WO2021172201A1 - ハードコートフィルムおよびその製造方法、ならびに表示装置 - Google Patents

ハードコートフィルムおよびその製造方法、ならびに表示装置 Download PDF

Info

Publication number
WO2021172201A1
WO2021172201A1 PCT/JP2021/006354 JP2021006354W WO2021172201A1 WO 2021172201 A1 WO2021172201 A1 WO 2021172201A1 JP 2021006354 W JP2021006354 W JP 2021006354W WO 2021172201 A1 WO2021172201 A1 WO 2021172201A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
group
film
transparent resin
coat layer
Prior art date
Application number
PCT/JP2021/006354
Other languages
English (en)
French (fr)
Inventor
祐介 田口
俊文 松宮
文康 石黒
里香 森
聡子 小松
寛人 高麗
正広 宮本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022503333A priority Critical patent/JPWO2021172201A1/ja
Priority to KR1020227031334A priority patent/KR20220146505A/ko
Priority to CN202180016790.0A priority patent/CN115175810A/zh
Priority to US17/905,046 priority patent/US20230138855A1/en
Publication of WO2021172201A1 publication Critical patent/WO2021172201A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to a hard coat film having a hard coat layer on the main surface of the transparent resin film and a method for producing the same. Furthermore, the present invention relates to an image display device including a hard coat film.
  • Patent Document 1 discloses a hard coat film in which a hard coat layer made of an acrylic material is provided on a polyethylene terephthalate film as a transparent substrate material for a flexible display.
  • an object of the present invention is to provide a hard coat film in which curling is suppressed even when the thickness of the hard coat layer is large.
  • the present inventors have found that the amount of hard coat film curl can be controlled by applying a material having a negative curing shrinkage rate to the hard coat layer, and have reached the present invention.
  • One embodiment of the present invention is a hard coat film provided with a hard coat layer on one main surface of a transparent resin film.
  • a hard coat layer is formed by applying the hard coat composition on the main surface of the transparent resin film and irradiating it with active energy rays.
  • the resin material of the transparent resin film examples include polyester, polycarbonate, polyamide, polyimide, cyclic polyolefin, acrylic resin, and cellulose-based resin.
  • the thickness of the transparent resin film may be 10 to 150 ⁇ m.
  • the thickness of the hard coat layer is 0.15 times or more that of the transparent resin film.
  • the thickness of the hard coat layer may be three times or less that of the transparent resin film.
  • the thickness of the hard coat layer may be 2 to 150 ⁇ m.
  • the hard coat composition one having a negative curing shrinkage rate is used.
  • the hard coat composition may contain a polyorganosiloxane compound having an alicyclic epoxy group.
  • the weight average molecular weight of the polyorganosiloxane compound may be 500 to 20000.
  • the polyorganosiloxane compound having an alicyclic epoxy group can be obtained, for example, by condensation of a silane compound having an alicyclic epoxy group.
  • the hard coat composition may contain a photocationic polymerization initiator.
  • the hard coat composition When the hard coat composition is cured on the transparent resin film, it may be irradiated with active energy rays in a heating atmosphere.
  • the heating temperature may be 45 to 150 ° C.
  • the hard coat composition may be irradiated with active energy rays in a state where the support film is attached to the non-formed surface of the hard coat layer of the transparent resin film. After irradiating the hard coat composition with active energy rays, further heating may be carried out.
  • the absolute value of the curl amount of the hard coat film cut into a square having a size of 100 mm ⁇ 100 mm is preferably 20 mm or less.
  • the coefficient of linear expansion of the hard coat layer may be larger than the coefficient of linear expansion of the transparent resin film.
  • a hard coat film having a large thickness of the hard coat layer and a small curl can be obtained.
  • FIG. 1 is a cross-sectional view of a laminated body according to an embodiment of the present invention.
  • the laminate 10 is a hard coat film having a hard coat layer 3 on one main surface 1A of the transparent resin film.
  • the transparent resin film 1 is a flexible film base material that serves as a base for forming a hard coat layer.
  • the total light transmittance of the transparent resin film is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more.
  • the haze of the transparent resin film is preferably 2% or less, more preferably 1% or less.
  • the resin material constituting the transparent resin film is not particularly limited as long as it is a transparent resin.
  • the transparent resin include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins such as polycarbonate, polyamide, transparent polyimide, cyclic polyolefin, polymethylmethacrylate (PMMA), and triacetyl cellulose (TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • acrylic resins such as polycarbonate, polyamide, transparent polyimide, cyclic polyolefin, polymethylmethacrylate (PMMA), and triacetyl cellulose (TAC).
  • TAC triacetyl cellulose
  • examples include cellulose-based resins.
  • polyester such as PET and transparent polyimide are preferable because of their high mechanical strength.
  • a transparent polyimide is particularly preferable as a resin material for a transparent resin film because the film base material is required to have excellent heat resistance and mechanical strength. While general all-aromatic polyimide is colored yellow or brown, transparent polyimide with high visible light transmittance is available due to the introduction of alicyclic structure, bending structure, fluorine substituent, etc. can get.
  • the transparent resin film may have a single layer or a multi-layer structure.
  • the transparent resin film may be a laminate in which a plurality of films are bonded to each other, and may be formed on a hard coat layer forming surface (first main surface 1A) and / or a hard coat layer non-forming surface (second main surface 1B).
  • a functional layer such as an easy-adhesion layer, an antistatic layer, and an antireflection layer may be provided.
  • the thickness of the transparent resin film is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and even more preferably 40 ⁇ m or more.
  • the thickness of the transparent resin film is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, further preferably 80 ⁇ m or less, and particularly preferably 60 ⁇ m or less. If the thickness of the transparent resin film is small, the mechanical properties such as the surface hardness of the hard coat film may not be sufficient. On the other hand, if the thickness of the transparent resin film is large, the transparency and flexibility of the hard coat film may decrease.
  • the thickness of the hard coat layer 3 is not particularly limited, but from the viewpoint of surface hardness, it is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, and even if it is 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, or 50 ⁇ m or more. good. From the viewpoint of transparency and flexibility (flexibility), the thickness of the hard coat layer is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, further preferably 90 ⁇ m or less, and may be 80 ⁇ m or less or 70 ⁇ m or less.
  • the total thickness of the hard coat film that is, the total thickness of the transparent resin film 1 and the thickness of the hard coat layer 3 is about 15 to 1000 ⁇ m, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, further preferably 40 ⁇ m or more. 50 ⁇ m or more is particularly preferable.
  • the total thickness of the hard coat film is preferably 250 ⁇ m or less, more preferably 170 ⁇ m or less, further preferably 150 ⁇ m or less, and particularly preferably 110 ⁇ m or less.
  • the ratio d 2 / d 1 of the thickness d 2 of the hard coat layer 3 to the thickness d 1 of the transparent resin film 1 is 0.15 or more, preferably 0.20 or more, more preferably 0.40 or more, 0. It may be 60 or more, 0.80 or more, or 1.00 or more.
  • a hard coat material having a negative curing shrinkage rate is used. By using it, curl tends to be reduced.
  • the upper limit of the thickness ratio d 2 / d 1 is not particularly limited, but from the viewpoint of the formability and flexibility of the hard coat layer, d 2 / d 1 is preferably 3.00 or less, more preferably 2.00 or less. It is more preferably 1.80 or less, and may be 1.60 or less or 1.40 or less.
  • the coefficient of linear expansion of the hard coat layer 3 is preferably larger than the coefficient of linear expansion of the transparent resin film 1.
  • the coefficient of linear expansion is a value calculated from the TMA curve when the temperature is cooled from 100 ° C. to 30 ° C. by thermomechanical analysis (TMA).
  • TMA thermomechanical analysis
  • the linear expansion coefficient of the hard coat layer in the hard coat film is measured using a sample in which the transparent resin film is dissolved with a solvent or the like and the hard coat layer is isolated.
  • the stress generated at the interface between the hard coat layer and the transparent resin film during curing of the hard coat material having a negative curing shrinkage rate is the difference in linear expansion rate (heating dimension). Since it is canceled by the stress generated at the interface due to the difference in the amount of change), the curl of the hard coat film can be controlled to a desired value.
  • the difference in linear expansion coefficient between the transparent resin film and the hard coat layer is preferably 100 ppm / ° C. or less, preferably 70 ppm / ° C. or less, and more preferably 50 ppm / ° C. or less.
  • the difference in linear expansion coefficient is preferably 5 ppm / ° C. or higher, and may be 10 ppm / ° C. or higher, 20 ppm / ° C. or higher, or 30 ppm / ° C. or higher.
  • the absolute value of the curl amount of the sample cut into a square of 100 mm ⁇ 100 mm is 20 mm or less at room temperature (25 ° C.).
  • the amount of curl of the hard coat film is evaluated by placing it on a horizontal table with the hard coat layer 3 forming surface on the upper side. The distance (lifting amount) from the base of the four vertices of the square is measured, and the average value is taken as the curl amount.
  • the central portion of the film in the plane is raised (curling in the opposite direction occurs)
  • the film is placed on a table with the hard coat layer forming surface facing down, and the amount of curl is measured. In this case, the curl amount is a negative value.
  • the acid as an active species generated by light irradiation of the photocationic polymerization initiator (photoacid generator) has a longer life than the photoradical, and even after light irradiation.
  • the curing reaction continues for several days.
  • the amount of curl due to the dimensional change of the hard coat layer may change over time.
  • the curl amount is measured 10 days after the curing treatment (light curing).
  • the hard coat film may be cut into a sheet of a predetermined size and then placed on a belt conveyor or the like for transportation. At that time, if the downward curl amount is large, the end portion of the film may enter the gap between the conveyors, and the film may fall from the conveyor. Further, when the upward curl is large, when the hard coat film is suction-fixed from the lower surface for printing or the like, the gap between the suction device and the film is large, and suction fixing may be difficult.
  • the hard coat film has a small curl amount regardless of whether the hard coat layer is arranged on the upper surface or the lower surface.
  • the absolute value of the curl amount of the hard coat film cut into a square of 100 mm ⁇ 100 mm is more preferably 15 mm or less, further preferably 10 mm or less, and may be 7 mm or less or 5 mm or less, ideally 0.
  • the hard coat material a material having a negative curing shrinkage rate, that is, a material that expands and increases in volume due to curing is used.
  • the curing shrinkage rate of the hard coat material is a volume shrinkage rate determined by the density method in accordance with JIS K6901: 2008, and is defined as follows.
  • ⁇ C is the density after curing
  • ⁇ L is the density before curing.
  • the density of the liquid is measured by the specific gravity bottle method, and the density of the solid is measured by the density gradient tube method.
  • Curing shrinkage rate (%) 100 ⁇ ( ⁇ C- ⁇ L ) / ⁇ C
  • a general hard coat material such as acrylic has a positive curing shrinkage rate (shrinks with curing)
  • the compressive stress at the interface between the transparent resin film and the hard coat layer increases. Tends to increase, and the warp (curl) of the film with the hard coat layer forming surface inside tends to increase.
  • the hard coat material has a negative curing shrinkage, the curl on the inside of the hard coat layer forming surface tends to be reduced.
  • the curing shrinkage rate of the hard coat material is preferably ⁇ 10% or more, more preferably ⁇ 5% or more, further preferably -3% or more.
  • the curing shrinkage rate is preferably ⁇ 0.01% or less, more preferably ⁇ 0.1% or less, further preferably ⁇ 0.5% or less, and may be -1% or less or ⁇ 1.5% or less. ..
  • a hard coat layer is formed by applying a hard coat material (hard coat composition) containing a curable resin on a transparent resin film and curing the film.
  • the hard coat material has a negative cure shrinkage rate.
  • the curing shrinkage rate of the hard coat material mainly depends on the structure of the curable resin, particularly the type of curable functional group. For example, a material having an alicyclic epoxy group as a curable functional group may exhibit negative curing shrinkage due to photocationic polymerization.
  • a hard coat layer is formed from a hard coat material using a polyorganosiloxane compound having an alicyclic epoxy group as a resin material having a negative curing shrinkage rate will be described with specific examples.
  • the polyorganosiloxane compound having an alicyclic epoxy group is obtained by condensation of a silane compound represented by the following general formula (1).
  • a silane compound represented by the following general formula (1) E-B-R 1 -Si ( OR 3) x R 2 3-x) ...
  • R 3 is a hydrogen atom or an alkyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms.
  • Specific examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an isopropyl group and an isobutyl group. Examples thereof include a cyclohexyl group and an ethylhexyl group. x is 2 or 3.
  • silane compound (1) has two or three ( ⁇ OR 3 ) in one molecule. Since Si-OR 3 has hydrolyzability, a polyorganosiloxane compound can be obtained by condensation of a silane compound. From the viewpoint of hydrolysis resistance, the carbon number of R 3 is preferably 3 or less, and particularly preferably R 3 is a methyl group.
  • R 2 is a hydrogen atom or an alkoxy group having an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, the group consisting of aryl and aralkyl groups of 7 to 12 carbon atoms having 6 to 25 carbon atoms, It is a monovalent hydrocarbon group selected from.
  • hydrocarbon in the alkyl group and the aralkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an isopropyl group and an isobutyl group.
  • Examples thereof include a cyclohexyl group, an ethylhexyl group, a benzyl group, a phenyl group, a tolyl group, a xsilyl group, a naphthyl group, a phenethyl group and the like.
  • E in the general formula (1) is an alicyclic epoxy group. Since the alicyclic epoxy group retains the alicyclic structure even when the epoxy group is opened, the curing shrinkage is small and it tends to show a negative curing shrinkage rate.
  • the alicyclic epoxy group has an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic. Examples of the alicyclic ring include a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cyclooctyl ring and the like. Among them, from the viewpoint of structural stability and reactivity of the epoxy group, the alicyclic epoxy group preferably has a 6-membered alicyclic structure such as cyclohexene oxide or methylcyclohexene oxide.
  • R 1 is an alkylene group having 2 to 12 carbon atoms
  • B is a direct-bonded ether (-O-) or ester (-COO-). That is, the silane compound of the general formula (1) is a compound in which an alicyclic epoxy group is bonded to a Si atom via -BR 1- as a spacer. From the viewpoint of curing reactivity of the alicyclic epoxy group, B is directly connected (i.e., directly attached alicyclic epoxy group in the alkylene R 1 directly), or an ester are preferred.
  • alkylene R 1 examples include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, an undecamethylene group, and a dodecamethylene group. And so on.
  • R 1 may be one in which a part or all of the hydrogen atom of methylene (-CH 2- ) is substituted with a substituent having 1 to 6 carbon atoms.
  • Examples of the substituent having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a phenyl group and the like.
  • silane compound represented by the general formula (1) examples include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, and ⁇ - ( 3,4-Epoxycyclohexyl) propyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) propylmethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, ⁇ - (3,4-epoxy) Examples thereof include cyclohexyl) ethylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) propyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) propylmethyldiethoxysilane.
  • silane compound (2) When a polyorganosiloxane compound is obtained by condensation of a silane compound, another silane compound may be used in addition to the silane compound having an alicyclic epoxy group represented by the above general formula (1).
  • silane compound (2) Other silane compounds (that is, silane compounds that do not contain an alicyclic epoxy group, hereinafter may be referred to as "silane compound (2)") are represented by the following general formula (2). R 4 - (Si (OR 3 ) x R 2 3-x) ... (2)
  • R 4 is a monovalent organic group containing no alicyclic epoxy group.
  • R 4 is a group containing a double bond or a substituted or unsubstituted (e.g., a substituted or unsubstituted alkenyl group having 1 to 10 carbon atoms), a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, carbon atoms It is an aryl group of 6 to 25, an aralkyl group having 7 to 12 carbon atoms, a group having a glycidyl group, a group having an oxetanyl group, or a hydrogen atom.
  • the ratio of the silane compound (1) to the total of the silane compound (1) and the silane compound (2) is preferably 33 to 100 mol%, preferably 50 to 100 mol%. More preferred.
  • the ratio of the silane compound (1) may be 60 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more, 95 mol% or more, or 100 mol%.
  • the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. Further, from the viewpoint of suppressing volatilization, the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. On the other hand, if the molecular weight is excessively large, cloudiness may occur due to a decrease in compatibility with other compositions.
  • the weight average molecular weight of the polyorganosiloxane compound is preferably 20000 or less.
  • the weight average molecular weight of the polyorganosiloxane compound is more preferably 700 to 18000, further preferably 1000 to 16000, or may be 1200 to 14000 or 1500 to 12000.
  • the weight average molecular weight of the polyorganosiloxane compound can be controlled by appropriately selecting the amount of water used in the reaction, the type and amount of the catalyst. For example, the larger the amount of water charged with the catalyst during the hydrolysis reaction, the larger the weight average molecular weight tends to be.
  • the polyorganosiloxane compound produced by the hydrolysis condensation of the silane compound of the general formula (1) includes a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4).
  • D in the general formula (4) is a hydrogen atom, an alkoxy group having an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms, and 7 to 12 carbon atoms. It is a group selected from the group consisting of aralkyl groups.
  • the bending resistance of the hard coat layer to be used tends to be improved.
  • the ratio of the T3 body to the T2 body of the polyorganosiloxane compound (hereinafter, may be referred to as "T3 / T2 ratio"). May be less than 5, less than 4, 3.5 or less, 3 or less, or 2.5 or less.
  • the T3 / T2 ratio of the polyorganosiloxane compound may be 0.8 or more, 1.5 or more, or 2 or more.
  • the content and proportion of T3 and T2 in the polyorganosiloxane compound can be calculated by 29 Si-NMR measurement.
  • 29 In Si-NMR the Si atom of the T3 body and the Si atom of the T2 body show different chemical shifts. Therefore, the integrated value of each signal in the NMR spectrum can be obtained, and the T3 / T2 ratio can be calculated from the ratio of the two.
  • the T3 / T2 ratio can be controlled by adjusting the amount of water used for the hydrolysis / condensation reaction of the silane compound, the type of catalyst, and the amount of catalyst. For example, the larger the amount of catalyst, the larger the T3 / T2 ratio tends to be. As will be described later, the use of a neutral salt catalyst tends to reduce T3 / T2.
  • the amount of water required for the hydrolysis and condensation reactions is preferably 0.3 to 3 equivalents, more preferably 0.5 to 2 equivalents, relative to 1 equivalent of the -OR 3 groups bonded to the Si atom.
  • the amount of water is excessively small, there are many OR 3 groups remaining without being hydrolyzed, and the molecular weight of the polyorganosiloxane compound is small, so that the hardness of the hard coat layer tends to be insufficient.
  • the amount of water is excessively large, the reaction rate of the hydrolysis and condensation reactions is high, a high molecular weight condensate is produced, and the transparency and flexibility of the hard coat layer tend to decrease.
  • the hydrolysis reaction and condensation reaction of the silane compound it is preferable to suppress the deactivation of the alicyclic epoxy group contained in the silane compound (1) due to ring opening. From the viewpoint of suppressing ring opening of the epoxy group, it is preferable to carry out the reaction under neutral or basic conditions. In particular, from the viewpoint of reducing the T3 / T2 ratio of the polyorganosiloxane compound obtained as a condensate of the silane compound, it is preferable to carry out the hydrolysis and condensation reaction in the presence of a neutral salt catalyst.
  • the neutral salt is a positive salt of a strong acid and a strong base, and specifically, an ion (cation) of an element selected from the group consisting of an alkali metal element and a second group element, a chloride ion, and a bromide.
  • the neutral salt include lithium chloride, sodium chloride, potassium chloride, beryllium chloride, magnesium chloride, calcium chloride, lithium bromide, sodium bromide, potassium bromide, beryllium bromide, magnesium bromide, and calcium bromide. , Lithium iodide, sodium iodide, potassium iodide, beryllium iodide, magnesium iodide, calcium iodide and the like.
  • a polyorganosiloxane compound having a small T3 / T2 ratio can be obtained.
  • acid catalysts and base catalysts react electrophilically and nucleophilically with various substances, whereas neutral salts are erosive to metal and resin materials in reaction vessels and storage containers. It has the advantage that there are few restrictions on the material of the manufacturing and storage equipment because it is low.
  • the acid generated from the photocationic polymerization initiator (photoacid generator) is quenched to carry out the polymerization reaction. May inhibit.
  • the neutral salt catalyst may remain in the polyorganosiloxane compound obtained by condensing the silane compound or the hard coat composition, and steps such as removal and neutralization of the catalyst after the reaction can be omitted.
  • the use of a neutral salt catalyst can contribute to simplification of the manufacturing process and improvement of yield.
  • the amount of the catalyst used is not particularly limited. The higher the amount of catalyst used, the more the hydrolysis and condensation reactions of the silane compound tend to be promoted. On the other hand, if the amount of the catalyst used is excessively large, the transparency of the condensate may be impaired or purification may become complicated.
  • the amount of the neutral salt catalyst used is preferably 0.000001 to 0.1 mol, more preferably 0.000005 to 0.01 mol, based on 1 mol of the hydrolyzable silyl group (-OR 3) of the silane compound. ..
  • the neutral salt catalyst may remain in the polyorganosiloxane compound obtained by the hydrolysis and condensation reaction of the silane compound.
  • the amount of the neutral salt (catalyst) remaining in the polyorganosiloxane compound may be 1 ppm or more, 10 ppm or more, 50 ppm or more, or 100 ppm or more.
  • the amount of the basic catalyst remaining in the polyorganosiloxane compound is preferably 10,000 ppm or less, more preferably 5000 ppm or less, further preferably 3000 ppm or less, and 1000 ppm or less, 800 ppm or less or 500 ppm or less. It may be.
  • the reaction may be carried out while refluxing the diluting solvent, the alcohol generated by the hydrolysis and the like.
  • the diluting solvent is preferably one that is compatible with water, and is preferably a water-soluble alcohol or ether compound. Since many silane compounds have low compatibility with neutral salts and water used for hydrolysis, it is preferable to react them as a solution with a diluting solvent as a compatible system.
  • the boiling point of the diluting solvent is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and even more preferably 60 ° C. or higher. If the boiling point of the diluting solvent is excessively low, the diluting solvent is refluxed at a low temperature, which may reduce the reaction rate. From the viewpoint of removability of the diluting solvent after the reaction, the boiling point of the diluting solvent is preferably 200 ° C. or lower.
  • diluting solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 2-butanol, 1-methoxy-2-propanol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether and the like. Can be mentioned.
  • the reaction temperature of the hydrolysis and condensation reaction of the silane compound is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and even more preferably 60 ° C. or higher.
  • the reaction temperature is preferably 200 ° C. or lower from the viewpoint of suppressing the side reaction of the organic group of the silane compound.
  • the polyorganosiloxane compound obtained by hydrolysis and condensation of the silane compound has a higher residual ratio of alicyclic epoxy groups.
  • the residual ratio of the alicyclic epoxy group that is, the number of moles of the alicyclic epoxy group in the polyorganosiloxane compound obtained by condensation with respect to the number of moles of the alicyclic epoxy group contained in the silane compound (1) which is the raw material.
  • the ratio is preferably 20% or more, more preferably 40% or more, further preferably 60% or more, particularly preferably 80% or more, and may be 90% or more or 95% or more.
  • the residual ratio of the alicyclic epoxy group is determined by 1 1 H-NMR measurement.
  • the polyorganosiloxane compound obtained by condensation of the silane compound (1) has a structure represented by the following general formula (5) (hereinafter, may be referred to as “structure (5)”). [ EBR 1- Si] ... (5)
  • the structure (5) is a structure in which an alicyclic epoxy group is bonded to a Si atom with or without another organic group.
  • the ratio of the number of structures (5) (that is, the number of alicyclic epoxy groups) to the total number of Si atoms of the polyorganosiloxane compound is preferably 33% or more, more preferably 50% or more, and 60% or more, 70%. As mentioned above, it may be 80% or more, 90% or more, 95% or more, or 100%.
  • the polyorganosiloxane compound produced by the condensation of the silane compound of N molecules contains N Si atoms.
  • n structures (5) are formed from n silane compounds (1). Therefore, in the polyorganosiloxane compound obtained by condensing the silane compound, the ratio (molar ratio: n / N) of the silane compound (1) to the silane compound used as a raw material is the structure with respect to the number of Si atoms in the polyorganosiloxane compound. It is approximately equal to the ratio of (5).
  • the polyorganosiloxane compound has a structure represented by the following general formula (6) in addition to the above structure (5). (Hereinafter, it may be described as "structure (6)"). [R 4 -Si] ... (6 ) R 4 in the general formula (6) is the same as in the general formula (2).
  • the hard coat composition is a composition containing the above-mentioned curable resin.
  • the hard coat composition preferably contains a photopolymerization initiator in addition to a curable resin such as a polyorganosiloxane compound, and may contain other components.
  • the hard coat composition preferably contains a photocationic polymerization initiator.
  • the photocationic polymerization initiator is a compound (photoacid generator) that generates an acid when irradiated with active energy rays. The acid generated from the photoacid generator advances the ring-opening and polymerization reaction of the epoxy group of the polyorganosiloxane compound to form intermolecular crosslinks and cure the hard coat material.
  • Examples of the photoacid generator include strong acids such as toluene sulfonic acid and boron tetrafluoride; onium salts such as sulfonium salt, ammonium salt, phosphonium salt, iodonium salt and selenium salt; iron-allene complexes; silanol-metal chelate complexes.
  • Sulfonic acid derivatives such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidesulfonates, benzoinsulfonates; organic halogen compounds and the like.
  • aromatic sulfonium salts or aromatic iodonium salts are preferable because they have high stability in a hard coat composition containing a polyorganosiloxane compound having an alicyclic epoxy group.
  • these counter anions include fluorophosphate anions, fluoroantimonate anions, and fluoroborate anions.
  • the content of the photocationic polymerization initiator in the hard coat composition is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and 0. 2 to 2 parts by weight is more preferable.
  • the hard coat composition may contain a leveling agent.
  • a leveling agent When the hard coat layer contains a leveling agent, it can be expected to reduce surface tension, improve surface smoothness, improve slipperiness, and improve antifouling property (fingerprint resistance, etc.). Further, since the leveling agent has a group having reactivity with an epoxy group and / or a hydrolyzable condensable group, improvement in scratch resistance of the hard coat layer can be expected.
  • Examples of the leveling agent include silicone-based leveling agents and fluorine-based leveling agents.
  • Examples of the silicone-based leveling agent include leveling agents having a polyorganosiloxane skeleton.
  • Examples of the fluorine-based leveling agent include leveling agents having a fluoroaliphatic hydrocarbon skeleton.
  • Examples of the fluoroaliphatic hydrocarbon skeleton include fluoroC 1-10 alkanes such as fluoromethane, fluoroethane, fluoropropane, fluoroisopropane, fluorobutane, fluoroisobutane, fluorot-butane, fluoropentane, and fluorohexane. ..
  • the content thereof is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and 0. It is more preferably 05 to 1 part by weight or less.
  • the hard coat composition may include a reactive diluent.
  • the reactive diluent may contain, for example, a cationically polymerizable compound other than the above-mentioned polyorganosiloxane compound.
  • a compound having a cationically polymerizable functional group is used as the reactive diluent for photocationic polymerization.
  • the cationically polymerizable functional group of the reactive diluent include an epoxy group, a vinyl ether group, an oxetane group, and an alkoxysilyl group.
  • the reactive diluent having an epoxy group is preferable.
  • the content of the reactive diluent in the hard coat composition is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, based on 100 parts by weight of the polyorganosiloxane compound.
  • the hard coat composition may contain a photosensitizer for the purpose of improving the photosensitivity of the photocationic polymerization initiator (photoacid generator).
  • a photosensitizer for the purpose of improving the photosensitivity of the photocationic polymerization initiator (photoacid generator).
  • the photosensitizer it is more efficient that the photoacid generator can absorb light in a wavelength range that cannot be absorbed by itself, and therefore, it is preferable that the photosensitizer has less overlap with the absorption wavelength range of the photoacid generator.
  • the photosensitizer include anthracene derivatives, benzophenone derivatives, thioxanthone derivatives, anthraquinone derivatives, benzoin derivatives and the like.
  • the content of the photosensitizer in the hard coat composition is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, still more preferably 10 parts by weight or less, based on 100 parts by weight of the photoacid generator.
  • the hard coat composition may contain particles for the purpose of adjusting film properties such as surface hardness and bending resistance, suppressing curing shrinkage, and the like.
  • the particles organic particles, inorganic particles, organic-inorganic composite particles and the like may be appropriately selected and used.
  • the material of the organic particles include poly (meth) acrylic acid alkyl ester, crosslinked poly (meth) acrylic acid alkyl ester, crosslinked styrene, nylon, silicone, crosslinked silicone, crosslinked urethane, and crosslinked butadiene.
  • Materials for inorganic particles include metal oxides such as silica, titania, alumina, tin oxide, zirconia, zinc oxide, and antimony oxide; metal nitrogenous products such as silicon nitride and boron nitride; calcium carbonate, calcium hydrogen phosphate, calcium phosphate, etc.
  • metal salts such as aluminum phosphate.
  • Examples of the organic-inorganic composite filler include those having an inorganic layer formed on the surface of organic particles and those having an organic layer or organic fine particles formed on the surface of the inorganic particles.
  • Examples of the particle shape include spherical, powdery, fibrous, needle-like, and scaly-like. Since the spherical particles have no anisotropy and stress is unlikely to be unevenly distributed, the occurrence of strain can be suppressed, which can contribute to the suppression of curl due to the volume change during curing of the hard coat material.
  • the average particle size of the particles is, for example, about 5 nm to 10 ⁇ m. From the viewpoint of enhancing the transparency of the hard coat layer, the average particle size is preferably 1000 nm or less, more preferably 500 nm or less, further preferably 300 nm or less, and particularly preferably 100 nm or less.
  • the particle size can be measured by a laser diffraction / scattering type particle size distribution measuring device, and the volume-based median size is taken as the average particle size.
  • the hard coat composition may contain surface-modified particles.
  • the surface modification of the particles tends to improve the dispersibility of the particles in the polyorganosiloxane compound.
  • the particle surface is modified with a polymerizable functional group capable of reacting with an epoxy group
  • the functional group on the particle surface reacts with the epoxy group of the polyorganosiloxane compound to form a chemical crosslink. , Improvement of film strength can be expected.
  • Examples of the polymerizable functional group capable of reacting with the epoxy group include a vinyl group, a (meth) acrylic group, a hydroxyl group, a phenolic hydroxyl group, a carboxy group, an acid anhydride group, an amino group, an epoxy group, an oxetane group and the like.
  • an epoxy group is preferable.
  • particles surface-modified with an epoxy group are preferable because chemical crosslinks can be formed between the particles and the polyorganosiloxane compound when the hard coat composition is cured by photocationic polymerization.
  • Examples of particles having a reactive functional group on the surface include surface-modified inorganic particles and core-shell polymer particles.
  • the hard coat composition may be a solvent-free type or may contain a solvent. When a solvent is contained, it is preferable that the transparent resin film is not dissolved. On the other hand, by using a solvent having a solubility enough to swell the transparent resin film, the adhesion between the transparent resin film and the hard coat layer may be improved.
  • the content of the solvent is preferably 500 parts by weight or less, more preferably 300 parts by weight or less, still more preferably 100 parts by weight or less, based on 100 parts by weight of the polyorganosiloxane compound.
  • the hard coat composition may contain additives such as an inorganic pigment, an organic pigment, a surface conditioner, a surface modifier, a plasticizer, a dispersant, a wetting agent, a thickener, and an antifoaming agent. Further, the hard coat composition may contain a thermoplastic or thermosetting resin material other than the above-mentioned polyorganosiloxane compound. When the resin material other than the polyorganosiloxane compound and / or the polyorganosiloxane compound has radical polymerization property, the hard coat composition may contain a radical polymerization initiator in addition to the photocationic polymerization initiator.
  • the hard coat composition is applied onto the transparent resin film, the solvent is dried and removed if necessary, and then the hard coat composition is cured by irradiating with active energy rays to cure the hard coat composition, thereby forming a hard coat layer on the transparent resin film 1.
  • a hard coat film comprising 3 is obtained.
  • the surface of the transparent resin film Before applying the hard coat composition, the surface of the transparent resin film may be subjected to surface treatment such as corona treatment or plasma treatment. Further, an easy-adhesion layer (primer layer) or the like may be provided on the surface of the transparent resin film. Since the hard coat layer formed by curing the polyorganosiloxane compound exhibits high adhesion to the resin film, it is not necessary to provide an easy-adhesion layer or the like. That is, in the hard coat film, the transparent resin film 1 and the hard coat layer 3 may be in contact with each other.
  • the support film 6 Before applying the hard coat composition to the first main surface 1A of the transparent resin film 1, the support film 6 may be attached to the second main surface 1B of the transparent resin film 1 as shown in FIG.
  • the support film 6 is preferably one that can be peeled off from the transparent resin film 1, and for example, a laminate having a weakly adhesive pressure-sensitive adhesive layer 4 on the surface of the film 5 is used.
  • the hard coat composition is applied to the first main surface 1A of the transparent resin film and cured while the support film 6 is attached to the second main surface 1B of the transparent resin film.
  • a laminate in which the hard coat film and the support film 6 are laminated is formed. By peeling and removing the support film from this laminate, the hard coat film 10 shown in FIG. 1 can be obtained.
  • the hard coat layer 3 By forming the hard coat layer 3 in a state where the support film 6 is attached, deformation and heat damage of the transparent resin film at the time of heating or light irradiation may be suppressed. Further, by laminating the support film 6, the overall thickness is increased and the rigidity of the laminated body 12 is increased, so that the occurrence of curl at the time of forming the hard coat layer is suppressed and the handleability is improved.
  • the thickness of the support film 6 is preferably larger than the thickness of the transparent resin film 1.
  • the thickness of the support film 6 is preferably 50 ⁇ m or more, more preferably 80 ⁇ m or more, and even more preferably 100 ⁇ m or more.
  • the thickness of the support film is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and may be 200 ⁇ m or less or 150 ⁇ m or less.
  • the method of applying the hard coat composition on the transparent resin film is not particularly limited, and a known method can be adopted.
  • the coating method include die coaters such as fountain dies and slot dies, roll coaters such as gravure coaters and comma coaters, bar coaters, dip coaters, spin coaters, and spray coaters.
  • Examples of the active energy rays irradiated during photocuring include visible rays, ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, and electron beams.
  • Ultraviolet rays are preferable as the active energy rays because the curing reaction rate is high and the energy efficiency is excellent.
  • the integrated irradiation amount of the active energy rays is, for example, about 50 to 10000 mJ / cm 2 , and may be set according to the type and blending amount of the photocationic polymerization initiator, the thickness of the hard coat layer, and the like.
  • a hard coat layer containing a cured resin having a structure represented by the following general formula (7) can be obtained. [A-B-R 1 -Si (O 1/2) x R 2 3-x] ... (7)
  • a in the formula (7) is a structure containing an alicyclic obtained by reacting an alicyclic epoxy group.
  • the carbon number of A may be 7 or less.
  • a structure having 7 or less carbon atoms a structure represented by the specific formula C 6 H 9 (OH) (O 1/2 ) obtained by reacting with a cyclohexene oxide group, obtained by reacting with a methylcyclohexene oxide group.
  • the structure represented by the demonstrative formula C 6 H 8 (OH) (O 1/2 ) (CH 3 ) is exemplified. Of these, the structure represented by the demonstrative formula C 6 H 9 (OH) (O 1/2 ) obtained by reacting a cyclohexene oxide group having 6 carbon atoms is preferable.
  • the hard coat layer obtained by curing the above polyorganosiloxane compound contains a structural unit represented by the following formula (8) and a structural unit represented by the following formula (9).
  • A is the same as the general formula (7).
  • B, R 1 and D are the same as in the general formula (1) (3) (4). Since the SiO bond network of the polysiloxane compound is maintained even after curing by the reaction of the alicyclic epoxy group of the polyorganosiloxane compound, the structure (T3 body) represented by the formula (8) and the formula (9) are represented. The ratio (T3 / T2 ratio) of the structure (T2 body) to be formed is equal to the T3 / T2 ratio of the polyorganosiloxane compound before curing.
  • the polyorganosiloxane compound contains a structure derived from the silane compound (2) and R 4 in the general formula (2) contains an epoxy group other than the alicyclic epoxy group, the alicyclic derived from the silane compound (1)
  • R 4 in the general formula (2) contains an epoxy group other than the alicyclic epoxy group
  • the alicyclic derived from the silane compound (1) In addition to the reaction between the formula epoxy groups, the reaction between the alicyclic epoxy group derived from the silane compound (1) and the epoxy group derived from the silane compound (2), and the epoxy groups derived from the silane compound (2). Reaction also occurs.
  • a bond is formed between two alicyclics by the reaction of the alicyclic epoxy group, so that the molecular volume tends to increase by curing. Since the hard coat composition has a negative curing shrinkage rate, the curing shrinkage is smaller than when a general acrylic hard coat material is used, and the curl of the hard coat film can be reduced.
  • the hard coat layer caused by negative curing shrinkage is caused by raising the temperature at the time of irradiation with active energy rays to be higher than room temperature. Since the stress at the interface between the hard coat layer and the transparent resin film is canceled by the difference in linear expansion rate between the hard coat layer and the transparent resin film (the difference in the amount of shrinkage when returning from the heated state to room temperature), the curl amount can be appropriately controlled. ..
  • the temperature at the time of irradiation with active energy rays is preferably 35 ° C. or higher, more preferably 45 ° C. or higher, further preferably 50 ° C. or higher, and may be 55 ° C. or higher or 60 ° C. or higher.
  • the temperature at the time of irradiation with active energy rays is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, even if it is 100 ° C. or lower, 90 ° C. or lower, or 85 ° C. or lower. good.
  • the acid which is the active species of photocationic polymerization, remains in the composition even after irradiation with active energy, and the reaction rate is low at low temperatures near room temperature. Therefore, even after the irradiation with the active energy rays, the curing reaction may proceed for several days, and the curl of the hard coat film may gradually change. In such a case, a hard coat film having a smaller curl can be obtained by irradiating with active energy rays in anticipation of the amount of curl change with time.
  • the hard coat composition Since the hard coat composition has a negative curing shrinkage rate, as curing progresses, tensile stress is generated at the interface between the hard coat layer and the transparent resin film, and a force that tends to curl with the hard coat layer forming surface on the outside is exerted. It works. If the temperature at the time of irradiation with active energy rays is set high and photocuring is performed in a state where the heat ray expansion of the hard coat layer is large, the amount of shrinkage of the hard coat layer is large when the temperature is returned to room temperature. The inner curl is likely to occur. After that, when curing progresses over time at room temperature, negative curing shrinkage (volume expansion) occurs in the hard coat layer, so that curling is alleviated over time, and a hard coat film having a small curl amount can be obtained.
  • Heating may be performed after irradiation with active energy rays. Since the curing rate is increased by heating and the amount of uncured material is reduced, the change in the amount of curl over time can be suppressed. In addition, it can be expected that the hardness of the hard coat layer will increase due to the increase in the curing rate.
  • the heating temperature is, for example, 35 ° C. or higher, preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and may be 80 ° C. or higher, 90 ° C. or higher, or 100 ° C. or higher. .. From the viewpoint of suppressing plastic deformation of the hard coat film, the heating temperature is preferably 180 ° C.
  • the heating time is, for example, about 10 seconds to 60 minutes, and may be 20 seconds or more, 30 seconds or more, 40 seconds or more, 50 seconds or more or 60 seconds or more, 50 minutes or less, 40 minutes or less, 30 minutes or less, 20. It may be less than a minute, less than 10 minutes, or less than 5 minutes.
  • a hard coat layer having a polymer matrix crosslinked by ring-opening and polymerization reaction of the alicyclic epoxy group of the above polyorganosiloxane compound can achieve a surface hardness comparable to that of glass.
  • the surface hardness (pencil hardness) of the hard coat layer forming surface of the hard coat film is preferably 2H or more, more preferably 4H or more, and may be 6H or more, 7H or more, or 8H or more.
  • the diameter ⁇ of the mandrel at which cracks occur in the hard coat layer is small when the cylindrical mandrel test is performed with the hard coat layer forming surface inside. If the thickness of the hard coat layer is the same, the smaller the diameter of the mandrel, the better the bending resistance.
  • the diameter of the mandrel in which the hard coat layer is cracked is preferably 3 mm or less, more preferably 2 mm or less. As described above, the smaller the T3 / T2 ratio of the polyorganosiloxane compound, the more excellent the bending resistance and the smaller the mandrel diameter ⁇ tends to be.
  • the total light transmittance of the hard coat film is preferably 80% or more, more preferably 85% or more, and even more preferably 89% or more.
  • the hard coat film may be provided with various functional layers on the hard coat layer 3 or on the second main surface 1B of the transparent resin film 1. Further, a functional layer may be provided between the transparent resin film 1 and the hard coat layer 3. Examples of the functional layer include an adhesion-imparting layer, an adhesive layer, an antireflection layer, a water-repellent layer, an oil-repellent layer, a transparent conductive layer, a refractive index adjusting layer, an antistatic layer, an antiglare layer, and a polarizer-containing layer. Be done.
  • the hard coat film of the present invention can be suitably used for a cover window provided on the surface of an image display panel, a transparent substrate for a display, a transparent substrate for a touch panel, a substrate for a solar cell, and the like.
  • the hard coat film of the present invention can be suitably used as a cover window or a substrate film for a curved display, a flexible display, or the like.
  • IPA isopropyl alcohol
  • Table 1 shows the charging ratios (molar ratios) of the monomers (diamine and tetracarboxylic dianhydride) used for producing the polyimide resin A (PI-A) and the polyimide resin B (PI-B).
  • the abbreviations of the monomers in Table 1 are as follows.
  • TFMB 2,2'-bis (trifluoromethyl) benzidine
  • 33'-DDS 3,3'-diaminodiphenylsulfone
  • TMHQ p-phenylene bistrimeritic acid dianhydride
  • 6FDA 2,2-bis (3,3) 4-Dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanoic acid dianhydride
  • BPDA 3,3', 4,4'-biphenyltetracarboxylic dianhydride
  • CBDA 1,2 , 3,4-Cyclobutanetetracarboxylic dianhydride
  • TAHMBP 2,2', 3,3', 5,5'-hexamethyl-biphenyltetracarboxylic dianhydride
  • Polyimide resin A was dissolved in methylene chloride to prepare a solution having a solid content concentration of 11 wt%. This methylene chloride solution is applied onto a non-alkali glass plate and dried at 40 ° C. for 60 minutes, 70 ° C. for 30 minutes, 150 ° C. for 30 minutes, 170 ° C. for 30 minutes, 200 ° C. for 60 minutes in an air atmosphere. , A polyimide film 1 having a thickness of 50 ⁇ m was obtained.
  • the linear expansion coefficient of the polyimide film 1 (PI1) obtained from the TMA curve when the temperature was raised to 100 ° C. by thermomechanical analysis (TMA) and then cooled to 30 ° C. at 5 ° C./min was 30 ppm / ° C. rice field.
  • ⁇ Polyimide film 2> A polyimide film 2 having a thickness of 35 ⁇ m was obtained in the same manner as in the production of the polyimide film 1 except that the coating thickness of the solution was changed.
  • the coefficient of linear expansion of the polyimide film 2 (PI2) was 30 ppm / ° C.
  • Polyimide film 3 A polyimide film 3 having a thickness of 30 ⁇ m was obtained in the same manner as in the production of the polyimide film 1 except that the polyimide resin B was used instead of the polyimide resin A and the coating thickness of the solution was changed.
  • the coefficient of linear expansion of the polyimide film 3 (PI3) was 16 ppm / ° C.
  • ⁇ Polyethylene terephthalate film 1> A 125 ⁇ m thick polyethylene terephthalate film (“Lumilar U48” manufactured by Toray Industries, Inc.) was used. The coefficient of linear expansion of the polyethylene terephthalate film 1 (PET1) was 15 ppm / ° C.
  • ⁇ Polyethylene terephthalate film 2> A polyethylene terephthalate film having a thickness of 50 ⁇ m (“Lumilar U48” manufactured by Toray Industries, Inc.) was used. The coefficient of linear expansion of the polyethylene terephthalate film 2 (PET2) was 15 ppm / ° C.
  • KBM-4803 8-glycidyloxyoctyltrimethoxysilane
  • the residual ratio of the epoxy group of the polyorganosiloxane compound 2 was 95% or more, the polystyrene-equivalent weight average molecular weight was 4500, T3 / T2 was 2.1, and the residual amount of magnesium chloride (neutral salt catalyst) was 191 ppm.
  • Hard coat composition ⁇ Hard coat composition 1> A propylene carbonate solution (“CPI-101A” manufactured by San-Apro) containing 81.8 parts by weight of propylene glycol monomethyl ether and triarylsulfonium / SbF 6 salt as a photocationic polymerization initiator in 100 parts by weight of the polyorganosiloxane compound A is 0 as a solid content. .2 parts by weight and 0.5 parts by weight of a xylene / isobutanol solution of polyether-modified polydimethylsiloxane as a leveling agent (“BYK-300” manufactured by BYK) as a solid content were blended to obtain a hard coat composition 1. rice field.
  • CPI-101A manufactured by San-Apro
  • a hard coat composition 2 was obtained in the same manner as in the preparation of the hard coat resin composition 1 except that the amount of the photocationic polymerization initiator was changed to 2 parts by weight.
  • ⁇ Hard coat composition 3> Preparation of hard coat resin composition 1 except that the leveling agent was changed to a fluorine-based leveling agent (“Mega Fvck RS-90” manufactured by DIC) and the addition amount was changed to 0.3 parts by weight in terms of solid content. Similarly, the hard coat composition 3 was obtained.
  • a fluorine-based leveling agent (“Mega Fvck RS-90” manufactured by DIC)
  • ⁇ Hard coat composition 4> To 100 parts by weight of the polyorganosiloxane compound B , 0.5 parts by weight of a 50% propylene carbonate solution of triarylsulfonium P (Rf) n F 6-n salt (“CPI-200K” manufactured by San-Apro) as a solid content, and leveling The agent (“BYK-300” manufactured by BYK) was blended in an amount of 0.5 parts by weight as a solid content to obtain a hard coat composition 4.
  • CPI-200K triarylsulfonium P (Rf) n F 6-n salt
  • BASF 1-hydroxycyclohexylphenyl ketone
  • a support film having an acrylic pressure-sensitive adhesive layer having a thickness of 10 ⁇ m attached to a polyethylene terephthalate film having a thickness of 125 ⁇ m is attached to one surface of the polyimide film 1, and a hard coat composition is applied to the other surface to have a dry film thickness of 50 ⁇ m.
  • the film was applied using a bar coater so as to be the same, heated at 120 ° C. for 2 minutes, and then irradiated with ultraviolet rays at an ambient temperature of 80 ° C. so as to have an integrated light amount of about 2000 mJ / cm 2. After heating at 120 ° C. for 2 minutes to completely cure the hard coat composition, the polyimide film 1 was dissolved by immersing it in methylene chloride to isolate a hard coat layer (cured product of the hard coat composition). ..
  • the linear expansion coefficient and the curing shrinkage rate were measured using the isolated hard coat layer as a sample.
  • the coefficient of linear expansion was calculated from the TMA curve when cooled from 100 ° C. to 30 ° C. as in the case of the transparent resin film.
  • the density ⁇ L of the hard coat composition (solid) isolated after heat drying and before ultraviolet irradiation (before curing) was measured by the density gradient tube method.
  • the density ⁇ L of the composition (liquid) from which the volatile matter was removed by heating at 120 ° C. for 2 minutes was measured by the specific gravity bottle method.
  • the density ⁇ C of the hard coat layer after photocuring was measured by the density gradient tube method.
  • Table 2 shows the compositions, linear expansion coefficients and curing shrinkage rates of the hard coat compositions 1 to 5.
  • the blending amount of each component with the curable resin component as 100 parts by weight is represented by parts by weight.
  • the acrylic hard coat composition 5 showed a positive curing shrinkage rate.
  • the hard coat composition 4 containing a polyorganosiloxane compound having a non-alicyclic epoxy group as a curing resin component also had a positive curing shrinkage rate.
  • the hard coat compositions 1 to 3 containing a polyorganosiloxane compound having an alicyclic epoxy group as a curing resin component increased in volume (expansion) by photocuring and showed a negative curing shrinkage rate.
  • Hard coat film A support film having an acrylic pressure-sensitive adhesive layer having a thickness of 10 ⁇ m attached to a polyethylene terephthalate film having a thickness of 125 ⁇ m was attached to one surface of the polyimide film 1.
  • the hard coat composition 1 was applied to the other surface of the polyimide film using a bar coater so that the dry film thickness was 50 ⁇ m, and heated at 120 ° C. for 2 minutes. After that, using a transport-type ultraviolet irradiation device equipped with an ultraviolet irradiation lamp (Heleus "H valve", emission dose after output adjustment, 216 W / cm) arranged at a distance of 93 mm from the coating film, the ambient temperature was 80 ° C.
  • Heleus "H valve" ultraviolet irradiation lamp
  • the film was transported at a transport speed of 2 m / min, and was irradiated with ultraviolet rays so that the integrated light amount measured by the UV scale of Fuji Film Co., Ltd. was 1950 mJ / cm 2, and the hard coat composition was cured to cure the polyimide film 1.
  • a hard coat film 1 having a hard coat layer having a thickness of 50 ⁇ m was obtained.
  • ⁇ Hard coat film 2-10> On the polyimide film 1 in the same manner as in the production of the hard coat film 1, except that the thickness of the hard coat layer and the curing conditions (atmospheric temperature at the time of ultraviolet irradiation, distance from the coating film of the ultraviolet irradiation lamp) were changed. , A hard coat film including a hard coat layer made of a cured product of the hard coat composition 1 was produced. The hard coat films 4, 8 and 10 were heated at 120 ° C. for 2 minutes after being irradiated with ultraviolet rays.
  • An ultraviolet irradiation lamp (high-pressure mercury lamp "H03-" manufactured by Eye Graphics), which uses a polyimide film 2 instead of the polyimide film 1 and is arranged at a distance of 200 mm from the coating film after applying and heating the hard coat composition 1.
  • a transport-type ultraviolet irradiation device equipped with "L31” and a light emission dose of 120 W / cm after adjusting the output
  • transport at a transport speed of 4 m / min
  • UVA to UVC measured by EIT's "UV polyimide PUCK II”.
  • the hard coat composition 1 was placed on the polyimide film 2 in the same manner as in the production of the hard coat film 1, except that the thickness of the hard coat layer and the atmospheric temperature during ultraviolet irradiation were changed. A hard coat film having a hard coat layer made of a cured product was produced.
  • a polyimide film 3 was used instead of the polyimide film 2, and the polyimide film 3 was placed on the polyimide film 3 in the same manner as in the production of the hard coat films 11 to 13, except that the atmospheric temperature at the time of ultraviolet irradiation was changed as shown in Table 4.
  • a hard coat film including a hard coat layer made of a cured product of the hard coat composition 1 was produced.
  • a polyethylene terephthalate film 1 was used instead of the polyimide film 1, and a hard coat layer was applied and light irradiation was carried out without attaching a support film.
  • the thickness of the hard coat layer and the curing conditions were changed.
  • a hard coat film including a hard coat layer made of a cured product of the hard coat composition 1 was prepared.
  • ⁇ Hard coat film 22-36> The type of transparent resin film, the composition of the hard coat layer, the thickness of the hard coat layer, and the curing conditions were changed as shown in Tables 5 and 6, and a hard coat film was prepared in the same manner as in each of the above examples.
  • ⁇ Curl> A hard coat film is cut into a square of 100 mm ⁇ 100 mm, left to stand in an environment of 23 ° C. and 55% RH for 10 days, and then placed on a horizontal table with the hard coat layer forming surface facing up, from the table at the four vertices of the square. The distance (lifting amount) was measured, and the average value was taken as the curl amount. For those having curled with the hard coat layer forming surface on the outside, the curl was measured by placing the hard coat layer forming surface on a horizontal table as the lower side, and the sign of the curl amount was set to minus.
  • the curl amount was + ⁇ and the hard coat layer forming surface was on the outside, although the film was curled with the hard coat layer forming surface on the inside.
  • the curl amount of the curled film was set to - ⁇ .
  • the hard coat films 1 to 16 were subjected to a cylindrical mandrel test using a type 1 testing machine with the hard coat layer forming surface inside in accordance with JIS K5600-5: 1: 1999. When the hard coat films 1 to 16 were bent along the mandrel having a diameter of 2 mm, the hard coat layer was not cracked or peeled off.
  • Tables 3 to 6 show the materials, production conditions, and evaluation results of the hard coat films 1 to 36.
  • the hard coat films 31 to 36 using the acrylic hard coat composition 5 having a positive curing shrinkage rate are samples cut into squares regardless of the type of the transparent resin film and the curing temperature. However, it was curled into a tubular shape with the hard coat layer inside.
  • the hard coat film 30 using the hard coat composition 4 containing a polyorganosiloxane compound having a non-alicyclic epoxy group as a cured resin component was also curled into a tubular shape with the hard coat layer inside.
  • the curls of the hard coat films 1 to 29 using the hard coat composition having a negative curing shrinkage rate were reduced as compared with the hard coat films 30 to 36.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

ハードコートフィルム(10)は、透明樹脂フィルム(1)の一方の面にハードコート組成物の硬化物からなるハードコート層(3)を備える。ハードコート層の厚みは、透明樹脂フィルムの厚みの0.15倍以上である。ハードコート組成物は、負の硬化収縮率を有する。ハードコートフィルムを100mm×100mmのサイズの正方形に切り出して測定したカール量の絶対値は20mm以下が好ましい。ハードコート層は、脂環式エポキシ基を有するポリオルガノシロキサン化合物の硬化物を含んでいてもよい。

Description

ハードコートフィルムおよびその製造方法、ならびに表示装置
 本発明は、透明樹脂フィルムの主面上にハードコート層を備えるハードコートフィルムおよびその製造方法に関する。さらに、本発明は、ハードコートフィルムを備える画像表示装置に関する。
 ディスプレイ、タッチパネル、および太陽電池等のエレクトロニクスデバイスの急速な進歩に伴い、デバイスの薄型化や軽量化、更にはフレキシブル化が要求されている。これらの要求に対して、基板やカバーウインドウ等に用いられているガラス材料のプラスチックフィルム材料への置き換えが検討されている。これらの用途では、プラスチックフィルムに、高い耐熱性や、高温での寸法安定性、高機械強度が求められる。また、近年、曲面ディスプレイ(フレキシブルディスプレイ、フォルダブルディスプレイ)が開発されており、特にカバーウインドウ等に使用されるプラスチックフィルムには、上記特性に加えて、優れた透明性や可撓性(耐屈曲性)が要求されるようになっている。
 特許文献1には、フレキシブルディスプレイ用の透明基板材料として、ポリエチレンテレフタレートフィルム上に、アクリル系材料からなるハードコート層を設けたハードコートフィルムが開示されている。
特開2015-69197号公報
 カバーウインドウ等のディスプレイ表面に配置される部材には、高い硬度が要求されており、これに伴って大きな厚みのハードコート層を有するハードコート層を備えるハードコートフィルムが要求されている。しかし、アクリル系のハードコート材料を用いて作製したハードコートフィルムは、ハードコート層の厚みを大きくすると、ハードコート層形成面を内側とするフィルムの反り(カール)が生じ、フィルムのハンドリングが困難となる場合がある。上記に鑑み、本発明は、ハードコート層の厚みが大きい場合でも、カールが抑制されたハードコートフィルムの提供を目的とする。
 本発明者らは、硬化収縮率が負の材料をハードコート層に適用することで、ハードコートフィルムカール量をコントロール可能であることを見出し、本発明に至った。
 本発明の一実施形態は、透明樹脂フィルムの一方の主面上にハードコート層を備えるハードコートフィルムである。透明樹脂フィルムの主面上にハードコート組成物を塗布し、活性エネルギー線を照射することにより、ハードコート層が形成される。
 透明樹脂フィルムの樹脂材料としては、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、環状ポリオレフィン、アクリル樹脂、およびセルロース系樹脂等が挙げられる。透明樹脂フィルムの厚みは、10~150μmであってもよい。
 ハードコート層の厚みは、透明樹脂フィルムの0.15倍以上である。ハードコート層の厚みは透明樹脂フィルムの3倍以下であってもよい。ハードコート層の厚みは2~150μmであってもよい。
 ハードコート組成物としては、負の硬化収縮率を有するものが用いられる。ハードコート組成物は、脂環式エポキシ基を有するポリオルガノシロキサン化合物を含んでいてもよい。ポリオルガノシロキサン化合物の重量平均分子量は500~20000であってもよい。
 脂環式エポキシ基を有するポリオルガノシロキサン化合物は、例えば、脂環式エポキシ基を有するシラン化合物の縮合により得られる。ハードコート組成物は、光カチオン重合開始剤を含んでいてもよい。
 透明樹脂フィルム上でハードコート組成物を硬化する際に、加熱雰囲気下で活性エネルギー線を照射してもよい。加熱温度は、45~150℃であってもよい。透明樹脂フィルムのハードコート層非形成面に、支持フィルムを貼り合わせた状態で、ハードコート組成物への活性エネルギー線の照射を実施してもよい。ハードコート組成物に活性エネルギー線を照射した後に、さらに加熱を実施してもよい。
 100mm×100mmのサイズの正方形に切り出したハードコートフィルムのカール量の絶対値は20mm以下が好ましい。ハードコート層の線膨張率は、透明樹脂フィルムの線膨張率よりも大きくてもよい。
 本発明に依れば、ハードコート層の厚みが大きく、カールが小さいハードコートフィルムが得られる。
ハードコートフィルムの断面図である。 透明樹脂フィルムに支持フィルムが貼り合わせられ積層体の断面図である。 支持フィルムが貼り合わせられたハードコートフィルムの断面図である。
[ハードコートフィルムの概要]
 図1は、本発明の一実施形態の積層体の断面図である。積層体10は、透明樹脂フィルムの一方の主面1A上にハードコート層3を備えるハードコートフィルムである。
 透明樹脂フィルム1は、ハードコート層形成の土台となる可撓性のフィルム基材である。透明樹脂フィルムの全光線透過率は80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。透明樹脂フィルムのヘイズは、2%以下が好ましく、1%以下がより好ましい。
 透明樹脂フィルムを構成する樹脂材料は、透明樹脂であれば特に限定されない。透明樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート、ポリアミド、透明ポリイミド、環状ポリオレフィン、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂等が挙げられる。
 中でも、機械強度が高いことから、PET等のポリエステル、および透明ポリイミドが好ましい。ハードコートフィルムがディスプレイのカバーウインドウに用いられる場合、フィルム基材には、優れた耐熱性および機械強度が要求されることから、透明樹脂フィルムの樹脂材料として、透明ポリイミドが特に好ましい。一般的な全芳香族ポリイミドは黄色または褐色に着色しているのに対して、脂環式構造の導入、屈曲構造の導入、フッ素置換基の導入等により、可視光透過率が高い透明ポリイミドが得られる。
 透明樹脂フィルムは、単層でもよく、多層の構成でもよい。例えば、透明樹脂フィルムは、複数のフィルムが貼り合わせられた積層体でもよく、ハードコート層形成面(第一主面1A)および/またはハードコート層非形成面(第二主面1B)に、易接着層、帯電防止層、反射防止層等の機能層が設けられたものであってもよい。
 透明樹脂フィルムの厚みは特に限定されないが、10μm以上が好ましく、30μm以上がより好ましく、40μm以上がさらに好ましい。透明樹脂フィルムの厚みは、150μm以下が好ましく、100μm以下がより好ましく、80μm以下がさらに好ましく、60μm以下が特に好ましい。透明樹脂フィルムの厚みが小さいとハードコートフィルムの表面硬度等の機械特性が十分でない場合がある。一方、透明樹脂フィルムの厚みが大きいと、ハードコートフィルムの透明性や柔軟性が低下する場合がある。
 ハードコート層3の厚みは特に限定されないが、表面硬度の観点から、2μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましく、20μm以上、30μm以上、40μm以上または50μm以上であってもよい。透明性や柔軟性(耐屈曲性)の観点から、ハードコート層の厚みは、150μm以下が好ましく、100μm以下がより好ましく、90μm以下がさらに好ましく、80μm以下または70μm以下であってもよい。
 ハードコートフィルムの総厚み、すなわち、透明樹脂フィルム1の厚みとハードコート層3の厚みの合計は、15~1000μm程度であり、20μm以上が好ましく、30μm以上がより好ましく、40μm以上がさらに好ましく、50μm以上が特に好ましい。ハードコートフィルムの総厚みは、250μm以下が好ましく、170μm以下がより好ましく、150μm以下がさらに好ましく、110μm以下が特に好ましい。
 透明樹脂フィルム1の厚みdに対するハードコート層3の厚みdの比d/dは、0.15以上であり、0.20以上が好ましく、0.40以上がより好ましく、0.60以上、0.80以上または1.00以上であってもよい。一般には、ハードコート層の厚みdが大きく、d/dが大きくなると、ハードコートフィルムのカールが大きくなる傾向があるが、後述のように負の硬化収縮率を有するハードコート材料を用いることにより、カールが低減される傾向がある。厚み比d/dの上限は特に限定されないが、ハードコート層の形成性や柔軟性の観点から、d/dは、3.00以下が好ましく、2.00以下がより好ましく、1.80以下がさらに好ましく、1.60以下または1.40以下であってもよい。
 ハードコート層3の線膨張率は、透明樹脂フィルム1の線膨張率よりも大きいことが好ましい。線膨張率は熱機械分析(TMA)により、温度100℃から30℃に冷却する際のTMA曲線からの算出値である。ハードコートフィルムにおけるハードコート層の線膨張率は、透明樹脂フィルムを溶媒等により溶解させてハードコート層を単離した試料を用いて測定する。
 ハードコート層の線膨張率が相対的に大きいことにより、負の硬化収縮率を有するハードコート材料の硬化時にハードコート層と透明樹脂フィルムとの界面に生じる応力が、線膨張率差(加熱寸法変化量の差)に起因して界面に生じる応力によって打ち消されるため、ハードコートフィルムのカールを所望の値にコントロールできる。
 ハードコートフィルムのカール制御の安定性の観点から、透明樹脂フィルムとハードコート層との線膨張率差は、100ppm/℃以下が好ましく、70ppm/℃以下が好ましく、50ppm/℃以下がさらに好ましい。線膨張率差は、5ppm/℃以上が好ましく、10ppm/℃以上、20ppm/℃以上、または30ppm/℃以上であってもよい。
 ハードコートフィルムは、100mm×100mmの正方形に切り出した試料のカール量の絶対値が室温(25℃)で20mm以下であることが好ましい。ハードコートフィルムのカール量は、ハードコート層3形成面を上側として水平な台に置いて評価する。正方形の4つの頂点の台からの距離(浮き上がり量)を測定し、その平均値をカール量とする。フィルムの面内の中央部が浮き上がっている場合(逆向きのカールが生じている場合)は、ハードコート層形成面を下側として台の上にフィルムを置いて、カール量を測定する。この場合、カール量は負の値となる。
 ハードコート材料が光カチオン硬化性である場合、光カチオン重合開始剤(光酸発生剤)への光照射により発生した活性種としての酸は、光ラジカルに比べて寿命が長く、光照射後も数日間にわたって硬化反応が継続する。これに伴って、ハードコート層の寸法変化によるカール量が経時的に変化する場合がある。経時変化の影響を小さくするために、カール量は、硬化処理(光硬化)から10日後の測定値を採用する。
 ハードコートフィルムを備えるディスプレイ等の製造工程においては、ハードコートフィルムを所定サイズのシートに裁断後、ベルトコンベア等に載置して搬送する場合がある。その際、下向きのカール量が大きい場合は、コンベア間の間隙にフィルムの端部が入り込み、搬送装置からフィルムが落下する場合がある。また、上向きのカールが大きい場合は、印刷等のためにハードコートフィルムを下面から吸引固定する際に、吸引装置とフィルムとの間の隙間が大きく、吸引固定が困難となる場合がある。
 そのため、ハードコートフィルムは、ハードコート層を上面および下面のいずれに配置した場合でも、カール量が小さいことが好ましい。100mm×100mmの正方形に切り出したハードコートフィルムのカール量の絶対値は、15mm以下がより好ましく、10mm以下がさらに好ましく、7mm以下または5mm以下であってもよく、理想的には0である。
 本発明においては、ハードコート材料として、硬化収縮率が負である材料、すなわち硬化により膨張し体積が増加する材料を用いる。ハードコート材料の硬化収縮率は、JIS K6901:2008に準拠して密度法により求められる体積収縮率であり、下記により定義される。ρは硬化後の密度、ρは硬化前の密度である。液体の密度は比重瓶法により測定し、固体の密度は密度勾配管法により測定する。
  硬化収縮率(%)=100×(ρ-ρ)/ρ
 アクリル等の一般的なハードコート材料は、正の硬化収縮率を有する(硬化に伴って収縮する)ため、ハードコート層の厚みが大きくなると、透明樹脂フィルムとハードコート層との界面の圧縮応力が大きくなり、ハードコート層形成面を内側とするフィルムの反り(カール)が大きくなる傾向がある。これに対して、ハードコート材料が負の硬化収縮を有することにより、ハードコート層形成面を内側とするカールが低減される傾向がある。
 一方、硬化収縮率が過度に小さい(硬化時の体積膨張が過度に大きい)と、ハードコートフィルムが、ハードコート層形成面を外側にカールする傾向があり、透明樹脂フィルムとハードコート層との線膨張率差を利用してもカールを適切に制御できない場合がある。そのため、ハードコート材料の硬化収縮率は、-10%以上が好ましく、-5%以上がより好ましく、-3%以上がさらに好ましい。硬化収縮率は、-0.01%以下が好ましく、-0.1%以下がより好ましく、-0.5%以下がさらに好ましく、-1%以下または-1.5%以下であってもよい。
[ハードコート層]
 透明樹脂フィルム上に、硬化性樹脂を含むハードコート材料(ハードコート組成物)を塗布し、硬化することにより、ハードコート層が形成される。上記のように、ハードコート材料は負の硬化収縮率を有する。ハードコート材料の硬化収縮率は、主に硬化性樹脂の構造、特に、硬化性官能基の種類に依存する。例えば、硬化性官能基として脂環式エポキシ基を有する材料は、光カチオン重合により、負の硬化収縮を示す場合がある。
 以下では、負の硬化収縮率を有する樹脂材料として、脂環式エポキシ基を有するポリオルガノシロキサン化合物を用いたハードコート材料によりハードコート層を形成する実施形態について具体例を挙げて説明する。
<ポリオルガノシロキサン化合物>
(シラン化合物)
 脂環式エポキシ基を有するポリオルガノシロキサン化合物は、下記一般式(1)で表されるシラン化合物の縮合により得られる。
    E-B-R-Si(OR 3-x) …(1)
 Rは、水素原子またはアルキル基である。アルキル基の炭素数は1~10が好ましい。炭素数1~10のアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基、シクロヘキシル基、エチルヘキシル基等が挙げられる。xは2または3である。
 一般式(1)で表されるシラン化合物(以下「シラン化合物(1)」と記載する場合がある)は、一分子中に2個または3個の(-OR)を有する。Si-ORが加水分解性を有するため、シラン化合物の縮合によりポリオルガノシロキサン化合物が得られる。加水分解性の観点から、Rの炭素数は3以下が好ましく、Rがメチル基であることが特に好ましい。
 Rは、水素原子、または炭素数1~10のアルキル基を有するアルコキシ基、炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基からなる群から選択される1価の炭化水素基である。アルキル基およびアラルキル基における炭化水素の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基、シクロヘキシル基、エチルヘキシル基、ベンジル基、フェニル基、トリル基、キシリル基、ナフチル基、フェネチル基等が挙げられる。
 一般式(1)におけるEは脂環式エポキシ基である。脂環式エポキシ基はエポキシ基が開環しても脂環構造を保持しているため、硬化収縮が小さく、負の硬化収縮率を示しやすい。脂環式エポキシ基は、脂環を構成する隣り合う2つの炭素原子と酸素原子とにより構成されるエポキシ基を有する。脂環としては、例えば、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロオクチル環等が挙げられる。中でも、構造の安定性やエポキシ基の反応性の観点から、脂環式エポキシ基としては、シクロヘキセンオキシド、メチルシクロヘキセンオキシド等の六員環の脂環構造を有するものが好ましい。
 Rは、炭素数2~12のアルキレン基であり、Bは、直結、エーテル(-O-)、またはエステル(-COO-)である。すなわち、一般式(1)のシラン化合物は、Si原子に、スペーサとしての-BR-を介して脂環式エポキシ基が結合している化合物である。脂環式エポキシ基の硬化反応性等の観点から、Bは、直結(すなわち、アルキレンRに直接脂環式エポキシ基が直接結合)、またはエステルが好ましい。
 アルキレンRの具体例としては、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、等が挙げられる。Rは、メチレン(-CH-)の水素原子の一部または全部が、炭素数1~6の置換基により置換されたものでもよい。炭素数1~6の置換基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、フェニル基等が挙げられる。
 アルキレンRの主鎖の炭素数が大きく鎖長が長いほど、Si原子と脂環式エポキシ基との距離が大きく、硬化後のハードコート層の耐屈曲性が向上する傾向がある。一方、Rの主鎖の炭素数が小さいほど、ハードコート層の硬度が高くなる傾向がある。
 一般式(1)で表されるシラン化合物の具体例としては、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルメチルジエトキシシラン等が挙げられる。
 シラン化合物の縮合によりポリオルガノシロキサン化合物を得る場合、上記の一般式(1)で表される脂環式エポキシ基を有するシラン化合物に加えて、他のシラン化合物を用いてもよい。他のシラン化合物(すなわち、脂環式エポキシ基を含まないシラン化合物、以下「シラン化合物(2)」と記載する場合がある)は、下記の一般式(2)で表される。
    R-(Si(OR 3-x) …(2)
 一般式(2)において、R、Rおよびxは、一般式(1)と同様である。Rは、脂環式エポキシ基を含まない1価の有機基である。Rは、置換もしくは無置換の二重結合を含有する基(例えば、炭素数1~10の置換もしくは無置換のアルケニル基)、炭素数1~10の置換もしくは無置換のアルキル基、炭素数6~25のアリール基、炭素数7~12のアラルキル基、グリシジル基を有する基、オキセタニル基を有する基、または水素原子である。
 シラン化合物の縮合によりポリオルガノシロキサン化合物を得る場合、シラン化合物(1)とシラン化合物(2)の合計に対するシラン化合物(1)の比率は、33~100モル%が好ましく、50~100モル%がより好ましい。シラン化合物(1)の比率は、60モル%以上、70モル%以上、80モル%以上、90モル%以上または95モル%以上であってもよく、100モル%であってもよい。
(ポリオルガノシロキサン化合物の特性)
 上記のシラン化合物のSi-OR部分の加水分解および縮合により、シラン化合物間にSi-O-Si結合が形成され、ポリオルガノシロキサン化合物が生成する。硬化膜(ハードコート層)の硬度を高める観点から、ポリオルガノシロキサン化合物の重量平均分子量は500以上が好ましい。また、揮発を抑制する観点からも、ポリオルガノシロキサン化合物の重量平均分子量は500以上が好ましい。一方、分子量が過度に大きいと、他の組成物との相溶性の低下等に起因して白濁が生じる場合がある。そのため、ポリオルガノシロキサン化合物の重量平均分子量は20000以下が好ましい。ポリオルガノシロキサン化合物の重量平均分子量は、700~18000がより好ましく、1000~16000がさらに好ましく、1200~14000、または1500~12000であってもよい。
 ポリオルガノシロキサン化合物の重量平均分子量は、反応に用いる水の量、触媒の種類および量を適切に選択することにより、制御できる。例えば、加水分解反応の際に触媒とともに仕込む水の量が多いほど、重量平均分子量が大きくなる傾向がある。
 一般式(1)のシラン化合物の加水分解縮合により生成するポリオルガノシロキサン化合物は、下記式(3)で表される構造単位と、下記式(4)で表される構造単位を含む。
    [E-B-R-SiO3/2] …(3)
    [E-B-R-SiO2/2-D] …(4)
 一般式(3)および一般式(4)において、E,BおよびRは、一般式(1)と同様である。一般式(4)におけるDは、水素原子、または炭素数1~10のアルキル基を有するアルコキシ基、炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基からなる群から選択される基である。
 式(3)で表される構成単位は、一般式(1)においてx=3であるT単位構造を有するシラン化合物の3つのアルコキシ基(Si-OR)が、全て縮合反応して、Si-O-Si結合を形成している構造であり、「T3体」と称される。式(4)で表される構成単位は、一般式(1)においてx=3であるT単位構造を有するシラン化合物の3つのアルコキシ基のうち、2つが縮合反応しSi-O-Si結合を形成している構造を取っている構造であり、「T2体」と称される。
 式(3)で表される構造(T3体)と式(4)で表される構造(T2体)の比率[T3体]/[T2体]が小さいほど、ポリオルガノシロキサン化合物の硬化により得られるハードコート層の耐屈曲性が向上する傾向がある。屈曲時のハードコート層のクラックや割れが抑制されたハードコートフィルムを得る観点から、ポリオルガノシロキサン化合物のT2体に対するT3体の比(以下、「T3/T2比」と記載する場合がある)は、5未満であってもよく、4以下、3.5以下、3以下または2.5以下であってもよい。ハードコート層の硬度を確保する観点から、ポリオルガノシロキサン化合物のT3/T2比は、0.8以上であってもよく、1以上、1.5以上または2以上であってもよい。
 ポリオルガノシロキサン化合物におけるT3体およびT2体の含有量および割合は、29Si-NMR測定により算出できる。29Si-NMRにおいて、T3体のSi原子とT2体のSi原子は異なる化学シフトを示すため、NMRスペクトルにおけるそれぞれのシグナルの積分値を求め、両者の比から、T3/T2比を算出できる。
 T3/T2比は、シラン化合物の加水分解縮合反応に用いる水の量、触媒の種類および触媒の量を調整することにより制御可能である。例えば、触媒量が多いほど、T3/T2比が大きくなる傾向がある。後述のように、中性塩触媒を用いることにより、T3/T2が小さくなる傾向がある。
(シラン化合物の加水分解および縮合)
 シラン化合物と水とを反応させることにより、シラン化合物のSi-OR部分が加水分解し、加水分解物が縮合することにより、ポリオルガノシロキサン化合物が得られる。加水分解および縮合反応に必要な水の量は、Si原子に結合した-OR基1当量に対して0.3~3当量が好ましく、0.5~2当量がより好ましい。水の量が過度に少ない場合は、加水分解されずに残存するOR基が多く、ポリオルガノシロキサン化合物の分子量が小さいために、ハードコート層の硬度が不足する傾向がある。水の量が過度に多い場合は、加水分解および縮合反応の反応速度が大きく、高分子量の縮合物が生成し、ハードコート層の透明性や柔軟性が低下する傾向がある。
 シラン化合物の加水分解反応および縮合反応においては、シラン化合物(1)に含まれる脂環式エポキシ基の開環による失活を抑制することが好ましい。エポキシ基の開環を抑制する観点から、中性または塩基性条件下で反応を実施することが好ましい。特に、シラン化合物の縮合物として得られるポリオルガノシロキサン化合物のT3/T2比を小さくする観点から、中性塩触媒の存在下で加水分解および縮合反応を行うことが好ましい。
 中性塩とは、強酸と強塩基との正塩であり、具体的には、アルカリ金属元素および第2属元素からなる群から選択される元素のイオン(カチオン)と、塩化物イオン、臭化物イオンおよびヨウ化物イオンからなる群から選択されるハロゲン化物イオン(アニオン)との塩である。
 中性塩の具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ベリリウム、塩化マグネシウム、塩化カルシウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化ベリリウム、臭化マグネシウム、臭化カルシウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化ベリリウム、ヨウ化マグネシウム、ヨウ化カルシウム等が挙げられる。
 上記の様に、中性塩触媒を用いることにより、T3/T2比の小さいポリオルガノシロキサン化合物が得られる。また、酸触媒や塩基触媒は、触媒自身が、種々の物質と求電子的・求核的に反応するのに対して、中性塩は、反応容器や保管容器の金属や樹脂材料に対する浸食性が低いため、製造・保管設備の材質の制約が少ないとの利点を有する。
 シラン化合物の縮合反応に一般的に用いられている塩基性触媒がハードコート組成物中に残存している場合、光カチオン重合開始剤(光酸発生剤)から発生する酸をクエンチして重合反応を阻害する場合がある。これに対して、中性塩触媒を用いることにより、重合阻害を抑制できる。そのため、シラン化合物の縮合により得られるポリオルガノシロキサン化合物や、ハードコート組成物に中性塩触媒が残存していてもよく、反応後の触媒の除去や中和等の工程を省略可能であり、中性塩触媒の使用は、製造工程の簡略化や収率向上に寄与し得る。
 触媒の使用量は特に限定されない。触媒の使用量が多いほど、シラン化合物の加水分解および縮合反応が促進される傾向がある。一方、触媒の使用量が過度に多いと、縮合物の透明性が損なわれたり、精製が煩雑となる場合がある。中性塩触媒の使用量は、シラン化合物の加水分解性シリル基(-OR)1モルに対して、0.000001~0.1モルが好ましく、0.000005~0.01モルがより好ましい。
 上記の様に、シラン化合物の加水分解および縮合反応により得られたポリオルガノシロキサン化合物には、中性塩触媒が残存していてもよい。ポリオルガノシロキサン化合物中に残存する中性塩(触媒)の量は、1ppm以上であってもよく、10ppm以上、50ppm以上または100ppm以上であってもよい。ハードコート層の透明性の観点から、ポリオルガノシロキサン化合物中に残存する塩基性触媒の量は、10000ppm以下が好ましく、5000ppm以下がより好ましく、3000ppm以下がさらに好ましく、1000ppm以下、800ppm以下または500ppm以下であってもよい。
 シラン化合物の加水分解および縮合反応においては、希釈溶媒、および加水分解により発生するアルコール等を還流しながら反応を実施してもよい。希釈溶媒は、水との相溶性を示すものが好ましく、水溶性のアルコールまたはエーテル化合物が好ましい。シラン化合物は、中性塩や加水分解に用いる水との相溶性が低いものが多いため、希釈溶媒により溶液として相溶系として反応させることが好ましい。
 希釈溶媒の沸点は、40℃以上が好ましく、50℃以上がより好ましく、60℃以上がさらに好ましい。希釈溶媒の沸点が過度に低いと、低温で希釈溶媒が還流状態となるため、反応速度が低下する場合がある。反応後の希釈溶媒の除去性の観点から、希釈溶媒の沸点は200℃以下が好ましい。
 希釈溶媒の具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、2-ブタノール、1-メトキシ-2-プロパノール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル等が挙げられる。
 シラン化合物の加水分解および縮合反応の反応温度は、40℃以上が好ましく、50℃以上がより好ましく、60℃以上がさらに好ましい。反応温度が40℃以上であれば、中性塩の触媒活性が高いため、反応時間を短縮できる。シラン化合物の有機基の副反応を抑制する観点から、反応温度は200℃以下が好ましい。
 硬化物(ハードコート層)における架橋点密度を高めて、硬度を向上させる観点から、シラン化合物の加水分解および縮合により得られるポリオルガノシロキサン化合物は、脂環式エポキシ基の残存率が高い方が好ましい。脂環式エポキシ基の残存率、すなわち、原料であるシラン化合物(1)に含まれる脂環式エポキシ基のモル数に対する、縮合により得られるポリオルガノシロキサン化合物における脂環式エポキシ基のモル数の割合は、20%以上が好ましく、40%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましく、90%以上または95%以上であってもよい。脂環式エポキシ基の残存率は、H-NMR測定により求められる。
 加水分解および縮合反応では、エポキシ基の開環等の副反応を除いて、シラン化合物(1)のSi原子に結合したE-B-R-は反応せず、その構造が保持されている。したがって、シラン化合物(1)の縮合により得られるポリオルガノシロキサン化合物は、下記の一般式(5)で表される構造(以下、「構造(5)」と記載する場合がある)を有する。
    [E-B-R-Si]   …(5)
 一般式(5)におけるE,BおよびRは、一般式(1)と同様である。すなわち、構造(5)は、Si原子に、他の有機基を介してまたは介さずに、脂環式エポキシ基が結合している構造である。
 ポリオルガノシロキサン化合物のSi原子の総数に対する構造(5)の数(すなわち、脂環式エポキシ基の数)の比率は、33%以上が好ましく、50%以上がより好ましく、60%以上、70%以上、80%以上、90%以上または95%以上であってもよく、100%であってもよい。
 シラン化合物(1)およびシラン化合物(2)は、1分子あたり1個のSiを有するから、N分子のシラン化合物の縮合により生成するポリオルガノシロキサン化合物はN個のSi原子を含む。加水分解および縮合反応の際に脂環式エポキシ基が反応せずに残存している場合は、n個のシラン化合物(1)からn個の構造(5)が生成する。したがって、シラン化合物の縮合により得られるポリオルガノシロキサン化合物において、原料として用いたシラン化合物におけるシラン化合物(1)の割合(モル比:n/N)は、ポリオルガノシロキサン化合物におけるSi原子の数に対する構造(5)の比率に略等しい。
 シラン化合物として、シラン化合物(1)に加えてシラン化合物(2)を用いた場合、ポリオルガノシロキサン化合物は、上記の構造(5)に加えて、下記の一般式(6)で表される構造(以下、「構造(6)」と記載する場合がある)を有する。
    [R-Si]   …(6)
 一般式(6)におけるRは、一般式(2)と同様である。
<ハードコート組成物>
 ハードコート組成物は、上記の硬化性樹脂を含む組成物である。ハードコート組成物は、ポリオルガノシロキサン化合物等の硬化性樹脂に加えて、光重合開始剤を含むことが好ましく、その他の成分を含んでいてもよい。
(光カチオン重合開始剤)
 硬化性樹脂がエポキシ基を有するポリオルガノシロキサン化合物である場合、ハードコート組成物は光カチオン重合開始剤を含むことが好ましい。光カチオン重合開始剤は、活性エネルギー線の照射により酸を発生する化合物(光酸発生剤)である。光酸発生剤から生成した酸により、上記のポリオルガノシロキサン化合物のエポキシ基の開環および重合反応が進行し、分子間架橋が形成されハードコート材料が硬化する。
 光酸発生剤としては、トルエンスルホン酸または四フッ化ホウ素等の強酸;スルホニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、セレニウム塩等のオニウム塩類;鉄-アレン錯体類;シラノール-金属キレート錯体類;ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、イミドスルホネート類、ベンゾインスルホネート類等のスルホン酸誘導体;有機ハロゲン化合物類等が挙げられる。
 上記の光酸発生剤の中で、脂環式エポキシ基を有するポリオルガノシロキサン化合物を含有するハードコート組成物における安定性が高いことから、芳香族スルホニウム塩または芳香族ヨードニウム塩が好ましい。これらのカウンターアニオンとしては、フルオロフォスフェート系アニオン、フルオロアンチモネート系アニオン、フルオロボレート系アニオン等が挙げられる。これらのカウンターアニオンを含む光酸発生剤を用いた場合、光硬化速度が大きく、透明樹脂フィルムとの密着性に優れるハードコート層が得られやすい。
 ハードコート組成物中の光カチオン重合開始剤の含有量は、ポリオルガノシロキサン化合物100重量部に対して、0.05~10重量部が好ましく、0.1~5重量部がより好ましく、0.2~2重量部がさらに好ましい。
(レベリング剤)
 ハードコート組成物は、レベリング剤を含んでいてもよい。ハードコート層がレベリング剤を含むことにより、表面張力の低減、表面平滑性の向上、滑り性の向上、防汚性(耐指紋性等)の向上等が期待できる。また、レベリング剤が、エポキシ基との反応性を有する基および/または加水分解縮合性基を有することにより、ハードコート層の耐擦傷性の向上が期待できる。
 レベリング剤としては、シリコーン系レベリング剤、フッ素系レベリング剤等が挙げられる。シリコーン系レベリング剤としては、ポリオルガノシロキサン骨格を有するレベリング剤が挙げられる。フッ素系レベリング剤としては、フルオロ脂肪族炭化水素骨格を有するレベリング剤等が挙げられる。フルオロ脂肪族炭化水素骨格としては、フルオロメタン、フルオロエタン、フルオロプロパン、フルオロイソプロパン、フルオロブタン、フルオロイソブタン、フルオロt-ブタン、フルオロペンタン、フルオロヘキサン等のフルオロC1-10アルカン等が挙げられる。
 ハードコート組成物がレベリング剤を含む場合、その含有量は、ポリオルガノシロキサン化合物100重量部に対して、0.001~10重量部が好ましく、0.01~5重量部がより好ましく、0.05~1重量部以下がさらに好ましい。
(反応性希釈剤)
 ハードコート組成物は、反応性希釈剤を含んでいてもよい。反応性希釈剤は、例えば、上記のポリオルガノシロキサン化合物以外のカチオン重合性化合物を含んでいてもよい。光カチオン重合の反応性希釈剤としては、カチオン重合性官能基を有する化合物が用いられる。反応性希釈剤のカチオン重合性官能基としては、エポキシ基、ビニルエーテル基、オキセタン基、およびアルコキシシリル基が挙げられる。中でも、ポリオルガノシロキサン化合物のエポキシ基との反応性が高いことから、反応性希釈剤としては、エポキシ基を有するものが好ましい。
 ハードコート組成物における反応性希釈剤の含有量は、ポリオルガノシロキサン化合物100重量部に対して、100重量部以下が好ましく、50重量部以下がより好ましい。
(光増感剤)
 ハードコート組成物は、光カチオン重合開始剤(光酸発生剤)の感光性向上等の目的で、光増感剤を含んでいてもよい。光増感剤は、光酸発生剤が、それ自体では吸収できない波長域の光を吸収できるものがより効率的であるため、光酸発生剤の吸収波長域との重なりが少ないものが好ましい。光増感剤としては、アントラセン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体、アントラキノン誘導体、ベンゾイン誘導体等が挙げられる。
 ハードコート組成物における光増感剤の含有量は、上記の光酸発生剤100重量部に対して50重量部以下が好ましく、30重量部以下がより好ましく、10重量部以下がさらに好ましい。
(粒子)
 ハードコート組成物は、表面硬度や耐屈曲性等の膜特性の調整や、硬化収縮の抑制等を目的として粒子を含んでいてもよい。粒子としては、有機粒子、無機粒子、有機無機複合粒子等を適宜選択して用いればよい。有機粒子の材料としては、ポリ(メタ)アクリル酸アルキルエステル、架橋ポリ(メタ)アクリル酸アルキルエステル、架橋スチレン、ナイロン、シリコーン、架橋シリコーン、架橋ウレタン、架橋ブタジエン等が挙げられる。無機粒子の材料としては、シリカ、チタニア、アルミナ、酸化スズ、ジルコニア、酸化亜鉛、酸化アンチモン等の金属酸化物;窒化珪素、窒化ホウ素等の金属窒素化物;炭酸カルシウム、リン酸水素カルシウム、リン酸カルシウム、リン酸アルミニウム等の金属塩等が挙げられる。有機無機複合フィラーとしては、有機粒子の表面に無機物層を形成したものや、無機粒子の表面に有機物層または有機微粒子を形成したものが挙げられる。
 粒子の形状としては、球状、粉状、繊維状、針状、鱗片状等が挙げられる。球状粒子は異方性がなく応力が偏在し難いことから、歪みの発生が抑えられ、ハードコート材料の硬化時の体積変化等に起因するカール抑制に寄与し得る。
 粒子の平均粒子径は、例えば5nm~10μm程度である。ハードコート層の透明性を高める観点から、平均粒子径は1000nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましく、100nm以下が特に好ましい。粒子径は、レーザー回折/散乱式の粒子径分布測定装置により測定でき、体積基準のメジアン径を平均粒子径とする。
 ハードコート組成物は、表面修飾された粒子を含んでいてもよい。粒子が表面修飾されることにより、ポリオルガノシロキサン化合物中での粒子の分散性が向上する傾向がある。また、粒子表面がエポキシ基と反応可能な重合性官能基により修飾されている場合は、粒子表面の官能基と上記のポリオルガノシロキサン化合物のエポキシ基とが反応して化学架橋が形成されるため、膜強度の向上が期待できる。
 エポキシ基と反応可能な重合性官能基としては、ビニル基、(メタ)アクリル基、水酸基、フェノール性水酸基、カルボキシ基、酸無水物基、アミノ基、エポキシ基、オキセタン基等が挙げられる。中でも、エポキシ基が好ましい。特に、光カチオン重合によるハードコート組成物の硬化の際に、粒子とポリオルガノシロキサン化合物との間に化学架橋を形成できることから、エポキシ基で表面修飾された粒子が好ましい。
 表面に反応性官能基を有する粒子としては、例えば、表面修飾された無機粒子や、コアシェルポリマー粒子が挙げられる。
(溶媒)
 ハードコート組成物は、無溶媒型でもよく、溶媒を含んでいてもよい。溶媒を含む場合は、透明樹脂フィルムを溶解させないものが好ましい。一方、透明樹脂フィルムを膨潤させる程度の溶解性を有する溶媒を用いることにより、透明樹脂フィルムとハードコート層との密着性が向上する場合がある。溶媒の含有量は、ポリオルガノシロキサン化合物100重量部に対して、500重量部以下が好ましく、300重量部以下がより好ましく、100重量部以下がさらに好ましい。
(添加剤)
 ハードコート組成物は、無機顔料、有機顔料、表面調整剤、表面改質剤、可塑剤、分散剤、湿潤剤、増粘剤、消泡剤等の添加剤を含んでいてもよい。また、ハードコート組成物は、上記のポリオルガノシロキサン化合物以外の熱可塑性または熱硬化性の樹脂材料を含んでいてもよい。ポリオルガノシロキサン化合物および/またはポリオルガノシロキサン化合物以外の樹脂材料が、ラジカル重合性を有する場合、ハードコート組成物は、光カチオン重合開始剤に加えてラジカル重合開始剤を含んでいてもよい。
<ハードコート層の形成>
 透明樹脂フィルム上にハードコート組成物を塗布し、必要に応じて溶媒を乾燥除去した後、活性エネルギー線を照射してハードコート組成物を硬化することにより、透明樹脂フィルム1上にハードコート層3を備えるハードコートフィルムが得られる。
 ハードコート組成物を塗布する前に、透明樹脂フィルムの表面に、コロナ処理やプラズマ処理等の表面処理を行ってもよい。また、透明樹脂フィルムの表面に易接着層(プライマー層)等を設けてもよい。ポリオルガノシロキサン化合物の硬化により形成されるハードコート層は、樹脂フィルムに対する高い密着性を示すため、易接着層等を設けなくてもよい。すなわち、ハードコートフィルムは、透明樹脂フィルム1とハードコート層3とが接していてもよい。
 透明樹脂フィルム1の第一主面1Aにハードコート組成物を塗布する前に、図2に示す様に、透明樹脂フィルム1の第二主面1Bに支持フィルム6を貼り合わせてもよい。支持フィルム6は、透明樹脂フィルム1から剥離可能であるものが好ましく、例えば、フィルム5の表面に弱粘着性の粘着剤層4を備える積層体が用いられる。
 透明樹脂フィルムの第二主面1Bに支持フィルム6を貼り合わせた状態で、透明樹脂フィルムの第一主面1Aにハードコート組成物を塗布し、硬化することにより、図3に示す様に、ハードコートフィルムと支持フィルム6とが積層された積層体が形成される。この積層体から支持フィルムを剥離除去することにより、図1に示すハードコートフィルム10が得られる。
 支持フィルム6を貼り合わせた状態でハードコート層3を形成することにより、加熱時や光照射時の透明樹脂フィルムの変形や熱ダメージが抑制される場合がある。また、支持フィルム6を貼り合わせることにより、全体の厚みが大きくなり積層体12の剛性が増大するため、ハードコート層形成時のカールの発生が抑制され、ハンドリング性が向上する。
 透明樹脂フィルム1と支持フィルム6との積層体12に剛性を持たせる観点から、支持フィルム6の厚みは、透明樹脂フィルム1の厚みよりも大きいことが好ましい。支持フィルム6の厚みは、50μm以上が好ましく、80μm以上がより好ましく、100μm以上がさらに好ましい。ロール搬送等でのハンドリング性を保持する観点から、支持フィルムの厚みは500μm以下が好ましく、300μm以下がより好ましく、200μm以下または150μm以下であってもよい。
 透明樹脂フィルム上へのハードコート組成物の塗布方法は特に限定されず、公知の方法を採用できる。塗布方法としては、ファウンテンダイ、スロットダイ等のダイコーター、グラビアコーター、コンマコーター等のロールコーター、バーコーター、ディップコーター、スピンコーター、スプレーコーター等を例示できる。
 光硬化の際に照射する活性エネルギー線としては、可視光線、紫外線、赤外線、X線、 α線、β線、γ線、電子線等が挙げられる。硬化反応速度が高くエネルギー効率に優れることから、活性エネルギー線としては、紫外線が好ましい。活性エネルギー線の積算照射量は、例えば50~10000mJ/cm程度であり、光カチオン重合開始剤の種類および配合量、ハードコート層の厚み等に応じて設定すればよい。
 上記のポリオルガノシロキサン化合物を含むハードコート組成物に活性エネルギー線を照射すると、光カチオン重合開始剤から生成した酸により、脂環式エポキシ基が開環およびカチオン重合して、硬化が進行し、下記の一般式(7)で表される構造を有する硬化樹脂を含むハードコート層が得られる。
  [A-B-R-Si(O1/2 3-x] …(7)
 式(7)におけるAは脂環式エポキシ基が反応して得られる脂環を含む構造である。Aの炭素数は7以下でもよい。炭素数が7以下の構造としては、シクロヘキセンオキシド基が反応して得られる示性式C(OH)(O1/2)で表される構造、メチルシクロヘキセンオキシド基が反応して得られる示性式C(OH)(O1/2)(CH)で表される構造等が例示される。中でも、炭素数6のシクロヘキセンオキシド基が反応して得られる示性式C(OH)(O1/2)で表される構造が好ましい。
 上記のポリオルガノシロキサン化合物の硬化により得られるハードコート層は、下記式(8)で表される構造単位と、下記式(9)で表される構造単位を含む。
    [A-B-R-SiO3/2] …(8)
    [A-B-R-SiO2/2-D] …(9)
 一般式(8)および一般式(9)において、Aは一般式(7)と同様である。一般式(7)~(9)において、B、RおよびDは、一般式(1)(3)(4)と同様である。ポリオルガノシロキサン化合物の脂環式エポキシ基の反応による硬化後も、ポリシロキサン化合物のSiO結合ネットワークが保持されるため、式(8)で表される構造(T3体)と式(9)で表される構造(T2体)の比率(T3/T2比)は、硬化前のポリオルガノシロキサン化合物のT3/T2比に等しい。
 ポリオルガノシロキサン化合物がシラン化合物(2)に由来する構造を含み、一般式(2)におけるRが脂環式エポキシ基以外のエポキシ基を含む場合は、シラン化合物(1)に由来する脂環式エポキシ基同士の反応に加えて、シラン化合物(1)に由来する脂環式エポキシ基とシラン化合物(2)に由来するエポキシ基との反応、およびシラン化合物(2)に由来するエポキシ基同士の反応も起こる。
 脂環式エポキシ基を有するポリオルガノシロキサン化合物は、脂環式エポキシ基の反応により、2つの脂環の間に結合が生成するため、硬化により分子体積が増大しやすい。ハードコート組成物が負の硬化収縮率を有するため、一般的なアクリル系ハードコート材料を用いた場合に比べて硬化収縮が小さく、ハードコートフィルムのカールを小さくできる。
 ハードコート層の線膨張率が透明樹脂フィルムの線膨張率よりも大きい場合は、活性エネルギー線照射時の温度を室温よりも高くすることにより、負の硬化収縮(体積膨張)によって生じるハードコート層と透明樹脂フィルムとの界面での応力が、ハードコート層と透明樹脂フィルムの線膨張率差(加熱状態から室温に戻す際の収縮量の差)によって打ち消されるため、カール量を適切にコントロールできる。
 カール量を低減する観点から、活性エネルギー線照射時の温度は、35℃以上が好ましく、45℃以上がより好ましく、50℃以上がさらに好ましく、55℃以上または60℃以上であってもよい。熱による透明樹脂フィルムの塑性変形を抑制する観点から、活性エネルギー線照射時の温度は150℃以下が好ましく、120℃以下がより好ましく、100℃以下、90℃以下または85℃以下であってもよい。
 光カチオン重合の活性種である酸は、活性エネルギー線射後も組成物中に残存しており、室温付近の低温では反応速度が小さい。そのため、活性エネルギー線を照射後も、数日間にわたって硬化反応が進行し、ハードコートフィルムのカールが徐々に変化する場合がある。そのような場合は、経時でのカール変化量を見込んで、活性エネルギー線の照射を実施することにより、よりカールの小さいハードコートフィルムを得ることもできる。
 ハードコート組成物が負の硬化収縮率を有するため、硬化が進行すると、ハードコート層と透明樹脂フィルムとの界面に引張応力が生じ、ハードコート層形成面を外側にしてカールしようとする力が作用する。活性エネルギー線照射時の温度を高く設定し、ハードコート層の熱線膨張が大きい状態で光硬化を行うと、室温に戻した際にハードコート層の収縮量が大きいため、ハードコートフィルム形成面を内側とするカールが生じやすい。その後、室温で経時的に硬化が進行すると、ハードコート層に負の硬化収縮(体積膨張)が生じるため、経時的にカールが緩和され、カール量の小さいハードコートフィルムが得られる。
 活性エネルギー線照射後に加熱を実施してもよい。加熱により硬化速度が高められ、未硬化物が減少するため、経時的なカール量の変化を抑制できる。また、硬化率の上昇によるハードコート層の硬度の上昇も期待できる。活性エネルギー線照射後に加熱を行う場合、加熱温度は、例えば35℃以上であり、50℃以上が好ましく、70℃以上がより好ましく、80℃以上、90℃以上または100℃以上であってもよい。ハードコートフィルムの塑性変形を抑制する観点から、加熱温度は180℃以下が好ましく、150℃以下がより好ましい。加熱時間は、例えば、10秒~60分程度であり、20秒以上、30秒以上、40秒以上、50秒以上または60秒以上でもよく、50分以下、40分以下、30分以下、20分以下、10分以下または5分以下であってもよい。
[ハードコートフィルムの特性]
 上記のポリオルガノシロキサン化合物の脂環式エポキシ基の開環および重合反応により架橋されたポリマーマトリクスを有するハードコート層は、ガラスに匹敵する表面硬度を実現し得る。ハードコートフィルムのハードコート層形成面の表面硬度(鉛筆硬度)は、2H以上が好ましく、4H以上がより好ましく、6H以上、7H以上または8H以上であってもよい。
 ハードコートフィルムは、ハードコート層形成面を内側にして円筒マンドレル試験を行った際に、ハードコート層にクラックが生じるマンドレルの直径φが小さいことが好ましい。ハードコート層の厚みが同じであれば、マンドレルの直径が小さいほど、耐屈曲性に優れる。ハードコート層にクラックが生じるマンドレルの直径は、3mm以下が好ましく、2mm以下がより好ましい。上記の様に、ポリオルガノシロキサン化合物のT3/T2比が小さいほど、耐屈曲性に優れ、マンドレル直径φが小さくなる傾向がある。
 ハードコートフィルムの全光線透過率は80%以上が好ましく、85%以上がより好ましく、89%以上がさらに好ましい。
[ハードコートフィルムの応用]
 ハードコートフィルムは、ハードコート層3上、または透明樹脂フィルム1の第二主面1B上に、各種の機能層を備えていてもよい。また、透明樹脂フィルム1とハードコート層3との間に機能層を有していてもよい。機能層としては、密着性付与層、粘接着層、反射防止層、撥水層、撥油層、透明導電層、屈折率調整層、帯電防止層、防眩層、偏光子含有層等が挙げられる。
 本発明のハードコートフィルムは、画像表示パネルの表面に設けられるカバーウインドウや、ディスプレイ用透明基板、タッチパネル用透明基板、太陽電池用基板等に好適に用いることができる。本発明のハードコートフィルムは、特に、曲面ディスプレイやフレキシブルディスプレイ等のカバーウインドウや基板フィルムとして好適に使用できる。
 以下に、透明樹脂フィルム上にハードコート層を備えるハードコードフィルムの製造例を示して、本発明についてさらに具体的に説明するが、本発明は下記の例に限定されるものではない。
[透明樹脂フィルム]
<ポリイミド樹脂の合成>
 反応容器に、ジメチルホルムアミド(DMF)を投入し、窒素雰囲気下で撹拌した。そこに、表1に示すモル比でジアミンおよびテトラカルボン酸二無水物を投入し、窒素雰囲下にて5~10時間撹拌することにより反応させて、固形分濃度18%のポリアミド酸溶液を得た。
 ポリアミド酸溶液に、イミド化触媒としてピリジンを添加し、完全に分散させた後、脱水剤として無水酢酸を添加し、90℃で3時間攪拌した。反応溶液を室温まで冷却した後、攪拌しながら、イソプロピルアルコール(IPA)を滴下してポリイミド樹脂を析出させた。ろ過およびIPAによる洗浄を行った後、真空乾燥を行い、ポリイミド樹脂Aおよびポリイミド樹脂Bを得た。
 ポリイミド樹脂A(PI-A)およびポリイミド樹脂B(PI-B)の作製に用いたモノマー(ジアミンおよびテトラカルボン酸二無水物)の仕込み比(モル比)を表1に示す。表1におけるモノマーの略称は下記の通りである。
  TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
  3,3’-DDS:3,3’-ジアミノジフェニルスルホン
  TMHQ:p-フェニレンビストリメリット酸二無水物
  6FDA:2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物
  BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
  CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
  TAHMBP:2,2’,3,3’,5,5’-ヘキサメチル-ビフェニルテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-T000001
<ポリイミドフィルム1>
 ポリイミド樹脂Aを塩化メチレンに溶解し、固形分濃度11wt%の溶液を調製した。この塩化メチレン溶液を無アルカリガラス板上に塗布し、40℃で60分、70℃で30分,150℃で30分、170℃で30分、200℃で60分、大気雰囲気下で乾燥し、厚み50μmのポリイミドフィルム1を得た。熱機械分析(TMA)により、100℃まで昇温した後、5℃/分で30℃まで冷却した際のTMA曲線から求めたポリイミドフィルム1(PI1)の線膨張率は、30ppm/℃であった。
<ポリイミドフィルム2>
 溶液の塗布厚みを変更したこと以外は、ポリイミドフィルム1の作製と同様にして、厚み35μmのポリイミドフィルム2を得た。ポリイミドフィルム2(PI2)の線膨張率は、30ppm/℃であった。
<ポリイミドフィルム3>
 ポリイミド樹脂Aに代えてポリイミド樹脂Bを用い、溶液の塗布厚みを変更したこと以外はポリイミドフィルム1の作製と同様にして、厚み30μmのポリイミドフィルム3を得た。ポリイミドフィルム3(PI3)の線膨張率は、16ppm/℃であった。
<ポリエチレンテレフタレートフィルム1>
 厚み125μm厚ポリエチレンテレフタレートフィルム(東レ製「ルミラーU48」)を使用した。ポリエチレンテレフタレートフィルム1(PET1)の線膨張率は、15ppm/℃であった。
<ポリエチレンテレフタレートフィルム2>
 厚み50μmのポリエチレンテレフタレートフィルム(東レ製「ルミラーU48」)を使用した。ポリエチレンテレフタレートフィルム2(PET2)の線膨張率は、15ppm/℃であった。
[ポリオルガノシロキサン化合物の合成]
<合成例1>
 温度計、撹拌装置、還流冷却管を取り付けた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ製「SILQUEST A-186」)66.5g(270mmol)、および1-メトキシ-2-プロパノール(PGME)16.5gを仕込み、均一に撹拌した。この混合液に、触媒としての塩化マグネシウム0.039g(0.405mmol)を、水9.7g(539mmol)とメタノール5.8gとの混合液に溶解した溶液を、5分かけて滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、ポリオルガノシロキサン化合物Aを得た。
 ブルカー製のNMR(400MHz)を用い、重アセトンを溶媒として測定したH-NMRスペクトルから、ポリオルガノシロキサン化合物1のエポキシ基の残存率は95%以上であることを確認した。東ソー製のGPC装置「HLC-8220GPC」(カラム:TSKgel GMHXL×2本、TSKgel G3000HXL、TSKgel G2000HXL)を用い、THFを溶媒として測定したポリスチレン換算の重量平均分子量は3000であった。アジレント製のNMR(600MHz)により測定した29Si-NMRスペクトルから求めたT3体とT2との比率T3/T2(モル比)は、2.3であった。仕込み量に基づいて計算したポリオルガノシロキサン化合物1中の塩化マグネシウム(中性塩触媒)の残存量は814ppmであった。
<合成例2>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、8-グリシジルオキシオクチルトリメトキシシラン(信越化学工業製「KBM-4803」)67.4g(220mmol)およびメタノール11.6gを仕込み、均一に撹拌した。この混合液に、触媒としての塩化マグネシウム0.010g(0.11mmol)を水11.9g(660mmol)とメタノール4.7gとの混合液に溶解した溶液を、5分かけて滴下し、均一になるまで撹拌した。その後、70℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターによりメタノールおよび水を除去して、ポリオルガノシロキサン化合物Bを得た。
 ポリオルガノシロキサン化合物2のエポキシ基の残存率は95%以上、ポリスチレン換算の重量平均分子量は4500、T3/T2は2.1、塩化マグネシウム(中性塩触媒)の残存量は191ppmであった。
[ハードコート組成物]
<ハードコート組成物1>
 ポリオルガノシロキサン化合物A100重量部に、プロピレングリコールモノメチルエーテル81.8重量部、光カチオン重合開始剤としてトリアリールスルホニウム・SbF塩のプロピレンカーボネート溶液(サンアプロ製「CPI-101A」)を固形分として0.2重量部、およびレベリング剤としてポリエーテル変性ポリジメチルシロキサンのキシレン/イソブタノール溶液(BYK製「BYK-300」)を固形分として0.5重量部配合して、ハードコート組成物1を得た。
<ハードコート組成物2>
 光カチオン重合開始剤の量を2重量部に変更したこと以外は、ハードコート樹脂組成物1の調製と同様にして、ハードコート組成物2を得た。
<ハードコート組成物3>
 レベリング剤を、フッ素系レベリング剤(DIC製「メガファックRS-90」)に変更し、添加量を固形分で0.3重量部に変更したこと以外は、ハードコート樹脂組成物1の調製と同様にして、ハードコート組成物3を得た。
<ハードコート組成物4>
 ポリオルガノシロキサン化合物B100重量部に、トリアリールスルホニウム・P(Rf)6-n塩のプロピレンカーボネート50%溶液(サンアプロ製「CPI-200K」)を固形分として0.5重量部、およびレベリング剤(BYK製「BYK-300」)を固形分として0.5重量部配合して、ハードコート組成物4を得た。
<ハードコート組成物5>
 ジペンタエリスリトールヘキサアクリレート100重量部、プロピレングリコールモノメチルエーテル25重量部、光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASF製「イルガキュア184」)3重量部、およびレベリング剤(BYK製「BYK-300」)を固形分として0.5重量部配合して、ハードコート組成物5を得た。
<ハードコート組成物の評価>
 ポリイミドフィルム1の一方の面に、厚み125μmのポリエチレンテレフタレートフィルム上に厚み10μmのアクリル系粘着剤層が付設された支持フィルムを貼り合わせ、他方の面に、ハードコート組成物を乾燥膜厚が50μmとなるようにバーコーターを用いて塗布し、120℃で2分間加熱した後、雰囲気温度80℃で、積算光量約2000mJ/cmのなるように紫外線を照射した。120℃で2分間加熱を行い、ハードコート組成物を完全に硬化させた後、塩化メチレンに浸漬してポリイミドフィルム1を溶解させ、ハードコート層(ハードコート組成物の硬化物)を単離した。
 単離したハードコート層を試料として、線膨張係数および硬化収縮率を測定した。線膨張係数は、透明樹脂フィルムと同様、100℃から30℃に冷却した際のTMA曲線から算出した。硬化収縮率は硬化前のハードコート組成物の密度ρおよび光硬化後のハードコート層の密度ρから、下記式に基づいて算出した。
  硬化収縮率(%)=100×(ρ-ρ)/ρ
 ハードコート組成物1~3については、加熱乾燥後紫外線照射前(硬化前)に単離したハードコート組成物(固体))の密度ρを密度勾配管法により測定した。ハードコート組成物4,5については、120℃で2分間加熱して揮発分を除去した組成物(液体)の密度のρを比重瓶法により測定した。光硬化後のハードコート層の密度ρは密度勾配管法により測定した。
 ハードコート組成物1~5の組成、線膨張係数および硬化収縮率を表2に示す。表2における組成は、硬化性樹脂成分を100重量部とする各成分の配合量を重量部で表している。
Figure JPOXMLDOC01-appb-T000002
 アクリル系のハードコート組成物5は、正の硬化収縮率を示した。脂環式ではないエポキシ基を有するポリオルガノシロキサン化合物を硬化樹脂成分とするハードコート組成物4も正の硬化収縮率を有していた。一方、脂環式エポキシ基を有するポリオルガノシロキサン化合物を硬化樹脂成分とするハードコート組成物1~3は、光硬化により体積が増加(膨張)し、負の硬化収縮率を示した。
[ハードコートフィルム]
<ハードコートフィルム1>
 ポリイミドフィルム1の一方の面に、厚み125μmのポリエチレンテレフタレートフィルム上に厚み10μmのアクリル系粘着剤層が付設された支持フィルムを貼り合わせた。ポリイミドフィルムの他方の面に、ハードコート組成物1を乾燥膜厚が50μmとなるようにバーコーターを用いて塗布し、120℃で2分間加熱した。その後、塗膜からの距離93mmの位置に配置した紫外線照射ランプ(へレウス製「Hバルブ」、出力調整後の発光線量216W/cm)を備える搬送式紫外線照射装置を用いて、雰囲気温度80℃で、搬送速度2m/分にて搬送し、富士フィルム社のUVスケールで測定した積算光量が1950mJ/cmとなるように紫外線を照射して、ハードコート組成物を硬化させて、ポリイミドフィルム1上に厚み50μmのハードコート層備えるハードコートフィルム1を得た。
<ハードコートフィルム2~10>
 ハードコート層の厚み、および硬化条件(紫外線照射時の雰囲気温度、紫外線照射ランプの塗膜からの距離)を変更したこと以外は、ハードコートフィルム1の作製と同様にして、ポリイミドフィルム1上に、ハードコート組成物1の硬化物からなるハードコート層を備えるハードコートフィルムを作製した。ハードコートフィルム4,8、10については、紫外線を照射後に、120℃で2分間加熱を行った。
<ハードコートフィルム11~13>
 ポリイミドフィルム1に代えてポリイミドフィルム2を用い、ハードコート組成物1を塗布および加熱した後、塗膜からの距離200mmの位置に配置した紫外線照射ランプ(アイグラフィックス製の高圧水銀ランプ「H03-L31」、出力調整後の発光線量120W/cm)を備える搬送式紫外線照射装置を用いて、搬送速度4m/分にて搬送し、EIT社の「UV POWR PUCK II」で測定したUVAからUVCを合計した積算光量が1037mJ/cmとなるように紫外線を照射した。その他、表4に示すようにハードコート層の厚みおよび紫外線照射時の雰囲気温度を変更したこと以外は、ハードコートフィルム1の作製と同様にして、ポリイミドフィルム2上に、ハードコート組成物1の硬化物からなるハードコート層を備えるハードコートフィルムを作製した。
<ハードコートフィルム14~16>
 ポリイミドフィルム2に代えてポリイミドフィルム3を用い、表4に示すように紫外線照射時の雰囲気温度を変更したこと以外は、ハードコートフィルム11~13の作製と同様にして、ポリイミドフィルム3上に、ハードコート組成物1の硬化物からなるハードコート層を備えるハードコートフィルムを作製した。
<ハードコートフィルム17~21>
 ポリイミドフィルム1に代えてポリエチレンテレフタレートフィルム1を用い、支持フィルムを貼り合わせずに、ハードコート層の塗布および光照射を実施した。ハードコート層の厚み、および硬化条件(紫外線照射時の雰囲気温度、紫外線照射ランプの塗膜からの距離)を変更したこと以外は、ハードコートフィルム1の作製と同様にして、ポリエチレンテレフタレートフィルム1上に、ハードコート組成物1の硬化物からなるハードコート層を備えるハードコートフィルムを作製した。
<ハードコートフィルム22~36>
 透明樹脂フィルムの種類、ハードコート層の組成およびハードコート層の厚み、ならびに硬化条件を表5および表6に示す様に変更し、上記の各例と同様にして、ハードコートフィルムを作製した。
[評価]
 下記に従って、上記のハードコートフィルムを評価した。
<カール>
 ハードコートフィルムを100mm×100mmの正方形に切り出し、23℃、55%RHの環境で10日間静置した後に、ハードコート層形成面を上側として水平な台に置き、正方形の4つの頂点の台からの距離(浮き上がり量)を測定し、その平均値をカール量とした。ハードコート層形成面を外側としてカールが生じていたものについては、ハードコート層形成面を下側として水平な台に置いて、カールを測定し、カール量の符号をマイナスとした。正方形に切り出したフィルムが筒状に丸まってカールの値を測定できなかったものについては、ハードコート層形成面を内側にして丸まっていたもののカール量を+∞、ハードコート層形成面を外側にして丸まっていたもののカール量を-∞とした。
<表面硬度>
 JIS K5600-5-4:1999に従って、ハードコート層形成面の鉛筆硬度を測定した。
<柔軟性>
 ハードコートフィルム1~16について、JIS K5600-5-1:1999に従って、ハードコート層形成面を内側として、タイプ1の試験機を用いて円筒型マンドレル試験を行った。ハードコートフィルム1~16は、いずれも直径2mmのマンドレルに沿って屈曲した際に、ハードコート層の割れや剥がれが生じていなかった。
 ハードコートフィルム1~36の材料、作製条件および評価結果を、表3~6に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表6に示す様に、正の硬化収縮率を有するアクリル系のハードコート組成物5を用いたハードコートフィルム31~36は、透明樹脂フィルムの種類および硬化温度に依らず、正方形に切り出した試料が、ハードコート層を内側とする筒状にカールしていた。脂環式ではないエポキシ基を有するポリオルガノシロキサン化合物を硬化樹脂成分とするハードコート組成物4を用いたハードコートフィルム30も、ハードコート層を内側とする筒状にカールしていた。
 負の硬化収縮率を有するハードコート組成物を用いたハードコートフィルム1~29は、いずれもハードコートフィルム30~36に比べてカールが低減していた。
 ハードコートフィルム1~3を対比すると、紫外線照射時の温度が低いほど、マイナス側(ハードコート層形成面が外側)にカールが発生する傾向がみられた。ハードコートフィルム5~7の対比、ハードコートフィルム8とハードコートフィルム10との対比からも同様の傾向がみられた。これらの結果から、負の硬化収縮率を有するハードコート組成物を用い、紫外線照射時の加熱温度を調整することにより、ハードコート層の厚みが大きい場合でも、カールの小さいハードコートフィルムが得られることが分かる。
 表4~6に示す結果から、透明樹脂フィルムの種類、ハードコート組成物における光カチオン重合開始剤の使用量、レベリング剤の種類等を変更した場合も、紫外線照射時の温度を調整することにより、カールが小さいハードコートフィルムが得られることが分かる。透明樹脂フィルムとしてポリイミドフィルムを用いた場合に、PETフィルムを用いた場合に比べて、表面硬度が高くなる傾向がみられた。

 

Claims (16)

  1.  第一主面および第二主面を有する透明樹脂フィルムの第一主面上にハードコート組成物の硬化物からなるハードコート層を備えるハードコートフィルムであって、
     前記ハードコート層の厚みが、透明樹脂フィルムの厚みの0.15倍以上であり、
     前記ハードコート組成物が負の硬化収縮率を有し、
     100mm×100mmのサイズの正方形に切り出して測定したカール量の絶対値が20mm以下である、ハードコートフィルム。
  2.  前記ハードコート層が、脂環式エポキシ基を有するポリオルガノシロキサン化合物の硬化物を含む、請求項1に記載のハードコートフィルム。
  3.  前記ポリオルガノシロキサン化合物が、シラン化合物の縮合物であり、
     前記シラン化合物として、一般式(1)で表される化合物を含む、請求項2に記載のハードコートフィルム:
          E-B-R-Si(OR 3-x) …(1)
     一般式(1)において、Eは脂環式エポキシ基であり、Bは、直結、エーテルまたはエステルであり、Rは炭素数2~12のアルキレン基であり、Rは、水素原子、または炭素数1~10のアルキル基を有するアルコキシ基、炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基からなる群から選択される1価の炭化水素基であり、xは2または3であり、Rは、水素原子または炭素数1~10のアルキル基である。
  4.  前記ポリオルガノシロキサン化合物の重量平均分子量が500~20000である、請求項2または3に記載のハードコートフィルム。
  5.  前記ハードコート層の線膨張率が、前記透明樹脂フィルムの線膨張率よりも大きい、請求項1~4のいずれか1項に記載のハードコートフィルム。
  6.  上記透明樹脂フィルムが、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、環状ポリオレフィン、アクリル樹脂、およびセルロース系樹脂からなる群より選択される1種以上の樹脂材料を含む、請求項1~5のいずれか1項に記載のハードコートフィルム。
  7.  前記透明樹脂フィルムの厚みが10~150μmである請求項1~6いずれか1項に記載のハードコートフィルム。
  8.  前記ハードコート層の厚みが2~150μmである請求項1~7のいずれか1項に記載のハードコートフィルム。
  9.  画像表示パネルの表面に、請求項1~8のいずれか1項に記載のハードコートフィルムを備える、表示装置。
  10.  第一主面および第二主面を有する透明樹脂フィルムの第一主面上に、ハードコート組成物の硬化物からなり、前記透明樹脂フィルムの0.15倍以上の厚みを有するハードコート層を備えるハードコートフィルムを製造する方法であって、
     前記透明樹脂フィルムの第一主面上にハードコート組成物を塗布した後、活性エネルギー線を照射することにより、前記ハードコート層を形成し、
     前記ハードコート組成物が負の硬化収縮率を有し、
     加熱雰囲気で、前記活性エネルギー線の照射を行う、ハードコートフィルムの製造方法。
  11.  請求項1~8のいずれか1項に記載のハードコートフィルムを製造する方法であって、
     透明樹脂フィルムの第一主面上にハードコート組成物を塗布した後、活性エネルギー線を照射することにより、前記ハードコート層を形成し、
     加熱雰囲気で、前記活性エネルギー線の照射を行う、ハードコートフィルムの製造方法。
  12.  前記活性エネルギー線照射時の温度が45℃~150℃である、請求項10または11に記載のハードコートフィルムの製造方法。
  13.  前記ハードコート組成物が、一般式(1)で表されるシラン化合物の縮合物を含む、請求項10~12のいずれか1項に記載のハードコートフィルムの製造方法:
          E-B-R-Si(OR 3-x) …(1)
     一般式(1)において、Eは脂環式エポキシ基であり、Bは、直結、エーテルまたはエステルであり、Rは炭素数2~12のアルキレン基であり、Rは、水素原子、または炭素数1~10のアルキル基を有するアルコキシ基、炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基からなる群から選択される1価の炭化水素基であり、xは2または3であり、Rは、水素原子または炭素数1~10のアルキル基である。
  14.  前記ハードコート組成物が、光カチオン重合開始剤を含有する請求項10~13のいずれか1項に記載のハードコートフィルムの製造方法。
  15.  透明樹脂フィルムの第二主面に、前記透明樹脂フィルムよりも大きい厚みを有する支持フィルムを貼り合わせた状態で、前記活性エネルギー線の照射を行う、請求項10~14のいずれか1項に記載のハードコートフィルムの製造方法。
  16.  さらに、前記活性エネルギー線の照射後に、加熱を実施する、請求項10~15のいずれか1項に記載のハードコートフィルム製造方法。

     
PCT/JP2021/006354 2020-02-25 2021-02-19 ハードコートフィルムおよびその製造方法、ならびに表示装置 WO2021172201A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022503333A JPWO2021172201A1 (ja) 2020-02-25 2021-02-19
KR1020227031334A KR20220146505A (ko) 2020-02-25 2021-02-19 하드 코팅 필름 및 그의 제조 방법, 그리고 표시 장치
CN202180016790.0A CN115175810A (zh) 2020-02-25 2021-02-19 硬涂膜及其制造方法、以及显示装置
US17/905,046 US20230138855A1 (en) 2020-02-25 2021-02-19 Hardcoat film, method for producing same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-029285 2020-02-25
JP2020029285 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021172201A1 true WO2021172201A1 (ja) 2021-09-02

Family

ID=77491580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006354 WO2021172201A1 (ja) 2020-02-25 2021-02-19 ハードコートフィルムおよびその製造方法、ならびに表示装置

Country Status (5)

Country Link
US (1) US20230138855A1 (ja)
JP (1) JPWO2021172201A1 (ja)
KR (1) KR20220146505A (ja)
CN (1) CN115175810A (ja)
WO (1) WO2021172201A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313329A (ja) * 2002-04-24 2003-11-06 Kimoto & Co Ltd ハードコートフィルム、ハードコートフィルムのカール修正/防止方法
WO2018207914A1 (ja) * 2017-05-12 2018-11-15 株式会社ダイセル カールが抑制されたハードコートフィルム及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069197A (ja) 2013-10-01 2015-04-13 Dic株式会社 ハードコートフィルム及び画像表示装置
KR102280925B1 (ko) * 2014-07-25 2021-07-26 에스케이이노베이션 주식회사 하드코팅층 형성용 조성물
JP6931526B2 (ja) * 2016-11-25 2021-09-08 株式会社ダイセル ハードコートフィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313329A (ja) * 2002-04-24 2003-11-06 Kimoto & Co Ltd ハードコートフィルム、ハードコートフィルムのカール修正/防止方法
WO2018207914A1 (ja) * 2017-05-12 2018-11-15 株式会社ダイセル カールが抑制されたハードコートフィルム及びその製造方法

Also Published As

Publication number Publication date
CN115175810A (zh) 2022-10-11
US20230138855A1 (en) 2023-05-04
KR20220146505A (ko) 2022-11-01
JPWO2021172201A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
CN112639038B (zh) 硬涂组合物、带硬涂层的聚酰亚胺薄膜及其制造方法、及图像显示装置
US10563088B2 (en) Photocurable and thermosetting resin composition, cured product, and laminate
JP6317978B2 (ja) 硬化性組成物及び成形体
WO2014204010A1 (ja) 活性エネルギー線硬化性組成物
WO2021172200A1 (ja) シルセスキオキサン化合物およびその製造方法、ハードコート組成物ならびにハードコートフィルムおよびその製造方法
JP7263356B2 (ja) ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置
JP4412705B2 (ja) 感光性樹脂組成物及びその硬化皮膜を有するフィルム
JP2018506617A (ja) ハードコーティング用樹脂組成物、及びその硬化物をコーティング層として含むハードコーティングフィルム
JP6545482B2 (ja) 光または熱硬化性樹脂組成物、硬化物及び積層体
JP2019147923A (ja) シロキサン系硬化性樹脂組成物から成るハードコーティング液を用いた積層体
WO2021172201A1 (ja) ハードコートフィルムおよびその製造方法、ならびに表示装置
JP2021070800A (ja) ハードコートフィルムおよび画像表示装置
WO2022004747A1 (ja) ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法及びハードコートフィルムを含む物品
WO2019123731A1 (ja) シロキサン系硬化性樹脂組成物及びハードコーティング液
WO2021153607A1 (ja) ポリオルガノシロキサン化合物およびその製造方法、ハードコート組成物、ならびにハードコーフィルムおよびその製造方法
WO2023008492A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ
WO2022270471A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ
WO2022191328A1 (ja) フィルムおよびその製造方法、積層フィルム、ならびにディスプレイ
WO2023008493A1 (ja) シラン化合物およびその製造方法、ポリオルガノシロキサン化合物、ハードコート組成物、ハードコーフィルムおよびその製造方法、ならびにディスプレイ
WO2024029496A1 (ja) 硬化性樹脂組成物、ハードコートフィルムおよびその製造方法、ならびにディスプレイ
JP2023019789A (ja) ハードコートフィルムおよびその製造方法、ハードコートフィルムを含むディスプレイ
JP2024066964A (ja) ハードコートフィルムとその製造方法、およびハードコートフィルムを含むディスプレイ
WO2024071314A1 (ja) ハードコートフィルムおよびディスプレイ
JP2022139546A (ja) ハードコーフィルムおよびその製造方法
WO2022191329A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503333

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031334

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759817

Country of ref document: EP

Kind code of ref document: A1