WO2023008493A1 - シラン化合物およびその製造方法、ポリオルガノシロキサン化合物、ハードコート組成物、ハードコーフィルムおよびその製造方法、ならびにディスプレイ - Google Patents

シラン化合物およびその製造方法、ポリオルガノシロキサン化合物、ハードコート組成物、ハードコーフィルムおよびその製造方法、ならびにディスプレイ Download PDF

Info

Publication number
WO2023008493A1
WO2023008493A1 PCT/JP2022/028986 JP2022028986W WO2023008493A1 WO 2023008493 A1 WO2023008493 A1 WO 2023008493A1 JP 2022028986 W JP2022028986 W JP 2022028986W WO 2023008493 A1 WO2023008493 A1 WO 2023008493A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
compound
group
silane compound
general formula
Prior art date
Application number
PCT/JP2022/028986
Other languages
English (en)
French (fr)
Inventor
文康 石黒
寛人 高麗
聡子 小松
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023538604A priority Critical patent/JPWO2023008493A1/ja
Publication of WO2023008493A1 publication Critical patent/WO2023008493A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a silane compound and a method for producing the same. Furthermore, the present invention relates to a polyorganosiloxane compound that is a condensate of a silane compound, a hard coat composition containing the polyorganosiloxane compound as a curable resin component, a hard coat film, and a method for producing the same. The present invention also relates to a display comprising the hard coat layer.
  • Curved displays and foldable displays are being developed, and studies are underway to replace the glass materials used for display cover windows and substrates with highly flexible plastic film materials. ing. Cover windows of flexible displays such as foldable displays are required to have various properties such as transparency, hardness, and bending resistance.
  • Patent Documents 1 to 3 disclose a polysiloxane-based hard coat material containing a polyorganosiloxane compound having an alicyclic epoxy group as a curable resin component.
  • a polyorganosiloxane compound having an alicyclic epoxy group is obtained by hydrolytic condensation of a silane compound (silane coupling agent) having an alicyclic epoxy group and an alkoxysilyl group.
  • Non-Patent Document 1 discloses "2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane" as a commercially available silane coupling agent having an alicyclic epoxy group.
  • Patent Documents 1 to 3 as specific examples of the hard coat material, a polyorganosiloxane compound obtained by hydrolytic condensation of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane is used as a curable resin component. disclosed.
  • Non-Patent Document 1 page 12 describes that a dialkoxy-type silane compound has better storage stability than a trialkoxy-type silane compound.
  • polyorganosiloxane compounds obtained by condensation of silane compounds with dialkoxy groups have a two-dimensional network of siloxane bonds and a low crosslink density, so that when used as a hard coat material, the mechanical strength is insufficient. Tend.
  • the first aspect of the present invention aims to provide a silane compound that has excellent storage stability and can be cured to form a film with excellent mechanical strength.
  • a hard coat material containing a polyorganosiloxane compound obtained by hydrolytic condensation of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane as a curable resin component is Exhibits high hardness.
  • these hard coat materials have room for improvement in the bending resistance of the cured product.
  • foldable displays There are two types of foldable displays: the type that folds so that the display surface faces inside, and the type that folds so that the display surface faces outside.
  • the hard coat film is used as a cover window of a foldable display that is folded so that the display surface faces outward, the hard coat film is bent so that the hard coat layer-formed surface faces outward when the device is folded.
  • a hard coat film having a hard coat layer containing a polyorganosiloxane compound obtained by hydrolytic condensation of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane as a curable resin component is arranged so that the hard coat layer is on the outside. Cracks tend to occur in the hard coat layer when bent.
  • a second aspect of the present invention aims to provide a hard coat material and a hard coat film capable of achieving both excellent surface hardness and bending resistance.
  • the silane compound of the present invention has a structure represented by general formula (1).
  • a polyorganosiloxane compound containing a structure represented by general formula (11) is obtained by hydrolytic condensation of this silane compound.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms
  • It is a monovalent hydrocarbon group selected from the group consisting of aralkyl groups having 7 to 12 carbon atoms.
  • R 1 is preferably a methyl group, an ethyl group or a propyl group.
  • a plurality of R 1 in the general formula (1) may be the same or different.
  • Y is a divalent organic group having a main chain of 5 or more atoms. Y may contain an ester bond.
  • the ratio of the structure represented by general formula (11) to the total amount of Si atoms is preferably 0.3 or more.
  • Method 1 Using an ester compound having an alicyclic epoxy group, an alcohol having a terminal —CH ⁇ CH 2 , and a trialkoxysilane as raw materials, the transesterification reaction between the ester compound and the alcohol, and the terminal —CH ⁇ CH 2 and the hydrosilylation reaction of trialkoxysilane with SiH.
  • a polyorganosiloxane compound obtained by hydrolytic condensation of a silane compound can be suitably used as a hard coat material.
  • a hard coat composition according to one embodiment of the present invention contains the above polyorganosiloxane compound and a photocationic polymerization initiator.
  • a hard coat composition containing a polyorganosiloxane compound is applied onto a transparent resin film and cured by irradiation with active energy rays to form a hard coat layer. A film is formed.
  • the hard coat film has a hard coat layer containing a cured polyorganosiloxane compound on at least one main surface of the transparent resin film.
  • the hard coat film may have a top coat layer on the hard coat layer.
  • the topcoat layer may contain a fluorine compound.
  • the hard coat layer is coated with a composition containing a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule, and the compound is condensed to form the top coat layer.
  • the silane compound of the present invention is inhibited from hydrolysis in the absence of a catalyst and has excellent storage stability.
  • the hard coat film of the present invention can have both excellent surface hardness and bending resistance, and can be suitably used as a cover window material for a foldable display that is folded so that the display surface faces outward.
  • FIG. 1 is a cross-sectional view of a hard coat film of one embodiment
  • FIG. 1 is a cross-sectional view of a hard coat film of one embodiment
  • FIG. 1 is a cross-sectional view of a hard coat film of one embodiment
  • Silane compound One aspect of the present invention is a silane compound represented by general formula (1).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms
  • It is a monovalent hydrocarbon group selected from the group consisting of aralkyl groups having 7 to 12 carbon atoms
  • x is 2 or 3.
  • Multiple R 1s may be the same or different.
  • Y in the general formula (1) is a divalent organic group having a main chain of 5 or more atoms.
  • silane compound (1) has two or three (—OR 1 ) in one molecule, and Si— OR 1 is hydrolyzable.
  • a polyorganosiloxane compound is produced by condensation after hydrolysis of Si—OR 1 .
  • R 1 is preferably an alkyl group having 3 or less carbon atoms (methyl group, ethyl group or propyl group), particularly preferably a methyl group or an ethyl group.
  • R 1 is most preferably a methyl group.
  • silane compounds in which R 1 is an ethyl group tend to have lower hydrolyzability of Si—OR 1 and superior stability during storage than silane compounds in which R 1 is a methyl group.
  • x in General formula (1) 3 is preferable.
  • the above silane compound is represented by the following general formula (9), wherein R 2 is don't have R 1 and Y in general formula (9) are the same as in general formula (1).
  • the large chain length of the divalent organic group Y connecting the Si atom and the alicyclic epoxy group (3,4-epoxycyclohexyl group) improves the storage stability of the trialkoxysilane compound.
  • Y in general formula (1) is a divalent organic group having a main chain of 5 or more atoms.
  • Y may be linear or branched.
  • Y may be a linear or branched alkylene group, and may contain atoms other than carbon in the main chain.
  • Y may be a heteroalkylene group and may contain an ether bond, an ester bond, an amide bond, a carbonyl group, an imino group, and the like.
  • the number of atoms in the main chain is the number of atoms forming a linear chain connecting Si atoms and 3,4-epoxycyclohexyl groups in general formula (1). That is, the silane compound of general formula (1) is a compound in which a Si atom and a 3,4-epoxycyclohexyl group are bonded via 5 or more atoms between them.
  • the silane compound of general formula (1) is a compound in which a Si atom and a 3,4-epoxycyclohexyl group are bonded via 5 or more atoms between them.
  • the silane compound (1) In the absence of a catalyst, the silane compound (1) is resistant to hydrolysis of Si—OR 1 and has excellent storage stability.
  • the trialkoxysilane-type compound represented by the general formula (9) is hardly hydrolyzed in the absence of a catalyst even in a high-temperature, high-humidity environment, and exhibits high reactivity in the presence of a catalyst.
  • the number of atoms in the main chain of the organic group Y is preferably 16 or less, more preferably 12 or less, still more preferably 10 or less, and may be 8 or less.
  • Silane compound (1) has a large amount of unreacted alkoxysilyl groups (residual ratio of alkoxysilyl groups) after being exposed to an environment at a temperature of 85° C. and a relative humidity of 85% for 20 hours, and exhibits excellent storage stability. .
  • the residual ratio of alkoxysilyl groups after exposure for 20 hours to an environment of 85° C. temperature and 85% relative humidity is preferably 30% or more, more preferably 50% or more, still more preferably 60% or more, or 70% or more. It may be 80% or more.
  • the silane compound (1) may have a residual ratio of alkoxysilyl groups of 30% or more after being exposed to an environment with a temperature of 85°C and a relative humidity of 85% for 96 hours.
  • the residual ratio of alkoxysilyl groups after exposing the silane compound to an environment with a temperature of 85° C. and a relative humidity of 85% for 96 hours can be 40% or more, 50% or more, or 60% or more.
  • Silane compound (1) has an alicyclic epoxy group (3,4-epoxycyclohexyl group) with a bulky structure, and a long chain ( Since it has a divalent organic group Y serving as a spacer (having 5 or more atoms in the main chain), it has a large molecular volume. Therefore, the access of water molecules to Si — OR 1 is restricted, and the frequency of intermolecular contact between Si—OR 1 is low. is considered to be high.
  • Y is a linear alkylene group
  • specific examples thereof include pentamethylene, hexamethylene, heptamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, hexa A decamethylene group and the like can be mentioned.
  • Y may be one in which some or all of the hydrogen atoms of methylene ( --CH.sub.2--) constituting linear alkylene are substituted with a substituent.
  • substituents include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, phenyl group, amino group, (meth)acrylic group, halogen, allyl group, vinyl group, mercapto group, carboxyl group, nitro group, sulfone group, hydroxy group and the like.
  • the divalent organic group Y may contain atoms other than carbon in its main chain.
  • Y contains an ester bond in general formula (1).
  • Examples of silane compounds in which Y contains an ester bond include structures of general formula (I) and general formula (II).
  • R 1 , R 2 and x in general formulas (I) to (V) are the same as in general formula (1).
  • R 4 and R 5 are divalent organic groups having a main chain of 3 or more carbon atoms, may be branched, and may contain atoms other than carbon in the main chain.
  • R 4 and R 5 are preferably linear alkylene having 3 to 10 carbon atoms or (poly)alkylene oxide having a main chain of 3 to 10 atoms.
  • Specific examples of (poly)alkylene oxides having a main chain of 3 to 10 atoms include -C 2 H 4 -OC 2 H 4 -, -C 3 H 6 -OC 2 H 4 -, -C 2 H 4 -OC 2 H 4 -OC 2 H 4 - and the like.
  • Examples of methods for synthesizing silane compounds in which Y contains an ester bond include a method utilizing transesterification and hydrosilylation.
  • Specific examples of methods for synthesizing silane compounds utilizing transesterification and hydrosilylation include Method 1 and Method 2 below.
  • silane compound represented by the general formula (IV) above can be synthesized by Method 1.
  • the silane compound represented by the above general formula (III) can be synthesized by Method 2.
  • the trialkoxysilane used as a raw material is represented by the general formula HSi(OR 1 ) 3 .
  • R 1 is the same as in general formula (1) and is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Multiple R 1s may be the same or different.
  • R 1 is preferably an alkyl group having 3 or less carbon atoms, particularly preferably a methyl group or an ethyl group. Trimethoxysilane, triethoxysilane and the like are preferably used as the trialkoxysilane.
  • An example of an ester compound having an alicyclic epoxy group used as a raw material in method 1 is methyl 3,4-epoxycyclohexane-1-carboxylate (CAS No. 41088-52-2).
  • Examples of alcohols having a double bond at the end used as raw materials in Method 1 include 2-propen-1-ol, 3-buten-1-ol, 4-penten-1-ol, 5-hexene-1- ol, 6-hepten-1-ol, 7-octen-1-ol, 8-nonen-1-ol, 9-decen-1-ol, ethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, etc. mentioned.
  • Examples of alcohols having an alicyclic epoxy group used as raw materials in method 2 include 3,4-epoxycyclohexylmethanol and 3,4-epoxycyclohexanol.
  • Examples of the ester compound having a double bond at the end used as a starting material in Method 2 include methyl 3-propenoate, methyl 4-pentenoate, methyl 5-hexenoate, methyl 6-heptenoate, and methyl 7-octenoate. , methyl 8-nonenoate, and methyl 9-decenoate.
  • transesterification catalysts include organotin compounds such as dibutyltin oxide; metal oxides such as magnesium oxide, lead oxide, zirconium oxide and zeolite; titanium tetraisopropoxide, aluminum triisopropoxide, lithium methoxide, sodium methoxy metal alkoxides such as sodium ethoxide, potassium t-butoxide; alkali metal amides such as lithium amide, sodium amide and potassium amide; magnesium hydroxide, lithium hydroxide, calcium hydroxide, sodium hydroxide and potassium hydroxide; metal hydroxides; metal carbonates such as magnesium carbonate, lithium carbonate, sodium carbonate and potassium carbonate; metal fatty acid salts such as potassium acetate, calcium laurate and sodium stearate; neutral or alkaline normal salts such as magnesium chloride; is mentioned.
  • the transesterification reaction it is preferable to flow an inert gas such as nitrogen during the reaction in order to distill off the alcohol that is produced.
  • the reaction temperature and reaction time for the transesterification reaction may be appropriately selected.
  • the transesterification reaction is performed by heating and stirring at 140° C. for 6 hours.
  • a catalyst known as a hydrosilylation catalyst can be selected as the catalyst for the hydrosilylation reaction.
  • hydrosilylation catalysts include platinum-olefin complexes, chloroplatinic acid, pure platinum, solid platinum supported on carriers (alumina, silica, carbon black, polymers, etc.), Pt(acac) 2 , platinum - vinylsiloxane complexes (e.g. Ptn ( ViMe2SiOSiMe2Vi )n , Pt[(MeViSiO) 4 ] m ), platinum-phosphine complexes (e.g.
  • Platinum-based catalysts such as platinum-phosphite complexes (eg, Pt[P(OPh) 3 ] 4 , Pt[P(OBu) 3 ] 4 ) are included.
  • Me is a methyl group
  • Bu is a butyl group
  • Vi is a vinyl group
  • Ph is a phenyl group
  • n and m are integers.
  • platinum-based hydrosilylation catalysts include the platinum-hydrocarbon complexes described in Ashby et al., US Pat. No. 3,159,601 and US Patent No. 3,159,662, and Lamoreaux et al., US Pat. and platinum alcoholate catalysts described therein.
  • non-platinum hydrosilylation catalysts examples include RhCl( PPh3 ) 3 , RhCl3 , Rh/ Al2O3 , RuCl3 , IrCl3 , FeCl3, AlCl3 , PdCl2.2H2O , NiCl2 , TiCl 4 , and the like.
  • the hydrosilylation catalyst may be used alone or in combination of two or more. From the viewpoint of catalytic activity, platinum-based catalysts are preferred, and among these, chloroplatinic acid, platinum-olefin complexes, platinum-vinylsiloxane complexes, Pt(acac) 2 and the like are preferred.
  • the reaction temperature and reaction time for the hydrosilylation reaction may be selected as appropriate.
  • trimethoxysilane is used as the trialkoxysilane
  • the hydrosilylation reaction is performed, for example, by heating and stirring at 80° C. for 10 hours.
  • triethoxysilane is used as the trialkoxysilane
  • the hydrosilylation reaction is carried out, for example, by heating and stirring at 105° C. for 10 hours.
  • Method 1 and Method 2 the order of transesterification and hydrosilylation is not particularly limited.
  • an ester exchange reaction between an ester compound having an alicyclic epoxy group and an alcohol having a double bond at the end causes an alicyclic epoxy group and a terminal
  • a compound is synthesized in which a molecular chain having —CH ⁇ CH 2 in is linked via an ester bond.
  • Method 1 when the hydrosilylation reaction is first carried out, the hydrosilylation reaction between the alcohol having a terminal double bond and trialkoxysilane is first carried out to obtain the general formula HO--R 6 --Si(OR 1 )
  • the silane compound represented by 3 is obtained.
  • R6 is a divalent organic group.
  • a silane compound represented by the general formula (IV) is obtained by transesterification between this silane compound and an ester compound having an alicyclic epoxy group.
  • a silane compound represented by —R 7 —Si(OR 1 ) 3 is obtained.
  • R7 is a divalent organic group and R8 is an alkyl group.
  • a silane compound represented by the general formula (III) is obtained by transesterifying the ester moiety of this silane compound with an alcohol having an alicyclic epoxy group.
  • a silane compound having an Si atom and an alicyclic epoxy group (3,4-cyclohexyl group) via an ester bond in both cases where the transesterification reaction is carried out first and where the hydrosilylation reaction is carried out first. is obtained.
  • hydrosilyl It is preferred to carry out the conversion reaction.
  • the above silane compound (1) is excellent in storage stability, can be used as a silane coupling agent, and can also be used as an adhesive strength adjusting agent for adhesives and pressure-sensitive adhesives, and as a coating agent. Moreover, since the silane compound (1) has an alicyclic epoxy group and is polymerizable, it can also be used as a monomer component of a resin.
  • Silane compound (1) has excellent storage stability because hydrolysis is suppressed in the absence of a catalyst. produce compounds. That is, the silane compound (1) can also be used as a raw material for polyorganosiloxane compounds.
  • Polyorganosiloxane compound One aspect of the present invention relates to a polyorganosiloxane compound obtained by condensation of the above silane compound (1).
  • the silane compound (1) has two or three alkoxysilyl groups in one molecule, and since Si—OR 1 has hydrolyzability, the condensation of the silane compound (1) , a polyorganosiloxane compound is produced.
  • the polyorganosiloxane compound obtained by condensation of silane compound (1) contains a structure represented by general formula (11).
  • Y in general formula (11) is the same as in general formula (1) and is a divalent organic group having a main chain of 5 or more atoms. Y may contain an ester bond.
  • silane compound other than the silane compound (1) may be used in the synthesis of the polyorganosiloxane compound.
  • Examples of silane compounds other than silane compound (1) include silane compounds represented by the following general formula (2) (hereinafter sometimes referred to as "silane compound (2)").
  • silane compound (2) silane compounds represented by the following general formula (2) (hereinafter sometimes referred to as "silane compound (2)").
  • R 1 , R 2 and x in general formula (2) are the same as R 1 , R 2 and x in general formula (1).
  • R 3 in general formulas (2) and (12) is a monovalent organic group.
  • R 3 is a substituted or unsubstituted double bond-containing group, a substituted or unsubstituted cycloalkyl group-containing group, a substituted or unsubstituted aromatic ring-containing group, a substituted or unsubstituted alkyl group, A group having a glycidyl group, a group having an oxetanyl group, a hydrogen atom, or a monovalent organic group represented by the following general formula (3).
  • W is a divalent organic group having a main chain of 4 or less atoms, and W is bonded to the Si atom.
  • the silane compound (2) is represented by the general formula (2) in which R 3 is the general formula (3 ) is preferably a monovalent organic group represented by silane compound. That is, the silane compound (2) preferably has an alicyclic epoxy group (3,4-epoxycyclohexyl group).
  • Examples of the silane compound (2) in which R 3 is a monovalent organic group represented by general formula (3) include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4- epoxycyclohexyl)ethylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyldimethylmethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propymethyl dimethoxysilane, 3-(3,4-epoxycyclohexyl)propyldimethylmethoxysilane, and the like.
  • the silane compound obtained by condensation is represented by the general formula (13). contains structures that
  • a silane compound that does not contain an alicyclic epoxy group may be used as the silane compound (2).
  • a silane compound containing an alicyclic epoxy group (a silane compound in which R3 is a monovalent organic group represented by the general formula ( 3 )) and a silane containing no alicyclic epoxy group. Both compounds may be used.
  • the silane compound containing no alicyclic epoxy group one having a glycidyl group is preferred.
  • silane compounds having a glycidyl group include those in which R 3 in general formula (2) is a glycidyloxyalkyl group.
  • the glycidyloxyalkyl group includes 3-glycidyloxypropyl group, 8-glycidyloxyoctyl group and the like.
  • x is preferably 3.
  • the polyorganosiloxane compound has a three-dimensional structure, and the hardness of the cured film (hard coat layer) obtained by curing the polyorganosiloxane compound tends to be improved.
  • a silane compound in which x is 1 may be used for the purpose of adjusting the molecular weight of the polyorganosiloxane compound obtained by condensation.
  • the amount of water is too small, the number of OR 1 groups remaining without hydrolysis is large, and the molecular weight of the polyorganosiloxane compound is small, so the hardness of the hard coat layer tends to be insufficient.
  • the amount of water is excessively large, the reaction rate of hydrolysis and condensation reactions is high, resulting in the formation of high-molecular-weight condensates, which tends to reduce the transparency and flexibility of the hard coat layer.
  • the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. Also from the viewpoint of suppressing volatilization, the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. On the other hand, if the molecular weight is excessively high, cloudiness may occur due to a decrease in compatibility with other compositions or the like. Therefore, the weight average molecular weight of the polyorganosiloxane compound is preferably 20,000 or less.
  • the molecular weight of the polyorganosiloxane compound can be controlled by selecting the amount of water used in the reaction and the type and amount of catalyst. For example, increasing the amount of water tends to increase the molecular weight.
  • the number of OR 1 groups remaining per silane compound unit in the polyorganosiloxane compound is small.
  • the average number of one OR group per one Si atom in the polyorganosiloxane compound is two or less.
  • the average number of one OR group per Si atom is preferably 1.5 or less, more preferably 1.0 or less.
  • the average number of OR groups per Si atom in the polyorganosiloxane compound is 0.01 or more, 0.05 or more, 0.1 or more, 0.2 or more, or 0.3 or more.
  • the polyorganosiloxane compound preferably has a large content of epoxy groups.
  • the residual rate of epoxy groups is preferably 20% or more, more preferably 40% or more, still more preferably 60% or more, and may be 80% or more, 90% or more, or 95% or more.
  • the residual ratio of OR 1 groups and the residual ratio of epoxy groups can be calculated by 1 H-NMR measurement.
  • the hydrolysis reaction and condensation reaction of the silane compound it is preferable to carry out the reaction under neutral or basic conditions from the viewpoint of suppressing the ring opening of the epoxy group.
  • hydrolysis and condensation reaction it is preferable to carry out a condensation reaction.
  • Neutral salt catalysts include salts composed of an acid and a base, and salts composed of an alkali metal or alkaline earth metal cation and a halogen anion are preferred.
  • Specific examples of neutral salts include lithium chloride, sodium chloride, potassium chloride, beryllium chloride, magnesium chloride, calcium chloride, lithium bromide, sodium bromide, potassium bromide, beryllium bromide, magnesium bromide, and calcium bromide.
  • the neutral salt catalyst may remain in the polyorganosiloxane compound.
  • the amount of neutral salts remaining in the polyorganosiloxane compound may be from 1 ppm to 10000 ppm, or from 50 ppm to 5000 ppm or from 100 ppm to 1000 ppm.
  • the polyorganosiloxane compound obtained by condensation of silane compound (1) contains a structure represented by general formula (11).
  • a hard coat layer formed by curing a polyorganosiloxane compound having a structure represented by general formula (11) can achieve both high surface hardness and excellent flex resistance. Moreover, a hard coat film having the hard coat layer tends to be less curled.
  • the ratio of the structure represented by general formula (11) to the total number of Si atoms in the polyorganosiloxane compound is preferably 0.3 or more, and 0.3 or more. It is more preferably 4 or more, more preferably 0.5 or more, and may be 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, or 0.95 or more.
  • the number of epoxy groups contained in one molecule of the polyorganosiloxane compound is as large as possible, and it is particularly preferable that the number of alicyclic epoxy groups is large.
  • the total ratio of the structure represented by the general formula (11) and the structure represented by the general formula (13) to the total number of Si atoms in the polyorganosiloxane compound is preferably 0.4 or more, and 0.5. It is more preferably 0.6 or more, and may be 0.7 or more, 0.8 or more, 0.9 or more, 0.95 or more, or 1.
  • the ratio of the structure represented by the general formula (13) to the total number of Si atoms in the polyorganosiloxane compound is preferably 0.5 or less, and 0.3 or less. It is more preferably 0.2 or less, and may be 0.1 or less, 0.05 or less, or 0.
  • the ratio of the structure represented by general formula (11) to the total of the structure represented by general formula (11) and the structure represented by general formula (13) is 0.5 or more. is preferred.
  • the ratio of the structure of general formula (11) to the sum of the structure of general formula (11) and the structure of general formula (13) is more preferably 0.7 or more, 0.8 or more, 0.9 or more, 0.95 It may be more than or equal to 1.
  • the higher the ratio the more excellent the bending resistance of the hard coat layer formed by curing the polyorganosiloxane compound tends to be.
  • the ratio of the structure of general formula (13) to the total of the structure of general formula (11) and the structure of general formula (13) is 0.05 or more, 0.1 or more, or 0 .2 or more.
  • the alkoxysilyl group —OR 1 participates in the reaction, but other functional groups attached to the Si atom do not react, except for side reactions such as ring opening of epoxy groups. Therefore, in the polyorganosiloxane compound obtained by condensation of the silane compound, the structure (11) portion of the silane compound (1) and the structure (12) portion of the silane compound (2) retain their structures before and after the reaction. ing.
  • the ratio of the structure of general formula (11) to the total number of Si atoms contained in the polyorganosiloxane compound is approximately equal to the ratio of the silane compound of general formula (1) to the total amount of silane compounds. That is, by adjusting the charge ratio of the silane compound when synthesizing the polyorganosiloxane compound, the polyorganosiloxane compound having the structure represented by the general formula (11) in the above ratio can be obtained.
  • the ratio of silane compound (1) to the total amount of silane compounds is preferably 0.3 or more, more preferably 0.4 or more, still more preferably 0.5 or more, 0.6 or more, 0.7 or more, or 0.8. It may be 0.9 or more, 0.95 or more, or 1.
  • the molar ratio of the silane compound (2) to the silane compound (1) is preferably 2 or less. is more preferably 0.4 or less, particularly preferably 0.2 or less, and may be 0.1 or less.
  • the hard coat layer When using a silane compound (2) having an alicyclic epoxy group, that is, a silane compound in which R 3 in general formula (2) is a monovalent organic group represented by general formula (3), the hard coat layer From the viewpoint of bending resistance, the molar ratio of the silane compound (2) to the total amount of the silane compounds is preferably 0.5 or less, more preferably 0.3 or less, further preferably 0.2 or less, and 0.1 or less or It may be 0.05 or less.
  • Hard coat composition One aspect of the present invention relates to a hardcoat composition that includes the polyorganosiloxane compound described above.
  • the above polyorganosiloxane compound can be used as a curable resin material for forming a hard coat layer because the alicyclic epoxy group in the structure of general formula (11) has photocurable properties.
  • the hard coat composition contains the above polyorganosiloxane compound as a curable resin component, and further contains a photocationic polymerization initiator.
  • the hardcoat composition may further include leveling agents, reactive diluents, photosensitizers, particles and other additives as solids (non-volatiles).
  • the content of the polyorganosiloxane compound in the hard coat composition is preferably 40 parts by weight or more with respect to the total 100 parts by weight of the solid content (non-volatile content). 50 parts by weight or more is more preferable, and 60 parts by weight or more is even more preferable.
  • a photocationic polymerization initiator is a compound (photoacid generator) that generates an acid upon irradiation with an active energy ray.
  • the acid generated from the photoacid generator promotes ring-opening and polymerization reaction of the epoxy groups of the polyorganosiloxane compound, forming intermolecular crosslinks and curing the hard coat material.
  • Photocationic polymerization initiators include strong acids such as toluenesulfonic acid, antimony hexafluoride, boron tetrafluoride, phosphorus hexafluoride, fluoroalkyl phosphorus fluoride, and fluoroalkyl gallium fluoride; sulfonium salts, ammonium salts, and phosphonium salts. , iodonium salts, selenium salts and other onium salts; iron-allene complexes; silanol-metal chelate complexes; sulfonic acid derivatives of; and organic halogen compounds. Among these, aromatic sulfonium salts and aromatic iodonium salts are preferred because of their high stability in the hard coat composition.
  • the content of the photocationic polymerization initiator in the hard coat composition is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the polyorganosiloxane compound. 0.2 to 2 parts by weight is more preferable.
  • the hard coat composition may contain a leveling agent.
  • a leveling agent a silicone-based leveling agent and a fluorine-based leveling agent are preferred. Inclusion of a leveling agent is expected to reduce the surface tension of the hard coat composition and improve the surface smoothness.
  • the content of the leveling agent in the hard coat composition is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and 0.05 to 10 parts by weight, based on 100 parts by weight of the polyorganosiloxane compound. 1 part by weight is more preferred.
  • the hardcoat composition may contain a reactive diluent.
  • reactive diluents include cationically polymerizable compounds other than the above polyorganosiloxane compounds.
  • a compound having a cationic polymerizable functional group is used as the reactive diluent for cationic photopolymerization.
  • Cationically polymerizable functional groups of reactive diluents include epoxy groups, vinyl ether groups, oxetane groups, and alkoxysilyl groups. Among them, as the reactive diluent, one having an epoxy group is preferable because of its high reactivity with the epoxy group of the polyorganosiloxane compound.
  • the content of the reactive diluent in the hard coat composition is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, relative to 100 parts by weight of the polyorganosiloxane compound.
  • the hard coat composition may contain a photosensitizer for the purpose of improving the photosensitivity of the photocationic polymerization initiator (photoacid generator).
  • a photosensitizer there is a type that improves the photosensitivity of the photocationic polymerization initiator by absorbing light in the wavelength range that the photocationic polymerization initiator cannot absorb, and a type that has a large absorption wavelength range with the photocationic polymerization initiator. Although there is no difference, any type that improves the photosensitivity of the photocationic polymerization initiator may be used.
  • photosensitizers include anthracene derivatives, benzophenone derivatives, thioxanthone derivatives, anthraquinone derivatives, benzoin derivatives, naphthalene derivatives and the like.
  • the content of the photosensitizer in the hard coat composition is preferably 500 parts by weight or less, more preferably 100 parts by weight or less, and even more preferably 50 parts by weight or less with respect to 100 parts by weight of the photocationic polymerization initiator. .
  • the hard coat composition may contain particles for the purpose of adjusting film properties such as surface hardness and bending resistance.
  • particles organic particles, inorganic particles, organic-inorganic composite particles, etc. may be appropriately selected and used.
  • the particles may be surface-modified, and polymerizable functional groups may be introduced by surface modification.
  • the average particle diameter of the particles is, for example, about 5 nm to 10 ⁇ m. From the viewpoint of increasing the transparency of the hard coat layer, the average particle size is preferably 1000 nm or less, more preferably 500 nm or less, even more preferably 300 nm or less, and particularly preferably 100 nm or less.
  • the particle size can be measured by a laser diffraction/scattering type particle size distribution analyzer, and the volume-based median size is taken as the average particle size.
  • the content of the particles in the hard coat composition is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, relative to 100 parts by weight of the polyorganosiloxane compound.
  • the hard coat composition may be solventless or may contain a solvent. When the hard coat composition contains a solvent, it preferably does not dissolve the transparent resin film 1 as the substrate. On the other hand, the adhesion between the transparent resin film 1 and the hard coat layer 3 may be improved by using a solvent having sufficient solubility to swell the resin film.
  • the content of the solvent is preferably 500 parts by weight or less, more preferably 300 parts by weight or less, and even more preferably 100 parts by weight or less with respect to 100 parts by weight of the polyorganosiloxane compound.
  • the hard coat composition may contain additives such as inorganic pigments, organic pigments, surface conditioners, surface modifiers, plasticizers, dispersants, wetting agents, thickeners, antifoaming agents, and UV stabilizers. good.
  • the hard coat composition may also contain a thermoplastic, thermosetting or photocurable resin material other than the above polyorganosiloxane compound.
  • the hard coat composition may contain a radical polymerization initiator in addition to the photocationic polymerization initiator.
  • Hard coat film One aspect of the present invention is a hard coat film comprising a hard coat layer comprising a cured product of the above hard coat composition on a transparent resin film.
  • FIG. 1 is a cross-sectional view of a hard coat film according to one embodiment of the present invention.
  • the hard coat film 11 has a hard coat layer 3 on one main surface of the transparent resin film 1 .
  • the hard coat layer 3 is a cured product layer containing a cured product of the above polyorganosiloxane compound.
  • the hard coat film may have a top coat layer 5 on the hard coat layer 3 .
  • the hard coat film may have a hard coat layer on one side of the transparent resin film, or may have a hard coat layer on both sides of the transparent resin film.
  • the transparent resin film 1 is a resin substrate that serves as a base for forming the hard coat layer 3 .
  • the transparent resin film 1 is preferably transparent.
  • the total light transmittance of the transparent resin film 1 is preferably 80% or higher, more preferably 85% or higher, even more preferably 90% or higher.
  • the haze of the transparent resin film 1 is preferably 2% or less, more preferably 1% or less.
  • the thickness of the transparent resin film 1 is, for example, about 1 to 1000 ⁇ m.
  • the thickness of the transparent resin film 1 is preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m, even more preferably 15 to 150 ⁇ m. If the thickness is too small, the hardness tends to be insufficient, and if the thickness is too large, the flexibility tends to be poor.
  • the resin material constituting the transparent resin film 1 includes polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins such as polymethyl methacrylate (PMMA), and cellulose resins such as triacetyl cellulose (TAC).
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN)
  • acrylic resins such as polymethyl methacrylate (PMMA)
  • cellulose resins such as triacetyl cellulose (TAC).
  • TAC triacetyl cellulose
  • polyesters such as PET, cellulosic resins such as TAC, and polyimides are preferable as resin materials because of their excellent transparency and mechanical strength.
  • the film base material is required to have excellent heat resistance and mechanical strength. Therefore, transparent polyimide is particularly preferable as the resin material for the transparent resin film.
  • General wholly aromatic polyimides are colored yellow or brown, but transparent polyimides with high visible light transmittance have been created by introducing alicyclic structures, bending structures, and fluorine substituents. can get.
  • the transparent resin film 1 may contain two or more resin materials.
  • the transparent resin film may contain a stabilizer such as an ultraviolet absorber and a radical trapping agent for the purpose of imparting weather resistance, and a dye or pigment such as a bluing agent for the purpose of adjusting color tone.
  • the transparent resin film 1 may have a single-layer structure or a multi-layer structure.
  • the transparent resin film may be a laminate in which a plurality of films are bonded together, and the surface of the film (the surface on which the hard coat layer 3 is formed and/or the surface on which the hard coat layer is not formed) is provided with an easy-adhesion layer, an antistatic layer, A functional layer such as an antireflection layer may be provided.
  • the thickness of the transparent resin film 1 is not particularly limited, and can be appropriately selected, for example, from the range of 1 to 1000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m, still more preferably 15 to 150 ⁇ m.
  • a hard coat layer 3 is formed by applying a hard coat composition onto the transparent resin film 1 and curing the composition.
  • the hard coat composition used for forming the hard coat layer 3 contains a polyorganosiloxane compound as a curable resin component.
  • a hard coat composition is applied onto the transparent resin film 1, and the solvent is removed by drying if necessary, followed by irradiation with active energy rays to cure the hard coat composition, thereby forming a hard coat on the transparent resin film 1.
  • Layer 3 is formed.
  • Examples of the method of applying the hard coat composition include roll coating such as bar coating, gravure coating and comma coating, die coating such as slot die coating and fountain die coating, spin coating, spray coating and dip coating.
  • the surface of the transparent resin film may be subjected to surface treatment such as corona treatment or plasma treatment.
  • an easy-adhesion layer or the like may be provided on the surface of the transparent resin film 1 .
  • Ultraviolet rays are preferable as active energy rays.
  • the cumulative irradiation dose of active energy rays is, for example, about 50 to 10000 mJ/cm 2 , and may be set according to the type and amount of the cationic photopolymerization initiator, the thickness of the film, and the like.
  • the curing temperature is not particularly limited, it is usually 150° C. or lower, and may be 100° C. or lower or 90° C. or lower.
  • the thickness of the hard coat layer 3 is preferably 0.5 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 3 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the thickness of the hard coat layer 3 is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less. Mechanical properties such as surface hardness tend to improve as the thickness of the hard coat layer increases. On the other hand, when the thickness of the hard coat layer is excessively large, the flex resistance of the hard coat layer may decrease.
  • the total thickness of the transparent resin film 1 and the hard coat layer 3 is preferably 10-500 ⁇ m, more preferably 15-250 ⁇ m, even more preferably 20-200 ⁇ m. If the thickness is too small, the mechanical strength may be insufficient, and if the thickness is too large, the transparency and flexibility may be insufficient.
  • the ratio of the thickness D 1 of the transparent resin film 1 to the thickness D 3 of the hard coat layer 3: D 3 /D 1 is, for example, about 0.01-10.
  • a topcoat layer 5 may be provided on the surface layer of the hardcoat layer 3 .
  • the scratch resistance and antifouling properties are improved.
  • the fluorine compound that constitutes the topcoat layer contains one or more fluorine atoms in the molecule.
  • the fluorine compound preferably contains a perfluoroalkyl group.
  • Compounds containing a perfluoroalkyl group include perfluoroalkyl compounds, perfluoroalkyl ether compounds, perfluoroether compounds, perfluoropolyether compounds, and the like.
  • the fluorine compound constituting the topcoat layer is preferably a condensate of a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule, and the alkoxysilyl group is hydrolyzed and condensed to form a high molecular weight compound to form a film.
  • a perfluoroalkyl group is an alkyl group in which all hydrogen atoms are replaced with fluorine atoms, and is represented by CF 3 (CF 2 ) n —.
  • the alkoxysilyl group is preferably a trialkoxysilyl group, more preferably a triethoxysilyl group or a trimethoxysilyl group, and particularly preferably a trimethoxysilyl group.
  • a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule preferably has a fluoroalkyl ether structure, and is preferably an oligomer having a fluoroalkyl ether repeating unit.
  • fluoroalkyl ether structure examples include -(OC 4 F 8 )-, -(OC 3 F 6 )-, -(OC 2 F 4 )-, -(OCF 2 )- and the like.
  • the perfluoroalkyl group of the fluoroalkyl ether may be linear or branched, but is preferably linear from the viewpoint of scratch resistance.
  • the number average molecular weight of the oligomer is preferably 1,000 to 50,000, more preferably 3,000 to 20,000, even more preferably 5,000 to 10,000. If the number average molecular weight is less than 1,000, the scratch resistance may be poor, and if it is more than 50,000, it may be difficult to apply the composition.
  • the perfluoroalkyl group-containing compound may contain substituents other than perfluoroalkyl groups and repeating units other than fluoroalkyl ethers.
  • substituents include alkyl groups and fluoroalkyl groups obtained by substituting fluorine atoms for some of the hydrogen atoms of alkyl groups (that is, fluoroalkyl groups other than perfluoroalkyl groups).
  • the perfluoroalkyl group-containing compound preferably has a higher ratio of hydrogen atoms in the alkyl group substituted with fluorine.
  • the method of forming the topcoat layer 5 is not particularly limited, and includes roll coating such as bar coating, gravure coating and comma coating, die coating such as slot die coating and fountain die coating, wet methods such as spin coating, spray coating and dip coating; vacuum deposition. , sputtering, CVD, etc. can be used.
  • roll coating such as bar coating, gravure coating and comma coating
  • die coating such as slot die coating and fountain die coating
  • wet methods such as spin coating, spray coating and dip coating
  • vacuum deposition. sputtering, CVD, etc.
  • a wet method is preferred from the viewpoint of promoting hydrolysis.
  • a primer layer may be provided on the hard coat layer 3 and the top coat layer 5 may be formed thereon.
  • Materials for the primer layer include metal oxides such as silicon oxide, titanium oxide, aluminum oxide and zirconium oxide; and organic/inorganic hybrid materials, which are hydrolytic condensates of alkoxysilanes.
  • corona treatment is preferable because the treatment can be easily performed at atmospheric pressure.
  • the corona treatment density is preferably 1 W ⁇ min/m 2 or more, more preferably 10 W ⁇ min/m 2 or more, 30 W ⁇ min/m 2 or more, 100 W ⁇ min/m 2 or more, or 500 W ⁇ min/m 2 or more. 3000 W ⁇ min/m 2 or less is preferable, and 600 W ⁇ min/m 2 or less is more preferable. If the treatment density is too low, the effect of surface treatment on improving adhesion may be insufficient, and if the treatment density is too high, the hard coat layer may deteriorate.
  • the scratch-resistant layer is formed by a wet method
  • a composition obtained by diluting a compound (oligomer) having an alkoxysilyl group and a perfluoroalkyl group in the molecule with a solvent are perfluoroaliphatic hydrocarbons having 5 to 12 carbon atoms such as perfluorohexane, perfluoromethylcyclohexane and perfluoro-1,3-dimethylcyclohexane.
  • polyfluoroaromatic hydrocarbons such as bis(trifluoromethyl)benzene; perfluoropropylmethyl ether ( C3F7OCH3 ) , perfluorobutylmethylether ( C4F9OCH3 ) , perfluorobutylethylether (C 4 F 9 OC 2 H 5 ), perfluorohexylmethyl ether (C 2 F 5 CF(OCH 3 )C 3 F 7 ) and other hydrofluoroethers (HFE).
  • the perfluoroalkyl group and alkyl group of the hydrofluoroether may be linear or branched.
  • hydrofluoroether is preferred, and perfluorobutyl methyl ether ( C4F9OCH3 ) and perfluorobutylethyl ether ( C4F9OC2H5 ) are preferred.
  • the solvent may be a mixed solvent of two or more.
  • the composition contains perfluoroalkyl group-containing compounds typified by fluoroalkyl ether oligomers having no alkoxysilyl groups in the molecule, fluorine-based oils, and other additives such as silicone-based oils.
  • fluorine-based oils typified by fluorine-based oils, and other additives such as silicone-based oils.
  • silicone-based oils may contain The inclusion of fluorine oil or silicone oil may improve scratch resistance and antifouling properties.
  • the composition may contain catalysts such as acids, bases, and metal organic compounds. Containing a catalyst promotes the reaction between the alkoxysilyl groups and the functional groups on the surface of the hard coat layer, and may improve the adhesion of the top coat layer 5 to the hard coat layer 3 .
  • the composition may contain water. Since the presence of water hydrolyzes the alkoxysilyl groups, the reaction with the functional groups on the surface of the hard coat layer is promoted, and the adhesion of the top coat layer 5 to the hard coat layer 3 may be improved.
  • scratch resistant coating composition commercially available products such as "OPTOOL UD509" and “OPTOOL DSX-E” manufactured by Daikin Industries may be used. Solvents and additives may be added to commercially available coating compositions.
  • the solid content concentration of the compound (oligomer) having an alkoxysilyl group and a perfluoroalkyl group in the molecule in the composition is not particularly limited, but from the viewpoint of coating properties, it is preferably 20% by weight or less, more preferably 10% by weight or less. , more preferably 5% by weight or less, and may be 1% by weight or less or 0.5% by weight or less. If the solid content concentration is excessively high, the coating film may become cloudy.
  • Heating promotes condensation of the compound having an alkoxysilyl group and a perfluoroalkyl group in the alkoxysilyl group molecule.
  • the heating temperature is preferably 30° C. or higher, more preferably 60° C. or higher, and may be 100° C. or higher or 130° C. or higher.
  • the heating temperature is usually 170° C. or lower.
  • the thickness of the topcoat layer 5 is not particularly limited, it is preferably 1 nm or more, more preferably 5 nm or more, even more preferably 6 nm or more, and particularly preferably 10 nm or more.
  • the thickness of the scratch resistant layer is preferably 1000 nm or less, more preferably 100 nm or less, and may be 50 nm or less, 45 nm or less, 40 nm or less, 35 nm or less, or 30 nm or less. If the thickness of the scratch-resistant layer is too small, the scratch resistance and antifouling property may be insufficient, and if the thickness is too large, the coating film may become cloudy and the transparency may be lowered.
  • the alkoxysilyl group of the perfluoroalkyl compound is preferably hydrolyzed and condensed. If the hydrolysis and condensation are accelerated by heating or the like after application of the composition, the hydroxyl groups generated by hydrolysis of the alkoxysilyl groups are only the alkoxysilyl groups of other perfluoro compounds (hydroxyl groups generated by the hydrolysis thereof). It is possible to form a covalent bond through a condensation reaction with the functional group on the surface of the hard coat layer 3 . Therefore, it is considered that the perfluoroalkyl compound is firmly fixed to the hard coat layer 3 and the scratch resistance is improved.
  • a hard coat layer formed by curing a polyorganosiloxane compound having an epoxy group has a hydroxyl group (silanol group) generated by hydrolysis during condensation of a silane compound, and furthermore, the epoxy group during curing. It has a hydroxyl group generated with ring opening. These hydroxyl groups are capable of a condensation reaction with alkoxysilyl groups of perfluoroalkyl compounds.
  • the polyorganosiloxane compound that constitutes the hard coat layer is an organic compound containing Si atoms, similar to the alkoxysilyl group of the perfluoro compound, and has a high affinity with each other. Since the group or the like can condense with the alkoxysilyl group of the perfluoro compound, it is thought that the adhesion between the hard coat layer 3 and the top coat layer 5 is improved.
  • the hard coat film in which the hard coat layer 3 containing the cured product of the polyorganosiloxane compound having the structure represented by the general formula (1) is provided on the transparent resin film 1 has high surface hardness and resistance. Excellent flexibility.
  • the pencil hardness of the surface on which the hard coat layer 3 is formed is preferably HB or higher, more preferably H or higher, still more preferably 2H or higher, even more preferably 3H or higher, and may be 4H or higher.
  • the surface hardness tends to increase as the thickness of the hard coat layer 3 increases.
  • the mandrel diameter at which cracks did not occur in the hard coat layer (the mandrel in the test immediately before cracks occurred) (diameter) ⁇ is preferably small.
  • is preferably 6 mm or less, more preferably 4 mm or less, and may be 3 mm or less or 2 mm or less.
  • the number of times of bending until the hard coat layer cracks is preferably 1000 times or more.
  • the bending endurance is more preferably 10,000 times or more, and may be 50,000 times or more, 100,000 times or more, or 200,000 times or more.
  • the bending resistance of the hard coat film is enhanced, and ⁇ tends to be small and the bending endurance number tends to be large.
  • the hard coat film has a small curl.
  • the hard coat film when the hard coat film is cut into a 3 cm square, it is preferred that it does not form a cylinder.
  • the average value of the lifting amount of the four vertices of the hard coat film is preferably 8 mm or less, more preferably 6 mm or less, and even more preferably 4 mm or less.
  • a polysiloxane-based hard coat layer formed by curing a polyorganosiloxane compound having an alicyclic epoxy group has excellent hardness, but tends to be inferior in flex resistance.
  • a polysiloxane-based hard coat layer formed by curing a polyorganosiloxane compound having a glycidyl group has excellent bending resistance, but tends to exhibit large cure shrinkage and curl.
  • a hard coat layer by curing the polyorganosiloxane compound having the structure represented by the general formula (11), a hard coat film having excellent bending resistance and less curling can be obtained. be done.
  • a polyorganosiloxane compound obtained by condensation of a silane compound containing an alicyclic epoxy group retains its alicyclic structure even after curing by ring-opening polymerization of the epoxy group. Curing tends to increase volume. Therefore, cure shrinkage is less likely to occur, which can contribute to the suppression of curling of the hard coat film. Moreover, since the alicyclic structure is more rigid than the chain structure, the hardness of the hard coat layer tends to be improved.
  • the polyorganosiloxane compound having the structure represented by the general formula (11) a specific Because of the presence of the organic group Y having a chain length of , the molecular structure has flexibility even after curing due to the reaction of the epoxy group. Therefore, it is considered that the hard coat layer composed of the cured product of the polyorganosiloxane compound exhibits excellent flex resistance. As described above, the greater the distance between the Si atom and the alicyclic epoxy group, that is, the greater the number of atoms constituting the main chain of the organic group Y as a spacer and the longer the chain length, the greater the bending resistance of the hard coat layer 3. tend to improve.
  • the total light transmittance of the hard coat film is preferably 80% or higher, more preferably 85% or higher, and even more preferably 88% or higher.
  • the haze of the hard coat film is preferably 1.5% or less, more preferably 0.9% or less, still more preferably 0.7% or less, and particularly preferably 0.5% or less.
  • the yellowness index (YI) of the hard coat film is preferably 10 or less, more preferably 8 or less, still more preferably 5 or less, even more preferably 4 or less, and particularly preferably 3 or less.
  • the hard coat film may have various functional layers. Examples of functional layers include antireflection layers, antiglare layers, antistatic layers, transparent electrodes, and the like.
  • a transparent pressure-sensitive adhesive layer may be attached to the surface of the transparent resin film 1 on which the hard coat layer is not formed. Moreover, a transparent pressure-sensitive adhesive layer may be attached to the hard coat film.
  • the above hard coat film has high hardness, it can be suitably used as a cover window material arranged on the outermost surface of the image display device. Since the hard coat film has excellent bending resistance, it can be suitably used as a cover window for a foldable display (foldable display). Applicable.
  • Table 1 shows the wet heat test results (methoxy group residual ratio) of the methoxysilane compounds
  • Table 2 shows the wet heat test test results (ethoxy group residual ratio) of the ethoxysilane compounds.
  • KBM-303 which is a silane compound in which a 3,4-epoxycyclohexyl group and a Si atom are bonded via an ethylene group (the number of atoms in the main chain is 2), has a methoxy group residual rate of 25%. Met.
  • silane compounds 1 to 5 in which a 3,4-epoxycyclohexyl group and a Si atom are bonded via a divalent organic group containing an ester bond and having a main chain of 5 to 10 atoms had a residual ratio of methoxy groups of 50% or more, and exhibited excellent moist heat resistance (storage stability).
  • silane compounds 1 to 5 the greater the number of atoms in the main chain of the divalent organic group between the 3,4-epoxycyclohexyl group and the Si atom, the higher the residual ratio of methoxy groups (improved heat and humidity resistance). A tendency was observed, and silane compounds 3 to 5 had a residual ratio of methoxy groups exceeding 80%.
  • T3585 which is a silane compound in which a 3,4-epoxycyclohexyl group and a Si atom are bonded via an ethylene group (the number of atoms in the main chain is 2), has a residual ethoxy group rate of 34%. rice field.
  • silane compounds 6 to 8 in which a 3,4-epoxycyclohexyl group and a Si atom are bonded via a divalent organic group containing an ester bond and having a main chain of 5 or more atoms are , the residual ratio of ethoxy groups was 50% or more, and excellent moist heat resistance (storage stability) was exhibited.
  • the percentage of residual methoxy groups and the percentage of residual epoxy groups calculated from the 1 H-NMR spectrum measured using 400 MHz-NMR manufactured by Bruker and using deuterated acetone as a solvent were 6.7% and 98%, respectively.
  • Polyorganosiloxane compound 5 had a residual methoxy group ratio of 4.1% and an epoxy group residual ratio of 91%.
  • Polyorganosiloxane compound 14 had a residual ratio of methoxy groups of 4.6% and a residual ratio of epoxy groups of 95% or more.
  • Polyorganosiloxane compound 15 had a residual ratio of methoxy groups of 4.3% and a residual ratio of epoxy groups of 95% or more.
  • TAHMBP 1,1′-biphenyl]-4,4′-diyl)ester
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • ODPA 4,4′-oxydiphthalic dianhydride
  • Example 1 (Preparation of hard coat composition) Polyorganosiloxane compound 1 was diluted to 50% with propylene glycol monomethyl ether. With respect to 100 parts by weight of the polyorganosiloxane compound, 2 parts by weight of a propylene carbonate 50% solution of a photocationic polymerization initiator (manufactured by San-Apro "CPI-101A") as a solid content, a silicone leveling agent (manufactured by BYK “BYK- 300”) was blended as a solid content to obtain a hard coat composition.
  • a photocationic polymerization initiator manufactured by San-Apro "CPI-101A
  • a silicone leveling agent manufactured by BYK "BYK- 300
  • a solution obtained by diluting a fluorine-based coating agent (“OPTOOL UD509” manufactured by Daikin) with hydrofluoroether (“NOVEC7200” manufactured by 3M) to 0.1% by weight was applied onto the primer layer so that the dry film thickness was 10 nm. It was applied using a coater and heated at 150° C. for 10 minutes to form a topcoat layer to obtain a hardcoat film having a hardcoat layer and a topcoat layer on one side of the transparent polyimide film.
  • OPTOOL UD509 fluorine-based coating agent
  • NOVEC7200 hydrofluoroether
  • Examples 2 to 14 Comparative Examples 1 to 3> Polyorganosiloxane compounds 2 to 15 were used instead of polyorganosiloxane compound 1 in the preparation of the hard coat composition.
  • “CPI-310FG” manufactured by San-Apro Co., Ltd. was used as the cationic photopolymerization initiator.
  • the thickness of the hard coat layer was set to 20 ⁇ m.
  • a hard coat film having a hard coat layer, a primer layer and a top coat layer on one side of the transparent polyimide film was obtained in the same manner as in Example 1 except for these changes.
  • ⁇ Bending resistance (dynamic bending test)> A strip having a width of 25 mm was cut from the hard coat film. The short side of this test piece is attached to a U-shaped expansion test jig (manufactured by Yuasa System Equipment), and a planar body no-load U-shaped expansion test (manufactured by Yuasa System Equipment) is performed in an environment with a temperature of 23 ° C and a relative humidity of 55%. "DMLHB-FS-C”), a repeated bending test was performed with the hard coat layer forming surface facing outward under the conditions of a bending radius of 3.0 mm, a bending angle of 180°C, and a bending speed of 1 time/second.
  • DMLHB-FS-C a repeated bending test was performed with the hard coat layer forming surface facing outward under the conditions of a bending radius of 3.0 mm, a bending angle of 180°C, and a bending speed of 1 time/second.
  • the bending resistance was evaluated according to the following criteria based on the number of times of bending until the hard coat layer cracked (the number of times of bending resistance).
  • E 150,000 times or more and less than 200,000 times of bending resistance
  • F 100,000 times or more and less than 150,000 times of bending resistance
  • X bending endurance is less than 1,000 times
  • the hard coat film was cured at 25°C for 1 month, cut into 3 cm squares, and placed on a horizontal table with the concave surface of the hard coat film facing upward. The heights from the stand to the four corners of the film were measured, and the average value was taken as the amount of curl. The amount of curl when the hard coat layer-formed surface was facing upward and was concave was given a positive value.
  • Table 3 shows the composition of the hard coat layer (molar ratio of the silane compound used in synthesizing the polyorganosiloxane compound), the thickness of the hard coat layer, and the evaluation results of the hard coat films of Examples and Comparative Examples.
  • the hard coat film of Comparative Example 3, which contains polyorganosiloxane compound 15 (see Synthesis Example 23) obtained by condensation of KBM-4803, which is a silane compound having a glycidyloxy group, as a curable resin component has excellent bending resistance. However, the curl was large and the handleability was poor.
  • the hard coat films of Examples 1 to 14 had excellent bending resistance compared to Comparative Examples 1 and 2, and curling was suppressed compared to Comparative Example 3.
  • a hard coat film containing a polyorganosiloxane compound having a spacer with a specific chain length between the Si atom and the alicyclic epoxy group as a curable resin component has excellent scratch resistance and a hard coat. It can be seen that it is possible to achieve both bending resistance when bent outward, and that the curl is small and the handling is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Silicon Polymers (AREA)

