及其制备方法、一种连续制备醛、醇的方法
CN202110881236.0 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023011409A1 true WO2023011409A1 (zh) 2023-02-09

Family

ID=85142479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109424 WO2023011409A1 (zh) 2021-08-02 2022-08-01 通过氢甲酰化反应制备含氧有机化合物的方法

Country Status (3)

Country Link
CN (1) CN115701418B (zh)
TW (1) TW202306935A (zh)
WO (1) WO2023011409A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113974A (en) * 1959-06-19 1963-12-10 Monsanto Chemicals Oxo process with continuously increasing temperature in a continuous reactor
US4447661A (en) * 1981-09-07 1984-05-08 Nissan Chemical Industries Ltd. Process for producing an alcohol by hydroformylation
US5112519A (en) * 1989-06-05 1992-05-12 Mobil Oil Corporation Process for production of biodegradable surfactants and compositions thereof
CN1890203A (zh) * 2003-12-09 2007-01-03 巴斯福股份公司 制备三环癸烷二醛的方法
CN101228106A (zh) * 2005-06-30 2008-07-23 国际壳牌研究有限公司 加氢甲酰化方法
CN101589012A (zh) * 2006-12-21 2009-11-25 国际壳牌研究有限公司 加氢甲酰化方法
WO2010022837A1 (de) * 2008-08-28 2010-03-04 Oxea Gmbh Verfahren zur gewinnung von aliphatischen c3- bis c10-aldehyden aus hochsiedern durch thermische behandlung
CN101679160A (zh) * 2007-05-23 2010-03-24 国际壳牌研究有限公司 加氢甲酰化方法
CN101679159A (zh) * 2007-05-23 2010-03-24 国际壳牌研究有限公司 加氢甲酰化方法
CN109776294A (zh) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 一种烯烃氢甲酰化反应方法
CN114478215A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种连续制备醛、醇的方法和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1023797C (zh) * 1989-01-28 1994-02-16 中国科学院兰州化学物理研究所 烯烃制醇工艺过程
DE19654340A1 (de) * 1996-12-24 1998-08-06 Huels Chemische Werke Ag Verfahren zur Herstellung von höheren Oxo-Alkoholen
DE19939491A1 (de) * 1999-08-20 2001-02-22 Basf Ag Kontinuierliches Verfahren zur Hydroformylierung von Olefinen mit 6 bis 20 Kohlenstoffatomen
DE10034360A1 (de) * 2000-07-14 2002-01-24 Oxeno Olefinchemie Gmbh Mehrstufiges Verfahren zur Herstellung von Oxo-Aldehyden und/oder Alkoholen
CN1310864C (zh) * 2004-04-29 2007-04-18 中国石油化工股份有限公司 制备3-羟基丙醛和1,3-丙二醇的方法
CN1303049C (zh) * 2004-07-02 2007-03-07 清华大学 从混合辛烯和合成气制造异壬醛的方法
CN1258503C (zh) * 2004-12-03 2006-06-07 清华大学 一种制备异辛烷的方法
DE102007061649A1 (de) * 2007-12-20 2009-07-02 Evonik Oxeno Gmbh Einstufiges kontinuierliches Verfahren zur Hydroformylierung von höheren Olefinen oder Olefingemischen
CN101722048B (zh) * 2008-10-31 2011-11-30 中国石油化工股份有限公司 一种两相催化氢甲酰化反应制备醛的催化剂及其应用
KR101411040B1 (ko) * 2012-05-24 2014-06-27 주식회사 엘지화학 히드로포밀화 반응용 촉매 조성물 및 이를 이용한 히드로포밀화 방법
KR102073732B1 (ko) * 2016-07-08 2020-02-05 주식회사 엘지화학 하이드로포밀화 촉매, 이를 포함하는 촉매 조성물 및 이를 이용한 알데히드 제조방법
CN108586219A (zh) * 2018-06-28 2018-09-28 南京荣欣化工有限公司 一种烯烃氢甲酰化反应制备醛的方法
CN111646885B (zh) * 2019-03-04 2023-05-05 内蒙古伊泰煤基新材料研究院有限公司 一种基于费托低碳烃氢甲酰化制备醛的方法
CN112121864A (zh) * 2019-06-24 2020-12-25 内蒙古伊泰煤基新材料研究院有限公司 一种长链烯烃的氢甲酰化催化剂及氢甲酰化方法
CN112898122A (zh) * 2019-12-03 2021-06-04 中国科学院大连化学物理研究所 一种由混合辛烯制备异壬醇的方法
CN110981692A (zh) * 2019-12-25 2020-04-10 中国科学院兰州化学物理研究所 一种联产异壬醇和碳八烷烃的方法及系统
CN112500431B (zh) * 2020-11-26 2023-02-10 上海簇睿低碳能源技术有限公司 一种烯烃氢甲酰化的催化体系的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113974A (en) * 1959-06-19 1963-12-10 Monsanto Chemicals Oxo process with continuously increasing temperature in a continuous reactor
US4447661A (en) * 1981-09-07 1984-05-08 Nissan Chemical Industries Ltd. Process for producing an alcohol by hydroformylation
US5112519A (en) * 1989-06-05 1992-05-12 Mobil Oil Corporation Process for production of biodegradable surfactants and compositions thereof
CN1890203A (zh) * 2003-12-09 2007-01-03 巴斯福股份公司 制备三环癸烷二醛的方法
CN101228106A (zh) * 2005-06-30 2008-07-23 国际壳牌研究有限公司 加氢甲酰化方法
CN101589012A (zh) * 2006-12-21 2009-11-25 国际壳牌研究有限公司 加氢甲酰化方法
CN101679160A (zh) * 2007-05-23 2010-03-24 国际壳牌研究有限公司 加氢甲酰化方法
CN101679159A (zh) * 2007-05-23 2010-03-24 国际壳牌研究有限公司 加氢甲酰化方法
WO2010022837A1 (de) * 2008-08-28 2010-03-04 Oxea Gmbh Verfahren zur gewinnung von aliphatischen c3- bis c10-aldehyden aus hochsiedern durch thermische behandlung
CN109776294A (zh) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 一种烯烃氢甲酰化反应方法
CN114478215A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种连续制备醛、醇的方法和装置

Also Published As

Publication number Publication date
TW202306935A (zh) 2023-02-16
CN115701418B (zh) 2024-05-17
CN115701418A (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
US3310576A (en) Hydroformylation catalyst and process relating thereto
CN111822050B (zh) 一种羰基化反应催化剂组合物及制备新戊二醇的方法
CN112898140B (zh) 一种基于亚膦酰胺膦配体催化内烯烃制备醛的方法
GB2028677A (en) Carbonylation of olefinic compounds
TWI727267B (zh) 藉由甘油產生之烯丙醇之加氫甲醯化產生bdo
CN114426469A (zh) 一种烯烃氢甲酰化制备醇和醛的方法
WO2023011409A1 (zh) 通过氢甲酰化反应制备含氧有机化合物的方法
CN107986943B (zh) 环己烷二甲醇的合成方法、催化剂及其应用
CN110372513B (zh) 一种醋酸乙烯酯氢甲酰化的方法
CN114478215A (zh) 一种连续制备醛、醇的方法和装置
CN114656343B (zh) 一种制备醛和醇的方法
CN112898139B (zh) 一种由RaffinateⅡ制备正戊醛的方法
CN114478214B (zh) 一种氢甲酰化方法和一种氢甲酰化产物的分离方法
CN114988991B (zh) 一种烯烃氢甲酰化制备异构醛的方法
CN114521194B (zh) 醛的制备方法和醛的制备装置
CN116063155A (zh) 一种烯烃氢甲酰化反应制备醇的方法
CN116854573A (zh) 一种烯烃氢甲酰化制备醛的方法
US20060116536A1 (en) Novel tridentate phosphines and method of forming aldehyde hydrogenation catalysts
KR20220015126A (ko) 하이드로포밀화 방법
WO2022066596A1 (en) Co-feeding ethylene with allyl alcohol in hydroformylation to make 1,4-butanediol and n-propanol
KR20230115558A (ko) 하이드로포밀화 방법
CN116143593A (zh) 一种烯烃和合成气直接转化制醇的方法
CN116947611A (zh) 一种氢甲酰化反应的方法和装置
KR20230115562A (ko) 알데히드의 제조방법
KR20220015336A (ko) 하이드로포밀화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024104831

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE