WO2024029496A1 - 硬化性樹脂組成物、ハードコートフィルムおよびその製造方法、ならびにディスプレイ - Google Patents

硬化性樹脂組成物、ハードコートフィルムおよびその製造方法、ならびにディスプレイ Download PDF

Info

Publication number
WO2024029496A1
WO2024029496A1 PCT/JP2023/027976 JP2023027976W WO2024029496A1 WO 2024029496 A1 WO2024029496 A1 WO 2024029496A1 JP 2023027976 W JP2023027976 W JP 2023027976W WO 2024029496 A1 WO2024029496 A1 WO 2024029496A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hard coat
weight
compound
parts
Prior art date
Application number
PCT/JP2023/027976
Other languages
English (en)
French (fr)
Inventor
祐介 田口
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024029496A1 publication Critical patent/WO2024029496A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to a curable resin composition, a hard coat film, and a method for producing the same.
  • the present invention also relates to a display including the hard coat film.
  • Curved displays and foldable displays have been developed, and consideration is being given to replacing the rigid glass materials used for display cover windows and substrates with flexible plastic film materials. There is. Cover windows for flexible displays, including foldable displays, are required to have various properties such as transparency, hardness, and bending resistance.
  • Patent Document 1 proposes using a hard coat film in which a siloxane hard coat layer containing a condensate of a silane compound is provided on a film base material as a cover window material for a display.
  • siloxane-based hard coat materials have little curing shrinkage, they have the advantage of reducing warpage of the hard coat film. However, if the thickness of the hard coat layer is increased in order to increase the hardness, the bending resistance of the hard coat layer tends to decrease. Cracks are likely to occur.
  • the present invention aims to provide a hard coat film that can have both excellent surface hardness and bending resistance, and a curable resin composition used for producing the hard coat film.
  • the present invention relates to a curable resin composition containing a polyorganosiloxane compound and an epoxy compound.
  • the content of the epoxy compound is 1 to 190 parts by weight, preferably 5 to 100 parts by weight, based on 100 parts by weight of the polyorganosiloxane compound.
  • the polyorganosiloxane compound is a condensation product of silane compounds including a silane compound represented by general formula (1). [Y-Si(OR 1 ) x R 2 3-x ] (1)
  • R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 16 carbon atoms, an aryl group having 6 to 25 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms.
  • x is 2 or 3.
  • Y is a monovalent organic group containing an alicyclic epoxy group.
  • the epoxy compound is a compound having multiple glycidyl-type epoxy groups, and is represented by general formula (3).
  • n is an integer of 2 or more, preferably 2 or 3.
  • R 5 is an n-valent organic group containing no ring structure, and connects a plurality of glycidyloxy groups (CH 3 O--CH 2 -O-).
  • the above epoxy compound is preferably trimethylolpropane triglycidyl ether or a compound represented by general formula (4).
  • R 6 is a straight chain alkylene group having 2 to 12 carbon atoms, or a straight chain alkylene group having 2 to 12 carbon atoms, in which one or more hydrogen atoms are substituted with a methyl group or a hydroxyl group. It is preferably an alkylene group having a branched structure or a polypropylene oxide chain having from 5 to 20 atoms in the main chain.
  • epoxy compounds include ethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,12-dodecanediol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and glycerin diglycidyl ether. , tripropylene glycol diglycidyl ether, heptapropylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether.
  • the content of the epoxy compound in the curable resin composition is 100 parts by weight of the polyorganosiloxane compound. It is preferably 1 to 190 parts by weight.
  • the epoxy compound is represented by the general formula (4), and R 6 is an alkylene group having a branched structure due to one or more hydrogen atoms of a linear alkylene group having 2 to 6 carbon atoms being substituted with a methyl group or a hydroxyl group.
  • the content of the epoxy compound in the curable resin composition is preferably 1 to 190 parts by weight based on 100 parts by weight of the polyorganosiloxane compound.
  • the content of the epoxy compound in the curable resin composition is 100 parts by weight of the polyorganosiloxane compound. It is preferably 21 to 190 parts by weight.
  • the epoxy compound is represented by the general formula (4), and R 6 is an alkylene group having a branched structure due to one or more hydrogen atoms of a linear alkylene group having 7 to 12 carbon atoms being substituted with a methyl group or a hydroxyl group.
  • the content of the epoxy compound in the curable resin composition is preferably 21 to 190 parts by weight based on 100 parts by weight of the polyorganosiloxane compound.
  • the content of the epoxy compound in the curable resin composition is The amount is preferably 21 to 190 parts by weight based on 100 parts by weight of the compound.
  • the content of the epoxy compound in the curable resin composition is preferably 5 to 190 parts by weight based on 100 parts by weight of the polyorganosiloxane compound.
  • the curable resin composition may contain a polymerization initiator.
  • a polymerization initiator a cationic polymerization initiator is preferable, and a photocationic polymerization initiator that generates an acid upon irradiation with active energy rays is particularly preferable.
  • the curable resin composition containing the above polyorganosiloxane compound, epoxy compound, and polymerization initiator can be suitably used as a hard coat material.
  • a hard coat film is formed by applying a curable resin composition onto a transparent film and curing it by irradiating active energy rays to form a hard coat layer.
  • the transparent film may contain one or more selected from polyimide resins and acrylic resins.
  • the transparent film may contain polyimide resin and acrylic resin.
  • the thickness of the hard coat layer may be 5 to 100 ⁇ m.
  • the hard coat film may include a scratch resistant layer as a top coat layer on the hard coat layer.
  • a hard coat film having a hard coat layer formed from the curable resin composition of the present invention can have both excellent surface hardness and bending resistance, and has high transparency. Therefore, the hard coat film can also be suitably used as a cover window material for a foldable display that is foldable so that the display surface faces outside.
  • the curable resin composition of the present invention contains a polyorganosiloxane compound having an alicyclic epoxy group.
  • Compositions containing polyorganosiloxane compounds are disclosed in WO2014/204010, WO2018/096729, WO2020/040209, etc., and these descriptions can be referred to and cited.
  • the curable resin composition contains an epoxy compound having a glycidyl-type epoxy group, and may further contain a polymerization initiator.
  • a polyorganosiloxane compound having an alicyclic epoxy group is obtained by condensation of a silane compound represented by general formula (1). [Y-Si(OR 1 ) x R 2 3-x ] (1)
  • R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 16 carbon atoms, an aryl group having 6 to 25 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms.
  • x is an integer of 2 or 3.
  • Y is a monovalent organic group containing an alicyclic epoxy group.
  • the silane compound represented by the general formula (1) has two or three (-OR 1 ) groups in one molecule. Since Si-OR 1 has hydrolyzability, a polyorganosiloxane compound can be obtained by condensation of a silane compound.
  • Examples of the monovalent organic group Y containing an alicyclic epoxy group include an alicyclic epoxy group, an alkyl group having an alicyclic epoxy group as a substituent, and an alkylene glycol group having an alicyclic epoxy group as a substituent. Can be mentioned. From the viewpoint of heat resistance and bending resistance, an alkyl group having an alicyclic epoxy group as a substituent is preferable.
  • alkyl groups having an alicyclic epoxy group as a substituent include (3,4-epoxycyclohexyl)methyl group, 2-(3,4-epoxycyclohexyl)ethyl group, 3-(3,4-epoxy cyclohexyl)propyl group, 4-(3,4-epoxycyclohexyl)butyl group, 5-(3,4-epoxycyclohexyl)pentyl group, 6-(3,4-epoxycyclohexyl)hexyl group, 7-(3,4-epoxycyclohexyl)hexyl group -Epoxycyclohexyl)heptyl group, 8-(3,4-epoxycyclohexyl)octyl group, 9-(3,4-epoxycyclohexyl)nonyl group, 10-(3,4-epoxycyclohexyl)decyl group, 11-(3 , 4-e
  • R 1 is preferably an alkyl group having 1 to 10 carbon atoms.
  • alkyl groups include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, isopropyl group, isobutyl group, cyclohexyl group, ethylhexyl group, etc. can be mentioned.
  • R 1 is preferably a methyl group, an ethyl group or a propyl group, and most preferably a methyl group.
  • R 2 is preferably a hydrocarbon group.
  • hydrocarbon groups include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, and tetradecyl group.
  • it is preferable that x 3 from the viewpoint of forming a network-like polyorganosiloxane compound and increasing the number of epoxy groups contained in the polyorganosiloxane compound to increase the hardness of the cured film.
  • a silane compound where x is 1 may be used for the purpose of adjusting the molecular weight of the polyorganosiloxane compound obtained by condensation.
  • silane compound represented by the general formula (1) examples include (3,4-epoxycyclohexyl)trimethoxysilane, (3,4-epoxycyclohexyl)methyldimethoxysilane, (3,4-epoxycyclohexyl)dimethyl Methoxysilane, (3,4-epoxycyclohexyl)triethoxysilane, (3,4-epoxycyclohexyl)methyldiethoxysilane, (3,4-epoxycyclohexyl)dimethylethoxysilane, ⁇ (3,4-epoxycyclohexyl)methyl ⁇ trimethoxysilane, ⁇ (3,4-epoxycyclohexyl)methyl ⁇ methyldimethoxysilane, ⁇ (3,4-epoxycyclohexyl)methyl ⁇ dimethylmethoxysilane, ⁇ (3,4-epoxycyclohexyl)methyl ⁇ triethoxy
  • the polyorganosiloxane compound as a condensate of a silane compound may be a condensate of the silane compound of general formula (1) and another silane compound.
  • another silane compound that is, a silane compound that does not contain an alicyclic epoxy group
  • a silane compound represented by general formula (2) may be mentioned.
  • R 1 , R 2 and x are the same as in general formula (1).
  • R 3 is a monovalent organic group containing no alicyclic epoxy group.
  • R3 is a group containing a substituted or unsubstituted double bond, a group containing a substituted or unsubstituted cycloalkyl group, a group containing a substituted or unsubstituted aromatic ring, a substituted or unsubstituted alkyl group, A group having a glycidyl group, a group having an oxetanyl group, or a hydrogen atom.
  • substituted or unsubstituted double bond-containing group examples include a vinyl group, an allyl group, an isopropenyl group, a (meth)acryloyl group, and the like.
  • Groups containing substituted or unsubstituted cycloalkyl groups include cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclobutylmethyl group, cyclopentylmethyl group, cyclohexylmethyl group, cyclobutylethyl group, cyclopentylethyl group, cyclohexylethyl group, etc. can be mentioned.
  • Examples of the group containing a substituted or unsubstituted aromatic ring include a phenyl group, 4-methylphenyl group, tolyl group, and naphthyl group.
  • Substituted or unsubstituted alkyl groups include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, and tetradecyl group.
  • Groups having a glycidyl group include glycidyloxymethyl group, 2-glycidyloxyethyl group, 3-glycidyloxypropyl group, 4-glycidyloxybutyl group, 5-glycidyloxypentyl group, 6-glycidyloxyhexyl group, 7-glycidyloxyhexyl group, Examples include glycidyloxyheptyl group, 8-glycidyloxyoctyl group, 9-glycidyloxynonyl group, 10-glycidyloxydecyl group, 11-glycidyloxyundecyl group, and 12-glycidyloxydodecyl group.
  • Examples of the group having an oxetanyl group include an oxetanylmethyl group, a 3-methyl-3-oxetanylmethoxymethyl group, and a 3-ethyl-3-oxetanylmethoxymethyl group.
  • silane compound represented by general formula (2) examples include vinyltrimethoxysilane, allyltrimethoxysilane, acryloyloxypropyltrimethoxysilane, methacryloyloxypropyltrimethoxysilane, cyclopentyltrimethoxysilane, and cyclohexyltrimethoxysilane.
  • benzyltrimethoxysilane phenyltrimethoxysilane, tolyltrimethoxysilane, xylyltrimethoxysilane, naphthyltrimethoxysilane, phenethyltrimethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane , pentyltrimethoxysilane, hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, nonyltrimethoxysilane, decyltrimethoxysilane, isopropyltrimethoxysilane, isobutyltrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, Examples include 8-glycidyloxyoctty
  • silane compound containing an alicyclic epoxy group represented by the general formula (1) a silane compound containing no alicyclic epoxy group may be used as the silane compound.
  • the ratio of the silane compound of general formula (1) to the total amount of silane compounds is preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more.
  • the ratio of the number of alicyclic epoxy groups to the total number of Si atoms contained in the polyorganosiloxane compound is approximately equal to the ratio of the silane compound of general formula (1) to the total amount of silane compounds.
  • the polyorganosiloxane compound obtained by hydrolyzing and condensing only the silane compound represented by the general formula (1) has an alicyclic epoxy group if the residual rate of the alicyclic epoxy group after the reaction is 100%. is equal to the total number of Si atoms.
  • the number of alicyclic epoxy groups contained in the polyorganosiloxane compound is preferably at least 0.5 times, more preferably at least 0.7 times, even more preferably at least 0.8 times the total number of Si atoms.
  • the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. Moreover, from the viewpoint of suppressing volatilization, the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. On the other hand, if the molecular weight is too large, clouding may occur due to a decrease in compatibility with other components in the composition. Therefore, the weight average molecular weight of the polyorganosiloxane compound is preferably 20,000 or less. The weight average molecular weight of the polyorganosiloxane compound is more preferably 1,000 to 18,000, even more preferably 1,500 to 16,000, and may be 2,000 to 14,000, or 2,800 to 12,000.
  • the neutral salt catalyst include salts consisting of an acid and a base, preferably salts consisting of an alkali metal or alkaline earth metal cation and a halogen anion.
  • Specific examples of neutral salts include lithium chloride, sodium chloride, potassium chloride, beryllium chloride, magnesium chloride, calcium chloride, lithium bromide, sodium bromide, potassium bromide, beryllium bromide, magnesium bromide, and calcium bromide. , lithium iodide, sodium iodide, potassium iodide, beryllium iodide, magnesium iodide, calcium iodide, and the like.
  • the curable resin composition contains, as a curable resin component, an epoxy compound having a plurality of glycidyl-type epoxy groups in addition to the above polyorganosiloxane compound.
  • a compound having a plurality of glycidyl-type epoxy groups is represented by general formula (3).
  • n is an integer of 2 or more.
  • R 5 is an n-valent organic group containing no ring structure, and connects a plurality of glycidyloxy groups (CH 3 O--CH 2 -O-).
  • the curable resin composition can improve the bending resistance without excessively lowering the hardness of the cured product. Therefore, by using a curable resin composition as a hard coat material, the surface hardness is high, and even if the hard coat layer is repeatedly bent and stretched with the surface on which the hard coat layer is formed outward, cracks are unlikely to occur in the hard coat layer (outward bending). A hard coat film with high durability is obtained.
  • the molecular weight of the epoxy compound represented by general formula (3) is preferably 170 or more. From the viewpoint of hardness and transparency of the cured product, the molecular weight of the epoxy compound represented by general formula (3) is preferably 700 or less, more preferably 500 or less, even more preferably 300 or less, and may be 250 or less. .
  • the number of epoxy groups contained in the epoxy compound is preferably 2 or 3, and particularly preferably 2.
  • the epoxy compound is a compound in which R 5 is (CH 3 CH 2 )C((CH 2 )-) 3 , that is, trimethylolpropane triglycidyl ether. preferable.
  • the epoxy compound in which n in the general formula (3) is 2 is represented by the following general formula (4).
  • R 6 in general formula (4) is a divalent organic group containing no ring structure.
  • R 6 is preferably a linear or branched alkylene group whose main chain has 2 to 12 atoms, or a polypropylene oxide chain whose main chain has 5 to 20 atoms.
  • the number of atoms in the main chain (sometimes referred to as "chain length") is the number of atoms forming the straight chain connecting the oxygen atoms of two glycidyloxy groups in general formula (4). .
  • the number of atoms in the main chain of R6 exceeds the above range, it may cause a decrease in hardness due to a decrease in crosslinking density and a decrease in transparency (increase in haze) due to a decrease in compatibility with the polyorganosiloxane compound. .
  • linear alkylene groups whose main chain has 2 to 12 atoms (carbon atoms) include methylene group, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, and octamethylene group. , nonamethylene group, decamethylene group, undecamethylene group, and dodecamethylene group.
  • linear alkylene groups having 2 to 6 carbon atoms are preferred, and hexamethylene groups having 6 carbon atoms are particularly preferred.
  • Epoxy compounds in which R 6 in general formula (4) is a linear alkylene group having 2 to 12 carbon atoms include 1,2-ethylene glycol diglycidyl ether, 1,3-propanediol diglycidyl ether, 1,4- Butanediol diglycidyl ether, 1,5-pentanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,7-heptanediol diglycidyl ether, 1,8-octanediol diglycidyl ether, 1,9- Examples include nonanediol diglycidyl ether, 1,10-decanediol diglycidyl ether, 1,11-undecanediol diglycidyl ether, and 1,12-dodecanediol diglycidyl ether.
  • Examples of the branched alkylene group whose main chain has 2 to 12 atoms (carbon number) include groups in which one or more hydrogen atoms of the above-mentioned straight chain alkylene group are substituted with a methyl group or a hydroxyl group.
  • Examples of the epoxy compound in which R 6 in the general formula (4) is an alkylene group having a main chain of 2 to 12 atoms and having branches include 1,2-propanediol diglycidyl ether (propylene glycol diglycidyl ether); Examples include 1,3-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and glycerin diglycidyl ether.
  • Epoxy compounds in which R 6 in general formula (4) is a polypropylene oxide chain having 5 to 20 atoms in the main chain include dipropylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, and tetrapropylene glycol diglycidyl ether. , pentapropylene glycol diglycidyl ether, hexapropylene glycol diglycidyl ether, and heptapropylene glycol diglycidyl ether.
  • R 5 is (CH 3 CH 2 )C((CH 2 )-) 3 as an epoxy compound having a plurality of glycidyl-type epoxy groups.
  • R 6 is a linear or branched alkylene group whose main chain has 2 to 12 atoms, or a polypropylene oxide chain whose main chain has 5 to 20 atoms; Compounds are preferred.
  • ethylene glycol diglycidyl ether 1,6-hexanediol diglycidyl ether, 1,12-dodecanediol diglycidyl ether, and propylene glycol diglycidyl ether are preferred.
  • Preferred are ether, neopentyl glycol diglycidyl ether, glycerin diglycidyl ether, tripropylene glycol diglycidyl ether, heptapropylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether.
  • a compound having a glycidyl type epoxy group is industrially synthesized by a reaction between an alcohol and epichlorohydrin.
  • the epoxy compound obtained by this reaction may contain a chlorine atom as a by-product (impurity).
  • the epoxy compound as a component of the curable resin composition may contain chlorine atoms as impurities, but from the viewpoint of reducing the amount of residual halogen in the cured product, it is preferable to use a material with a small amount of residual chlorine atoms. is preferred. Further, by using a material with a small amount of residual chlorine atoms, the hardness of the cured product may increase.
  • the amount of residual chlorine atoms in the epoxy compound is preferably 10% by weight or less, more preferably 5% by weight or less, even more preferably 1% by weight or less, and particularly preferably 0.1% by weight or less.
  • 1,6-hexanediol diglycidyl ether is particularly preferred in that commercially available products with a small amount of residual chlorine atoms are available.
  • the above-mentioned epoxy compound does not contain a ring structure, it is considered to be highly effective in imparting flexibility to the cured product and improving bending resistance.
  • Glycidyl-type epoxy groups produce hydroxyl groups, which are polar groups, during the curing reaction. This hydroxyl group increases the adhesion between the cured hard coat layer and the transparent film, and has the effect of suppressing interfacial peeling of the hard coat layer due to stress during bending, which also contributes to improved bending resistance. Conceivable.
  • the epoxy compound of general formula (3) has a plurality of glycidyl-type epoxy groups, it is possible to form a crosslinked structure, which is thought to contribute to increasing the hardness of the cured product. Further, since a compound having a plurality of glycidyl-type epoxy groups has a large number of hydroxyl groups generated by a curing reaction, the above-mentioned effect of improving bending resistance due to improved adhesion is likely to be exhibited. In particular, the smaller the number of atoms in the main chain of R 5 (and R 6 ) and the smaller the molecular volume of the epoxy compound, the larger the number of hydroxyl groups per unit volume in the cured product, which makes a greater contribution to improving bending resistance. it is conceivable that.
  • Particularly preferred are linear alkylene compounds having 2 to 6 carbon atoms, and 1,6-hexanediol diglycidyl ether is particularly preferred.
  • the content of the epoxy compound represented by the general formula (3) in the curable resin composition is preferably 1 to 190 parts by weight, more preferably 3 to 150 parts by weight, based on 100 parts by weight of the above polyorganosiloxane compound. It is preferably 5 to 100 parts by weight, and more preferably 5 to 100 parts by weight.
  • the curable resin composition may contain multiple types of epoxy compounds represented by general formula (3). In that case, it is preferable that the total content of the epoxy compounds represented by general formula (3) is within the above range.
  • the appropriate range of the content of the epoxy compound in the curable resin composition varies depending on the type of the epoxy compound. For example, as mentioned above, an epoxy compound with a small number of atoms in the main chain of R 5 (and R 6 ) has a high effect of improving bending resistance even in a small amount. A highly durable hard coat film can be formed.
  • the content of the epoxy compound is preferably 1 part by weight or more, more preferably 3 parts by weight or more, even more preferably 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, based on 100 parts by weight of the polyorganosiloxane compound. , may be 20 parts by weight or more, or 21 parts by weight or more, preferably 190 parts by weight or less, more preferably 150 parts by weight or less, further preferably 100 parts by weight or less, and 75 parts by weight or less, or 50 parts by weight or less. Good too.
  • the content of the epoxy compound is preferably 5 parts by weight or more based on 100 parts by weight of the polyorganosiloxane compound.
  • the content of the epoxy compound is preferably 21 parts by weight or more, more preferably 25 parts by weight or more, may be 30 parts by weight or more, or 36 parts by weight or more, and 190 parts by weight, based on 100 parts by weight of the polyorganosiloxane compound. It is preferably at most 150 parts by weight, more preferably at most 100 parts by weight, and may be at most 75 parts by weight or at most 50 parts by weight.
  • the epoxy compound The content is preferably 21 parts by weight or more, more preferably 25 parts by weight or more, 30 parts by weight or more, 36 parts by weight or more, 40 parts by weight or more, or 46 parts by weight or more, based on 100 parts by weight of the polyorganosiloxane compound.
  • the amount may be preferably 190 parts by weight or less, more preferably 150 parts by weight or less, even more preferably 100 parts by weight or less, and may be 75 parts by weight or less or 50 parts by weight or less.
  • the content of the epoxy compound is preferably 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, based on 100 parts by weight of the polyorganosiloxane compound. It may be at least 21 parts by weight, preferably at most 190 parts by weight, more preferably at most 150 parts by weight, even more preferably at most 100 parts by weight, and may be at most 75 parts by weight or at most 50 parts by weight. .
  • the curable resin composition may contain epoxy compounds other than those mentioned above as long as the effect of improving bending resistance and properties such as transparency are not impaired.
  • epoxy compounds other than those mentioned above include epoxy compounds having an alicyclic epoxy group, compounds having only one glycidyl-type epoxy group, compounds in which R 5 in general formula (3) contains a ring structure, and compounds in which the number of atoms in the main chain is Examples include compounds outside the above range.
  • the curable resin composition preferably contains a polymerization initiator for accelerating curing of the polyorganosiloxane compound and epoxy compound.
  • the polymerization initiator include thermal cationic polymerization initiators and photocationic polymerization initiators. Among these, cationic photopolymerization initiators are preferably used because of their high curing efficiency.
  • a photocationic polymerization initiator is a compound (photoacid generator) that generates an acid upon irradiation with active energy rays. The epoxy groups of the polyorganosiloxane compound and epoxy compound react with the acid generated from the photoacid generator, forming intermolecular crosslinks and curing the material.
  • Photoacid generators include anions (strong acids) such as antimony hexafluoride, boron tetrafluoride, phosphorus hexafluoride, fluoroalkyl phosphorus fluoride, and fluoroalkyl gallium fluoride, as well as sulfonium, ammonium, phosphonium, iodonium, and selenium.
  • Onium salts combining cations such as iron-alene complexes; silanol-metal chelate complexes; sulfones such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidosulfonates, benzoinsulfonates, etc. Acid derivatives; organic halogen compounds and the like.
  • the content of the photocationic polymerization initiator in the curable resin composition is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the above polyorganosiloxane compound. , 0.2 to 2 parts by weight is more preferred.
  • the curable resin composition may contain a curing agent capable of curing the epoxy compound.
  • a curing agent capable of curing the epoxy compound.
  • examples of the curing agent include amine curing agents and acid anhydride curing agents.
  • the curable resin composition may further include leveling agents, reactive additives, particles and other additives.
  • the content of the polyorganosiloxane compound in the curable resin composition is preferably 30 parts by weight or more based on 100 parts by weight of the total solid content (nonvolatile content). , more preferably 40 parts by weight or more, and even more preferably 50 parts by weight or more.
  • the total content of the polyorganosiloxane compound and the epoxy compound in the curable resin composition is preferably 50 parts by weight or more, more preferably 60 parts by weight or more, based on 100 parts by weight of the total solid content. It is preferably 70 parts by weight or more, more preferably 80 parts by weight or more, 90 parts by weight or more, or 95 parts by weight or more.
  • the curable resin composition may contain a leveling agent.
  • the leveling agent include silicone leveling agents, fluorine leveling agents, ether leveling agents, and acrylic leveling agents. By including a leveling agent, it can be expected to reduce surface tension and improve surface smoothness.
  • the content of the leveling agent in the curable resin composition is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and 0.05 parts by weight, based on 100 parts by weight of the above polyorganosiloxane compound. -1 part by weight is more preferred.
  • the curable resin composition may further contain a cationic curable compound other than the above polyorganosiloxane compound and epoxy compound as a reactive additive.
  • cationically curable reactive additives include compounds having cationically polymerizable functional groups such as epoxy groups, vinyl ether groups, oxetane groups, and alkoxysilyl groups.
  • the curable resin composition may contain particles for the purpose of adjusting film properties such as surface hardness and bending resistance.
  • particles organic particles, inorganic particles, organic-inorganic composite particles, etc. may be appropriately selected and used.
  • the particles may be surface-modified, and polymerizable functional groups may be introduced by surface modification.
  • the average particle diameter of the particles is, for example, about 5 nm to 10 ⁇ m. From the viewpoint of increasing the transparency of the hard coat layer, the average particle diameter is preferably 1000 nm or less, more preferably 500 nm or less, even more preferably 300 nm or less, and particularly preferably 100 nm or less.
  • the particle size can be measured using a laser diffraction/scattering type particle size distribution measuring device, and the volume-based median size is taken as the average particle size.
  • the content of particles in the curable resin composition is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, based on 100 parts by weight of the above polyorganosiloxane compound.
  • the curable resin composition may be solvent-free or may contain a solvent.
  • the content of the solvent is 500 parts by weight based on 100 parts by weight of the polyorganosiloxane compound. parts by weight or less, more preferably 300 parts by weight or less, even more preferably 100 parts by weight or less.
  • the curable resin composition contains a photosensitizer, an inorganic pigment, an organic pigment, a radical polymerization initiator, a surface conditioner, a surface modifier, a plasticizer, a dispersant, a wetting agent, a thickener, an antifoaming agent, etc. It may contain additives. Moreover, the curable resin composition may contain thermoplastic or thermosetting resin materials other than the above-mentioned polyorganosiloxane compounds and epoxy compounds.
  • Hard coat film One embodiment of the present invention is a hard coat film including a hard coat layer made of a cured product of the above-mentioned curable resin composition on a transparent film.
  • FIG. 1 is a cross-sectional view of a hard coat film according to an embodiment of the present invention.
  • the hard coat film 11 includes a hard coat layer 3 on one main surface of the transparent film 1.
  • the hard coat layer 3 is a cured product layer obtained by curing the above-mentioned curable resin composition.
  • the hard coat film may include a top coat layer 5 on the hard coat layer 3.
  • the hard coat film may have a hard coat layer on one side of a transparent film, or may have a hard coat layer on both sides of a transparent film.
  • the transparent film 1 is a resin base material that serves as a base upon which the hard coat layer 3 is formed.
  • the total light transmittance of the transparent film 1 is preferably 80% or more, more preferably 85% or more, and even more preferably 88% or more.
  • the haze of the transparent film is preferably 2% or less, more preferably 1% or less.
  • the thickness of the transparent film 1 is, for example, about 1 to 1000 ⁇ m.
  • the thickness of the transparent film 1 is preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m, even more preferably 20 to 100 ⁇ m, and may be 30 to 80 ⁇ m. If the thickness is too small, the hardness tends to be insufficient, and if the thickness is too large, the flexibility tends to be poor.
  • resin materials constituting the transparent film 1 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins such as polymethyl methacrylate (PMMA), and cellulose resins such as triacetyl cellulose (TAC). , polycarbonate, polyamide, polyimide, polyamideimide, cyclic polyolefin, and the like.
  • polyester such as PET
  • acrylic resin, polyimide, and polyamide-imide are preferable because of their high mechanical strength
  • acrylic resin, polyimide, and polyamide-imide are particularly preferable.
  • the film base material is required to have excellent heat resistance and mechanical strength, so polyimide resins such as polyimide and polyamideimide are used as the resin material for the transparent film. is particularly preferred.
  • Polyimide is obtained by cyclodehydration of polyamic acid obtained by reaction of tetracarboxylic dianhydride and diamine. While general fully aromatic polyimides are colored yellow or brown, transparent polyimides with high visible light transmittance have been created by introducing alicyclic structures, bending structures, and fluorine substituents. can get.
  • the polyimide contains one or more of the following tetracarboxylic dianhydride groups as the tetracarboxylic dianhydride, and one or more of the following diamine groups as the diamine.
  • the polyimide contains one or more of the following tetracarboxylic dianhydride groups as the tetracarboxylic dianhydride, and one or more of the following diamine groups as the diamine.
  • the polyimide contains one or more of the following tetracarboxylic dianhydride groups as the tetracarboxylic dianhydride, and one or more of the following diamine groups as the diamine.
  • Tetracarboxylic dianhydride group 2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 2,2-bis(4-(3,4-dicarboxyphenoxy)phenyl)propane dianhydride (BPADA) ), 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), 4,4'-oxydiphthalic dianhydride (ODPA), 2,2-bis(3,4-di carboxyphenyl)-1,1,1,3,3,3-hexafluoropropanoic dianhydride (6FDA), 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride, 1,2 , 4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), dicyclohexyl-3,4,3',4'-tetracarboxylic dianhydride (H-BPDA), p-phenylene bis(trimel
  • Diamine group 2,2'-bis(trifluoromethyl)benzidine, 2,2'-dimethylbenzidine, isophorone diamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 9,9-bis (4-Aminophenyl)fluorene, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, and 2,2-bis(4-(4-aminophenoxy)phenyl)propane
  • At least one of the tetracarboxylic dianhydride and the diamine contains an alicyclic structure or a fluorine atom; structure or preferably contains a fluorine atom.
  • a polyamideimide can be obtained by using a dicarboxylic acid derivative such as terephthalic acid chloride in place of the tetracarboxylic dianhydride of polyimide.
  • the weight average molecular weight of the polyimide resin is preferably 5,000 to 500,000, more preferably 10,000 to 300,000, and even more preferably 30,000 to 200,000. When the weight average molecular weight is within this range, sufficient mechanical properties and moldability are likely to be obtained.
  • the transparent film 1 may contain two or more types of resin materials.
  • a transparent polyimide resin exhibits solvent solubility and may also exhibit compatibility with highly transparent polymers such as polycarbonate and acrylic resin.
  • Compatible blends of polyimide resins, polycarbonate, acrylic resins, and the like combine the excellent heat resistance and mechanical strength of polyimide resins with the excellent transparency of polycarbonate, acrylic resins, and the like.
  • a compatible blend containing a polyimide resin and an acrylic resin is preferred.
  • Acrylic resins include poly(meth)acrylic esters such as polymethyl methacrylate, methyl methacrylate-(meth)acrylic acid copolymers, methyl methacrylate-(meth)acrylic ester copolymers, and methyl methacrylate- Examples include acrylic ester-(meth)acrylic acid copolymer, methyl (meth)acrylate-styrene copolymer, and the like.
  • the acrylic resin may have a glutarimide structural unit or a lactone ring structural unit introduced through modification.
  • the acrylic resin has methyl methacrylate as its main structural unit.
  • the amount of methyl methacrylate relative to the total amount of monomer components in the acrylic resin is preferably 60% by weight or more, and even if it is 70% by weight or more, 80% by weight or more, 85% by weight or more, 90% by weight or more, or 95% by weight or more. good.
  • the acrylic resin may be a homopolymer of methyl methacrylate. Further, the acrylic resin may be one in which a glutarimide structure or a lactone ring structure is introduced into an acrylic polymer having a content of methyl methacrylate within the above range.
  • the glass transition temperature of the acrylic resin is preferably 100°C or higher, more preferably 110°C or higher, and may be 115°C or higher or 120°C or higher.
  • the weight average molecular weight of the acrylic resin is preferably 5,000 to 500,000, more preferably 10,000 to 300,000, and even more preferably 15,000 to 200,000.
  • the ratio of the polyimide resin is preferably 20% by weight or more, more preferably 40% by weight or more, and even more preferably 50% by weight or more. .
  • the transparent film may contain stabilizers such as ultraviolet absorbers and radical trapping agents for the purpose of imparting weather resistance, and dyes and pigments such as bluing agents for the purpose of color tone adjustment.
  • stabilizers such as ultraviolet absorbers and radical trapping agents for the purpose of imparting weather resistance
  • dyes and pigments such as bluing agents for the purpose of color tone adjustment.
  • the transparent film 1 may have a single layer or a multilayer structure.
  • the transparent film may be a laminate in which multiple films are bonded together, and the surface of the film (the surface on which the hard coat layer 3 is formed and/or the surface on which the hard coat layer 3 is not formed) is provided with an easily adhesive layer, an antistatic layer, a reflective layer, etc.
  • a functional layer such as a prevention layer may be provided.
  • a hard coat layer 3 is formed by applying a curable resin composition onto the transparent film 1, drying and removing the solvent as necessary, and then curing the composition.
  • the hard coat layer 3 is a cured product layer of the above-mentioned curable resin composition, and contributes to improving hardness, scratch resistance, impact resistance, etc.
  • Examples of methods for applying the curable resin composition include roll coating such as bar coating, gravure coating, and comma coating, die coating such as slot die coating and fountain die coating, spin coating, spray coating, and dip coating.
  • roll coating such as bar coating, gravure coating, and comma coating
  • die coating such as slot die coating and fountain die coating
  • spin coating spin coating
  • spray coating and dip coating.
  • surface treatment such as corona treatment or plasma treatment.
  • an easily adhesive layer or the like may be provided on the surface of the transparent film 1.
  • the curable resin composition When the curable resin composition is irradiated with active energy rays or heated, an acid is generated from the cationic polymerization initiator, and due to the action of the acid, the alicyclic epoxy group of the polyorganosiloxane compound and the glycidyl type epoxy group of the epoxy compound are Ring opening and cationic polymerization reactions proceed.
  • the curable resin composition contains a reactive additive, in addition to the polymerization reaction of the polyorganosiloxane compound and the epoxy compound, a polymerization reaction with the reactive additive also occurs. Further, when the curable resin composition contains particles having reactive functional groups on the surface, the epoxy groups of the polyorganosiloxane compound and the epoxy compound react with the functional groups on the particle surface to form chemical crosslinks.
  • the curable resin composition contains a photocationic polymerization initiator and is cured by irradiation with active energy rays.
  • active energy rays irradiated during photocuring include visible light, ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, and electron beams.
  • Ultraviolet rays are preferred as active energy rays because they have a high curing reaction rate and excellent energy efficiency.
  • the cumulative dose of active energy rays is, for example, about 50 to 10,000 mJ/cm 2 and may be set depending on the type and amount of the photocationic polymerization initiator, the thickness of the hard coat layer, etc.
  • the curing temperature is not particularly limited, but is usually 150°C or lower.
  • the thickness of the hard coat layer 3 is 2 to 100 ⁇ m, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 15 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, even more preferably 30 ⁇ m or less, and 25 ⁇ m or less. is particularly preferred.
  • the greater the thickness of the hard coat layer the better the hardness and impact resistance tend to be.
  • the smaller the thickness of the hard coat layer the better the bending resistance tends to be.
  • the total thickness of the transparent film 1 and the thickness of the hard coat layer 3 is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, even more preferably 40 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, The thickness is more preferably 100 ⁇ m or less, particularly preferably 80 ⁇ m or less.
  • the ratio between the thickness of the hard coat layer 3 and the thickness of the transparent film 1 (hard coat layer thickness/transparent film thickness) is preferably 2/100 to 100/20.
  • a top coat layer 5 may be provided on the surface layer of the hard coat layer 3.
  • the scratch resistance and stain resistance of the hard coat film can be improved. will improve.
  • Such a top coat layer 5 is formed by applying a composition of a perfluoroalkyl group-containing compound having an alkoxysilyl group in the molecule onto the hard coat layer 3.
  • a composition of a perfluoroalkyl group-containing compound having an alkoxysilyl group in the molecule include "OPTOOL UD509" and “OPTOOL DSX-E” manufactured by Daikin Industries.
  • the thickness of the top coat layer 5 is not particularly limited, but is preferably 1 nm or more, more preferably 5 nm or more, even more preferably 6 nm or more, and particularly preferably 10 nm or more.
  • the thickness of the top coat layer 5 is preferably 1000 nm or less, more preferably 100 nm or less, and may be 50 nm or less, 45 nm or less, 40 nm or less, 35 nm or less, or 30 nm or less. If the thickness of the top coat layer is too small, the scratch resistance and antifouling properties may be insufficient, and if the thickness is too large, the transparency of the hard coat film may decrease due to clouding of the coating film, etc. .
  • a hard coat comprising, on a resin film 1, a hard coat layer 3 formed from the above-mentioned curable resin composition containing a polyorganosiloxane compound having an alicyclic epoxy group and an epoxy compound containing a plurality of glycidyl type epoxy groups.
  • the film has high surface hardness and excellent bending resistance.
  • the hard coat film can be repeatedly bent 200,000 times or more at a radius of 3 mm with the hard coat layer on the outside.
  • the surface of the hard coat film on which the hard coat layer 3 is formed preferably has a hardness of H or higher in a pencil hardness test according to JIS-K5600.
  • the pencil hardness is more preferably 2H or more, further preferably 3H or more, and may be 4H or more.
  • the total light transmittance of the hard coat film is preferably 80% or more, more preferably 85% or more, and even more preferably 88% or more.
  • the haze of the hard coat film is preferably 1% or less, more preferably 0.7% or less, and even more preferably 0.5% or less.
  • the yellowness index (YI) of the hard coat film is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.5 or less.
  • a hard coat layer formed by curing a polyorganosiloxane compound having an alicyclic epoxy group has excellent hardness, but tends to have poor bending resistance.
  • the curable resin composition used to form the hard coat layer contains, in addition to the polyorganosiloxane compound having an alicyclic epoxy group, an epoxy compound having a plurality of glycidyl-type epoxy groups. Bending resistance can be improved without reducing hardness and transparency. Therefore, it is possible to provide a hard coat film that has the above-mentioned hardness and outward bending resistance, has low haze and YI, and has excellent transparency.
  • the hard coat film may include various functional layers.
  • the functional layer include an antireflection layer, an antiglare layer, an antistatic layer, and a transparent electrode.
  • a transparent adhesive layer may be attached to the hard coat film.
  • the above-mentioned hard coat film has high hardness and excellent transparency, so it can be suitably used as a cover window material placed on the outermost surface of a display. Since the hard coat film has excellent bending resistance, it can also be suitably used as a cover window for a foldable display. Since the hard coat film has excellent bending resistance when bent with the hard coat layer forming surface facing outward, it can also be applied to foldable displays of the type that are folded with the screen facing outward.
  • polyimide resin 2 After adding 5.5 g of pyridine as an imidization catalyst to 100 g of polyamic acid solution and completely dispersing the mixture, 8 g of acetic anhydride was added and stirred at 90° C. for 3 hours. Thereafter, in the same manner as in the preparation of polyimide resin 1, polyimide resin was precipitated, washed, and vacuum dried to obtain polyimide resin 2.
  • the mixture was heated in an air atmosphere for 15 minutes to remove the solvent and produce a film with a thickness of about 90 ⁇ m.
  • This film was fixed-end uniaxially stretched at a temperature of 195° C. and a stretching ratio of 80% using a stretching machine equipped with a heating oven to obtain a transparent film 3 having a thickness of 50 ⁇ m.
  • the weight average molecular weight in terms of polystyrene was 3000 as measured using a GPC device "HLC-8220GPC” manufactured by Tosoh (columns: TSKgel GMH XL x 2, TSKgel G3000H XL , TSKgel G2000H XL ).
  • the residual rate of epoxy groups calculated from the 1 H-NMR spectrum measured using a Bruker 400 MHz-NMR using deuterated acetone as a solvent was 95% or more.
  • a curable resin composition was prepared by blending the above polyorganosiloxane compound, an epoxy compound, a photopolymerization initiator, and a leveling agent.
  • the type of epoxy compound and the amounts of the epoxy compound, photopolymerization initiator, and leveling agent were as shown in Tables 2 to 7.
  • n and R 5 in Table 1 are n (number of glycidyl-type epoxy groups) and R 5 (structure connecting oxygen atoms of glycidyloxy groups) in general formula (3).
  • epoxy compound D and epoxy compound E are the same compound, they differ in purity (the content of chlorine atoms as impurities), and the chlorine atom content of epoxy compound D is 0.1% or less; The chlorine atom content of E is 5.7%.
  • CPI-101A 50% solution of salt consisting of hexafluoroantimonate anion and sulfonium cation
  • 200K 50% solution of salt consisting of phosphonium anion and sulfonium cation
  • CPI-200K 50% solution of salt consisting of phosphonium anion and sulfonium cation
  • ⁇ Hard coat film 5, 13 to 22> After forming a hard coat layer on a transparent film in the same manner as above, the surface of the hard coat layer was subjected to corona treatment. A solution of 0.1% solids by diluting a perfluoroalkyl ether oligomer solution (“OPTOOL UD509” manufactured by Daikin Industries, Ltd.) with hydrofluoroether (“Novec 7200” manufactured by 3M) was applied to the surface of the hard coat layer after corona treatment. ) was applied and the solvent was removed at 150°C to obtain a hard coat film having a hard coat layer on the transparent film and a scratch resistant layer on the hard coat layer.
  • OPTOOL UD509 perfluoroalkyl ether oligomer solution
  • Novec 7200 manufactured by 3M
  • ⁇ Pencil hardness> According to JIS K5600, the pencil hardness of the hard coat layer surface (for hard coat films 14 to 23, the surface of the scratch-resistant layer) was evaluated under a load of 750 g. The hard coat films 15 and 18 were evaluated by moving a pencil along the stretching direction of the transparent film 3.
  • Tables 2 to 7 show the composition of the curable resin composition used to form the hard coat layer, the type of transparent film, the presence or absence of a scratch-resistant layer, and the evaluation results of the hard coat film.
  • Hard coat film 1 produced using a composition containing no epoxy compound had high pencil hardness, but had insufficient bending resistance.
  • Hard coat film 2 produced using a composition in which 45 parts by weight of tripropylene glycol diglycidyl ether (epoxy compound A) is blended with 100 parts by weight of a polyorganosiloxane compound has a high pencil hardness of 4H. However, it showed excellent bending resistance. From the comparison between Hard Coat Film 2 and Hard Coat Films 3 to 5, it was found that by using a composition containing an epoxy compound, bending resistance, hardness, and transparency can be improved regardless of the presence or absence of a leveling agent and the type and amount of a photopolymerization initiator. It can be seen that a hard coat film with excellent properties can be obtained.
  • PPO polypropylene oxide
  • hard coat films 10 and 11 using epoxy compound C ethylene glycol diglycidyl ether.
  • hard coat films 29 and 30 containing a large amount of epoxy compound showed a decrease in pencil hardness as the amount of epoxy compound increased.
  • the hard coat film 30 containing 200 parts by weight of the epoxy compound had a haze of more than 1.0%.
  • Hard coat film 25 containing 20 parts by weight of the epoxy compound had insufficient bending resistance, similar to hard coat films 1 and 9.
  • the hard coat films 14 and 17 using the transparent film 3 which is a mixed resin film of polyimide and PMMA have a lower yellow index (YI) than the hard coat films 13 and 16 which use the transparent film 2 which is a polyimide film. It had excellent transparency.
  • Hard coat films 32 to 35, 37 to 39, 41 to 44 containing 5 parts by weight or more of epoxy compounds G, H, and I in which R 5 connecting the oxygen atoms of two glycidyloxy groups is a branched alkylene are It had excellent resistance, hardness and transparency.
  • Hard coat film 36 containing 1 part by weight of epoxy compound H showed excellent bending resistance similar to hard coat films 37 to 39; The coated films 31 and 40 lacked bending resistance.
  • Hard coat films 46 and 47 containing 5 parts by weight or more of epoxy compound J (trimethylolpropane triglycidyl ether) having three glycidyl-type epoxy groups were excellent in bending resistance, hardness, and transparency.
  • Hard coat films 48 and 49 using epoxy compounds K and L in which R 5 is a polyethylene oxide (PEO) chain were insufficient in either bending resistance or hardness.
  • the hard coat film 50 containing 50 parts by weight of the epoxy compound M in which R 5 is a polytetramethylene oxide (PTMO) chain lacks bending resistance, and the hard coat films 51 and 52 containing an increased amount of the epoxy compound However, the hardness was insufficient. Further, hard coat films 50 to 52 had high haze and insufficient transparency. This is considered to be due to the low compatibility between the polyorganosiloxane compound and the epoxy compound.
  • the formulation of the epoxy compound contains an epoxy compound having a structure in which multiple glycidyl-type epoxy groups are connected by an organic group R5 having a specific structure. It can be seen that by using a composition in a predetermined amount as a hard coat material, a hard coat film having excellent outward bending resistance, hardness and transparency can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)

Abstract

硬化性樹脂組成物は、脂環式エポキシ基を有するポリオルガノシロキサン化合物、および複数のグリシジル型エポキシ基を有するエポキシ化合物を含む。ポリオルガノシロキサン化合物は、一般式(1)で表されるシラン化合物を含むシラン化合物の縮合物であり、エポキシ化合物は、トリメチロールプロパントリグリシジルエーテルまたは一般式(4)で表される化合物である。硬化性樹脂組成物において、ポリオルガノシロキサン化合物100重量部に対するエポキシ化合物の含有量は、1~190重量部である。 [Y-Si(OR 3-x] (1)

Description

硬化性樹脂組成物、ハードコートフィルムおよびその製造方法、ならびにディスプレイ
 本発明は、硬化性樹脂組成物、ハードコートフィルムおよびその製造方法に関する。また、当該ハードコートフィルムを備えるディスプレイに関する。
 曲面ディスプレイや折り畳み可能なディスプレイ(フォルダブルディスプレイ)が開発されており、ディスプレイのカバーウインドウや基板等に用いられてきた剛直なガラス材料を、柔軟性に優れたプラスチックフィルム材料に置き換える検討がなされている。フォルダブルディスプレイをはじめとするフレキシブルディスプレイのカバーウインドウには、透明性、硬度、屈曲耐性等の諸特性が要求される。
 特許文献1では、フィルム基材上にシラン化合物の縮合物を含むシロキサン系のハードコート層を設けたハードコートフィルムを、ディスプレイのカバーウインドウ材料に用いることが提案されている。
国際公開第2020/040209号
 シロキサン系のハードコート材料は硬化収縮が少ないため、ハードコートフィルムの反りを低減できる利点がある。しかし、硬度を高めるためにハードコート層の厚みを大きくすると、ハードコート層の屈曲耐性が低下する傾向があり、特に、ハードコート層形成面を外側にして屈曲させた場合に、ハードコート層にクラックが生じやすい。
 上記に鑑み、本発明は、優れた表面硬度と屈曲耐性とを両立可能なハードコートフィルム、およびその作製に用いられる硬化性樹脂組成物の提供を目的とする。
 本発明は、ポリオルガノシロキサン化合物およびエポキシ化合物を含む硬化性樹脂組成物に関する。硬化性樹脂組成物において、ポリオルガノシロキサン化合物100重量部に対するエポキシ化合物の含有量は、1~190重量部であり、好ましくは5~100重量部である。
 ポリオルガノシロキサン化合物は、一般式(1)で表されるシラン化合物を含むシラン化合物の縮合物である。
   [Y-Si(OR 3-x]  (1)
 Rは水素原子または炭素数1~10のアルキル基である。Rは水素原子、または炭素数1~16のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基から選択される1価の炭化水素基である。xは2または3である。Yは脂環式エポキシ基を含む1価の有機基である。
 エポキシ化合物は、複数のグリシジル型エポキシ基を有する化合物であり、一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000002
 一般式(3)において、nは2以上の整数であり、好ましくは2または3である。Rは環構造を含まないn価の有機基であり、複数のグリシジルオキシ基(CHO-CH-O-)を繋いでいる。
 上記のエポキシ化合物は、好ましくは、トリメチロールプロパントリグリシジルエーテルまたは一般式(4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
 一般式(4)において、Rは、炭素数2~12である直鎖アルキレン基、炭素数2~12である直鎖アルキレン基の1以上の水素原子がメチル基もしくは水酸基に置換されていることにより分枝構造を有するアルキレン基、または主鎖の原子数が5~20であるポリプロピレンオキサイド鎖である。
 エポキシ化合物の具体例として、エチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、1,12-ドデカンジオールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ヘプタプロピレングリコールジグリシジルエーテル、およびトリメチロールプロパントリグリシジルエーテルが挙げられる。
 エポキシ化合物が、一般式(4)で表され、Rが炭素数2~6の直鎖アルキレン基である場合、硬化性樹脂組成物におけるエポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、1~190重量部が好ましい。
 エポキシ化合物が、一般式(4)で表され、Rが炭素数2~6の直鎖アルキレン基の1以上の水素原子がメチル基もしくは水酸基に置換されていることにより分枝構造を有するアルキレン基である場合、硬化性樹脂組成物におけるエポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、1~190重量部が好ましい。
 エポキシ化合物が、一般式(4)で表され、Rが炭素数7~12の直鎖アルキレン基である場合、硬化性樹脂組成物におけるエポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、21~190重量部が好ましい。
 エポキシ化合物が、一般式(4)で表され、Rが炭素数7~12の直鎖アルキレン基の1以上の水素原子がメチル基もしくは水酸基に置換されていることにより分枝構造を有するアルキレン基である場合、硬化性樹脂組成物におけるエポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、21~190重量部が好ましい。
 エポキシ化合物が、一般式(4)で表され、Rが主鎖の原子数が5~20であるポリプロピレンオキサイド鎖である場合、硬化性樹脂組成物におけるエポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、21~190重量部が好ましい。
 エポキシ化合物が、トリメチロールプロパントリグリシジルエーテルである場合、硬化性樹脂組成物におけるエポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、5~190重量部が好ましい。
 硬化性樹脂組成物は、重合開始剤を含んでいてもよい。重合開始剤としては、カチオン重合開始剤が好ましく、中でも活性エネルギー線の照射により酸を発生する光カチオン重合開始剤が好ましい。
 上記のポリオルガノシロキサン化合物、エポキシ化合物および重合開始剤を含む硬化性樹脂組成物は、ハードコート材料として好適に使用できる。透明フィルム上に、硬化性樹脂組成物を塗布し、活性エネルギー線を照射して硬化させてハードコート層を形成することにより、ハードコートフィルムが形成される。
 透明フィルムは、ポリイミド系樹脂およびアクリル系樹脂から選択される1以上を含むものであってもよい。透明フィルムは、ポリイミド系樹脂とアクリル系樹脂を含んでいてもよい。
 ハードコート層の厚みは、5~100μmであってもよい。ハードコートフィルムは、ハードコート層上に、トップコート層として耐擦傷層を備えていてもよい。
 本発明の硬化性樹脂組成物によりハードコート層を形成したハードコートフィルムは、優れた表面硬度と屈曲耐性とを両立可能であり、かつ高い透明性を有する。そのため、ハードコートフィルムは、表示面が外側となるように折り畳むタイプのフォルダブルディスプレイのカバーウインドウ材料としても好適に使用可能である。
一実施形態のハードコートフィルムの断面図である。 一実施形態のハードコートフィルムの断面図である。
[硬化性樹脂組成物]
 本発明の硬化性樹脂組成物は、脂環式エポキシ基を有するポリオルガノシロキサン化合物を含む。ポリオルガノシロキサン化合物を含む組成物は、WO2014/204010号、WO2018/096729号、WO2020/040209号等に開示されており、これらの記載を参照・援用できる。硬化性樹脂組成物は、硬化性樹脂成分としてのポリオルガノシロキサン化合物に加えて、グリシジル型エポキシ基を有するエポキシ化合物を含み、さらに、重合開始剤を含んでいてもよい。
<ポリオルガノシロキサン化合物>
(シラン化合物)
 脂環式エポキシ基を有するポリオルガノシロキサン化合物は、一般式(1)で表されるシラン化合物の縮合により得られる。
   [Y-Si(OR 3-x]  (1)
 Rは水素原子または炭素数1~10のアルキル基である。Rは水素原子、または炭素数1~16のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基から選択される1価の炭化水素基である。xは2または3の整数である。Yは脂環式エポキシ基を含む1価の有機基である。
 一般式(1)で表されるシラン化合物は、一分子中に2個または3個の(-OR)を有する。Si-ORが加水分解性を有するため、シラン化合物の縮合によりポリオルガノシロキサン化合物が得られる。
 脂環式エポキシ基を含む1価の有機基Yとしては、脂環式エポキシ基、脂環式エポキシ基を置換基として有するアルキル基、脂環式エポキシ基を置換基として有するアルキレングリコール基等が挙げられる。耐熱性や屈曲耐性の観点から、脂環式エポキシ基を置換基として有するアルキル基が好ましい。
 脂環式エポキシ基を置換基として有するアルキル基の具体例としては、(3,4-エポキシシクロヘキシル)メチル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基、4-(3,4-エポキシシクロヘキシル)ブチル基、5-(3,4-エポキシシクロヘキシル)ペンチル基、6-(3,4-エポキシシクロヘキシル)ヘキシル基、7-(3,4-エポキシシクロヘキシル)ヘプチル基、8-(3,4-エポキシシクロヘキシル)オクチル基、9-(3,4-エポキシシクロヘキシル)ノニル基、10-(3,4-エポキシシクロヘキシル)デシル基、11-(3,4-エポキシシクロヘキシル)ウンデシル基、12-(3,4-エポキシシクロヘキシル)ドデシル基等が挙げられる。
 Rは、好ましくは、炭素数1~10のアルキル基である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基、シクロヘキシル基、エチルヘキシル基等が挙げられる。シラン化合物の加水分解性の観点から、Rとしては、メチル基、エチル基またはプロピル基が好ましく、最も好ましくはメチル基である。
 Rは、好ましくは炭化水素基である。炭化水素基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、イソプロピル基、イソブチル基、シクロヘキシル基、エチルヘキシル基、ベンジル基、フェニル基、トリル基、キシリル基、ナフチル基、フェネチル基等が挙げられる。
 一般式(1)において、xは2または3であり、x=3の場合(すなわち、Si原子に3つのアルコキシ基(またはヒドロキシ基)-ORが結合している場合)、シラン化合物はRを有さない。網目状のポリオルガノシロキサン化合物の形成、およびポリオルガノシロキサン化合物に含まれるエポキシ基の数を大きくして硬化膜の硬度を高める観点から、一般式(1)において、x=3であることが好ましい。x=2のシラン化合物と、x=3のシラン化合物を併用してもよい。また、縮合により得られるポリオルガノシロキサン化合物の分子量の調整等を目的として、xが2または3であるシラン化合物に加えて、xが1であるシラン化合物を用いてもよい。
 一般式(1)で表されるシラン化合物の具体例としては、(3,4-エポキシシクロヘキシル)トリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルジメトキシシラン、(3,4-エポキシシクロヘキシル)ジメチルメトキシシラン、(3,4-エポキシシクロヘキシル)トリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルジエトキシシラン、(3,4-エポキシシクロヘキシル)ジメチルエトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}トリメトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}メチルジメトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}ジメチルメトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}トリエトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}メチルジエトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}ジメチルエトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}トリメトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}メチルジメトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}ジメチルメトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}トリエトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}メチルジエトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}ジメチルエトキシシラン等が挙げられる。これらの中でも、縮合反応の容易性や硬化物の硬度の観点から2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。
 シラン化合物の縮合物としてのポリオルガノシロキサン化合物は、一般式(1)のシラン化合物と、他のシラン化合物との縮合物であってもよい。他のシラン化合物、すなわち脂環式エポキシ基を含まないシラン化合物の例として、一般式(2)で表されるシラン化合物が挙げられる。
    R-(Si(OR 3-x)  (2)
 一般式(2)において、R、Rおよびxは、一般式(1)と同様である。一般式(2)において、Rは脂環式エポキシ基を含まない1価の有機基である。
 Rは、置換もしくは無置換の二重結合を含有する基、置換もしくは無置換のシクロアルキル基を含有する基、置換もしくは無置換の芳香環を含有する基、置換もしくは無置換のアルキル基、グリシジル基を有する基、オキセタニル基を有する基、または水素原子である。
 上記置換もしくは無置換の二重結合を含有する基としては、ビニル基、アリル基、イソプロペニル基、(メタ)アクリロイル基等が挙げられる。置換もしくは無置換のシクロアルキル基を含有する基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロブチルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロブチルエチル基、シクロペンチルエチル基、シクロヘキシルエチル基等が挙げられる。置換もしくは無置換の芳香環を含有する基としては、フェニル基、4-メチルフェニル基、トリル基、ナフチル基等が挙げられる。置換もしくは無置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、イソプロピル基、イソブチル基、シクロヘキシル基、エチルヘキシル基等が挙げられる。グリシジル基を有する基としては、グリシジルオキシメチル基、2-グリシジルオキシエチル基、3-グリシジルオキシプロピル基、4-グリシジルオキシブチル基、5-グリシジルオキシペンチル基、6-グリシジルオキシヘキシル基、7-グリシジルオキシヘプチル基、8-グリシジルオキシオクチル基、9-グリシジルオキシノニル基、10-グリシジルオキシデシル基、11-グリシジルオキシウンデシル基、12-グリシジルオキシドデシル基等が挙げられる。オキセタニル基を有する基としては、オキセタニルメチル基、3-メチル-3-オキセタニルメトキシメチル基、3-エチル-3-オキセタニルメトキシメチル基等が挙げられる。
 一般式(2)で表されるシラン化合物の具体例としては、ビニルトリメトキシシラン、アリルトリメトキシシラン、アクリロイルオキシプロピルトリメトキシシラン、メタクリロイルオキシプロピルトリメトキシシラン、シクロペンチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、ベンジルトリメトキシシラン、フェニルトリメトキシシラン、トリルトリメトキシシラン、キシリルトリメトキシシラン、ナフチルトリメトキシシラン、フェネチルトリメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプチルトリメトキシシラン、オクチルトリメトキシシラン、ノニルトリメトキシシラン、デシルトリメトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、8-グリシジルオキシオクチルトリメトキシシラン、3-エチル-3-(3’-トリメトキシシリル)プロピルオキシメチルオキセタン等が挙げられる。
(シラン化合物の加水分解および縮合)
 上記のシラン化合物を水と反応させることにより、シラン化合物のSi-OR部分が加水分解し、加水分解物が縮合することによりSi-O-Si結合が形成されてシラン化合物の縮合物(ポリオルガノシロキサン化合物)が生成する。加水分解および縮合反応に必要な水の量は、Si原子に結合した-OR基1当量に対して0.3~3当量が好ましく、0.5~2当量がより好ましい。水の量が過度に少ない場合は、加水分解されずに残存するOR基が多く、ポリオルガノシロキサン化合物の分子量が小さいために、硬化物の硬度が不足する傾向がある。水の量が過度に多い場合は、加水分解および縮合反応の反応速度が大きく、高分子量の縮合物が生成し、硬化物の透明性や柔軟性が低下する傾向がある。
 上記の通り、シラン化合物として、一般式(1)で表される脂環式エポキシ基を含むシラン化合物に加えて、脂環式エポキシ基を含まないシラン化合物を用いてもよい。シラン化合物の全量に対する一般式(1)のシラン化合物の比率は、50モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。
 シラン化合物の加水分解および縮合反応では、一般式(1)および一般式(2)における-ORが反応に関与するが、Si原子に結合したその他の官能基は、エポキシ基の開環等の副反応を除いて反応しない。そのため、ポリオルガノシロキサン化合物では、一般式(1)におけるYおよび一般式(2)におけるRは、構造が保持されている。
 したがって、ポリオルガノシロキサン化合物に含まれるSi原子の総数に対する脂環式エポキシ基の数の比率は、シラン化合物の全量に対する一般式(1)のシラン化合物の比率と略等しい。一般式(1)で表されるシラン化合物のみを加水分解および縮合させて得られるポリオルガノシロキサン化合物は、反応後の脂環式エポキシ基の残存率が100%であれば、脂環式エポキシ基の数がSi原子の総数と等しい。ポリオルガノシロキサン化合物に含まれる脂環式エポキシ基の数は、Si原子の総数に対して、0.5倍以上が好ましく、0.7倍以上がより好ましく、0.8倍以上がさらに好ましい。
 硬化膜(ハードコート層)の硬度を高める観点から、ポリオルガノシロキサン化合物の重量平均分子量は500以上が好ましい。また、揮発を抑制する観点からも、ポリオルガノシロキサン化合物の重量平均分子量は500以上が好ましい。一方、分子量が過度に大きいと、組成物中の他の成分との相溶性の低下等に起因して白濁が生じる場合がある。そのため、ポリオルガノシロキサン化合物の重量平均分子量は20000以下が好ましい。ポリオルガノシロキサン化合物の重量平均分子量は、1000~18000がより好ましく、1500~16000がさらに好ましく、2000~14000、または2800~12000であってもよい。
 シラン化合物の加水分解反応および縮合反応においては、エポキシ基の開環を抑制する観点から、中性または塩基性条件下で反応を実施することが好ましい。中性塩触媒としては、酸と塩基からなる塩が挙げられ、アルカリ金属またはアルカリ土類金属のカチオンとハロゲンのアニオンからなる塩が好ましい。中性塩の具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ベリリウム、塩化マグネシウム、塩化カルシウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化ベリリウム、臭化マグネシウム、臭化カルシウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化ベリリウム、ヨウ化マグネシウム、ヨウ化カルシウム等が挙げられる。
<エポキシ化合物>
 硬化性樹脂組成物は、硬化性樹脂成分として、上記のポリオルガノシロキサン化合物に加えて、複数のグリシジル型エポキシ基を有するエポキシ化合物を含む。複数のグリシジル型エポキシ基を有する化合物は、一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000004
 一般式(3)において、nは2以上の整数である。Rは環構造を含まないn価の有機基であり、複数のグリシジルオキシ基(CHO-CH-O-)を繋いでいる。
 硬化性樹脂組成物が、ポリオルガノシロキサン化合物に加えて、一般式(3)で表されるエポキシ化合物を含むことにより、硬化物の硬度を過度に低下させることなく、屈曲耐性を向上できる。そのため、硬化性樹脂組成物をハードコート材料として用いることにより、表面硬度が高く、かつハードコート層形成面を外側にして屈曲と伸張を繰り返してもハードコート層にクラックが生じ難い(外曲げ屈曲耐性が高い)ハードコートフィルムが得られる。
 屈曲耐性向上の観点から、一般式(3)で表されるエポキシ化合物の分子量は、170以上が好ましい。硬化物の硬度および透明性の観点から、一般式(3)で表されるエポキシ化合物の分子量は、700以下が好ましく、500以下がより好ましく、300以下がさらに好ましく、250以下であってもよい。
 屈曲耐性向上の観点から、エポキシ化合物に含まれるエポキシ基の数、すなわち一般式(3)におけるnは、2または3が好ましく、2であることが特に好ましい。
 一般式(3)においてnが3である場合、エポキシ化合物は、Rが(CHCH)C((CH)-)である化合物、すなわちトリメチロールプロパントリグリシジルエーテルであることが好ましい。
 一般式(3)におけるnが2であるエポキシ化合物は、下記の一般式(4)で表される。
Figure JPOXMLDOC01-appb-C000005
 一般式(4)におけるRは環構造を含まない2価の有機基である。Rは、主鎖の原子数が2~12である直鎖もしくは分岐のアルキレン基、または主鎖の原子数が5~20であるポリプロピレンオキサイド鎖であることが好ましい。主鎖の原子数(「鎖長」と記載する場合がある)とは、一般式(4)において、2つのグリシジルオキシ基の酸素原子同士を繋いでいる直鎖を構成する原子の数である。Rの主鎖の原子数が上記範囲を上回ると、架橋密度の低下による硬度の低下や、ポリオルガノシロキサン化合物との相溶性低下による透明性の低下(ヘイズ上昇)の原因となる場合がある。
 主鎖の原子数(炭素数)が2~12である直鎖アルキレン基としては、メチレン基、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基が挙げられる。これらの中でも、ハードコート層の屈曲耐性の観点から、炭素数2~6の直鎖アルキレン基が好ましく、中でも炭素数が6であるヘキサメチレン基が特に好ましい。
 一般式(4)におけるRが炭素数2~12の直鎖アルキレン基であるエポキシ化合物としては、1,2-エチレングリコールジグリシジルエーテル、1,3-プロパンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,5-ペンタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、1,7-ヘプタンジオールジグリシジルエーテル、1,8-オクタンジオールジグリシジルエーテル、1,9-ノナンジオールジグリシジルエーテル、1,10-デカンジオールジグリシジルエーテル、1,11-ウンデカンジオールジグリシジルエーテル、1,12-ドデカンジオールジグリシジルエーテルが挙げられる。
 主鎖の原子数(炭素数)が2~12である分枝アルキレン基としては、上記の直鎖アルキレン基の1以上の水素原子がメチル基または水酸基に置換された基が挙げられる。一般式(4)におけるRが主鎖の原子数が2~12であり分枝を有するアルキレン基であるエポキシ化合物としては、1,2-プロパンジオールジグリシジルエーテル(プロピレングリコールジグリシジルエーテル)、1,3-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル等が挙げられる。
 一般式(4)におけるRが主鎖の原子数が5~20であるポリプロピレンオキサイド鎖であるエポキシ化合物としては、ジプロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、テトラプロピレングリコールジグリシジルエーテル、ペンタプロピレングリコールジグリシジルエーテル、ヘキサプロピレングリコールジグリシジルエーテル、ヘプタプロピレングリコールジグリシジルエーテルが挙げられる。
 上記の様に、複数のグリシジル型エポキシ基を有するエポキシ化合物としては、一般式(3)において、n=3であり、Rが(CHCH)C((CH)-)である化合物;または、一般式(4)において、Rが、主鎖の原子数が2~12である直鎖もしくは分岐のアルキレン基、または主鎖の原子数が5~20であるポリプロピレンオキサイド鎖である化合物が好ましい。これらの化合物の中でも、硬化物の硬度、屈曲耐性および透明性の観点から、エチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、1,12-ドデカンジオールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ヘプタプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルが好ましい。
 複数のグリシジル型エポキシ基を有するエポキシ化合物としては、各種の市販品を利用できる。グリシジル型エポキシ基を有する化合物は、工業的には、アルコールとエピクロロヒドリンとの反応により合成される。この反応により得られるエポキシ化合物は、副生成物(不純物)として塩素原子を含む場合がある。硬化性樹脂組成物の構成成分としてのエポキシ化合物は、不純物として塩素原子を含むものであってもよいが、硬化物の残存ハロゲン量低減等の観点からは、残存塩素原子量が少ない材料を用いることが好ましい。また、残存塩素原子量の少ない材料を用いることにより、硬化物の硬度が上昇する場合がある。エポキシ化合物の残存塩素原子量は、10重量%以下が好ましく、5重量%以下がより好ましく、1重量%以下がさらに好ましく、0.1重量%以下が特に好ましい。上記のエポキシ化合物の中で、残存塩素原子量が少ない市販品を入手可能である点において、1,6-ヘキサンジオールジグリシジルエーテルが特に好ましい。
 上記のエポキシ化合物は、環構造を含まないため、硬化物に柔軟性を付与し屈曲耐性を向上する効果が高いと考えられる。グリシジル型エポキシ基は、硬化反応時に極性基である水酸基を生じる。この水酸基が、硬化物であるハードコート層と透明フィルムとの密着性を高め、屈曲時の応力によるハードコート層の界面剥離を抑制する作用を有することも、屈曲耐性向上に寄与していると考えられる。
 一般式(3)のエポキシ化合物は、複数のグリシジル型エポキシ基を有するため、架橋構造を形成可能であり、硬化物の硬度上昇に寄与すると考えられる。また、複数のグリシジル型エポキシ基を有する化合物は、硬化反応により生成する水酸基の数が多いため、上述の密着性向上による屈曲耐性向上効果が発揮されやすい。特に、R(およびR)の主鎖の原子数が少なく、エポキシ化合物の分子体積が小さいほど、硬化物における単位体積あたりの水酸基の数が多いために、屈曲耐性向上への寄与が大きいと考えられる。
 屈曲耐性向上への寄与が大きく、かつ硬度の低下が少ないことから、エポキシ化合物としては、一般式(3)において、n=2であり、R(一般式(4)におけるR)が主鎖の炭素数が2~6の直鎖のアルキレンである化合物が特に好ましく、中でも、1,6-ヘキサンジオールジグリシジルエーテルが特に好ましい。
 硬化性樹脂組成物におけるエポキシ化合物の含有量が多いほど、硬化物の屈曲耐性が向上する傾向がある。一方、エポキシ化合物の含有量が過度に多い場合は、硬度が低下する場合がある。硬化性樹脂組成物における一般式(3)で表されるエポキシ化合物の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、1~190重量部が好ましく、3~150重量部がより好ましく、5~100重量部がさらに好ましい。
 硬化性樹脂組成物は、一般式(3)で表されるエポキシ化合物を複数種含んでいてもよい。その場合、一般式(3)で表されるエポキシ化合物の含有量の合計が上記範囲であることが好ましい。
 硬化性樹脂組成物におけるエポキシ化合物の含有量の適切な範囲は、エポキシ化合物の種類によって異なる。例えば、上記のように、R(およびR)の主鎖の原子数が少ないエポキシ化合物は、少量でも屈曲耐性向上効果が高いため、1~20重量部程度の配合量でも、外曲げ屈曲耐性が高いハードコートフィルムを形成できる。
 エポキシ化合物が、一般式(3)において、n=2であり、R(一般式(4)におけるR)が主鎖の炭素数が2~6の直鎖または分岐のアルキレンである場合、エポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、1重量部以上が好ましく、3重量部以上がより好ましく、5重量部以上がさらに好ましく、10重量部以上、15重量部以上、20重量部以上または21重量部以上であってもよく、190重量部以下が好ましく、150重量部以下がより好ましく100重量部以下がさらに好ましく、75重量部以下または50重量部以下であってもよい。Rの主鎖の炭素数が2である場合(エポキシ化合物がエチレングリコールジグリシジルエーテルである場合)、またはRが主鎖の炭素原子に結合した水酸基による分枝構造を有する場合(例えば、エポキシ化合物がグリセリンジグリシジルエーテルである場合)は、エポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、5重量部以上であることが好ましい。
 エポキシ化合物が、一般式(3)において、n=2であり、R(一般式(4)におけるR)が主鎖の炭素数が7~12の直鎖または分岐のアルキレンである場合、エポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、21重量部以上が好ましく、25重量部以上がより好ましく、30重量部以上または36重量部以上であってもよく、190重量部以下が好ましく、150重量部以下がより好ましく100重量部以下がさらに好ましく、75重量部以下または50重量部以下であってもよい。
 エポキシ化合物が、一般式(3)において、n=2であり、R(一般式(4)におけるR)が主鎖の原子数が5~20であるポリプロピレンオキサイド鎖である場合、エポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、21重量部以上が好ましく、25重量部以上がより好ましく、30重量部以上、36重量部以上、40重量部以上または46重量部以上であってもよく、190重量部以下が好ましく、150重量部以下がより好ましく100重量部以下がさらに好ましく、75重量部以下または50重量部以下であってもよい。
 エポキシ化合物が、トリメチロールプロパントリグリシジルエーテルである場合、エポキシ化合物の含有量は、ポリオルガノシロキサン化合物100重量部に対して、5重量部以上が好ましく、10重量部以上、15重量部以上、20重量部以上または21重量部以上であってもよく、190重量部以下が好ましく、150重量部以下がより好ましく100重量部以下がさらに好ましく、75重量部以下または50重量部以下であってもよい。
 硬化性樹脂組成物は、屈曲耐性向上効果および透明性等の特性を損なわない範囲において、上記以外のエポキシ化合物を含んでいてもよい。上記以外のエポキシ化合物としては、脂環式エポキシ基を有するエポキシ化合物、グリシジル型エポキシ基を1個のみ有する化合物、一般式(3)におけるRが環構造を含む化合物や主鎖の原子数が上記の範囲外である化合物等が挙げられる。
<光重合開始剤>
 硬化性樹脂組成物は、上記のポリオルガノシロキサン化合物およびエポキシ化合物の硬化を促進するための重合開始剤を含んでいることが好ましい。重合開始剤としては、熱カチオン重合開始剤および光カチオン重合開始剤が挙げられる。中でも、硬化効率が高いことから、光カチオン重合開始剤が好ましく用いられる。光カチオン重合開始剤は、活性エネルギー線の照射により酸を発生する化合物(光酸発生剤)である。光酸発生剤から生成した酸により、上記のポリオルガノシロキサン化合物およびエポキシ化合物のエポキシ基が反応して、分子間架橋が形成され材料が硬化する。
 光酸発生剤としては、六フッ化アンチモン、四フッ化ホウ素、六フッ化リン、フルオロアルキルフッ化リン、フルオロアルキルフッ化ガリウム等のアニオン(強酸)と、スルホニウム、アンモニウム、ホスホニウム、ヨードニウム、セレニウム等のカチオンを組み合わせたオニウム塩類;鉄-アレン錯体類;シラノール-金属キレート錯体類;ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、イミドスルホネート類、ベンゾインスルホネート類等のスルホン酸誘導体;有機ハロゲン化合物類等が挙げられる。
 硬化性樹脂組成物中の光カチオン重合開始剤の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、0.05~10重量部が好ましく、0.1~5重量部がより好ましく、0.2~2重量部がさらに好ましい。
 硬化性樹脂組成物は、エポキシ化合物を硬化可能な硬化剤を含んでいてもよい。硬化剤としては、アミン系硬化剤、酸無水物系硬化剤等が挙げられる。
<他の成分>
 硬化性樹脂組成物は、さらに、レベリング剤、反応性添加剤、粒子およびその他の添加剤を含み得る。機械強度に優れるハードコート層を形成する観点から、硬化性樹脂組成物中のポリオルガノシロキサン化合物の含有量は、固形分(不揮発分)の合計100重量部に対して、30重量部以上が好ましく、40重量部以上がより好ましく、50重量部以上がさらに好ましい。同様の観点から、硬化性樹脂組成物中のポリオルガノシロキサン化合物とエポキシ化合物の含有量の合計は、固形分の合計100重量部に対して、50重量部以上が好ましく、60重量部以上がより好ましく、70重量部以上がさらに好ましく、80重量部以上、90重量部以上または95重量部以上であってもよい。
<レベリング剤>
 硬化性樹脂組成物は、レベリング剤を含んでいてもよい。レベリング剤としては、シリコーン系レベリング剤、フッ素系レベリング剤、エーテル系レベリング剤、アクリル系レベリング剤等が挙げられる。レベリング剤を含むことにより、表面張力の低下や、表面平滑性の向上が期待できる。
 硬化性樹脂組成物におけるレベリング剤の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、0.001~10重量部が好ましく、0.01~5重量部がより好ましく、0.05~1重量部がさらに好ましい。
(反応性添加剤)
 硬化性樹脂組成物は、さらに、反応性添加剤として、上記のポリオルガノシロキサン化合物およびエポキシ化合物以外のカチオン硬化性化合物を含んでいてもよい。カチオン硬化性の反応性添加剤としては、エポキシ基、ビニルエーテル基、オキセタン基、およびアルコキシシリル基等のカチオン重合性官能基を有する化合物が挙げられる。
(粒子)
 硬化性樹脂組成物は、表面硬度や屈曲耐性等の膜特性の調整を目的として粒子を含んでいてもよい。粒子としては、有機粒子、無機粒子、有機無機複合粒子等を適宜選択して用いればよい。粒子は表面修飾されていてもよく、表面修飾により重合性官能基が導入されていてもよい。
 粒子の平均粒子径は、例えば5nm~10μm程度である。ハードコート層の透明性を高める観点から、平均粒子径は1000nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましく、100nm以下が特に好ましい。粒子径は、レーザー回折/散乱式の粒子径分布測定装置により測定でき、体積基準のメジアン径を平均粒子径とする。
 硬化性樹脂組成物における粒子の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、100重量部以下が好ましく、50重量部以下がより好ましい。
(溶媒)
 硬化性樹脂組成物は、無溶媒型でもよく、溶媒を含んでいてもよい硬化性樹脂組成物が溶媒を含む場合、溶媒の含有量は、ポリオルガノシロキサン化合物100重量部に対して、500重量部以下が好ましく、300重量部以下がより好ましく、100重量部以下がさらに好ましい。
(添加剤)
 硬化性樹脂組成物は、光増感剤、無機顔料や有機顔料、ラジカル重合開始剤、表面調整剤、表面改質剤、可塑剤、分散剤、湿潤剤、増粘剤、消泡剤等の添加剤を含んでいてもよい。また、硬化性樹脂組成物は、上記のポリオルガノシロキサン化合物およびエポキシ化合物以外の熱可塑性または熱硬化性の樹脂材料を含んでいてもよい。
[ハードコートフィルム]
 本発明の一態様は、透明フィルム上に上記の硬化性樹脂組成物の硬化物からなるハードコート層を備えるハードコートフィルムである。
 図1は、本発明の一実施形態にかかるハードコートフィルムの断面図である。ハードコートフィルム11は、透明フィルム1の一方の主面上に、ハードコート層3を備える。ハードコート層3は、上記の硬化性樹脂組成物の硬化により得られる硬化物層である。図2に示す様に、ハードコートフィルムは、ハードコート層3上に、トップコート層5を備えるものであってもよい。ハードコートフィルムは、透明フィルムの一方の面にハードコート層を備えるものでもよく、透明フィルムの両面にハードコート層を備えるものであってもよい。
<透明フィルム>
 透明フィルム1は、ハードコート層3を形成する際の土台となる樹脂基材である。透明フィルム1の全光線透過率は80%以上が好ましく、85%以上がより好ましく、88%以上がさらに好ましい。透明フィルムのヘイズは、2%以下が好ましく、1%以下がより好ましい。
 透明フィルム1の厚みは、例えば、1~1000μm程度である。透明フィルム1の厚みは、5~500μmが好ましく、10~200μmがより好ましく、20~100μmがさらに好ましく、30~80μmであってもよい。厚みが過度に小さい場合は硬度が不足し、厚みが過度に大きい場合は屈曲性に劣る傾向がある。
 透明フィルム1を構成する樹脂材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、環状ポリオレフィン等が挙げられる。
 中でも、機械強度が高いことから、樹脂材料としては、PET等のポリエステル、アクリル系樹脂、ポリイミドおよびポリアミドイミドが好ましく、アクリル系樹脂、ポリイミド、ポリアミドイミドが特に好ましい。ハードコートフィルムがディスプレイのカバーウインドウに用いられる場合、フィルム基材には、優れた耐熱性および機械強度が要求されることから、透明フィルムの樹脂材料としては、ポリイミドやポリアミドイミド等のポリイミド系樹脂が特に好ましい。
 ポリイミドは、テトラカルボン酸二無水物とジアミンとの反応により得られるポリアミド酸を脱水環化することにより得られる。一般的な全芳香族ポリイミドは黄色または褐色に着色しているのに対して、脂環式構造の導入、屈曲構造の導入、フッ素置換基の導入等により、可視光透過率が高い透明ポリイミドが得られる。
 透明性と機械強度を両立する観点から、ポリイミドは、テトラカルボン酸二無水物として、下記のテトラカルボン酸二無水物群の1種以上を含み、かつジアミンとして下記のジアミン群の1種以上を含むものが好ましい。
 テトラカルボン酸二無水物群:2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(BPADA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、4,4’-オキシジフタル酸二無水物(ODPA)、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物(6FDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)、ジシクロヘキシル-3,4,3‘,4’-テトラカルボン酸二無水物(H-BPDA)、p-フェニレンビス(トリメリテート)二無水物(TAHQ)、およびビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)-2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’ジイル(TAHMBP)
 ジアミン群:2,2’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン、イソホロンジアミン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、9,9-ビス(4-アミノフェニル)フルオレン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、および2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン
 機械特性および透明性の観点から、テトラカルボン酸二無水物およびジアミンの少なくとも一方に、脂環式構造またはフッ素原子を含むことが好ましく、テトラカルボン酸二無水物およびジアミンの両方に、脂環式構造またはフッ素原子を含むことが好ましい。ポリイミドのテトラカルボン酸二無水物に代えて、テレフタル酸クロライド等のジカルボン酸誘導体を用いることにより、ポリアミドイミドが得られる。
 ポリイミド系樹脂の重量平均分子量は、5000~500000が好ましく、10000~300000がより好ましく、30000~200000がさらに好ましい。重量平均分子量がこの範囲内である場合に、十分な機械特性および成形性が得られやすい。
 透明フィルム1は、2種以上の樹脂材料を含んでいてもよい。例えば、透明なポリイミド系樹脂は、溶剤可溶性を示すとともに、ポリカーボネートやアクリル系樹脂等の高透明性のポリマーと相溶性を示す場合がある。ポリイミド系樹脂とポリカーボネートやアクリル系樹脂等との相溶系ブレンドは、ポリイミド系樹脂の優れた耐熱性および機械強度と、ポリカーボネートやアクリル系樹脂等の優れた透明性を兼ね備えている。中でも、ポリイミド系樹脂とアクリル系樹脂を含む相溶ブレンドが好ましい。
 アクリル系樹脂としては、ポリメタクリル酸メチル等のポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体等が挙げられる。アクリル系樹脂は、変性により、グルタルイミド構造単位やラクトン環構造単位を導入したものでもよい。
 透明性およびポリイミド系樹脂との相溶性、ならびにフィルム等の成形体の機械強度の観点から、アクリル系樹脂は、メタクリル酸メチルを主たる構造単位とするものが好ましい。アクリル系樹脂におけるモノマー成分全量に対するメタクリル酸メチルの量は、60重量%以上が好ましく、70重量%以上、80重量%以上、85重量%以上、90重量%以上または95重量%以上であってもよい。アクリル系樹脂は、メタクリル酸メチルのホモポリマーであってもよい。また、アクリル系樹脂は、メタクリル酸メチルの含有量が上記範囲であるアクリル系ポリマーに、グルタルイミド構造やラクトン環構造を導入したものであってもよい。
 透明フィルムの耐熱性の観点から、アクリル系樹脂のガラス転移温度は100℃以上が好ましく、110℃以上がより好ましく、115℃以上または120℃以上であってもよい。上記のポリイミド系樹脂との相溶性およびフィルム強度の観点から、アクリル系樹脂の重量平均分子量は、5000~500000が好ましく、10000~300000がより好ましく、15000~200000がさらに好ましい。
 透明フィルムが、ポリイミド系樹脂とアクリル系樹脂等との混合系である場合において、ポリイミド系樹脂の比率は、20重量%以上が好ましく、40重量%以上がより好ましく、50重量%以上がさらに好ましい。ポリイミド系樹脂の比率が高いほど、耐熱性および機械強度に優れる傾向があり、ポリイミド系樹脂の比率が低くアクリル系樹脂等の高透明性樹脂の比率が高いほど、透明性が高い傾向がある。
 透明フィルムは、耐候性付与を目的とした紫外線吸収剤、ラジカルトラップ剤等の安定剤、色調調整を目的としたブルーイング材等の色素や顔料を含んでいてもよい。
 透明フィルム1は、単層でもよく、多層の構成でもよい。例えば、透明フィルムは、複数のフィルムが貼り合わせられた積層体でもよく、フィルムの表面(ハードコート層3形成面および/またはハードコート層非形成面)に、易接着層、帯電防止層、反射防止層等の機能層が設けられたものであってもよい。
<ハードコート層>
 透明フィルム1上に硬化性樹脂組成物を塗布し、必要に応じて溶媒を乾燥除去した後、硬化することにより、ハードコート層3が形成される。ハードコート層3は、上記の硬化性樹脂組成物の硬化物層であり、硬度、耐擦傷性、耐衝撃性等の向上に寄与する。
 硬化性樹脂組成物を塗布する方法としては、バーコート、グラビアコート、コンマコート等のロールコート、スロットダイコート、ファウンテンダイコート等のダイコート、スピンコート、スプレーコート、ディップコート等が挙げられる。硬化性樹脂組成物を塗布する前に、透明フィルム1の表面に、コロナ処理やプラズマ処理等の表面処理を行ってもよい。また、透明フィルム1の表面に易接着層等を設けてもよい。
 硬化性樹脂組成物への活性エネルギー線の照射または加熱により、カチオン重合開始剤から酸が生成し、酸の作用により、ポリオルガノシロキサン化合物の脂環式エポキシ基およびエポキシ化合物のグリシジル型エポキシ基の開環およびカチオン重合反応が進行する。硬化性樹脂組成物が反応性添加剤を含んでいる場合は、ポリオルガノシロキサン化合物およびエポキシ化合物の重合反応に加えて、反応性添加剤との重合反応も生じる。また、硬化性樹脂組成物が表面に反応性官能基を有する粒子を含有する場合は、ポリオルガノシロキサン化合物およびエポキシ化合物のエポキシ基と粒子表面の官能基が反応して化学架橋が形成される。
 硬化反応性の観点からは、硬化性樹脂組成物が光カチオン重合開始剤を含有し、活性エネルギー線の照射により硬化を行うことが好ましい。光硬化の際に照射する活性エネルギー線としては、可視光線、紫外線、赤外線、X線、α線、β線、γ線、電子線等が挙げられる。硬化反応速度が高くエネルギー効率に優れることから、活性エネルギー線としては、紫外線が好ましい。活性エネルギー線の積算照射量は、例えば50~10000mJ/cm程度であり、光カチオン重合開始剤の種類および配合量、ハードコート層の厚み等に応じて設定すればよい。硬化温度は特に限定されないが、通常150℃以下である。
 ハードコート層3の厚みは、2~100μmであり、5μm以上が好ましく、10μm以上がより好ましく、15μm以上がさらに好ましく、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。ハードコート層の厚みが大きいほど、硬度および耐衝撃性が良好となる傾向がある。一方、ハードコート層の厚みが小さいほど、屈曲耐性が良好となる傾向がある。
 透明フィルム1の厚みとハードコート層3の厚みとの合計は、特に限定されないが、10μm以上が好ましく、30μm以上がより好ましく、40μm以上がさらに好ましく、500μm以下が好ましく、200μm以下がより好ましく、100μm以下がさらに好ましく、80μm以下が特に好ましい。ハードコート層3の厚みと透明フィルム1の厚みとの比率(ハードコート層厚み/透明フィルム厚み)は、2/100~100/20が好ましい。
[トップコート層]
 図2に示すように、ハードコート層3の表層には、トップコート層5が設けられていてもよい。例えば、ハードコートフィルムの最表面に、分子内にアルコキシシリル基を有するパーフルオロアルキル基含有化合物の縮合物を含むトップコート層5が設けられることにより、ハードコートフィルムの耐擦傷性および防汚性が向上する。
 このようなトップコート層5は、分子内にアルコキシシリル基を有するパーフルオロアルキル基含有化合物の組成物を、ハードコート層3上に塗布することにより形成される。分子内にアルコキシシリル基を有するパーフルオロアルキル基含有化合物としては、ダイキン工業製の「OPTOOL UD509」、「OPTOOL DSX-E」等が挙げられる。
 トップコート層5の厚みは特に限定されないが、1nm以上が好ましく、5nm以上がより好ましく、6nm以上がさらに好ましく、10nm以上が特に好ましい。トップコート層5の厚みは、1000nm以下が好ましく、100nm以下がより好ましく、50nm以下、45nm以下、40nm以下、35nm以下または30nm以下であってもよい。トップコート層の厚みが過度に小さい場合は耐擦傷性や防汚性が不足することがあり、厚みが過度に大きいと、塗膜の白濁等によりハードコートフィルムの透明性が低下する場合がある。
[ハードコートフィルムの特性]
 樹脂フィルム1上に、脂環式エポキシ基を有するポリオルガノシロキサン化合物および複数のグリシジル型エポキシ基を含有するエポキシ化合物を含む上記の硬化性樹脂組成物から形成されたハードコート層3を備えるハードコートフィルムは、高い表面硬度を有し、かつ屈曲耐性にも優れる。
 ハードコートフィルムは、ハードコート層を外側にして、半径3mmで20万回以上の繰り返し曲げが可能であることが好ましい。ハードコートフィルムのハードコート層3形成面は、JIS-K5600に準拠した鉛筆硬度試験においてH以上の硬度を有することが好ましい。鉛筆硬度は、2H以上がより好ましく、3H以上がさらに好ましく、4H以上であってもよい。
 ハードコートフィルムの全光線透過率は80%以上が好ましく、85%以上がより好ましく、88%以上がさらに好ましい。ハードコートフィルムのヘイズは1%以下が好ましく、0.7%以下がより好ましく、0.5%以下がさらに好ましい。ハードコートフィルムの黄色度(YI)は、4.0以下が好ましく、3.0以下がより好ましく、2.5以下がさらに好ましい。
 脂環式エポキシ基を有するポリオルガノシロキサン化合物の硬化により形成されるハードコート層は、優れた硬度を有するが、屈曲耐性に劣る傾向がある。本発明においては、ハードコート層の形成に用いられる硬化性樹脂組成物が、脂環式エポキシ基を有するポリオルガノシロキサン化合物に加えて、複数のグリシジル型エポキシ基を有するエポキシ化合物を含むことにより、硬度および透明性を低下させることなく、屈曲耐性を向上可能である。そのため、上記の硬度および外曲げ屈曲耐性を有し、かつヘイズおよびYIが小さく、透明性に優れるハードコートフィルムを提供できる。
[ハードコートフィルムの応用]
 ハードコートフィルムは、各種の機能層を備えていてもよい。機能層としては、反射防止層、防眩層、帯電防止層、透明電極等が挙げられる。また、ハードコートフィルムには、透明粘着剤層が付設されてもよい。
 上記のハードコートフィルムは、高い硬度を有するとともに透明性に優れることから、ディスプレイの最表面に配置されるカバーウインドウ材料として好適に使用できる。ハードコートフィルムは、屈曲耐性にも優れていることから、折り畳み可能なディスプレイ(フォルダブルディスプレイ)のカバーウインドウとしても好適に使用可能である。ハードコートフィルムは、ハードコート層形成面を外側として屈曲させた際の屈曲耐性に優れていることから、画面を外側にして折り畳むタイプのフォルダブルディスプレイにも適用可能である。
 以下に、硬化性樹脂組成物を用いたハードコートフィルムの作製例を示して本発明をより詳細に説明するが、本発明は以下の具体例に限定されるものではない。
[透明フィルムの作製]
<透明フィルム1>
(ポリイミド樹脂1の調製)
 反応容器に、2,2’-ビス(トリフルオロメチル)ベンジジン(90モル部)、3,3’-ジアミノジフェニルスルホン(10モル部)、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)-2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’ジイル(50モル部)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(30モル部)、4,4’-オキシジフタル酸二無水物(20モル部)、およびN,N-ジメチルホルムアミドを投入し、窒素雰囲気下で12時間攪拌して固形分濃度12.5重量%のポリアミド酸溶液を得た。ポリアミド酸溶液100gに、イミド化触媒としてピリジン4.0gを添加し、完全に分散させた後、無水酢酸5.2gを添加し、90℃で4時間攪拌した。室温まで冷却した溶液を攪拌しながら、2-プロピルアルコール(IPA)を滴下して、ポリイミド樹脂を析出させ、吸引ろ過を行った。得られた固体をIPAで6回洗浄した後、120℃に設定した真空オーブンで8時間乾燥させて、ポリイミド樹脂1を得た。
(フィルムの作製)
 上記のポリイミド樹脂1を100重量部、紫外線吸収剤としてアデカスタブLA-31RG(ADEKA製)を2重量部、アデカスタブLA-F70(ADEKA製)を0.8重量部、ブルーイング剤としてPlast Blue8590(有本化学工業製)を0.004重量部、を塩化メチレンに溶解し、固形分濃度10重量%のポリイミド溶液を得た。バーコーターを用いて、ポリイミド溶液を無アルカリガラス板に塗布し、40℃で60分、80℃で30分、150℃で30分、170℃で30分、200℃で60分、大気雰囲気下で加熱して溶媒を除去して、厚み50μmの透明フィルム1を得た。
<透明フィルム2>
 上記のポリイミド樹脂1を100重量部、紫外線吸収剤としてTinuvin477(BASF製)を固形分として2.4重量部、ブルーイング剤としてPlast Blue8590(有本化学工業製)を0.0065重量部、を塩化メチレンに溶解し、固形分濃度10重量%のポリイミド溶液を得た。この溶液を用いて、透明フィルム1の作製と同様に、塗布および乾燥を行い、厚み50μmの透明フィルム2を得た。
<透明フィルム3>
 (ポリイミド樹脂2の調製)
反応容器に、2,2’-ビス(トリフルオロメチル)ベンジジン(100モル部)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(30モル部)、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(70モル部)、およびN,N-ジメチルホルムアミドを投入し、窒素雰囲気下で10時間撹拌固形分濃度18重量%のポリアミド酸溶液を得た。ポリアミド酸溶液100gに、イミド化触媒としてピリジン5.5gを添加し、完全に分散させた後、無水酢酸8gを添加し、90℃で3時間攪拌した。その後は、ポリイミド樹脂1の調製と同様に、ポリイミド樹脂の析出、洗浄および真空乾燥を行い、ポリイミド樹脂2を得た。
(フィルムの作製)
 上記のポリイミド樹脂2を55重量部、ポリメタクリル酸メチル樹脂(クラレ製「パラペットG」、メタクリル酸メチル/アクリル酸メチル(モノマー比87/13)の共重合体、ガラス転移温度109℃)を45重量部、を塩化メチレンに溶解し、固形分濃度11重量%の混合樹脂溶液を得た。バーコーターを用いて、この溶液を無アルカリガラス板上に塗布し、60℃で15分、90℃で15分、120℃で15分、150℃で15分、180℃で15分、200℃で15分、大気雰囲気下で加熱し、溶媒を除去して、厚み約90μmのフィルムを作製した。このフィルムを加熱オーブン付きの延伸機を用いて、温度195℃、延伸倍率80%で、固定端一軸延伸して、厚み50μmの透明フィルム3を得た。
[ポリオルガノシロキサン化合物の合成]
 温度計、撹拌装置、還流冷却管を取り付けた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ製「SILQUEST A-186」)66.5g(270mmol)、および1-メトキシ-2-プロパノール(PGME)16.5gを仕込み、均一に撹拌した。この混合液に、触媒としての塩化マグネシウム0.039g(0.405mmol)を、水9.7g(539mmol)とメタノール5.8gとの混合液に溶解した溶液を、5分かけて滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、シラン化合物の縮合物(ポリオルガノシロキサン化合物)を得た。
 東ソー製のGPC装置「HLC-8220GPC」(カラム:TSKgel GMHXL×2本、TSKgel G3000HXL,TSKgel G2000HXL)により測定したポリスチレン換算の重量平均分子量は3000であった。ブルカー製400MHz-NMRを用いて、重アセトンを溶媒として測定したH-NMRスペクトルから算出したエポキシ基の残存率は95%以上であった。
[硬化性樹脂組成物の調製]
 上記のポリオルガノシロキサン化合物と、エポキシ化合物、光重合開始剤、およびレベリング剤を配合して、硬化性樹脂組成物を調製した。エポキシ化合物の種類、ならびにエポキシ化合物、光重合開始剤およびレベリング剤の量(ポリオルガノシロキサン化合物100重量部に対する配合量)は、表2~7に示す通りとした。
 エポキシ化合物の詳細は表1に示す通りである。表1におけるnおよびRは、一般式(3)におけるn(グリシジル型エポキシ基の数)およびR(グリシジルオキシ基の酸素原子間を繋ぐ構造)である。なお、エポキシ化合物Dとエポキシ化合物Eは同一の化合物であるが、純度(不純物としての塩素原子の含有量)が異なっており、エポキシ化合物Dの塩素原子含有量は0.1%以下、エポキシ化合物Eの塩素原子含有量は5.7%である。
Figure JPOXMLDOC01-appb-T000006
 光重合開始剤およびレベリング剤の詳細は下記の通りである。
<光重合開始剤>
 101A:ヘキサフルオロアンチモネートアニオンとスルホニウムカチオンからなる塩の50%溶液(サンアプロ製「CPI-101A」)
 200K:ホスホニウム系アニオンとスルホニウムカチオンからなる塩の50%溶液(サンアプロ製「CPI-200K」)
<レベリング剤>
 ポリエーテル変性ポリジメチルシロキサンの52%溶液(ビックケミー製「BYK-300」)
[ハードコートフィルムの作製]
<ハードコートフィルム1~4,6~12、23~68>
 透明フィルムの主面に、表2~7に示す硬化性樹脂組成物を、乾燥膜厚が20μmとなるようにバーコーターを用いて塗布し、120℃で溶媒を除去した。その後、高圧水銀ランプを用いて、積算光量が1950mJ/cmとなるように紫外線を照射し、硬化性樹脂組成物を硬化させて、厚み50μmの透明フィルム上に厚み20μmのハードコート層を備えるハードコートフィルムを得た。
<ハードコートフィルム5,13~22>
 上記と同様に、透明フィルム上にハードコート層を形成した後、ハードコート層の表面をコロナ処理した。コロナ処理後のハードコート層の表面に、パーフルオロアルキルエーテルオリゴマーの溶液(ダイキン工業製「OPTOOL UD509」を、ハイドロフルオロエーテル(スリーエム製「Novec7200」)により希釈した固形分0.1重量%の溶液)を塗布し、150℃で溶媒を除去して、透明フィルム上にハードコート層を備え、ハードコート層上に耐擦傷層を備えるハードコートフィルムを得た。
[ハードコートフィルムの評価]
 ハードコートフィルム1~68について、以下の評価を実施した。
<外曲げ屈曲耐性(繰り返し曲げ試験)>
 ハードコートフィルムをユアサシステム機器製U字屈曲耐久性試験機DMLHBにセットし、屈曲半径3mm、曲げ角度180°、1回/秒の速度で、ハードコート層が外側となるように、20万回の繰り返し曲げ試験を行った。試験は温度23℃、湿度55%に設定された恒温恒湿環境で行った。試験後に、ハードコート層のクラックや破断がなかったものを〇、クラックまたは破断が生じていたものを×とした。
<鉛筆硬度>
 JIS K5600に従い、750gの荷重にて、ハードコート層表面(ハードコートフィルム14~23については耐擦傷層の表面)の鉛筆硬度を評価した。なお、ハードコートフィルム15,18については、透明フィルム3の延伸方向に沿って鉛筆を移動させて評価を実施した。
<ヘイズ>
 スガ試験機製ヘイズメーターHZ-V3を用いて、JIS K7361-1:1999およびJIS K7136:2000に記載の方法により測定した。測定にはD65光源を用いた。
<黄色度(YI)>
 スガ試験機製測色計SC-Pを用いて透過モードで測定した。測定にはD65光源を用いた。
 表2~7に、ハードコート層の形成に用いた硬化性樹脂組成物の組成、透明フィルムの種類、および耐擦傷層の有無、ならびにハードコートフィルムの評価結果を示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 エポキシ化合物を含まない組成物を用いて作製したハードコートフィルム1は、高い鉛筆硬度を有していたが、屈曲耐性が不十分であった。ポリオルガノシロキサン化合物100重量部に対して、45重量部のトリプロピレングリコールジグリシジルエーテル(エポキシ化合物A)を配合した組成物を用いて作製したハードコートフィルム2は、4Hの高い鉛筆硬度を有しつつ、優れた屈曲耐性を示した。ハードコートフィルム2とハードコートフィルム3~5の対比から、レベリング剤の有無、光重合開始剤の種類および量に依存せず、エポキシ化合物を含む組成物を用いることにより、屈曲耐性、硬度および透明性に優れるハードコートフィルムが得られることが分かる。
 組成物におけるエポキシ化合物の配合量を55重量部または100重量部に増大させたハードコートフィルム6,7も、ハードコートフィルム2~5と同様、屈曲耐性、硬度および透明性に優れていた。エポキシ化合物Aに代えて、ポリプロピレンオキサイド(PPO)鎖の鎖長が長いエポキシ化合物Bを用いたハードコートフィルム8も同様であった。
 エポキシ化合物C(エチレングリコールジグリシジルエーテル)を用いたハードコートフィルム10,11も同様であった。しかし、エポキシ化合物の配合量が1重量部であるハードコートフィルム9は、ハードコートフィルム1と同様、屈曲耐性が不足していた。
 エポキシ化合物D,E(1,6-ヘキサンジオールジグリシジルエーテル)を用いたハードコートフィルム12~24は、配合量1~150重量部の範囲において、いずれも良好な屈曲耐性を示した。
 2つのグリシジルオキシ基の酸素原子間を繋ぐアルキレン基の鎖長(炭素原子数)が大きいエポキシ化合物F(1,12-ドデカンジオールジグリシジルエーテル)を用いたハードコートフィルム26~30は、屈曲耐性に優れていたが、エポキシ化合物の配合量が多いハードコートフィルム29,30では、エポキシ化合物の配合量の増大に伴って鉛筆硬度の低下がみられた。また、エポキシ化合物の配合量が200重量部であるハードコートフィルム30は、ヘイズが1.0%を超えていた。エポキシ化合物の配合量が20重量部であるハードコートフィルム25は、ハードコートフィルム1,9と同様、屈曲耐性が不足していた。
 2つのグリシジルオキシ基の酸素原子間を繋ぐRが直鎖アルキレンであるエポキシ化合物C,D,E,Fを用いたハードコートフィルム9~30の評価結果から、エポキシ化合物の配合量の増大に伴ってハードコートフィルムの屈曲耐性が向上するものの、エポキシ化合物の配合量が過度に大きい場合は、ハードコート層の硬度が低下する傾向があることが分かる。また、エポキシ化合物のRの構造によって、配合量の最適値が異なっており、エポキシ化合物D,E(1,6-ヘキサンジオールジグリシジルエーテル)を用いた場合は、より広い配合量の範囲で、ハードコートフィルムの屈曲耐性と硬度を両立しており、かつ透明性も優れていることが分かる。
 ポリイミドとPMMAの混合樹脂フィルムである透明フィルム3を用いたハードコートフィルム14,17は、ポリイミドフィルムである透明フィルム2を用いたハードコートフィルム13,16と比べて黄色度(YI)が小さく、透明性に優れていた。
 ハードコート層上にトップコート層として耐擦傷層を設けたハードコートフィルム5,13~22は、他の例と同様、優れた屈曲耐性、硬度および透明性を有していた。これらのハードコートフィルムは、荷重500g、1500往復のスチールウール耐擦傷性試験を行った後も傷または白化がみられず、良好な耐擦傷性を示した。
 2つのグリシジルオキシ基の酸素原子間を繋ぐRが分枝アルキレンであるエポキシ化合物G,H,Iを5重量部以上配合したハードコートフィルム32~35,37~39,41~44は、屈曲耐性、硬度および透明性に優れていた。エポキシ化合物Hの配合量が1重量部であるハードコートフィルム36は、ハードコートフィルム37~39と同様優れた屈曲耐性を示したが、エポキシ化合物G,Iの配合量が1重量部であるハードコートフィルム31,40は屈曲耐性が不足していた。
 3つのグリシジル型エポキシ基を有するエポキシ化合物J(トリメチロールプロパントリグリシジルエーテル)を5重量部以上配合したハードコートフィルム46,47は、屈曲耐性、硬度および透明性に優れていた。一方、エポキシ化合物Jの配合量が1重量部であるハードコートフィルム45は屈曲耐性が不足していた。
 Rがポリエチレンオキシド(PEO)鎖であるエポキシ化合物K,Lを用いたハードコートフィルム48,49は、屈曲耐性および硬度の一方が不十分であった。Rがポリテトラメチレンオキシド(PTMO)鎖であるエポキシ化合物Mを50重量部配合したハードコートフィルム50は屈曲耐性が不足しており、エポキシ化合物の配合量を増大させたハードコートフィルム51,52では硬度が不足していた。また、ハードコートフィルム50~52は、ヘイズが高く透明性も不十分であった。これは、ポリオルガノシロキサン化合物とエポキシ化合物の相溶性が低いことに起因していると考えられる。
 Rが環構造を含むエポキシ化合物N,Oを用いたハードコートフィルム53,54は、屈曲耐性が不足しており、硬度も不十分であった。2つの脂環式エポキシ基を有するエポキシ化合物Pを用いたハードコートフィルム55は屈曲耐性が不足していた。エポキシ化合物Pの配合量を増大させたハードコートフィルム56,57においても屈曲耐性の改善はみられなかった。
 グリシジル型エポキシ基を1つのみ有するエポキシ化合物Q,R,S,Tを用いたハードコートフィルム61~68は、屈曲耐性が不足していた。また、ハードコートフィルム60,63,67,68では、硬度が著しく低下していた。
 以上の結果から、脂環式エポキシ基を有するポリオルガノシロキサン化合物に加えて、複数のグリシジル型エポキシ基を特定の構造を有する有機基Rで繋ぐ構造を有するエポキシ化合物を含み、エポキシ化合物の配合量が所定範囲である組成物をハードコート材料とすることにより、外曲げ屈曲耐性、硬度および透明性に優れるハードコートフィルムが得られることが分かる。

 

Claims (18)

  1.  脂環式エポキシ基を有するポリオルガノシロキサン化合物、および複数のグリシジル型エポキシ基を有するエポキシ化合物を含む硬化性樹脂組成物であって、
     前記ポリオルガノシロキサン化合物は、一般式(1)で表されるシラン化合物を含むシラン化合物の縮合物であり、
       [Y-Si(OR 3-x]  (1)
     Rは水素原子または炭素数1~10のアルキル基であり、Rは水素原子、または炭素数1~16のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基から選択される1価の炭化水素基であり、xは2または3であり、Yは脂環式エポキシ基を含む1価の有機基であり、
     前記エポキシ化合物は、トリメチロールプロパントリグリシジルエーテルまたは一般式(4)で表される化合物であり、
    Figure JPOXMLDOC01-appb-C000001
     一般式(4)において、Rは、炭素数2~12である直鎖アルキレン基、炭素数2~12である直鎖アルキレン基の1以上の水素原子がメチル基もしくは水酸基に置換されていることにより分枝構造を有するアルキレン基、または主鎖の原子数が5~20であるポリプロピレンオキサイド鎖であり、
     前記ポリオルガノシロキサン化合物100重量部に対する前記エポキシ化合物の含有量が、1~190重量部である、
     硬化性樹脂組成物。
  2.  前記エポキシ化合物が、一般式(4)で表され、Rが炭素数2~6の直鎖アルキレン基である化合物であり、
     前記ポリオルガノシロキサン化合物100重量部に対する前記エポキシ化合物の含有量が、1~190重量部である、
     請求項1に記載の硬化性樹脂組成物。
  3.  前記エポキシ化合物が、一般式(4)で表され、Rが炭素数2~6の直鎖アルキレン基の1以上の水素原子がメチル基もしくは水酸基に置換されていることにより分枝構造を有するアルキレン基である化合物であり、
     前記ポリオルガノシロキサン化合物100重量部に対する前記エポキシ化合物の含有量が、1~190重量部である、
     請求項1に記載の硬化性樹脂組成物。
  4.  前記エポキシ化合物が、一般式(4)で表され、Rが炭素数7~12の直鎖アルキレン基である化合物であり、
     前記ポリオルガノシロキサン化合物100重量部に対する前記エポキシ化合物の含有量が、21~190重量部である、
     請求項1に記載の硬化性樹脂組成物。
  5.  前記エポキシ化合物が、一般式(4)で表され、Rが炭素数7~12の直鎖アルキレン基の1以上の水素原子がメチル基もしくは水酸基に置換されていることにより分枝構造を有するアルキレン基である化合物であり、
     前記ポリオルガノシロキサン化合物100重量部に対する前記エポキシ化合物の含有量が、21~190重量部である、
     請求項1に記載の硬化性樹脂組成物。
  6.  前記エポキシ化合物が、一般式(4)で表され、Rが主鎖の原子数が5~20であるポリプロピレンオキサイド鎖である化合物であり、
     前記ポリオルガノシロキサン化合物100重量部に対する前記エポキシ化合物の含有量が、21~190重量部である、
     請求項1に記載の硬化性樹脂組成物。
  7.  前記エポキシ化合物がトリメチロールプロパントリグリシジルエーテルであり、
     前記ポリオルガノシロキサン化合物100重量部に対する前記エポキシ化合物の含有量が、5~190重量部である、
     請求項1に記載の硬化性樹脂組成物。
  8.  前記エポキシ化合物が、エチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、1, 12-ドデカンジオールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ヘプタプロピレングリコールジグリシジルエーテル、およびトリメチロールプロパントリグリシジルエーテルからなる群から選択される1種以上である、請求項1に記載の硬化性樹脂組成物。
  9.  さらに、光重合開始剤を含む、請求項1~8いずれか1項に記載の硬化性樹脂組成物。
  10.  透明フィルムの少なくとも一方の面にハードコート層を備え、
     前記ハードコート層が、請求項9に記載の硬化性樹脂組成物の硬化物層である、ハードコートフィルム。
  11.  前記透明フィルムが、ポリイミド系樹脂およびアクリル系樹脂から選択される1以上を含む、請求項10に記載のハードコートフィルム。
  12.  前記透明フィルムが、ポリイミド系樹脂とアクリル系樹脂を含む、請求項10に記載のハードコートフィルム。
  13.  前記ハードコート層の厚みが5~100μmである、請求項10に記載のハードコートフィルム。
  14.  前記ハードコート層上に耐擦傷層を備える、請求項10に記載のハードコートフィルム。
  15.  前記ハードコート層の鉛筆硬度が3H以上である、請求項10に記載のハードコートフィルム。
  16.  前記ハードコート層を外側にして、半径3mmで屈曲と伸張を20万回繰り返した後に、前記ハードコート層にクラックが生じない、請求項10に記載のハードコートフィルム。
  17.  透明フィルム上に、請求項9に記載の硬化性樹脂組成物を塗布し、活性エネルギー線を照射して硬化することにより、ハードコート層を形成する、ハードコートフィルムの製造方法。
  18.  請求項10に記載のハードコートフィルムを含むディスプレイ。

     
PCT/JP2023/027976 2022-08-03 2023-07-31 硬化性樹脂組成物、ハードコートフィルムおよびその製造方法、ならびにディスプレイ WO2024029496A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022124359 2022-08-03
JP2022-124359 2022-08-03
JP2023009658 2023-01-25
JP2023-009658 2023-01-25

Publications (1)

Publication Number Publication Date
WO2024029496A1 true WO2024029496A1 (ja) 2024-02-08

Family

ID=89849335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027976 WO2024029496A1 (ja) 2022-08-03 2023-07-31 硬化性樹脂組成物、ハードコートフィルムおよびその製造方法、ならびにディスプレイ

Country Status (1)

Country Link
WO (1) WO2024029496A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360651A (zh) * 2013-06-21 2013-10-23 安徽荣玖光纤通信科技有限公司 一种抗拉伸电缆护套料及其制备方法
WO2020040209A1 (ja) * 2018-08-24 2020-02-27 株式会社カネカ ハードコート組成物、ハードコート付きポリイミドフィルムおよびその製造方法、ならびに画像表示装置
WO2020209194A1 (ja) * 2019-04-12 2020-10-15 富士フイルム株式会社 ハードコートフィルムおよびその製造方法、ハードコートフィルムを備えた物品、及び画像表示装置
JP2021075656A (ja) * 2019-11-12 2021-05-20 ナガセケムテックス株式会社 ケイ素含有反応物
CN113845842A (zh) * 2021-10-26 2021-12-28 华南理工大学 一种超支化环氧低聚硅氧烷高耐磨重防腐涂料及其制备方法与应用
WO2022102736A1 (ja) * 2020-11-16 2022-05-19 株式会社ダイセル 積層フィルム、及びフレキシブルデバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360651A (zh) * 2013-06-21 2013-10-23 安徽荣玖光纤通信科技有限公司 一种抗拉伸电缆护套料及其制备方法
WO2020040209A1 (ja) * 2018-08-24 2020-02-27 株式会社カネカ ハードコート組成物、ハードコート付きポリイミドフィルムおよびその製造方法、ならびに画像表示装置
WO2020209194A1 (ja) * 2019-04-12 2020-10-15 富士フイルム株式会社 ハードコートフィルムおよびその製造方法、ハードコートフィルムを備えた物品、及び画像表示装置
JP2021075656A (ja) * 2019-11-12 2021-05-20 ナガセケムテックス株式会社 ケイ素含有反応物
WO2022102736A1 (ja) * 2020-11-16 2022-05-19 株式会社ダイセル 積層フィルム、及びフレキシブルデバイス
CN113845842A (zh) * 2021-10-26 2021-12-28 华南理工大学 一种超支化环氧低聚硅氧烷高耐磨重防腐涂料及其制备方法与应用

Similar Documents

Publication Publication Date Title
JP6853668B2 (ja) 光及び熱硬化性樹脂組成物、硬化物、並びに積層体
JP7328973B2 (ja) ハードコート組成物、ハードコート付きポリイミドフィルムおよびその製造方法、ならびに画像表示装置
JP6412867B2 (ja) 活性エネルギー線硬化性組成物
JP6545482B2 (ja) 光または熱硬化性樹脂組成物、硬化物及び積層体
WO2021172200A1 (ja) シルセスキオキサン化合物およびその製造方法、ハードコート組成物ならびにハードコートフィルムおよびその製造方法
JP4462421B2 (ja) 紫外線吸収性基含有有機ケイ素化合物及びその製造方法並びにコーティング組成物及び被覆物品
JP6557041B2 (ja) 光または熱硬化性樹脂組成物からなる積層体
WO2024029496A1 (ja) 硬化性樹脂組成物、ハードコートフィルムおよびその製造方法、ならびにディスプレイ
JP2023129477A (ja) 硬化物、硬化物の製造方法、硬化性樹脂組成物および硬化物の利用
JP6152100B6 (ja) 防曇性シート
JPWO2013180106A6 (ja) 防曇性シート
JP6639898B2 (ja) 転写フィルム
JP2021070800A (ja) ハードコートフィルムおよび画像表示装置
WO2023008492A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ
WO2022270471A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ
JP2024066964A (ja) ハードコートフィルムとその製造方法、およびハードコートフィルムを含むディスプレイ
WO2021172201A1 (ja) ハードコートフィルムおよびその製造方法、ならびに表示装置
WO2023008493A1 (ja) シラン化合物およびその製造方法、ポリオルガノシロキサン化合物、ハードコート組成物、ハードコーフィルムおよびその製造方法、ならびにディスプレイ
WO2022191329A1 (ja) ハードコートフィルムおよびその製造方法、ならびにディスプレイ
WO2019123731A1 (ja) シロキサン系硬化性樹脂組成物及びハードコーティング液
WO2022191328A1 (ja) フィルムおよびその製造方法、積層フィルム、ならびにディスプレイ
JP2023019788A (ja) ハードコートフィルムおよびその製造方法、ハードコートフィルムを含むディスプレイ
CN116981963A (zh) 硬涂膜及其制造方法、以及显示器
JP2023019789A (ja) ハードコートフィルムおよびその製造方法、ハードコートフィルムを含むディスプレイ
JP2022139546A (ja) ハードコーフィルムおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850050

Country of ref document: EP

Kind code of ref document: A1