Abstract

一般式(1)で表されるシラン化合物、およびその縮合により得られるポリオルガノシロキサン化合物を提供する。ポリオルガノシロキサン化合物は、一般式(11)で表される構造を含む。一般式(1)および一般式(11)において、Yは主鎖の原子数が5以上の2価の有機基である。 ポリオルガノシロキサン化合物は、ハードコート材料として使用可能であり、透明樹脂フィルム(1)上にポリオルガノシロキサン化合物を含むハードコート組成物を塗布し、硬化することにより、ハードコート層(3)が形成される。

Description

シラン化合物およびその製造方法、ポリオルガノシロキサン化合物、ハードコート組成物、ハードコーフィルムおよびその製造方法、ならびにディスプレイ
 本発明は、シラン化合物およびその製造方法に関する。さらに、本発明は、シラン化合物の縮合物であるポリオルガノシロキサン化合物、および当該ポリオルガノシロキサン化合物を硬化性樹脂成分とするハードコート組成物、ならびにハードコートフィルムおよびその製造方法に関する。また、本発明は、当該ハードコート層を備えるディスプレイに関する。
 曲面ディスプレイや折り畳み可能なディスプレイ(フレキシブルディスプレイ、フォルダブルディスプレイ)が開発されており、ディスプレイのカバーウインドウや基板等に用いられてきたガラス材料を、柔軟性に優れたプラスチックフィルム材料に置き換える検討がなされている。フォルダブルディスプレイをはじめとするフレキシブルディスプレイのカバーウインドウには、透明性、硬度、耐屈曲性等の諸特性が要求される。
 特許文献1~3には、脂環式エポキシ基を有するポリオルガノシロキサン化合物を硬化性樹脂成分として含むポリシロキサン系のハードコート材料が開示されている。脂環式エポキシ基を有するポリオルガノシロキサン化合物は、脂環式エポキシ基とアルコキシシリル基を有するシラン化合物(シランカップリング剤)を加水分解縮合することにより得られる。
 非特許文献1には、脂環式エポキシ基を有するシランカップリング剤の市販品として、「2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン」が示されている。特許文献1~3では、ハードコート材料の具体例として、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランの加水分解縮合により得られたポリオルガノシロキサン化合物を硬化性樹脂成分とするものが開示されている。
特開2015-112599号公報 特開2019-56106号公報 国際公開第2007/135909号
信越化学工業株式会社シランカップリング剤カタログ 2021年6月版(http://www.silicone.jp/catalog/pdf/SilaneCouplingAgents_J.pdf)
 アルコキシシリル基を有するシラン化合物は、保存中、特に湿熱環境下において、徐々にアルコキシシリル基の加水分解や縮合が進行し、保存安定性が低いことが知られている。非特許文献1(第12頁)には、ジアルコキシ型のシラン化合物は、トリアルコキシ型に比べて保存安定性が良好であることが記載されている。
 しかし、ジアルコキシ基のシラン化合物の縮合により得られるポリオルガノシロキサン化合物は、シロキサン結合のネットワークが二次元的であり、架橋密度が低いため、ハードコート材料として用いた場合に、機械強度が不足する傾向がある。
 本発明の第一の側面は、保存安定性に優れ、かつ硬化により機械強度に優れる膜を形成可能なシラン化合物の提供を目的とする。
 特許文献1~3に示されているように、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランの加水分解縮合により得られるポリオルガノシロキサン化合物を硬化性樹脂成分とするハードコート材料は、高い硬度を示す。しかしながら、これらのハードコート材料は、硬化物の耐屈曲性に改善の余地がある。
 フォルダブルディスプレイには、表示面が内側となるように折り畳むタイプと、表示面が外側となるように折り畳むタイプが存在する。ハードコートフィルムを、表示面が外側となるように折り畳むタイプのフォルダブルディスプレイのカバーウインドウとして用いる場合、デバイスを折り畳む際に、ハードコートフィルムは、ハードコート層形成面が外側となるように屈曲される。2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランの加水分解縮合により得られるポリオルガノシロキサン化合物を硬化性樹脂成分とするハードコート層を備えるハードコートフィルムは、ハードコート層が外側となるように屈曲させた際に、ハードコート層にクラックが生じやすい。
 本発明の第二の側面は、優れた表面硬度と耐屈曲性とを両立可能なハードコート材料およびハードコートフィルムの提供を目的とする。
 本発明のシラン化合物は、一般式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000003
 このシラン化合物の加水分解縮合により、一般式(11)で表される構造を含むポリオルガノシロキサン化合物が得られる。
Figure JPOXMLDOC01-appb-C000004
 一般式(1)において、Rは水素原子または炭素数1~10のアルキル基であり、Rは、水素原子、または炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基からなる群から選択される1価の炭化水素基である。xは2または3であり、x=3であることが好ましい。Rは、メチル基、エチル基またはプロピル基であることが好ましい。一般式(1)における複数のRは、同一でもよく、異なっていてもよい。
 一般式(1)および一般式(11)において、Yは主鎖の原子数が5以上の2価の有機基である。Yはエステル結合を含んでいてもよい。ポリオルガノシロキサン化合物は、Si原子の総量に対する一般式(11)で表される構造の比率が、0.3以上であることが好ましい。
 一般式(1)において、x=3であり、Yがエステル結合を含むシラン化合物は、例えば、下記の方法1または方法2により合成できる。
 方法1:脂環式エポキシ基を有するエステル化合物、末端に-CH=CHを有するアルコール、およびトリアルコキシシランを原料として、エステル化合物とアルコールとのエステル交換反応、および末端の-CH=CHとトリアルコキシシランのSiHとのヒドロシリル化反応を行う方法。
 方法2:脂環式エポキシ基を有するアルコール、末端に-CH=CHを有するエステル化合物、およびトリアルコキシシランを原料として、エステル化合物とアルコールとのエステル交換反応、および末端の-CH=CHとトリアルコキシシランのSiHとのヒドロシリル化反応を行う方法。
 シラン化合物の加水分解縮合により得られるポリオルガノシロキサン化合物は、ハードコート材料として好適に使用できる。本発明の一実施形態のハードコート組成物は、上記のポリオルガノシロキサン化合物、および光カチオン重合開始剤を含有する。
 本発明の一実施形態においては、透明樹脂フィルム上に、ポリオルガノシロキサン化合物を含むハードコート組成物を塗布し、活性エネルギー線を照射して硬化させてハードコート層を形成することにより、ハードコートフィルムが形成される。
 ハードコートフィルムは、透明樹脂フィルムの少なくとも一方の主面上に、ポリオルガノシロキサン化合物の硬化物を含むハードコート層を備える。ハードコートフィルムは、ハードコート層上にトップコート層を備えていてもよい。トップコート層はフッ素化合物を含んでいてもよい。例えば、ハードコート層上に、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を含む組成物を塗布し、当該化合物を縮合させることによりトップコート層が形成される。
 本発明のシラン化合物は、触媒非存在下では加水分解が抑制されており、優れた保存安定性を有する。本発明のハードコートフィルムは、優れた表面硬度と耐屈曲性とを両立可能であり、表示面が外側となるように折り畳むタイプのフォルダブルディスプレイのカバーウインドウ材料としても好適に使用可能である。
一実施形態のハードコートフィルムの断面図である。 一実施形態のハードコートフィルムの断面図である。
[シラン化合物]
 本発明の一態様は、一般式(1)で表されるシラン化合物である。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Rは水素原子または炭素数1~10のアルキル基であり、Rは、水素原子、または炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基からなる群から選択される1価の炭化水素基であり、xは2または3である。複数のRは、同一でもよく、異なっていてもよい。一般式(1)におけるYは、主鎖の原子数が5以上の2価の有機基である。
 一般式(1)で表されるシラン化合物(以下「シラン化合物(1)」と記載する場合がある)は、一分子中に2個または3個の(-OR)を有し、Si-ORが加水分解性を有する。Si-ORが加水分解した後、縮合することにより、ポリオルガノシロキサン化合物が生成する。加水分解性の観点から、Rは炭素数3以下のアルキル基(メチル基、エチル基またはプロピル基)が好ましく、メチル基またはエチル基が特に好ましい。加水分解性の観点から、Rはメチル基が最も好ましい。一方、Rがエチル基であるシラン化合物は、Rがメチル基であるシラン化合物に比べて、Si-ORの加水分解性が低く、保管時の化合物の安定性に優れる傾向がある。
 一般式(1)におけるxは3が好ましい。x=3の場合(すなわち、Si原子に3つのアルコキシ基(またはヒドロキシ基)-ORが結合している場合)、上記のシラン化合物は下記の一般式(9)で表され、Rを有さない。一般式(9)におけるRおよびYは、一般式(1)と同様である。
Figure JPOXMLDOC01-appb-C000006
 一般式(9)のシラン化合物、すなわち一般式(1)においてx=3であるシラン化合物は、シラン化合物の加水分解縮合により得られるポリオルガノシロキサン化合物が三次元的な構造を有するため、接着力や膜強度に優れる。一方、x=3であるトリアルコキシシラン型のシラン化合物は、x=2であるジアルコキシシラン型のシラン化合物に比べて、保管環境下、特に高温高湿環境下で、アルコキシシリル基の加水分解や縮合が進行しやすく、保存安定性が低いことが知られている。後述の通り、Si原子と脂環式エポキシ基(3,4-エポキシシクロヘキシル基)とを繋ぐ2価の有機基Yの鎖長が大きいことにより、トリアルコキシシラン化合物の保存安定性が向上する。
 一般式(1)におけるYは、主鎖の原子数が5以上の2価の有機基である。Yは直鎖でもよく分枝を有していてもよい。Yは、直鎖または分岐を有するアルキレン基でもよく、主鎖に炭素以外の原子を含んでいてもよい。例えば、Yは、ヘテロアルキレン基でもよく、エーテル結合、エステル結合、アミド結合、カルボニル基、イミノ基等を含んでいてもよい。
 主鎖の原子数とは、一般式(1)において、Si原子と3,4-エポキシシクロヘキシル基とを繋いでいる直鎖を構成する原子の数である。すなわち、一般式(1)のシラン化合物は、Si原子と3,4-エポキシシクロヘキシル基が、両者の間に5個以上の原子を介して結合している化合物である。例えば、Yが、―CHCHCHC(=O)O-である場合、Yの主鎖の原子数は5であり、主鎖を構成していない水素原子やカルボニルの酸素原子(=O)は、主鎖の原子数にカウントしない。
 シラン化合物(1)は、触媒非存在下では、Si-ORの加水分解が生じ難く、保存安定性に優れる。特に、一般式(9)で表されるトリアルコキシシラン型の化合物は、触媒非存在下では、高温高湿環境下でも加水分解が生じ難く、触媒存在下では高い反応性を示す。
 シラン化合物(1)は、2価の有機基Yの主鎖の原子数が多いほど、保存安定性に優れる。一方、有機機Yの主鎖の原子数が過度に多い場合は、触媒存在下でも反応が制限され、実用性に劣る場合がある。そのため、有機基Yの主鎖の原子数は、16以下が好ましく、12以下がより好ましく、10以下がさらに好ましく、8以下であってもよい。
 シラン化合物(1)は、温度85℃、相対湿度85%の環境に20時間暴露した後の未反応のアルコキシシリル基の量(アルコキシシリル基の残存率)が多く、優れた保存安定性を示す。温度85℃、相対湿度85%の環境に20時間暴露した後のアルコキシシリル基の残存率は、30%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、70%以上がまたは80%以上であってもよい。
 シラン化合物(1)は、温度85℃、相対湿度85%の環境に96時間暴露した後のアルコキシシリル基の残存率が、30%以上であり得る。シラン化合物を、温度85℃、相対湿度85%の環境に96時間暴露した後のアルコキシシリル基の残存率は、40%以上、50%以上または60%以上であり得る。
 シラン化合物(1)は、嵩高い構造の脂環式エポキシ基(3,4-エポキシシクロヘキシル基)を有し、さらにSi原子と3,4-エポキシシクロヘキシル基との間に、鎖長の長い(主鎖の原子の数が5以上の)スペーサとなる2価の有機基Yを有するため、分子体積が大きい。そのため、水分子のSi-ORへのアクセスが制限されており、分子間のSi-OR同士の接触頻度も低いため、触媒非存在下ではSi-ORの反応性が低く、安定性が高いと考えられる。
 2価の有機基Yが直鎖アルキレン基である場合、その具体例としては、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、テトラデカメチレン基、ヘキサデカメチレン基等が挙げられる。Yは、直鎖アルキレンを構成するメチレン(-CH-)の水素原子の一部または全部が、置換基により置換されたものであってもよい。置換基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、フェニル基、アミノ基、(メタ)アクリル基、ハロゲン、アリル基、ビニル基、メルカプト基、カルボキシル基、ニトロ基、スルホン基、ヒドロキシ基等が挙げられる。
 前述のように、2価の有機基Yは、主鎖に炭素以外の原子を含んでいてもよい。一実施形態のシラン化合物は、一般式(1)において、Yがエステル結合を含む。Yが、エステル結合を含むシラン化合物の例として、一般式(I)および一般式(II)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 一般式(I)および一般式(II)において、x=3であるシラン化合物は、下記一般式(III)および一般式(IV)で表される。
Figure JPOXMLDOC01-appb-C000008
 一般式(I)~(V)におけるR、Rおよびxは、一般式(1)と同様である。RおよびRは、主鎖の炭素数が3以上の2価の有機基であり、分枝を有していてもよく、主鎖に炭素以外の原子を含んでいてもよい。
 RおよびRは、好ましくは、炭素数3~10の直鎖アルキレン、または主鎖の原子数が3~10の(ポリ)アルキレンオキシドである。主鎖の原子数が3~10の(ポリ)アルキレンオキシドの具体例として、-C-O-C-、-C-O-C-、-C-O-C-O-C-等が挙げられる。
<シラン化合物の合成方法>
 一般式(1)において、Yがエステル結合を含むシラン化合物の合成方法の一例として、エステル交換反応およびヒドロシリル化反応を利用する方法が挙げられる。エステル交換反応およびヒドロシリル化反応を利用するシラン化合物の合成方法の具体例として、下記の方法1および方法2が挙げられる。
 方法1:脂環式エポキシ基を有するエステル化合物、末端に二重結合を有するアルコール、およびトリアルコキシシランを原料として、エステル化合物とアルコールとのエステル交換反応、および末端の二重結合(-CH=CH)とトリアルコキシシランのSiHとのヒドロシリル化反応を行う方法。
 方法2:脂環式エポキシ基を有するアルコール、末端に二重結合を有するエステル化合物、およびトリアルコキシシランを原料として、エステル化合物とアルコールとのエステル交換反応、および末端の二重結合(-CH=CH)とトリアルコキシシランのSiHとのヒドロシリル化反応を行う方法。
 例えば、上記の一般式(IV)で表されるシラン化合物は、方法1により合成可能である。上記の一般式(III)で表されるシラン化合物は、方法2により合成可能である。
 方法1および方法2において、原料として用いられるトリアルコキシシランは、一般式HSi(ORで表される。Rは、一般式(1)と同様であり、水素原子または炭素数1~10のアルキル基である。複数のRは、同一でもよく、異なっていてもよい。Rは、好ましくは炭素数3以下のアルキル基であり、メチル基またはエチル基が特に好ましい。トリアルコキシシランとしては、トリメトキシシラン、トリエトキシシラン等が好適に用いられる。
 方法1において、原料として用いられる脂環エポキシ基を有するエステル化合物の一例として、3,4-エポキシシクロヘキサン-1-カルボン酸メチル(CAS No.41088-52-2)が挙げられる。
 方法1において、原料として用いられる末端に二重結合を有するアルコールの例として、2-プロペン-1-オール、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、6-ヘプテン-1-オール、7-オクテン-1-オール、8-ノネン-1-オール、9-デセン-1-オール、エチレングリコールモノビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等が挙げられる。
 方法2において、原料として用いられる脂環エポキシ基を有するアルコールの例として、3,4-エポキシシクロヘキシルメタノール、3,4-エポキシシクロヘキサノール等が挙げられる。
 方法2において、原料として用いられる末端に二重結合を有するエステル化合物の例として、3-プロペン酸メチル、4-ペンテン酸メチル、5-ヘキセン酸メチル、6-ヘプテン酸メチル、7-オクテン酸メチル、8-ノネン酸メチル、9-デセン酸メチル等が挙げられる。
 上記の原料となる化合物は、いずれも市販品として入手可能である。方法1および方法2におけるエステル交換反応およびヒドロシリル化反応は、いずれも常法に従って、触媒存在下で実施可能である。
 エステル交換反応の触媒としては、エステル交換触媒として公知のものを適宜選択可能である。エステル交換触媒の例としては、ジブチルスズオキシド等の有機スズ化合物;酸化マグネシウム、酸化鉛、酸化ジルコニウム、ゼオライト等の金属酸化物;チタンテトライソプロポキシド、アルミニウムトリイソプロポキシド、リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド等の金属アルコキシド;リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミド、水酸化マグネシウム、水酸化リチウム、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム等の金属水酸化物;炭酸マグネシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩;酢酸カリウム、ラウリン酸カルシウム、ステアリン酸ナトリウム等の金属脂肪酸塩;塩化マグネシウム等の中性またははアルカリ性の正塩、が挙げられる。
 エステル交換反応では、生じるアルコールを留去するために、反応中に窒素等の不活性ガスをフローすることが好ましい。エステル交換反応の反応温度および反応時間は適宜に選択すればよく、例えば、140℃で6時間加熱撹拌することにより、エステル交換反応が行われる。
 ヒドロシリル化反応の触媒として、ヒドロシリル化触媒として公知のものを選択可能である。ヒドロシリル化触媒の例としては、白金-オレフィン錯体、塩化白金酸、白金の単体、担体(アルミナ、シリカ、カーボンブラック、高分子等)に固体白金を担持させたもの、Pt(acac)、白金-ビニルシロキサン錯体(例えば、Pt(ViMeSiOSiMeVi)、Pt〔(MeViSiO))、白金-ホスフィン錯体(例えば、Pt(PPh、Pt(PBu)、白金-ホスファイト錯体(例えば、Pt〔P(OPh)、Pt〔P(OBu))、等の白金系触媒が挙げられる。なお、式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、nおよびmは整数である。白金系のヒドロシリル化触媒の他の例として、Αshbyらの米国特許第3159601および米国特許台3159662号明細書中に記載された白金-炭化水素複合体、ならびにLamoreauxらの米国特許第3220972号明細書中に記載された白金アルコラ-ト触媒が挙げられる。
 白金系以外のヒドロシリル化触媒の例として、RhCl(PPh、RhCl、Rh/Αl、RuCl、IrCl、FeCl、ΑlCl、PdCl・2HO、NiCl、TiCl、等が挙げられる。ヒドロシリル化触媒は、単独で使用してもよく、2種以上を併用してもよい。触媒活性の点から、白金系触媒が好ましく、中でも、塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体、Pt(acac)等が好ましい。
 ヒドロシリル化反応の反応温度および反応時間は適宜に選択すればよい。トリアルコキシシランとしてトリメトキシシランを用いる場合は、例えば、80℃で10時間加熱撹拌することにより、ヒドロシリル化反応が行われる。トリアルコキシシランとしてトリエトキシシランを用いる場合は、例えば、105℃で10時間加熱撹拌することにより、ヒドロシリル化反応が行われる。
 方法1および方法2において、エステル交換反応とヒドロシリル化反応の順序は特に限定されない。
 方法1において、エステル交換反応を先に実施する場合は、まず、脂環式エポキシ基を有するエステル化合物と末端に二重結合を有するアルコールとのエステル交換反応により、脂環式エポキシ基と、末端に-CH=CHを有する分子鎖とが、エステル結合を介して結合している化合物を合成する。この化合物の末端の-CH=CHとトリアルコキシシランのSiHとのヒドロシリル化反応を行うことにより、一般式(IV)で表されるシラン化合物が得られる。
 方法2において、エステル交換反応を先に実施する場合は、まず、脂環式エポキシ基を有するアルコールと末端に二重結合を有するエステル化合物とのエステル交換反応により、脂環式エポキシ基と、末端に-CH=CHを有する分子鎖とが、エステル結合を介して結合している化合物を合成する。この化合物の末端の-CH=CHとトリアルコキシシランのSiHとのヒドロシリル化反応を行うことにより、一般式(III)で表されるシラン化合物が得られる。
 方法1において、ヒドロシリル化反応を先に実施する場合は、まず、末端に二重結合を有するアルコールとトリアルコキシシランとのヒドロシリル化反応を行うことにより、一般式HO-R-Si(ORで表されるシラン化合物が得られる。Rは2価の有機基である。このシラン化合物と脂環式エポキシ基を有するエステル化合物とのエステル交換により、一般式(IV)で表されるシラン化合物が得られる。
 方法2において、ヒドロシリル化反応を先に実施する場合は、まず、末端に二重結合を有するエステル化合物とトリアルコキシシランとのヒドロシリル化反応を行うことにより、一般式R-OC(=O)-R-Si(ORで表されるシラン化合物が得られる。Rは2価の有機基であり、Rはアルキル基である。このシラン化合物のエステル部分と脂環式エポキシ基を有するアルコールとのエステル交換により、一般式(III)で表されるシラン化合物が得られる。
 エステル交換反応を先に実施する場合およびヒドロシリル化反応を先に実施する場合のいずれにおいても、Si原子と脂環式エポキシ基(3,4-シクロヘキシル基)とがエステル結合を介して有するシラン化合物が得られる。エポキシ基の開環、SiHとアルコールとの反応等の副反応の抑制や、中間生成物の安定性等の観点からは、方法1および方法2のいずれにおいても、エステル交換反応を実施した後にヒドロシリル化反応を実施することが好ましい。
<シラン化合物の用途>
 上記のシラン化合物(1)は、保存安定性に優れており、シランカップリング剤として使用可能であり、接着剤や粘着剤の接着力調整剤や、コーティング剤としても使用可能である。また、シラン化合物(1)は、脂環式エポキシ基を有し、重合可能であることから、樹脂のモノマー成分としても使用可能である。
 シラン化合物(1)は、触媒非存在下では加水分解が抑制されており保存安定性に優れている一方で、触媒存在下ではアルコキシシリル基が加水分解し、加水分解物の縮合によりポリオルガノシロキサン化合物を生成する。すなわち、シラン化合物(1)は、ポリオルガノシロキサン化合物の原料としても使用可能である。
[ポリオルガノシロキサン化合物]
 本発明の一態様は、上記のシラン化合物(1)の縮合により得られるポリオルガノシロキサン化合物に関する。前述のように、シラン化合物(1)は、一分子中に2個または3個のアルコキシシリル基を有し、Si-ORが加水分解性を有すため、シラン化合物(1)の縮合により、ポリオルガノシロキサン化合物が生成する。シラン化合物(1)の縮合により得られるポリオルガノシロキサン化合物は、一般式(11)で表される構造を含む。
Figure JPOXMLDOC01-appb-C000009
 一般式(11)におけるYは、一般式(1)と同様であり、主鎖の原子数が5以上の2価の有機基である。Yはエステル結合を含んでいてもよい。
 ポリオルガノシロキサン化合物の合成において、シラン化合物(1)以外のシラン化合物を用いてもよい。シラン化合物(1)以外のシラン化合物としては、下記一般式(2)で表されるシラン化合物(以下「シラン化合物(2)」と記載する場合がある)が挙げられる。
   R-(Si(OR 3-x)    …(2)
 シラン化合物(1)とシラン化合物(2)との混合物を縮合させることにより、一般式(11)で表される構造に加えて、一般式(12)で表される構造を含むポリオルガノシロキサン化合物が得られる。
   [R-Si]   …(12)
 一般式(2)におけるR、Rおよびxは、一般式(1)におけるR、Rおよびxと同様である。一般式(2)および一般式(12)におけるRは、1価の有機基である。Rは、置換もしくは無置換の二重結合を含有する基、置換もしくは無置換のシクロアルキル基を含有する基、置換もしくは無置換の芳香環を含有する基、置換もしくは無置換のアルキル基、グリシジル基を有する基、オキセタニル基を有する基、水素原子、または下記一般式(3)で表される1価の有機基である。
Figure JPOXMLDOC01-appb-C000010
 一般式(3)において、Wは主鎖の原子数が4以下の2価の有機基であり、WがSi原子に結合している。
 ポリオルガノシロキサン化合物の原料となるシラン化合物として、シラン化合物(1)に加えてシラン化合物(2)を用いる場合、シラン化合物(2)は、一般式(2)において、Rが一般式(3)で表される1価の有機基であるシラン化合物が好ましい。すなわち、シラン化合物(2)としては、脂環式エポキシ基(3,4-エポキシシクロヘキシル基)を有するものが好ましい。
 Rが一般式(3)で表される1価の有機基であるシラン化合物(2)の例として、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルジメチルメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピメチルジメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルジメチルメトキシシラン、等が挙げられる。
 シラン化合物として、Rが一般式(3)で表される1価の有機基であるシラン化合物(2)を用いる場合、縮合により得られるポリオルガノシロキサン化合物は、一般式(13)で表される構造を含む。
Figure JPOXMLDOC01-appb-C000011
 シラン化合物(2)として、脂環式エポキシ基を含まないシラン化合物を用いてもよい。シラン化合物(2)として、脂環式エポキシ基を含むシラン化合物(Rが一般式(3)で表される1価の有機基であるシラン化合物)と、脂環式エポキシ基を含まないシラン化合物の両方を用いてもよい。脂環式エポキシ基を含まないシラン化合物としては、グリシジル基を有するものが好ましい。
 グリシジル基を有するシラン化合物の具体例としては、一般式(2)のRがグリシジルオキシアルキル基であるものが挙げられる。グリシジルオキシアルキル基としては、3-グリシジルオキシプロピル基、8-グリシジルオキシオクチル基等が挙げられる。
 一般式(1)および一般式(2)において、xは、好ましくは3である。x=3であることにより、ポリオルガノシロキサン化合物が三次元的な構造を有するため、ポリオルガノシロキサン化合物の硬化により得られる硬化膜(ハードコート層)の硬度が向上する傾向がある。x=2のシラン化合物と、x=3のシラン化合物を併用してもよい。また、縮合により得られるポリオルガノシロキサン化合物の分子量の調整等を目的として、xが2または3であるシラン化合物に加えて、xが1であるシラン化合物を用いてもよい。
(シラン化合物の加水分解および縮合)
 上記のシラン化合物を水と反応させることにより、シラン化合物のSi-OR部分が加水分解し、加水分解物が縮合することによりSi-O-Si結合が形成されてシラン化合物の縮合物(ポリオルガノシロキサン化合物)が生成する。加水分解および縮合反応に必要な水の量は、Si原子に結合した-OR基1当量に対して0.3~10当量が好ましく、0.5~5当量がより好ましく、1~3当量がさらに好ましい。水の量が過度に少ない場合は、加水分解されずに残存するOR基が多く、ポリオルガノシロキサン化合物の分子量が小さいために、ハードコート層の硬度が不足する傾向がある。水の量が過度に多い場合は、加水分解および縮合反応の反応速度が大きく、高分子量の縮合物が生成し、ハードコート層の透明性や柔軟性が低下する傾向がある。
 硬化膜(ハードコート層)の硬度を高める観点から、ポリオルガノシロキサン化合物の重量平均分子量は500以上が好ましい。また、揮発を抑制する観点からも、ポリオルガノシロキサン化合物の重量平均分子量は500以上が好ましい。一方、分子量が過度に大きいと、他の組成物との相溶性の低下等に起因して白濁が生じる場合がある。そのため、ポリオルガノシロキサン化合物の重量平均分子量は20000以下が好ましい。ポリオルガノシロキサン化合物の分子量は、反応に用いる水の量、触媒の種類および量を選択することにより、制御できる。例えば、水の量を増やすことにより、分子量が大きくなる傾向がある。
 光硬化時の副反応を抑制する観点や硬化物の硬度の観点から、ポリオルガノシロキサン化合物におけるシラン化合物単位あたりに残存するOR基の数が小さいことが好ましい。ポリオルガノシロキサン化合物におけるSi原子1個あたりのOR基の数は、平均2個以下である。Si原子1個あたりのOR基の数は、平均1.5個以下が好ましく、1.0個以下がより好ましい。ポリオルガノシロキサン化合物におけるSi原子1個あたりのOR基の数は、平均0.01個以上、0.05個以上、0.1個以上、0.2個以上または0.3個以上であってもよい。ポリオルガノシロキサン化合物に、アルコキシ基が残存している場合に、硬化膜の耐屈曲性が高くなる場合がある。
 硬化速度の向上およびハードコート層の硬度向上の観点から、ポリオルガノシロキサン化合物は、エポキシ基の含有量が多いことが好ましい。エポキシ基の残存率は、20%以上が好ましく、40%以上がより好ましく、60%以上がさらに好ましく、80%以上、90%以上または95%以上であってもよい。OR基の残存率およびエポキシ基の残存率は、H-NMR測定によって算出できる。
 シラン化合物の加水分解反応および縮合反応においては、エポキシ基の開環を抑制する観点から、中性または塩基性条件下で反応を実施することが好ましい。特に、加水分解および縮合反応の前後、および縮合に得られたポリオルガノシロキサン化合物の保存環境におけるエポキシ基の開環による失活を抑制する観点から、中性塩触媒の存在下で、加水分解および縮合反応を行うことが好ましい。
 中性塩触媒としては、酸と塩基からなる塩が挙げられ、アルカリ金属またはアルカリ土類金属のカチオンとハロゲンのアニオンからなる塩が好ましい。中性塩の具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ベリリウム、塩化マグネシウム、塩化カルシウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化ベリリウム、臭化マグネシウム、臭化カルシウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化ベリリウム、ヨウ化マグネシウム、ヨウ化カルシウム等が挙げられる。
 シラン化合物の加水分解および縮合に、中性塩触媒を用いる場合、ポリオルガノシロキサン化合物に中性塩触媒が残存していてもよい。ポリオルガノシロキサン化合中に残存する中性塩の量は、1ppm~10000ppmであってもよく、50ppm~5000ppmまたは100ppm~1000ppmであってもよい。
 前述のように、シラン化合物(1)の縮合により得られるポリオルガノシロキサン化合物は、一般式(11)で表される構造を含む。一般式(11)で表される構造を含むポリオルガノシロキサン化合物の硬化により形成されるハードコート層は、高い表面硬度と優れた耐屈曲性とを両立可能である。また、当該ハードコート層を備えるハードコートフィルムでは、カールが低減される傾向がある。
 表面硬度および耐屈曲性の向上、ならびにカール抑制の観点から、ポリオルガノシロキサン化合物中のSi原子の総数に対する一般式(11)で表される構造の比率は、0.3以上が好ましく、0.4以上がより好ましく、0.5以上がさらに好ましく、0.6以上、0.7以上、0.8以上、0.9以上または0.95以上であってもよい。
 硬化物の機械強度を向上する観点から、ポリオルガノシロキサン化合物の1分子中に含まれるエポキシ基の数は多いほど好ましく、特に、脂環式エポキシ基の数が多いことが好ましい。ポリオルガノシロキサン化合物中のSi原子の総数に対する、一般式(11)で表される構造と一般式(13)で表される構造との合計の比率は、0.4以上が好ましく、0.5以上がより好ましく、0.6以上がさらに好ましく、0.7以上、0.8以上、0.9以上、0.95以上または1であってもよい。
 ハードコート層の耐屈曲性向上の観点から、ポリオルガノシロキサン化合物中のSi原子の総数に対する、一般式(13)で表される構造の比率は、0.5以下が好ましく、0.3以下がより好ましく、0.2以下がさらに好ましく、0.1以下、0.05以下または0であってもよい。
 ポリオルガノシロキサン化合物は、一般式(11)で表される構造と一般式(13)で表される構造の合計に対する一般式(11)で表される構造の比率が、0.5以上であることが好ましい。一般式(11)の構造と一般式(13)の構造の合計に対する一般式(11)の構造の比率は、0.7以上がより好ましく、0.8以上、0.9以上、0.95以上または1であってもよい。一般式(11)の構造の比率が高いほど、すなわち、Si原子と3,4-エポキシシクロヘキシル基とが、主鎖の原子数が5以上である長鎖スペーサを介して結合している構造の比率が高いほど、ポリオルガノシロキサン化合物の硬化により形成されるハードコート層が耐屈曲性に優れる傾向がある。
 一方、ポリオルガノシロキサン化合物が、一般式(13)の構造を含む場合に、硬化により形成されるハードコート層の硬度が高くなる傾向がある。ハードコート層の硬度向上の観点から、一般式(11)の構造と一般式(13)の構造の合計に対する一般式(13)の構造の比率は、0.05以上、0.1以上または0.2以上であってもよい。
 シラン化合物の加水分解および縮合反応では、アルコキシシリル基-ORが反応に関与するが、Si原子に結合したその他の官能基は、エポキシ基の開環等の副反応を除いて反応しない。そのため、シラン化合物の縮合により得られるポリオルガノシロキサン化合物では、シラン化合物(1)の構造(11)の部分、およびシラン化合物(2)の構造(12)の部分は、反応前後で構造が保持されている。
 したがって、ポリオルガノシロキサン化合物に含まれるSi原子の総数に対する一般式(11)の構造の比率は、シラン化合物の全量に対する一般式(1)のシラン化合物の比率と略等しい。すなわち、ポリオルガノシロキサン化合物を合成する際のシラン化合物の仕込み比を調整することにより、一般式(11)で表される構造を上記の比率で有するポリオルガノシロキサン化合物が得られる。
 シラン化合物の総量に対するシラン化合物(1)の比率は、0.3以上が好ましく、0.4以上がより好ましく、0.5以上がさらに好ましく、0.6以上、0.7以上、0.8以上、0.9以上、0.95以上または1であってもよい。
 シラン化合物(1)に加えて、脂環式エポキシ基を有さないシラン化合物(2)を用いる場合、シラン化合物(1)に対する、シラン化合物(2)のモル比は、2以下が好ましく、1以下がより好ましく、0.4以下がさらに好ましく、0.2以下であることが特に好ましく、0.1以下であってもよい。
 脂環式エポキシ基を有するシラン化合物(2)、すなわち、一般式(2)におけるRが一般式(3)で表される1価の有機基であるシラン化合物を用いる場合、ハードコート層の耐屈曲性の観点から、シラン化合物の総量に対するシラン化合物(2)のモル比は、0.5以下が好ましく、0.3以下がより好ましく、0.2以下がさらに好ましく、0.1以下または0.05以下であってもよい。
[ハードコート組成物]
 本発明の一態様は、上記のポリオルガノシロキサン化合物を含むハードコート組成物に関する。上記のポリオルガノシロキサン化合物は、一般式(11)の構造における脂環式エポキシ基が光硬化性を有するため、ハードコート層を形成するための硬化性樹脂材料として使用できる。
 ハードコート組成物は、上記のポリオルガノシロキサン化合物を硬化性樹脂成分として含み、さらに光カチオン重合開始剤を含む。ハードコート組成物は、さらに、固形分(不揮発分)として、レベリング剤、反応性希釈剤、光増感剤、粒子およびその他の添加剤を含み得る。機械強度に優れるハードコート層を形成する観点から、ハードコート組成物中のポリオルガノシロキサン化合物の含有量は、固形分(不揮発分)の合計100重量部に対して、40重量部以上が好ましく、50重量部以上がより好ましく、60重量部以上がさらに好ましい。
<光カチオン重合開始剤>
 光カチオン重合開始剤は、活性エネルギー線の照射により酸を発生する化合物(光酸発生剤)である。光酸発生剤から生成した酸により、上記のポリオルガノシロキサン化合物のエポキシ基の開環および重合反応が進行し、分子間架橋が形成されハードコート材料が硬化する。
 光カチオン重合開始剤としては、トルエンスルホン酸、六フッ化アンチモン、四フッ化ホウ素、六フッ化リン、フルオロアルキルフッ化リン、フルオロアルキルフッ化ガリウム等の強酸;スルホニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、セレニウム塩等のオニウム塩類;鉄-アレン錯体類;シラノール-金属キレート錯体類;ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、イミドスルホネート類、ベンゾインスルホネート類等のスルホン酸誘導体;有機ハロゲン化合物類等が挙げられる。これらの中でも、ハードコート組成物における安定性が高いことから、芳香族スルホニウム塩または芳香族ヨードニウム塩が好ましい。
 ハードコート組成物中の光カチオン重合開始剤の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、0.05~10重量部が好ましく、0.1~5重量部がより好ましく、0.2~2重量部がさらに好ましい。
<レベリング剤>
 ハードコート組成物は、レベリング剤を含んでいてもよい。レベリング剤としては、シリコーン系レベリング剤、フッ素系レベリング剤が好ましい。レベリング剤を含むことにより、ハードコート組成物の表面張力の低下や、表面平滑性の向上が期待できる。
 ハードコート組成物におけるレベリング剤の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、0.001~10重量部が好ましく、0.01~5重量部がより好ましく、0.05~1重量部がさらに好ましい。
<反応性希釈剤>
 ハードコート組成物は、反応性希釈剤を含んでいてもよい。反応性希釈剤の例としては、上記のポリオルガノシロキサン化合物以外のカチオン重合性化合物が挙げられる。光カチオン重合の反応性希釈剤としては、カチオン重合性官能基を有する化合物が用いられる。反応性希釈剤のカチオン重合性官能基としては、エポキシ基、ビニルエーテル基、オキセタン基、およびアルコキシシリル基が挙げられる。中でも、ポリオルガノシロキサン化合物のエポキシ基との反応性が高いことから、反応性希釈剤としては、エポキシ基を有するものが好ましい。
 ハードコート組成物中の反応性希釈剤の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、100重量部以下が好ましく、50重量部以下がより好ましい。
<光増感剤>
 ハードコート組成物は、光カチオン重合開始剤(光酸発生剤)の感光性向上等の目的で、光増感剤を含んでいてもよい。光増感剤としては、光カチオン重合開始剤では吸収できない波長域の光を吸収することで光カチオン重合開始剤の感光性を向上させるタイプと、光カチオン重合開始剤と吸収する波長域に大きな差異はないものの光カチオン重合開始剤の感光性を向上させるタイプのいずれを用いてもよい。光カチオン重合開始剤では吸収できない波長域の光を吸収するタイプの光増感剤としては、光カチオン重合開始剤の吸収波長域とは異なる波長域に強い吸収を持つものが好ましい。光増感剤としては、アントラセン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体、アントラキノン誘導体、ベンゾイン誘導体、ナフタレン誘導体等が挙げられる。
 ハードコート組成物中の光増感剤の含有量は、上記の光カチオン重合開始剤100重量部に対して500重量部以下が好ましく、100重量部以下がより好ましく、50重量部以下がさらに好ましい。
<粒子>
 ハードコート組成物は、表面硬度や耐屈曲性等の膜特性の調整を目的として粒子を含んでいてもよい。粒子としては、有機粒子、無機粒子、有機無機複合粒子等を適宜選択して用いればよい。粒子は表面修飾されていてもよく、表面修飾により重合性官能基が導入されていてもよい。
 粒子の平均粒子径は、例えば5nm~10μm程度である。ハードコート層の透明性を高める観点から、平均粒子径は1000nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましく、100nm以下が特に好ましい。粒子径は、レーザー回折/散乱式の粒子径分布測定装置により測定でき、体積基準のメジアン径を平均粒子径とする。
 ハードコート組成物における粒子の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、100重量部以下が好ましく、50重量部以下がより好ましい。
(溶媒)
 ハードコート組成物は、無溶媒型でもよく、溶媒を含んでいてもよい。ハードコート組成物が溶媒を含む場合は、基材としての透明樹脂フィルム1を溶解させないものが好ましい。一方、樹脂フィルムを膨潤させる程度の溶解性を有する溶媒を用いることにより、透明樹脂フィルム1とハードコート層3との密着性が向上する場合がある。溶媒の含有量は、ポリオルガノシロキサン化合物100重量部に対して、500重量部以下が好ましく、300重量部以下がより好ましく、100重量部以下がさらに好ましい。
(その他の成分)
 ハードコート組成物は、無機顔料、有機顔料、表面調整剤、表面改質剤、可塑剤、分散剤、湿潤剤、増粘剤、消泡剤、紫外線安定剤等の添加剤を含んでいてもよい。また、ハードコート組成物は、上記のポリオルガノシロキサン化合物以外の熱可塑性、熱硬化性または光硬化性の樹脂材料を含んでいてもよい。ポリオルガノシロキサン化合物および/またはポリオルガノシロキサン化合物以外の樹脂材料がラジカル重合性を有する場合、ハードコート組成物は、光カチオン重合開始剤に加えてラジカル重合開始剤を含んでいてもよい。
[ハードコートフィルム]
 本発明の一態様は、透明樹脂フィルム上に上記のハードコート組成物の硬化物からなるハードコート層を備えるハードコートフィルムである。
 図1は、本発明の一実施形態にかかるハードコートフィルムの断面図である。ハードコートフィルム11は、透明樹脂フィルム1の一方の主面上に、ハードコート層3を備える。ハードコート層3は、上記のポリオルガノシロキサン化合物の硬化物を含む硬化物層である。図2に示す様に、ハードコートフィルムは、ハードコート層3上に、トップコート層5を備えるものであってもよい。ハードコートフィルムは、透明樹脂フィルムの一方の面にハードコート層を備えるものでもよく、透明樹脂フィルムの両面にハードコート層を備えるものであってもよい。
<透明樹脂フィルム>
 透明樹脂フィルム1は、ハードコート層3を形成する際の土台となる樹脂基材である。透明樹脂フィルム1は、透明であることが好ましい。透明樹脂フィルム1の全光線透過率は80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。透明樹脂フィルム1のヘイズは、2%以下が好ましく、1%以下がより好ましい。
 透明樹脂フィルム1の厚みは、例えば、1~1000μm程度である。透明樹脂フィルム1の厚みは、5~500μmが好ましく、10~200μmがより好ましく、15~150μmがさらに好ましい。厚みが過度に小さい場合は硬度が不足し、厚みが過度に大きい場合は屈曲性に劣る傾向がある。
 透明樹脂フィルム1を構成する樹脂材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリカーボネート、ポリアミド、透明ポリイミド、環状ポリオレフィン等が挙げられる。
 中でも、透明性および機械強度に優れることから、樹脂材料としては、PET等のポリエステル、TAC等のセルロース系樹脂、およびポリイミドが好ましい。ハードコートフィルムがディスプレイのカバーウインドウに用いられる場合、フィルム基材には、優れた耐熱性および機械強度が要求されることから、透明樹脂フィルムの樹脂材料としては、透明ポリイミドが特に好ましい。一般的な全芳香族ポリイミドは黄色または褐色に着色しているのに対して、脂環式構造の導入、屈曲構造の導入、フッ素置換基の導入等により、可視光透過率が高い透明ポリイミドが得られる。
 透明樹脂フィルム1は、2種以上の樹脂材料を含んでいてもよい。透明樹脂フィルムは、耐候性付与を目的とした紫外線吸収剤、ラジカルトラップ剤等の安定剤、色調調整を目的としたブルーイング材等の色素や顔料を含んでいてもよい。
 透明樹脂フィルム1は、単層でもよく、多層の構成でもよい。例えば、透明樹脂フィルムは、複数のフィルムが貼り合わせられた積層体でもよく、フィルムの表面(ハードコート層3形成面および/またはハードコート層非形成面)に、易接着層、帯電防止層、反射防止層等の機能層が設けられたものであってもよい。
 透明樹脂フィルム1の厚みは特に限定されず、例えば、1~1000μmの範囲から適宜選択することができ、好ましくは5~500μm、より好ましくは、10~200μm、さらに好ましくは15~150μmである。
<ハードコート層>
 透明樹脂フィルム1上にハードコート組成物を塗布し、硬化することにより、ハードコート層3が形成される。ハードコート層3の形成に用いられるハードコート組成物は、硬化性樹脂成分として、ポリオルガノシロキサン化合物を含む。
 透明樹脂フィルム1上にハードコート組成物を塗布し、必要に応じて溶媒を乾燥除去した後、活性エネルギー線を照射してハードコート組成物を硬化することにより、透明樹脂フィルム1上にハードコート層3が形成される。
 ハードコート組成物を塗布する方法としては、バーコート、グラビアコート、コンマコート等のロールコート、スロットダイコート、ファウンテンダイコート等のダイコート、スピンコート、スプレーコート、ディップコート等が挙げられる。ハードコート組成物を塗布する前に、透明樹脂フィルムの表面に、コロナ処理やプラズマ処理等の表面処理を行ってもよい。また、透明樹脂フィルム1の表面に易接着層等を設けてもよい。
 活性エネルギー線の照射または熱により、カチオン重合開始剤から酸が生成し、ポリオルガノシロキサン化合物のエポキシ基が開環およびカチオン重合して、硬化が進行する。ハードコート組成物に含まれる反応性希釈剤や粒子等の添加剤がエポキシ基を含んでいる場合は、ポリオルガノシロキサン化合物同士の重合反応に加えて、ポリオルガノシロキサン化合物と添加剤との重合反応も生じる。
 活性エネルギー線としては紫外線が好ましい。活性エネルギー線の積算照射量は、例えば50~10000mJ/cm程度であり、光カチオン重合開始剤の種類および配合量、フィルムの厚み等に応じて設定すればよい。硬化温度は特に限定されないが、通常150℃以下であり、100℃以下または90℃以下であってもよい。
 ハードコート層3の厚みは、0.5μm以上が好ましく、2μm以上がより好ましく、3μm以上がさらに好ましく、5μm以上が特に好ましい。ハードコート層3の厚みは、100μm以下が好ましく、80μm以下がより好ましい。ハードコート層の厚みが大きいほど、表面硬度等の機械特性が向上する傾向がある。一方、ハードコート層の厚みが過度に大きい場合は、ハードコート層の耐屈曲性が低下する場合がある。
 透明樹脂フィルム1とハードコート層3の合計厚みは、10~500μmが好ましく、15~250μmがより好ましく、20~200μmがさらに好ましい。厚みが過度に小さいと機械強度が不足する場合があり、厚みが過度に大きいと透明性や屈曲性が不足する場合がある。透明樹脂フィルム1の厚みDとハードコート層3の厚みDとの比:D/Dは、例えば、0.01~10程度である。
[トップコート層]
 図2に示すように、ハードコート層3の表層には、トップコート層5が設けられていてもよい。例えば、ハードコートフィルムの最表面に、フッ素化合物を含むトップコート層5が設けられていることにより、耐擦傷性および防汚性が向上する。
<フッ素化合物>
 トップコート層を構成するフッ素化合物は、分子内に1つ以上のフッ素原子を含む。フッ素化合物は、好ましくはパーフルオロアルキル基を含む。パーフルオロアルキル基を含む化合物としては、パーフルオロアルキル化合物、パーフルオロアルキルエーテル化合物、パーフルオロエーテル化合物、パーフルオロポリエーテル化合物等が挙げられる。
 トップコート層を構成するフッ素化合物は、好ましくは、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物の縮合物であり、アルコキシシリル基の加水分解および縮合により高分子量化して膜が形成される。
 パーフルオロアルキル基は、アルキル基の全ての水素原子をフッ素原子に置き換えたものであり、CF(CF-で表される。アルコキシシリル基としては、縮合反応性の観点から、トリアルコキシシリル基が好ましく、中でもトリエトキシシリル基またはトリメトキシシリル基が好ましく、トリメトキシシリル基が特に好ましい。
 分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物は、フルオロアルキルエーテル構造を有することが好ましく、フルオロアルキルエーテルの繰り返し単位を有するオリゴマーが好ましい。
 フルオロアルキルエーテル構造としては、-(OC)-、-(OC)-、-(OC)-、-(OCF)-等が例示できる。フルオロアルキルエーテルのパーフルオロアルキル基は、直鎖でも分枝を有していてもよいが、耐擦傷性の観点からは直鎖であることが好ましい。
 オリゴマーの数平均分子量は、1000~50000が好ましく、3000~20000がより好ましく、5000~10000がさらに好ましい。数平均分子量が1000より小さいと耐擦傷性が劣る場合があり、50000より大きいと組成物の塗布が困難となる場合がある。
 パーフルオロアルキル基含有化合物は、パーフルオロアルキル基以外の置換基や、フルオロアルキルエーテル以外の繰り返し単位を含んでいてもよい。置換基としては、アルキル基や、アルキル基の水素原子の一部をフッ素原子に置換したフルオロアルキル基(すなわち、パーフルオロアルキル基以外のフルオロアルキル基)が挙げられる。耐擦傷性の観点において、パーフルオロアルキル基含有化合物は、アルキル基の水素原子のフッ素への置換割合が高いほど好ましい。
<トップコート層の形成>
 トップコート層5の形成方法は特に限定されず、バーコート、グラビアコート、コンマコート等のロールコート、スロットダイコート、ファウンテンダイコート等のダイコート、スピンコート、スプレーコート、ディップコート等の湿式法;真空蒸着、スパッタリング、CVD等の乾式法を使用できる。分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を縮合させて膜を形成する場合は、加水分解の促進等の観点から、湿式法が好ましい。
 ハードコート層3上にトップコート層5を形成する前に、コロナ処理、プラズマ処理、イオンビーム処理等の表面処理を実施してもよい。また、ハードコート層3上にプライマー層を設け、その上にトップコート層5を形成してもよい。プライマー層の材料としては、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ジルコニウム等の金属酸化物;およびアルコキシシランの加水分解縮合物である、有機・無機ハイブリッド材料が挙げられる。
 ハードコート層3の表面処理により、水酸基、カルボキシル基、カルボニル基、シラノール基等が生成し、分子内にアルコキシシリル基およびパーフルオロアルキル基含有化合物(トップコート層5の構成材料)との密着性が向上し、耐擦傷性や防汚性が向上する傾向がある。
 表面処理としては、大気圧中で簡便に処理が可能であることから、コロナ処理が好ましい。コロナ処理密度は、1W・min/m以上が好ましく、10W・min/m以上がより好ましく、30W・min/m以上、100W・min/m以上または500W・min/m以上であってもよく、3000W・min/m以下が好ましく、600W・min/m以下がより好ましい。処理密度が過度に低い場合は、表面処理による密着性向上効果が不足する場合があり、処理密度が過度に高い場合はハードコート層が劣化する場合がある。
 湿式法により耐擦傷層を形成する場合は、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物(オリゴマー)を溶媒で希釈した組成物を用いることが好ましい。化合物の溶解性および溶媒の揮発性の観点から、好ましい溶剤としては、パーフルオロヘキサン、パーフルオロメチルシクロヘキサンおよびパーフルオロ-1,3-ジメチルシクロヘキサン等の炭素数5~12のパーフルオロ脂肪族炭化水素;ビス(トリフルオロメチル)ベンゼン等のポリフルオロ芳香族炭化水素;パーフルオロプロピルメチルエーテル(COCH)、パーフルオロブチルメチルエーテル(COCH)、パーフルオロブチルエチルエーテル(COC)、パーフルオロヘキシルメチルエーテル(CCF(OCH)C)等のハイドロフルオロエーテル(HFE)が挙げられる。ハイドロフルオロエーテルのパーフルオロアルキル基およびアルキル基は、直鎖状でもよく分枝を有していてもよい。溶媒としては、ハイドロフルオロエーテルが好ましく、パーフルオロブチルメチルエーテル(COCH)、パーフルオロブチルエチルエーテル(COC)が好ましい。溶媒は、2種以上の混合溶媒でもよい。
 組成物は、上記のパーフルオロ化合物以外に、分子内にアルコキシシリル基を有さないフルオロアルキルエーテルオリゴマーに代表されるパーフルオロアルキル基含有化合物、フッ素系オイルや、シリコーン系オイル等他の添加剤を含んでいてもよい。フッ素系オイルや、シリコーン系オイルを含むことで耐擦傷性や防汚性が向上する場合がある。
 組成物は、酸、塩基、金属有機化合物等の触媒を含んでいてもよい。触媒を含むことにより、アルコキシシリル基とハードコート層表面の官能基との反応が促進され、ハードコート層3上へのトップコート層5の密着性が向上する場合がある。組成物は水を含んでいてもよい。水の存在によって、アルコキシシリル基が加水分解するため、ハードコート層表面の官能基との反応が促進され、ハードコート層3上へのトップコート層5の密着性が向上する場合がある。
 耐擦傷コーティング組成物として、ダイキン工業製の「OPTOOL UD509」、「OPTOOL DSX-E」等の市販品を用いてもよい。市販のコーティング組成物に溶媒や添加剤を添加して使用してもよい。
 組成物における分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物(オリゴマー)の固形分濃度は特に限定されないが、塗布性の観点から、20重量%以下が好ましく、10重量%以下がより好ましく、5重量%以下がさらに好ましく、1重量%以下または0.5重量%以下であってもよい。固形分濃度が過度に高いと、塗膜が白濁する場合がある。
 ハードコート層3上に組成物を塗布した後、加熱を行うことが好ましい。加熱により、アルコキシシリル基分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物の縮合が促進される。加熱温度は、30℃以上が好ましく、60℃以上がより好ましく、100℃以上または130℃以上であってもよい。加熱温度は、通常170℃以下である。
 トップコート層5の厚みは特に限定されないが、1nm以上が好ましく、5nm以上がより好ましく、6nm以上がさらに好ましく、10nm以上が特に好ましい。耐擦傷層の厚みは、1000nm以下が好ましく、100nm以下がより好ましく、50nm以下、45nm以下、40nm以下、35nm以下または30nm以下であってもよい。耐擦傷層の厚みが過度に小さい場合は耐擦傷性や防汚性が不足することがあり、厚みが過度に大きいと塗膜が白濁等により透明性が低下する場合がある。
 分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を含む組成物により形成した耐擦傷層において、当該パーフルオロアルキル化合物は、アルコキシシリル基が加水分解して縮合していることが好ましい。組成物を塗布後の加熱等により加水分解および縮合を促進させると、アルコキシシリル基の加水分解により生成した水酸基は、他のパーフルオロ化合物のアルコキシシリル基(その加水分解により生成した水酸基)だけでなく、ハードコート層3の表面の官能基とも縮合反応して共有結合を形成可能である。そのため、パーフルオロアルキル化合物は、ハードコート層3に強固に固定化され、耐擦傷性が向上すると考えられる。
 特に、エポキシ基を有するポリオルガノシロキサン化合物の硬化により形成されたハードコート層は、シラン化合物の縮合時の加水分解により生じた水酸基(シラノール基)を有し、さらに、硬化の際のエポキシ基の開環に伴って生成した水酸基を有する。これらの水酸基は、パーフルオロアルキル化合物のアルコキシシリル基と縮合反応が可能である。また、ハードコート層を構成するポリオルガノシロキサン化合物は、パーフルオロ化合物のアルコキシシリル基と同様、Si原子を含む有機化合物であり、互いに親和性が高く、かつポリオルガノシロキサン化合物のアルコキシシリル基、シラノール基等がパーフルオロ化合物のアルコキシシリル基と縮合可能であるため、ハードコート層3とトップコート層5との密着性が向上すると考えられる。
[ハードコートフィルムの特性]
 透明樹脂フィルム1上に、一般式(1)で表される構造を有するポリオルガノシロキサン化合物の硬化物を含むハードコート層3が設けられたハードコートフィルムは、高い表面硬度を有し、かつ耐屈曲性にも優れる。
 ハードコート層3形成面の鉛筆硬度は、HB以上が好ましく、H以上がより好ましく、2H以上がさらに好ましく、3H以上がさらに好ましく、4H以上であってもよい。ハードコート層3の厚みが大きいほど、表面硬度が高くなる傾向がある。
 ポリオルガノシロキサン化合物における脂環式エポキシ基の量が多いほど、表面硬度が高くなる傾向がある。また、一般式(11)におけるYの主鎖の原子数が小さいほど表面硬度が高くなる傾向がある。ハードコートフィルムの表面硬度を高める観点から、Yの主鎖の原子数は16以下が好ましく、10以下がより好ましく、8以下がさらに好ましく、6以下であってもよい。
 ハードコートフィルムは、ハードコート層3形成面を外側にして、JIS-K5600に準拠した円筒マンドレル試験を実施した際に、ハードコート層にクラックが生じないマンドレル径(クラックが生じる直前の試験のマンドレル直径)φが小さいことが好ましい。φは、6mm以下が好ましく、4mm以下がより好ましく、3mm以下または2mm以下であってもよい。
 ハードコートフィルムは、ハードコート層3形成面を外側にして、半径3mmで25℃環境にて動的屈曲試験を行った場合に、ハードコート層にクラックが入るまでの屈曲回数(耐屈曲回数)が、1000回以上であることが好ましい。耐屈曲回数は、1万回以上がより好ましく、5万回以上、10万回以上、または20万回以上であってもよい。
 ポリオルガノシロキサン化合物が一般式(11)で表される構造を有することにより、ハードコートフィルムの耐屈曲性が高められ、φが小さく、耐屈曲回数が大きくなる傾向がある。また、一般式(11)におけるYの主鎖の原子数が大きいほど、耐屈曲性が高くなる傾向がある。
 取扱性の観点から、ハードコートフィルムはカールが小さいことが好ましい。例えば、ハードコートフィルムを3cm四方にカットした際に、筒状にならないことが好ましい。3cm四方にカットしたハードコートフィルムを水平な台に静置した際のハードコートフィルムの4つの頂点の浮き上がり量の平均値は、8mm以下が好ましく、6mm以下がより好ましく、4mm以下がさらに好ましい。
 脂環式エポキシ基を有するポリオルガノシロキサン化合物の硬化により形成されるポリシロキサン系のハードコート層は、優れた硬度を有するが、耐屈曲性に劣る傾向がある。一方、グリシジル基を有するポリオルガノシロキサン化合物の硬化により形成されるポリシロキサン系のハードコート層は、耐屈曲性に優れるものの、硬化収縮が大きく、カールが大きくなる傾向がある。
 これに対して、上記一般式(11)で表される構造を有するポリオルガノシロキサン化合物を硬化してハードコート層を形成することにより、耐屈曲性に優れ、かつカールが少ないハードコートフィルムが得られる。
 脂環式エポキシ基を含むシラン化合物の縮合により得られるポリオルガノシロキサン化合物は、エポキシ基の開環重合による硬化後も脂環構造を保持しているため、硬化による分子体積の減少が少なく、むしろ硬化により体積が増大する傾向がある。そのため、硬化収縮が生じ難く、ハードコートフィルムのカール抑制に寄与し得る。また、脂環構造は鎖状構造に比べてリジッドであるため、ハードコート層の硬度が向上する傾向がある。
 さらに、一般式(11)で表される構造を有するポリオルガノシロキサン化合物は、重合性官能基である脂環式エポキシ基(3,4-エポキシシクロヘキシル基)と、Si原子との間に、特定の鎖長を有する有機基Yが存在するために、エポキシ基の反応により硬化した後も、分子構造が柔軟性を有する。そのため、ポリオルガノシロキサン化合物の硬化物により構成されるハードコート層が優れた耐屈曲性を示すと考えられる。上記の通り、Si原子と脂環式エポキシ基との距離が大きいほど、すなわちスペーサである有機基Yの主鎖を構成する原子の数が大きく鎖長が長いほど、ハードコート層3の耐屈曲性が向上する傾向がある。
 ハードコートフィルムの全光線透過率は80%以上が好ましく、85%以上がより好ましく、88%以上がさらに好ましい。ハードコートフィルムのヘイズは1.5%以下が好ましく、0.9%以下がより好ましく、0.7%以下がさらに好ましく、0.5%以下が特に好ましい。ハードコートフィルムの黄色度(YI)は、10以下が好ましく、8以下がより好ましく、5以下がさらに好ましく、4以下がさらに好ましく、3以下が特に好ましい。
[ハードコートフィルムの応用]
 ハードコートフィルムは、各種の機能層を備えていてもよい。機能層としては、反射防止層、防眩層、帯電防止層、透明電極等が挙げられる。また、透明樹脂フィルム1のハードコート層非形成面には、透明粘着剤層が付設されてもよい。また、ハードコートフィルムには、透明粘着剤層が付設されてもよい。
 上記のハードコートフィルムは、高い硬度を有することから、画像表示装置の最表面に配置されるカバーウインドウ材料として好適に使用できる。ハードコートフィルムは、耐屈曲性にも優れていることから、折り畳み可能なディスプレイ(フォルダブルディスプレイ)のカバーウインドウとしても好適に使用可能であり、画面を外側にして折り畳むタイプのフォルダブルディスプレイにも適用可能である。
 以下、実施例および比較例に基づき、本発明についてさらに具体的に説明するが、本発明は下記実施例に限定されるものではない。
[シラン化合物の合成]
<合成例1>
(エステル化合物の合成)
 温度計、撹拌装置および蒸留塔を取り付けた反応容器に、3,4-エポキシシクロヘキサン-1-カルボン酸メチル:161g(1.03mol)、2-プロペン-1-オール:83.8g(1.44mol)、およびジブチルスズオキシド:936mg(3.76mmol)を仕込み、均一に撹拌した。その後、140℃に昇温し、窒素をフローすることで反応により生成するメタノールを留去しながら6時間撹拌し、エステル交換反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、蒸留精製により目的物を単離して、135gの「反応物1」を得た(収率72%)。
(シラン化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、トリメトキシシラン:17.7g(145mmol)、およびトルエン:8.85gを仕込み、80℃で均一に撹拌した。この混合液に、反応物1:22g(121mmol)、白金触媒溶液(1,3-ジビニル-1,1,3,3,-テトラメチルジシロキサン白金錯体のキシレン溶液、ユミコアプレシャスメタルズジャパン製「PtVTS」、白金含有量3.0wt%):4.53μL、およびトルエン:11gの混合溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃で加熱撹拌しながら10時間反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、蒸留により目的物を単離して、41.2gの「シラン化合物1」を得た(収率66%)。
<合成例2>
(エステル化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、3,4-エポキシシクロヘキサン-1-カルボン酸メチル:78.1g(500mmol)、3-ブテン-1-オール:45.1g(625mmol)、およびジブチルスズオキシド:227mg(0.913mmol)を仕込み、均一に撹拌した。140℃に昇温し、窒素をフローしながら6時間撹拌してエステル交換反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、69.8gの「反応物2」を得た(収率71%)。
(シラン化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、トリメトキシシラン:52.2g(427mmol)、およびトルエン:26.1gを仕込み、80℃で均一に撹拌した。この混合液に、反応物2:69.8g(356mmol)、白金触媒溶液:13.4μL、およびトルエン:34.9gの混合溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃で加熱撹拌しながら10時間反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、95.5gの「シラン化合物2」を得た(収率84%)。
<合成例3>
(エステル化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、3,4-エポキシシクロヘキサン-1-カルボン酸メチル:72.5g(464mmol)、4-ペンテン-1-オール:50g(581mmol)、およびジブチルスズオキシド:211mg(0.848mmol)を仕込み、均一に撹拌した。140℃に昇温し、窒素をフローしながら6時間撹拌してエステル交換反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、83.2gの「反応物3」を得た(収率85%)。
(シラン化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、トリメトキシシラン:54.5g(446mmol)、およびトルエン:27.3gを仕込み、80℃で均一に撹拌した。この混合液に、反応物3:78.2g(372mmol)、白金触媒溶液:14.0μL、およびトルエン:39.1gの混合溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃で加熱撹拌しながら10時間反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、85gの「シラン化合物3」を得た(収率69%)。
<合成例4>
(エステル化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、3,4-エポキシシクロヘキサン-1-カルボン酸メチル:62.4g(399mmol)、5-ヘキセン-1-オール:50g(499mmol)、およびジブチルスズオキシド:181mg(0.729mmol)を仕込み、均一に撹拌した。140℃に昇温し、窒素をフローしながら6時間撹拌してエステル交換反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、50.0gの「反応物4」を得た(収率56%)。
(シラン化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、トリメトキシシラン:32.6g(266mmol)、およびトルエン:16.3gを仕込み、80℃で均一に撹拌した。この混合液に、反応物4:49.8g(222mmol)、白金触媒溶液:8.34μL、およびトルエン:24.9gの混合溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃で加熱撹拌しながら10時間反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、55.2gの「シラン化合物4」を得た(収率72%)。
<合成例5>
(エステル化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、3,4-エポキシシクロヘキサン-1-カルボン酸メチル:125g(800mmol)、7-オクテン-1-オール:128g(1mol)、およびジブチルスズオキシド:2.91g(11.7mmol)を仕込み、均一に撹拌した。140℃に昇温し、窒素をフローしながら6時間撹拌してエステル交換反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、174gの「反応物5」を得た(収率86%)。
(シラン化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、トリメトキシシラン:11.6g(94.6mmol)、およびトルエン:5.79gを仕込み、80℃で均一に撹拌した。この混合液に、反応物5:20g(78.9mmol)、白金触媒溶液:2.96μL、およびトルエン:10gの混合溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃で加熱撹拌しながら10時間反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、15.7gの「シラン化合物5」を得た(収率53%)。
<合成例6>
(シラン化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、トリエトキシシラン:42.1g(257mmol)、およびトルエン:30gを仕込み、均一に撹拌し、105℃で撹拌した。この混合液に、反応物5:50g(197mmol)、白金触媒溶液:7.41μL、およびトルエン:21.1gの混合溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃で加熱撹拌しながら10時間反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、59.1gの「シラン化合物6」を得た(収率72%)。
<合成例7>
(エステル化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、3,4-エポキシシクロヘキサン-1-カルボン酸メチル:125g(800mmol)、エチレングリコールモノビニルエーテル:88.1g(1mol)、およびジブチルスズオキシド:2.91g(11.7mmol)を仕込み、均一に撹拌した。140℃に昇温し、窒素をフローしながら6時間撹拌してエステル交換反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、109.6gの「反応物6」を得た(収率65%)。
(シラン化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、トリエトキシシラン:50.3g(306mmol)、およびトルエン:30gを仕込み105℃で、均一に撹拌した。この混合液に、反応物6:50g(236mmol)、白金触媒溶液:200μL、およびトルエン:30gの混合溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃で加熱撹拌しながら10時間反応を行った。反応終了後、活性炭で触媒を除去し、ロータリーエバポレーターを用いて減圧脱揮を行い、72.3gの「シラン化合物7」を得た(収率82%)。
<合成例8>
(エステル化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、3,4-エポキシシクロヘキサン-1-カルボン酸メチル:94.0g(600mmol)、4-ヒドロキシブチルビニルエーテル:87.8g(750mmol)、およびジブチルスズオキシド:2.18g(8.76mmol)を仕込み、均一に撹拌した。140℃に昇温し、窒素をフローしながら6時間撹拌してエステル交換反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮を行い、111gの「反応物7」を得た(収率77%)。
(シラン化合物の合成)
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、トリエトキシシラン:16.5g(101mmol)、およびトルエン:16.5gを仕込み、80℃で均一に撹拌した。この混合液に、反応物7:18.6g(77.4mmol)、白金触媒溶液:46.5μL、およびトルエン:18.6gの混合溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、105℃で加熱撹拌しながら10時間反応を行った。反応終了後、活性炭で触媒を除去し、ロータリーエバポレーターを用いて減圧脱揮を行い、30gの「シラン化合物8」を得た(収率96%)。
[シラン化合物の評価]
<メトキシシラン化合物の湿熱試験>
 合成例1~5のシラン化合物を、85℃相対湿度85%環境下で20時間放置した後、ブルカー社製400MHz-NMRを用いて、重アセトンを溶媒としてH-NMR測定を実施し、未反応のメトキシ基の割合を算出した。参照として、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(信越化学工業製「KBM-303」)についても同様の評価を実施した。
<エトキシシラン化合物の湿熱試験>
 合成例6~8のシラン化合物を、85℃相対湿度85%環境下で96時間放置した後、H-NMRにより、未反応のエトキシ基の割合を算出した。参照として、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン(東京化成工業製「T3585」)についても同様の評価を実施した。
 メトキシシラン化合物の湿熱試験試験結果(メトキシ基の残存率)を表1に、エトキシシラン化合物の湿熱試験試験結果(エトキシ基の残存率)を表2に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表1において、3,4-エポキシシクロヘキシル基とSi原子とがエチレン基(主鎖の原子数2)を介して結合しているシラン化合物であるKBM-303は、メトキシ基の残存率が25%であった。これに対して、3,4-エポキシシクロヘキシル基とSi原子とが、主鎖の原子数が5~10でありエステル結合を含む2価の有機基を介して結合しているシラン化合物1~5は、メトキシ基の残存率が50%以上であり、優れた耐湿熱性(保存安定性)を示した。
 シラン化合物1~5では、3,4-エポキシシクロヘキシル基とSi原子の間の2価の有機基の主鎖の原子数が多いほど、メトキシ基の残存率が高くなる(耐湿熱性が向上する)傾向がみられ、シラン化合物3~5は、メトキシ基の残存率が80%を上回っていた。
 表2において、3,4-エポキシシクロヘキシル基とSi原子とがエチレン基(主鎖の原子数2)を介して結合しているシラン化合物であるT3585は、エトキシ基の残存率が34%であった。これに対して、3,4-エポキシシクロヘキシル基とSi原子とが、主鎖の原子数が5以上でありエステル結合を含む2価の有機基を介して結合しているシラン化合物6~8は、エトキシ基の残存率が50%以上であり、優れた耐湿熱性(保存安定性)を示した。
 以上の結果から、トリメトキシシランおよびトリエトキシシランのいずれにおいても、3,4-エポキシシクロヘキシル基とSi原子とが、主鎖の原子数が5以上である2価の有機基を介して結合しているシラン化合物は、高温高湿環境でのアルコキシシリル基の加水分解が抑制されており、優れた保存安定性を示すことが分かる。
[ポリオルガノシロキサン化合物の合成]
<合成例9>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、合成例1で得られたシラン化合物1:8.00g(26.3mmol)、プロピレングリコールモノメチルエーテル:2.37g、およびメタノール:0.59gを仕込み、均一に撹拌した。この混合液に、触媒としての塩化マグネシウム:1.25mg(0.013mmol)を水:1.42g(78.9mmol)に溶解した溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、6.2gの「ポリオルガノシロキサン化合物1」を得た(収率100%)。
 ブルカー製400MHz-NMRを用いて、重アセトンを溶媒として測定したH-NMRスペクトルから算出したメトキシ基の残存率は6.7%、エポキシ基の残存率は98%であった。
<合成例10>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、合成例2で得られたシラン化合物2:9.56g(30mmol)、プロピレングリコールモノメチルエーテル:2.70g、およびメタノール:0.673gを仕込み、均一に撹拌した。この混合液に、塩化マグネシウム:1.43mg(0.14mmol)を水:1.62g(90mmol)に溶解した溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、7.3gの「ポリオルガノシロキサン化合物2」を得た(収率98%)。ポリオルガノシロキサン化合物2のメトキシ基の残存率は3.2%、エポキシ基の残存率は100%であった。
<合成例11>
 シラン化合物2に代えて合成例3で得られたシラン化合物3:9.97g(30mmol)を用いたこと以外は合成例10と同様に反応を行い、7.8gの「ポリオルガノシロキサン化合物3」を得た(収率98%)。ポリオルガノシロキサン化合物3のメトキシ基の残存率はメトキシ基の残存率は4.3%、エポキシ基の残存率は98%であった。
<合成例12>
 シラン化合物2に代えて合成例4で得られたシラン化合物4:10.4g(30mmol)を用いたこと以外は合成例10と同様に反応を行い、8.0gの「ポリオルガノシロキサン化合物4」を得た(収率96%)。ポリオルガノシロキサン化合物4のメトキシ基の残存率は4.7%、エポキシ基の残存率は94%であった。
<合成例13>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、合成例5で得られたシラン化合物5:9.87g(26.3mmol)、プロピレングリコールモノメチルエーテル:2.37g、およびメタノール:0.590gを仕込み、均一に撹拌した。この混合液に、塩化マグネシウム:1.25mg(0.013mmol)を水:1.42g(78.9mmol)に溶解した溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、7.4gの「ポリオルガノシロキサン化合物5」を得た(収率92%)。ポリオルガノシロキサン化合物5のメトキシ基の残存率は4.1%エポキシ基の残存率は91%であった。
<合成例14>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、合成例1で得られたシラン化合物1:8.52g(28mmol)、8-グリシドキシオクチルトリメトキシシラン(信越化学工業製「KBM-4803」):2.15g(7mmol)、プロピレングリコールモノメチルエーテル:3.15g、およびメタノール:0.785gを仕込み、均一に撹拌した。この混合液に、塩化マグネシウム:1.25mg(0.013mmol)を水:1.42g(78.9mmol)に溶解した溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、7.8gの「ポリオルガノシロキサン化合物6」を得た(収率94%)。ポリオルガノシロキサン化合物6のメトキシ基の残存率は6.7%、エポキシ基の残存率は97%であった。
<合成例15>
 シラン化合物1の量を7.46g(24.5mmol)、8-グリシドキシオクチルトリメトキシシランの量を3.22g(10.5mmol)に変更したこと以外は合成例14と同様に反応を行い、7.4gの「ポリオルガノシロキサン化合物7」を得た(収率90%)。ポリオルガノシロキサン化合物7のメトキシ基の残存率は9.2%、エポキシ基の残存率は94%であった。
<合成例16>
 シラン化合物1の量を6.39g(21mmol)、8-グリシドキシオクチルトリメトキシシランの量を4.29g(14mmol)に変更したこと以外は合成例14と同様に反応を行い、7.7gの「ポリオルガノシロキサン化合物8」を得た(収率93%)。ポリオルガノシロキサン化合物8のメトキシ基の残存率は11.5%、エポキシ基の残存率は89%であった。
<合成例17>
 シラン化合物1の量を5.33g(17.5mmol、8-グリシドキシオクチルトリメトキシシランの量を5.36g(17.5mmol)に変更したこと以外は合成例14と同様に反応を行い、8.1gの「ポリオルガノシロキサン化合物9」を得た(収率98%)。ポリオルガノシロキサン化合物9のメトキシ基の残存率は7.2%、エポキシ基の残存率は93%であった。
<合成例18>
 シラン化合物1の量を4.26g(14mmol)、8-グリシドキシオクチルトリメトキシシランの量を6.44g(21mmol)に変更したこと以外は合成例14と同様に反応を行い、8.0gの「ポリオルガノシロキサン化合物10」を得た(収率96%)。ポリオルガノシロキサン化合物10のメトキシ基の残存率は6.6%、エポキシ基の残存率は96%であった。
<合成例19>
 シラン化合物1の量を3.20g(10.5mmol)、8-グリシドキシオクチルトリメトキシシランの量を7.51g(24.5mmol)に変更したこと以外は合成例14と同様に反応を行い、8.2gの「ポリオルガノシロキサン化合物11」を得た(収率97%)。ポリオルガノシロキサン化合物11のメトキシ基の残存率は8.1%、エポキシ基の残存率は97%であった。
<合成例20>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、合成例2で得られたシラン化合物2:4.78g(15mmol)、8-グリシドキシオクチルトリメトキシシラン:4.60g(15mmol)、プロピレングリコールモノメチルエーテル:2.70gおよびメタノール:0.673gを仕込み、均一に撹拌した。この混合液に、塩化マグネシウム:1.43mg(0.015mmol)を水:1.62g(90mmol)に溶解した溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、7.2gの「ポリオルガノシロキサン化合物12」を得た(収率96%)。ポリオルガノシロキサン化合物14のメトキシ基の残存率は5.3%、エポキシ基の残存率は96%であった。
<合成例21>
 シラン化合物2に代えて合成例3で得られたシラン化合物3:4.99g(15mmol)を用いたこと以外は合成例21と同様に反応を行い、7.3gの「ポリオルガノシロキサン化合物13」を得た(収率92%)。ポリオルガノシロキサン化合物13のメトキシ基の残存率はメトキシ基の残存率は4.3%、エポキシ基の残存率は98%であった。メトキシ基の残存率は3.6%、エポキシ基の残存率は95%であった。
<合成例22>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン:61.6g(250mmol)、および1-メトキシ-2-プロパノール:15.3gを仕込み、均一に撹拌した。この混合液に、塩化マグネシウム:36mg(0.375mmol)を水:9.0g(499mmol)に溶解した溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、「ポリオルガノシロキサン化合物14」を得た。ポリオルガノシロキサン化合物14のメトキシ基の残存率は4.6%、エポキシ基の残存率は95%以上であった。
<合成例23>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、8-グリシジルオキシオクチルトリメトキシシラン:368g(1.20mol)、およびメタノール(76.9g)を仕込み、均一に撹拌した。この混合液に、塩化マグネシウム:57mg(0.6mmol)を水:64.7g(3.60mol)に溶解した溶液をゆっくりと滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、「ポリオルガノシロキサン化合物15」を得た。ポリオルガノシロキサン化合物15のメトキシ基の残存率は4.3%、エポキシ基の残存率は95%以上であった。
[ポリイミドフィルムの作製]
 ジアミンとして、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)および3,3’-ジアミノジフェニルスルホン(3,3’-DDS)を90:10のモル比でジメチルホルムアミド(DMF)に溶解し、テトラカルボン酸二無水物として、ビス(1,3-ジヒドロ-1,3-ジオキソ-5-イソベンゾフランカルボン酸)-(2,2’,3,3’,5,5’-ヘキサメチル[1,1’-ビフェニル]-4,4’-ジイル)エステル(TAHMBP)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)および4,4’-オキシジフタル酸二無水物(ODPA)を50:30:20のモル比で添加し、窒素雰囲気下で12時間撹拌して、固形分濃度18%のポリアミド酸溶液を得た。
 このポリアミド酸溶液にピリジンおよび無水酢酸を添加し、80℃で4時間攪拌してイミド化を行った。この溶液に、2-プロピルアルコール(IPA)とDMFの混合液を滴下してポリイミド樹脂を析出させ、吸引ろ過、洗浄および真空乾燥を行い、ポリイミド樹脂を得た。
 上記のポリイミド100重量部、紫外線吸収剤として、ADEKA製「アデカスタブ LA-31RG」を2重量部、およびADEKA製「アデカスタブLA-F70」を0.8重量部、ブルーイング剤として有本化学工業製「Plast Blue8590」0.006重量部を、塩化メチレンに溶解し、固形分濃度10重量%のポリイミド溶液を得た。バーコーターを用いて、ポリイミド溶液を無アルカリガラス板に塗布し、40℃で60分、80℃で30分、150℃で30分、170℃で30分、200℃で60分、大気雰囲気下で加熱して溶媒を除去して、厚み50μmのポリイミドフィルムを得た。
[ハードコートフィルムの作製]
<実施例1>
(ハードコート組成物の調製)
 ポリオルガノシロキサン化合物1をプロピレングリコールモノメチルエーテルで50%に希釈した。ポリオルガノシロキサン化合物100重量部に対して、光カチオン重合開始剤(サンアプロ製「CPI-101A」)のプロピレンカーボネート50%溶液を固形分にして2重量部、シリコーン系レベリング剤(BYK製「BYK-300」)を固形分にして0.2重量部配合して、ハードコート組成物を得た。
(ハードコート層の形成)
 厚さ50μmの透明ポリイミドフィルムの一方の面に、放電出力600W・min/mでコロナ処理を行った後、上記のハードコート組成物を乾燥膜厚が40μmとなるようにバーコーターを用いて塗布し、120℃で10分加熱した。その後、高圧水銀ランプを用いて、波長365nmの積算光量が600mJ/cmとなるように紫外線を照射して、ハードコート組成物を硬化させた。
(トップコート層の形成)
 ハードコート層の表面に、放電出力3000W・min/mでコロナ処理を行った後、ハードコート層の表面に、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン(東京化成製「A0774」)をエタノールで1重量%に希釈した溶液を乾燥膜厚が35nmとなるようにバーコーターで塗布し、130℃に加熱して溶媒を除去して、プライマー層を形成した。プライマー層上に、フッ素系コーティング剤(ダイキン製「OPTOOL UD509」)をハイドロフルオロエーテル(スリーエム製「NOVEC7200」)で0.1重量%に希釈した溶液を、乾燥膜厚が10nmとなるようにバーコーターを用いて塗布し、150℃で10分加熱して、トップコート層を形成し、透明ポリイミドフィルムの一方の面に、ハードコート層およびトップコート層を備えるハードコートフィルムを得た。
<実施例2~14,比較例1~3>
 ハードコート組成物の調製において、ポリオルガノシロキサン化合物1に代えてポリオルガノシロキサン化合物2~15を用いた。実施例7~9では、光カチオン重合開始剤として、サンアプロ製「CPI-310FG」を用いた、実施例6および比較例2では、ハードコート層の厚みを20μmとした。これらの変更以外は実施例1と同様にして、透明ポリイミドフィルムの一方の面に、ハードコート層、プライマー層およびトップコート層を備えるハードコートフィルムを得た。
[ハードコートフィルムの評価]
<表面硬度(鉛筆硬度)>
 JIS K5600-5-4:1999に従い、750gの荷重にてハードコート層形成面(トップコート層表面)の鉛筆硬度を測定した。
<耐屈曲性(円筒マンドレル径))>
 JIS K5600-5-1:1999に従い、タイプ1の試験機を用いて、ハードコート層形成面を外側としてハードコートフィルムの円筒型マンドレル試験を行い、ハードコート層にクラックが生じない最小の曲げ直径(クラックが生じる直前の試験のマンドレル直径)φを求めた。
<耐屈曲性(動的屈曲試験)>
 ハードコートフィルムを、幅25mmの短冊状に切り出した。この試験片の短辺を、U字伸縮試験冶具(ユアサシステム機器製)に取り付け、温度23℃、相対湿度55%の環境下にて、面状体無負荷U字伸縮試験(ユアサシステム機器製「DMLHB―FS―C」)により、屈曲半径3.0mm、屈曲角度180℃、屈曲速度:1回/秒の条件で、ハードコート層形成面を外側として繰り返し屈曲試験を行った。ハードコート層にクラックが入るまでの屈曲回数(耐屈曲回数)に基づき、耐屈曲性を下記の基準で評価した。
  A:耐屈曲回数が110万回以上
  B:耐屈曲回数が50万回以上110万回未満
  C:耐屈曲回数が37万回以上50万回未満
  D:耐屈曲回数が20万回以上37万回未満
  E:耐屈曲回数が15万回以上20万回未満
  F:耐屈曲回数が10万回以上15万回未満
  G:耐屈曲回数が1万回以上10万回未満
  H:耐屈曲回数が1000回以上1万回未満
  X:耐屈曲回数が1000回未満
<カール>
 ハードコート層の形成(ハードコート組成物の硬化)後、25℃にて1ヶ月養生したハードコートフィルムを、3cm角に切り出し、水平な台の上に、ハードコートフィルムの凹状の面が上になるように載置し、台からフィルムの4隅までの高さをそれぞれ測定し、その平均値をカール量とした。ハードコート層形成面を上側にして凹状となっていた場合のカール量はプラスの値、ハードコート層形成面を下側にして凹状となっていた場合のカール量はマイナスの値とした。
<耐擦傷性>
 スチールウール#0000を直径27mmの圧子にセットして、往復摩耗試験機(新東科学製 TYPE:30S)を用い、荷重:500g、ストローク:50mm、1サイクル/秒、1500サイクルの条件で、ハードコート層形成面の耐擦傷性試験(スチールウール試験)を行った。いずれの実施例および比較例においても、試験後のハードコートフィルムには傷がみられず、優れた耐擦傷性を示した。
<全光線透過率およびヘイズ>
 スガ試験機製ヘイズメーター「HZ-V3」により、JIS K7361-1:1999およびJIS K7136:2000に記載の方法により測定した。
<黄色度(YI)>
 スガ試験機製カラーメーター「SC-P」により、JIS K7373-:2006に記載の方法により測定した。
[評価結果]
 実施例および比較例のハードコートフィルムにおけるハードコート層の組成(ポリオルガノシロキサン化合物の合成に用いたシラン化合物のモル比)、ハードコート層の厚み、および評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000014
 3,4-エポキシシクロヘキシル基とSi原子とがエチレン基(主鎖の原子数2)を介して結合しているシラン化合物であるKBM-303の縮合により得られたポリオルガノシロキサン化合物14(合成例22参照)を硬化性樹脂成分とする比較例1のハードコートフィルムは、表面硬度が高く、カールが小さいものの、耐屈曲性が不十分であった。ハードコート層の厚みを20μmに減少させた比較例2も同様であった。
 グリシジルオキシ基を有するシラン化合物であるKBM-4803の縮合により得られたポリオルガノシロキサン化合物15(合成例23参照)を硬化性樹脂成分とする比較例3のハードコートフィルムは、優れた耐屈曲性を有していたものの、カールが大きく、ハンドリング性に劣っていた。
 実施例1~14のハードコートフィルムは、比較例1,2に比べて耐屈曲性に優れ、かつ比較例3に比べてカールが抑制されていた。
 以上の結果から、Si原子と脂環式エポキシ基との間に特定の鎖長を有するスペーサを有するポリオルガノシロキサン化合物を硬化性樹脂成分とするハードコートフィルムは、耐擦傷性と、ハードコートを外曲げに曲げたときの耐屈曲性とを両立可能であり、かつカールが小さくハンドリング性に優れることが分かる。
  1    透明樹脂フィルム
  3    ハードコート層
  5    トップコート層
  11,13  ハードコートフィルム

 

Claims (15)

  1.  一般式(1)で表されるシラン化合物:
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)において、Rは水素原子または炭素数1~10のアルキル基であり、Rは、水素原子、または炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基からなる群から選択される1価の炭化水素基であり、Yは主鎖の原子数が5以上の2価の有機基であり、xは2または3である。
  2.  一般式(1)において、x=3であり、Yがエステル結合を含む、請求項1に記載のシラン化合物。
  3.  一般式(1)において、Rが、メチル基、エチル基またはプロピル基である、請求項2に記載のシラン化合物。
  4.  請求項2または3に記載のシラン化合物を製造する方法であって、
     脂環式エポキシ基を有するエステル化合物、末端に-CH=CHを有するアルコール、およびトリアルコキシシランを原料として、
     前記エステル化合物と前記アルコールとのエステル交換反応、および前記-CH=CHと前記トリアルコキシシランのSiHとのヒドロシリル化反応を行う、
     シラン化合物の製造方法。
  5.  請求項2または3に記載のシラン化合物を製造する方法であって、
     脂環式エポキシ基を有するアルコール、末端に-CH=CHを有するエステル化合物、およびトリアルコキシシランを原料として、
     前記エステル化合物と前記アルコールとのエステル交換反応、および前記-CH=CHと前記トリアルコキシシランのSiHとのヒドロシリル化反応を行う、
     シラン化合物の製造方法。
  6.  シラン化合物の縮合物であるポリオルガノシロキサン化合物であって、前記シラン化合物として、請求項1~3のいずれか1項に記載のシラン化合物を含み、
     一般式(11)で表される構造を含む、ポリオルガノシロキサン化合物:
    Figure JPOXMLDOC01-appb-C000002
     一般式(11)において、Yは主鎖の原子数が5以上の2価の有機基である。
  7.  Si原子の総量に対する一般式(11)で表される構造の比率が、0.3以上である、請求項6に記載のポリオルガノシロキサン化合物。
  8.  請求項6に記載のポリオルガノシロキサン化合物、および光カチオン重合開始剤を含有する、ハードコート組成物。
  9.  透明樹脂フィルムの少なくとも一方の面にハードコート層を備え、
     前記ハードコート層は、請求項6に記載のポリオルガノシロキサン化合物の硬化物を含む、ハードコートフィルム。
  10.  前記ポリオルガノシロキサン化合物は、Si原子の総量に対する一般式(11)で表される構造の比率が、0.3以上である、請求項9に記載のハードコートフィルム。
  11.  前記ハードコート層上に、フッ素化合物を含むトップコート層を備える、請求項9に記載のハードコートフィルム。
  12.  前記透明樹脂フィルムが、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、環状ポリオレフィン、アクリル樹脂、およびセルロース系樹脂からなる群より選択される1種以上の樹脂材料を含む、請求項9に記載のハードコートフィルム。
  13.  透明樹脂フィルム上に、請求項8に記載のハードコート組成物を塗布し、活性エネルギー線を照射して硬化させてハードコート層を形成する、ハードコートフィルムの製造方法。
  14.  前記ハードコート層を形成した後、前記ハードコート層上に、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を含む組成物を塗布し、前記化合物を縮合させてトップコート層を形成する、請求項13に記載のハードコートフィルムの製造方法。
  15.  画像表示パネル、および請求項9に記載のハードコートフィルムを含む、ディスプレイ。

     
PCT/JP2022/028986 2021-07-29 2022-07-27 シラン化合物およびその製造方法、ポリオルガノシロキサン化合物、ハードコート組成物、ハードコーフィルムおよびその製造方法、ならびにディスプレイ WO2023008493A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538604A JPWO2023008493A1 (ja) 2021-07-29 2022-07-27

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021124765 2021-07-29
JP2021-124765 2021-07-29
JP2021-124764 2021-07-29
JP2021124764 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008493A1 true WO2023008493A1 (ja) 2023-02-02

Family

ID=85086915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028986 WO2023008493A1 (ja) 2021-07-29 2022-07-27 シラン化合物およびその製造方法、ポリオルガノシロキサン化合物、ハードコート組成物、ハードコーフィルムおよびその製造方法、ならびにディスプレイ

Country Status (2)

Country Link
JP (1) JPWO2023008493A1 (ja)
WO (1) WO2023008493A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242814A (ja) * 1989-03-15 1990-09-27 Kansai Paint Co Ltd 硬化性組成物
JPH03254868A (ja) * 1990-03-01 1991-11-13 Kansai Paint Co Ltd 塗膜形成法
US20020137870A1 (en) * 2000-10-20 2002-09-26 Rensselaer Polytechnic Institute Polymerizable siloxanes
JP2004331744A (ja) * 2003-05-02 2004-11-25 Fuji Photo Film Co Ltd 硬化性組成物及びそれを用いた硬化処理物品
WO2008020637A1 (fr) * 2006-08-15 2008-02-21 Showa Denko K.K. Nouveau composé époxy et son procédé de fabrication
JP2011096795A (ja) * 2009-10-29 2011-05-12 Kazufumi Ogawa Si微粒子を用いたTFT及びその製造方法とそれらを用いたTFTアレイと表示デバイス
WO2012020730A1 (ja) * 2010-08-11 2012-02-16 昭和電工株式会社 エポキシシリコーン縮合物、該縮合物を含む硬化性組成物およびその硬化物
JP2015168721A (ja) * 2014-03-05 2015-09-28 信越化学工業株式会社 放射線硬化性シリコーン組成物
KR101853888B1 (ko) * 2016-11-30 2018-06-08 존스미디어 주식회사 고신율/고경도 하드코팅 조성물 및 코팅 필름

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242814A (ja) * 1989-03-15 1990-09-27 Kansai Paint Co Ltd 硬化性組成物
JPH03254868A (ja) * 1990-03-01 1991-11-13 Kansai Paint Co Ltd 塗膜形成法
US20020137870A1 (en) * 2000-10-20 2002-09-26 Rensselaer Polytechnic Institute Polymerizable siloxanes
JP2004331744A (ja) * 2003-05-02 2004-11-25 Fuji Photo Film Co Ltd 硬化性組成物及びそれを用いた硬化処理物品
WO2008020637A1 (fr) * 2006-08-15 2008-02-21 Showa Denko K.K. Nouveau composé époxy et son procédé de fabrication
JP2011096795A (ja) * 2009-10-29 2011-05-12 Kazufumi Ogawa Si微粒子を用いたTFT及びその製造方法とそれらを用いたTFTアレイと表示デバイス
WO2012020730A1 (ja) * 2010-08-11 2012-02-16 昭和電工株式会社 エポキシシリコーン縮合物、該縮合物を含む硬化性組成物およびその硬化物
JP2015168721A (ja) * 2014-03-05 2015-09-28 信越化学工業株式会社 放射線硬化性シリコーン組成物
KR101853888B1 (ko) * 2016-11-30 2018-06-08 존스미디어 주식회사 고신율/고경도 하드코팅 조성물 및 코팅 필름

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CRIVELLO J V, MAO Z: "Preparation and Cationic Photopolymerization of Organic-Inorganic Hybrid Matrixes", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 7, 1 January 1997 (1997-01-01), US , pages 1562 - 1569, XP002302561, ISSN: 0897-4756, DOI: 10.1021/cm960595q *
CRIVELLO JAMES V., SONG KI YONG, GHOSHAL RAMAKRISHNA: "Synthesis and Photoinitiated Cationic Polymerization of Organic−Inorganic Hybrid Resins", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 5, 1 May 2001 (2001-05-01), US , pages 1932 - 1942, XP093029113, ISSN: 0897-4756, DOI: 10.1021/cm0100671 *
LECAMP LAURENCE; YOUSSEF BOULOS; BUNEL CLAUDE: "POLYDIMETHYLSILOXANE PHOTORETICULABLE PAR VOIE CATIONIQUE-II. NOUVELLES METHODES DE SYNTHESE DE SILANES PORTEURS DE FONCTIONS HETEROCYCLIQUES OU OLEFINIQUES", EUROPEAN POLYMER JOURNAL, PERGAMON PRESS LTD OXFORD, GB, vol. 33, no. 7, 1 January 1900 (1900-01-01), GB , pages 1021 - 1029, XP085060360, ISSN: 0014-3057, DOI: 10.1016/S0014-3057(96)00299-6 *

Also Published As

Publication number Publication date
JPWO2023008493A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
EP2360194B1 (en) Siloxane resin composition and protective film for touch panel using same
JP6853668B2 (ja) 光及び熱硬化性樹脂組成物、硬化物、並びに積層体
JP7328973B2 (ja) ハードコート組成物、ハードコート付きポリイミドフィルムおよびその製造方法、ならびに画像表示装置
JP6412867B2 (ja) 活性エネルギー線硬化性組成物
US7816419B2 (en) Photocurable and thermosetting coating composition and article having cured coating of such coating composition
TWI402297B (zh) A siloxane compound containing a photo-reactive group, a method for producing the same, and a photohardenable resin composition, an article having the hardened film
US7709549B2 (en) Photocurable resin composition and article having a coating formed by curing such composition
JP6545482B2 (ja) 光または熱硬化性樹脂組成物、硬化物及び積層体
WO2021172200A1 (ja) シルセスキオキサン化合物およびその製造方法、ハードコート組成物ならびにハードコートフィルムおよびその製造方法
JP2017170827A (ja) 積層体、タッチパネル、タッチパネル表示装置、及び積層体の製造方法
JP2006182688A (ja) 紫外線吸収性基含有有機ケイ素化合物及びその製造方法並びにコーティング組成物及び被覆物品
JP6557041B2 (ja) 光または熱硬化性樹脂組成物からなる積層体
WO2023008493A1 (ja) シラン化合物およびその製造方法、ポリオルガノシロキサン化合物、ハードコート組成物、ハードコーフィルムおよびその製造方法、ならびにディスプレイ
JP2023129477A (ja) 硬化物、硬化物の製造方法、硬化性樹脂組成物および硬化物の利用
JP7373074B2 (ja) ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法及びハードコートフィルムを含む物品
WO2023008492A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ
JP7077774B2 (ja) 活性エネルギー線硬化性組成物
JP6039349B2 (ja) 活性エネルギー線硬化性コーティング用樹脂組成物
JP2021070800A (ja) ハードコートフィルムおよび画像表示装置
WO2022191329A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ
WO2022270471A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ
WO2021172201A1 (ja) ハードコートフィルムおよびその製造方法、ならびに表示装置
JP7397367B1 (ja) 組成物および物品
WO2022085735A1 (ja) ハードコートフィルムおよびその製造方法、ならびに画像表示装置
JP2024066964A (ja) ハードコートフィルムとその製造方法、およびハードコートフィルムを含むディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538604

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE